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Abstract

The propagation of (planar) cracks in a heterogeneous brittle material characterized

by a random field of toughness is considered, taking into account explicitly the

effect of the crack front roughness on the local stress intensity factor. In the so-

called strong-pinning regime, the onset of crack propagation appears to map onto

a second-order phase transition characterized by universal critical exponents which

are independent of the local characteristics of the medium. Propagation over large

distances can be described by using a simple one-dimensional description, with a

correlation length and an effective macroscopic toughness distribution that scale

in a non-trivial fashion with the crack front length. As an application of the above

concepts, the arrest of indentation cracks is addressed, and the analytical expression

for the statistical distribution of the crack radius at arrest is derived. The analysis
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of indentation crack radii on alumina is shown to obey the predicted algebraic

expression for the radius distribution and its dependence on the indentation load.

Keywords: A. Crack propagation and arrest; A. Indentation and hardness; B.

Inhomogeneous material; C. Probability and statistics; Brittle material.
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1 Introduction

Brittle materials, such as ceramics and glasses, are known to be extremely sen-

sitive to bulk and surface defects, from which cracks can be initiated eventu-

ally leading to failure. This extreme sensitivity calls for a statistical analysis of

crack initiation, which has been extensively developed following the pioneering

work of Weibull (Weibull, 1939). In this “weakest-link” approach (Freuden-

thal, 1968), the analysis is focused on the initiation stage, implicitly assuming

that the propagation stage is obtained systematically over unlimited distances,

due to the lower loading needed for this stage as compared to the inception of

propagation.

However, in some cases, even though cracks are initiated, they will not propa-

gate over large distances, and their presence may still be acceptable in service

condition of a given structure. For example, in ceramic / metal assemblies,

residual stresses caused by the coefficient of thermal expansion mismatch may

prevent cracks to traverse the brittle part so that a weakest link hypothesis

does not apply (Charles and Hild, 2002). In brittle-matrix composites, crack

arrest is also observed due to the bridging forces induced by the fibers (Evans,

1990). Other examples of such confined cracks are those produced by inden-

tation (Lawn, 1993). In the latter case, the stress field has a rapid decay with

distance from the indentation point, and hence a crack that can easily be

nucleated may stop shortly after initiation.

The mechanical treatment of crack arrest in a brittle material is standard:

namely, Linear Elastic Fracture Mechanics generally holds without much re-

striction, and hence, a crack is expected to be arrested as soon as the stress

intensity factor K becomes smaller than the toughness Kc. The purpose of
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the present paper is to investigate the effect of a statistical distribution of

toughness. A statistical model is considered for the steady propagation of an

extended planar crack front through a random landscape of toughness. This

situation is shown to give rise to a genuine phase transition at the onset

of propagation. The recognition of this critical character opens to numer-

ous interesting properties, not only concerning the complexity of the spatio-

temporal development of crack propagation, but also and more importantly on

the statistical distribution of the global stress intensity factor characterizing

the entire front. In particular, universality justifies the independence of some

properties on the details of the random toughness field. At a larger scale, the

problem of crack arrest is considered in a non-uniform loading geometry. In

this situation, some of the features revealed by the previous analysis can be

used. As an application of the above concepts, the case of indentation cracks

is considered since they are naturally arrested because of the decaying stress

intensity factor. The semi-circular geometry of the crack front will allow for

an explicit analysis of the statistical distribution of crack arrest distance. The

results are applied on indentation of sintered alumina samples. Four different

statistical records of indentation crack length for different loads on the same

material are tested against the theoretical predictions.

2 Crack pinning

The three-dimensional problem where the crack front may be pinned at dif-

ferent locations leads to a complex problem, because elastic interactions af-

fect the local stress intensity factor along the crack front. As a result, the

local stress intensity factor depends on the overall front geometry in a non-

local manner (Bower and Ortiz, 1991, 1993). Curtin (Curtin, 1997, 1998) per-
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formed a simplified analysis of a similar problem. A modelling of planar crack

propagation in a random environment was also proposed by Schmittbuhl et

al. (Schmittbuhl et al., 1995a), Ramanathan and Fisher (Ramanathan and

Fisher, 1998) and Bouchaud et al. (Bouchaud et al., 1993) that revealed a

complex spatio-temporal organization of the propagation, and scale-invariant

crack front morphology. These studies show that the macroscopic toughness is

not simply given by the average toughness and that tougher elements impede

crack growth in a lesser extend than with a strongest link assumption due to

the stress intensity factor enhancement caused by crack front curvature. One of

the most striking predictions of these approaches is the scale invariant nature

of the crack front or crack surface roughness, which is qualitatively (unfor-

tunately not quantitatively) in agreement with a large body of experimental

analysis, a review of which is presented in (Bouchaud, 1997).

This problem, at this level of generality, is extremely complex, and simplify-

ing assumptions are proposed to address it. First, the crack remains planar in

the (x, y)-plane where the mean crack front is aligned along the x-direction,

whereas the y-axis is the direction of crack propagation (Fig. 1). Second, the

distribution of local toughness is sufficiently narrow so that a first-order per-

turbative analysis can be used to characterize the coupling of the local stress

intensity factor K(x) to the overall front morphology h(x). Third, the elastic

properties of the medium can be considered as homogeneous. Those assump-

tions allow one to use a result derived by Gao and Rice (Gao and Rice, 1989)

that relates the local stress intensity factor K(x, h(x)) along the crack front

to the crack front shape h(x), and the reference stress intensity factor, K0,

which would result from the same loading with a straight crack front at the
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same mean position h0 = 〈h〉x

K(x, h(x)) = K0

(

1 +
1

π

∫ h(x) − h(x′)

(x− x′)2
dx′

)

. (1)

As discussed in (Roux et al., 2003), those assumptions are not yet sufficient to

specify entirely the problem at hand. The correlation function of the toughness

pattern comes into play to discriminate two regimes:

• for large correlation lengths along the propagation direction, a weak-pinning

regime is obtained, where the crack front is only mildly affected by the disor-

der and hence the crack advance at each point along the front is continuous

as the mean position of the crack front 〈h〉x moves;

• for small correlation lengths along the propagation direction, the front un-

dergoes a series of jumps from one stable position to the next. This regime,

referred to as “strong-pinning,” is the most interesting in the sense that the

effective toughness is expected to depart from the arithmetic average of the

local toughness (in contrast to the weak pinning regime).

In the following, only the latter regime is considered with a specific design of

the local toughness distribution so that strong-pinning will be guaranteed.

3 Propagation model

Let us consider a planar crack front extending over the x-axis and propagating

along the y-direction. The geometry of the front is described by h(x, t), the

y-coordinate of the front at an abscissa x and time t. The model describes

the propagation of the crack from one pinned configuration to the next. A

time coordinate is introduced to label the sequence of crack front geometries.

However, as explained below, no physical time-dependent propagation rule is

6



considered, and hence this label is used as a convenient way of characteriz-

ing the mean crack advance. The front is discretized along the x-axis with a

constant interval whose physical meaning can be interpreted as the correla-

tion length of the toughness along the x-direction. The assumption that the

crack front can be represented as a single-valued function of x is a necessary

assumption for the use of the perturbative result (1). The latter imposes the

slope of the front to be small compared to unity (Gao and Rice, 1989). This

in turn has consequences on the amplitude of the local toughness distribution,

which has to be small compared to the mean value, Kc. This quantity is the

small parameter used in all subsequent expansions.

Under an external load that would produce a stress intensity factor K0(t) for

a straight front, Eq. (1) allows one to estimate the local stress intensity factor,

K(x, t). The local toughness along the crack front Kc(x, h(x, t)) is assumed

to be distributed without spatial correlation from a given distribution p(Kc).

To make the problem non-dimensional, the scaled stress intensity factor is

defined as k = (K − Kc)/Kc, and the local dimensionless toughness kc =

(Kc −Kc)/Kc. The local stress intensity factor can thus be written, as a first

order approximation,

k(x, t) = k0(t) + kel(x, t), (2)

with

kel(x, t) =
1

π

∫

h(x, t) − h(x′, t)

(x− x′)2
dx′. (3)

One can compute the maximum level for which the crack would not propagate,

k0(t) < kc(x, h(x, t)) − kel(x, t), for all x along the front. Thus, the onset of

crack propagation is given by a level such that the scaled global stress intensity
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factor assumes the value

κ(t) = min
x

[kc(x, h(x, t)) − kel(x, t)]. (4)

For such a level, at one point xact(t) along the front the stress intensity fac-

tor matches exactly the local toughness. Let us now introduce the way the

crack propagation is modeled. At the point xact(t), the crack can overcome

the local toughness and advance. It will directly jump to a new obstacle

h(xact(t), t+1) = h(xact(t), t)+δh, where δh can be either a constant length, or

a random one. It characterizes the correlation along the propagation direction,

and there lies the “strong-pinning” nature of the present model. At this new

position, another local toughness is encountered, which is uncorrelated with

the previous ones. All other sites are supposed to remain pinned during this

elementary move of the crack front. The new front geometry and local tough-

ness distribution is treated the same way. This means that the external loading

is adjusted in time so that one constantly remains at the onset of propagation

given by Eq. (4), irrespective of the variation of κ(t). The physical time needed

to achieve the elementary move of the crack front is not introduced here, and

hence time appears here as a discrete label given to the different crack con-

figurations. However, when inertia effects are negligible, one can reconstruct

from the above signal κ(t) what would be the evolution of the system under

any specific history of loading in a quasi-static regime. In particular, for a

subcritical but constant loading, k0, starting from any configuration, one can

compute the expected crack advance before reaching a pinned configuration

for which κ(t) > k0 for the first time.

For a crack front having a finite extent (with free or periodic boundary con-

ditions), one can follow numerically the change of a crack front for arbitrarily

long times, and record statistical information concerning either the crack front
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geometry, the activity of the front with time [i.e., position of xact(t)], or the

loading κ(t). The latter signal is of special interest since it provides an esti-

mate of the (reduced) critical loading κ∗ for which an unlimited propagation

would be obtained

κ∗ = max
t

[κ(t)], (5)

and thus the latter corresponds to the macroscopic effective toughness of the

medium, for extended propagation, while κ(t) can be understood as an instan-

taneous toughness taking into account interactions between local toughness

values through the dependence in the crack front geometry. As shown below,

the crack propagation can be compared to a phase transition from the pinned

state to an unpinned (i.e., propagation) regime, where the loading plays the

role of the control parameter. As usually observed in such second-order phase

transition, the behavior close to κ∗ can be characterized by a series of critical

exponents which are universal, i.e., independent of the local disorder intro-

duced in the model, such as the distribution p(Kc) of local toughness (see

(Sornette, 2000) for a presentation of the background and a review of other

occurrences of criticality in a variety of applications including mechanical and

geophysical examples).

4 Statistical properties of the steady state

After a transient regime influenced by the initial crack geometry, the model

gives rise to a steady state during which a number of statistical observables

can be defined and characterized. The main properties of this steady state are

recalled. More details can be found in (Tanguy et al., 1998; Skoe et al., 2002).
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4.1 Front roughness

The first interesting observation concerns the crack front morphology. No spe-

cific scale of roughness is evidenced between the discretization scale and the

system size, but rather a scale invariant geometry appears. The crack front

is observed to be a self-affine object such that the r.m.s. height difference

between two points distant of ∆x scales as

〈[h(x+ ∆x) − h(x)]2〉1/2
x ∝ ∆xζ , (6)

with ζ ≈ 0.37, irrespective of the disorder. The same property can be analyzed

with different tools (Schmittbuhl et al., 1995b), such as Fourier power spectra,

wavelet analysis, probability density function (p.d.f.) of height differences, all

revealing the same property.

4.2 Activity

The spatio-temporal distribution of activity [i.e., map of xact(t) vs. t] displays

a highly non-trivial organization, without any characteristic scale, neither in

space nor in time. More precisely, by studying the p.d.f. of the difference

d = |xact(t+ ∆t) − xact(t)| at a fixed time interval, two regimes are found:

• at a small distance, the p.d.f. is uniform;

• at large distances, the p.d.f. decays as a power-law d−2 that reflects the

kernel of the interaction term in Eq. (1).

The cross-over distance between these two regimes, d∗ depends on the time

interval ∆t as a power-law

d∗ ∝ ∆t1/z , (7)
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where z is the so-called dynamic exponent, related to the roughness exponent

ζ by

z = 1 + ζ. (8)

Such a behavior can be recovered in a class of stochastic processes, i.e., Linear

Fractional Stable Motion (Krishnamurthy et al., 2000) that contains both a

wide distribution of elementary d, and long-range temporal correlations.

The above property reveals that the propagation consists in localized bursts of

activity, where the clustering of activity in space and time can be decomposed

hierarchically from the larger ones down to the smaller ones in a scale-invariant

fashion.

4.3 Distribution of effective toughness

The two above properties dealt with geometric organization that may be dif-

ficult to access experimentally. However, the model also provides access to

the loading, and hence the effective macroscopic toughness either at each in-

stant of time κ(t) or globally κ∗. The interesting feature is that the signal κ(t)

contains some information about the spatio-temporal organization of activity.

The first observation is the statistical distribution of κ(t) which shows a long

tail of low effective toughness, but an abrupt fall-off of the distribution near

the maximum value κ∗. The latter can be characterized to behave singularly

as

P (κ) ∝ (κ∗ − κ)β, (9)

irrespective of the microscopic toughness distribution p(Kc). Figure 2 shows

the distributions P (κ) for two different distributions p(Kc), either uniform in

[0; 1] or centered reduced Gaussian.
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To make the connection with the activity map, it is instructive to study the

distribution of effective toughness P (κ(t), d) conditioned by a jump between

the activity site |xact(t+1)−xact(t)| = d. The clustered nature of the activity

suggests that one needs to reach a locally strongly pinned configuration to ob-

serve a large distance jump of the active site. Thus the distribution P (κ(t), d)

is expected to concentrate progressively closer to κ∗ as d increases (Skoe et al.,

2002). This is what is observed in Fig. 3. Moreover, as d becomes large com-

pared to the discretization scale, it can be seen that the distribution P (κ, d)

converges to a unique form up to a scaling factor. Hence, one can write

P (κ, d) = dαψ[(κ∗ − κ)dα], (10)

so that a characteristic correlation length ℓ‖ can be derived for each loading

ℓ‖ ∝ (κ∗ − κ)−ν where ν = 1/α. The physical meaning of such a length scale

is that for a subcritical loading k0 = κ, starting from any configuration in

the steady state, the activity is localized in a region of extent ℓ‖. The time

needed to reach a stable configuration can be obtained from the previous

scaling properties, ∆t ∝ ℓz‖ ∝ (κ∗ − κ)−νz. It can be demonstrated (Fisher,

1985; Kardar, 1998) that

ν =
1

1 − ζ
, (11)

or this scaling property can be read off from the interaction kernel in Eq. (1).

Knowing the statistics of jumps d distributed as a power-law of exponent −2,

together with the scaling properties of the conditioned distribution P (κ, d),

allows one to compute the overall distribution of κ in the vicinity of κ∗. It

provides the critical behavior described by Eq. (9) with

β = ν − 1 =
ζ

1 − ζ
. (12)

Table 1 recalls the theoretical expressions of all the critical exponents in-
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troduced so far, together with their numerical value. All exponents can be

expressed as a function of one of them (e.g., ζ). However, the numerical value

of the latter is not known theoretically. Numerical simulations are needed to

obtain an accurate estimate. Functional renormalization group methods have

been used (Nattermann et al., 1993; Narayan and Fisher, 1993) to provide an

analytic route to estimate ζ . However, it remains a perturbative method, which

even when computed up to second order (Le Doussal et al., 2002), remains

approximative.

5 Crack arrest

The discussion has been focused here on the steady state propagation in a

homogeneous environment. With those results, the problem of crack arrest

can be addressed in a geometry where the stress intensity factor decreases

with the propagation distance.

In (Chudnovsky and Kunin, 1987; Jeulin, 1994; Charles and Hild, 2002;

Charles et al., 2003), the problem is treated by using a simple one dimensional

description. Only the mean propagation distance 〈h〉x is used to parameter-

ize the crack advance. Accordingly, the stress intensity profile, K(〈h〉x), is

introduced, together with some effective toughness Kc(〈h〉x). At this level of

description, the effective toughness is assumed to be given by a random func-

tion, with a correlation length representative of the microstructure. Thus this

random function is modeled as a piecewise constant function over a “grain

size” 1/λ, without any correlation above this scale. The grain size is either

constant (Charles and Hild, 2002; Charles et al., 2003) or described by using

a Poisson mosaic (Jeulin, 1994). The p.d.f. for the effective toughness, f(Kc)
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is introduced.

Let us briefly recall the argument developed in (Charles and Hild, 2002;

Charles et al., 2003). Let F (K) = P (Kc < K) be the cumulative proba-

bility of effective toughness F (K) =
∫K
0 f(Kc)dKc. The probability Q(h) that

the crack arrest distance be larger than h is then computed by writing that the

conditionKc(y) < K(y) hold for all y ≤ h (i.e., a “strongest” link assumption)

Q(h) =
hλ
∏

i=1

F (K(i/λ)), (13)

with

K(i/λ) = min
y∈[(i−1)/λ,i/λ[

K(y). (14)

The continuous approximation of Eq. (13)

Q(h) ≈ exp

(

λ
∫ h

0
log[F (K(y))]dy

)

, (15)

holds for long distances as compared to the “grain size” hλ≫ 1 and a smooth

stress intensity factor profile λdK(y)/dy ≪ K(y). This simple result was then

extended to the more complex case of subcritical crack growth (Charles et al.,

2003). However, this situation is not considered in the present study.

Let us note that a similar expression can be found by assuming that the

grain boundaries are defined by a Poisson tessellation (Jeulin, 1994). Under

this assumption, 1/λ is the average grain size and the propagation probability

with a decaying stress intensity factor can be written as (Jeulin, 1994; Charles

and Hild, 2002)

Q(h) = exp

(

−λ
∫ h

0
[1 − F (K(y))]dy

)

. (16)

The key question that underlies this description is the identification of the

physical meaning of the “grain size,” and the effective toughness. In this con-
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text, the first sections that considered the roughening of the crack front are

helpful to quantify more precisely these terms, and thus the domain of validity

of this description. One of the major advantages of resorting to this propaga-

tion model is that a well-defined effective toughness is now available, naturally

parameterized in “time” t, which is proportional to the mean crack advance

t = 〈h〉xL/(ξ‖ξ⊥) where ξ⊥ is the extension of an elementary crack advance

during one time step (i.e., the rescaling of the length L by ξ‖ is used to obtain

the number of microstructural units).

As noted above, the crack front develops a self-affine roughness, thus the width

of the front w = (〈h2〉x − 〈h〉2x)
1/2 is dependent on the crack length L, obeying

w ∝ ξ⊥(L/ξ‖)
ζ. Moreover, complex correlations in the effective toughness are

present. However, those correlations only occur at time intervals smaller than

the time T needed to depin the crack front over its entire length. This defines

the larger time scale for those correlations scaling as T ∝ (L/ξ‖)
z. Taking into

account the fact that L is present in the relationship between time and mean

crack advance, the correlation length 1/λ scales as

1/λ ∝ ξ⊥(L/ξ‖)
z−1 ∝ ξ⊥(L/ξ‖)

ζ . (17)

Equivalently, the “grain size” 1/λ is physically given by the width of the

crack front. This signals a first non trivial feature, unexpected from the one-

dimensional picture. The “grain size,” which has to be used, depends on the

crack front length.

One arrives now at the most interesting output of the planar crack modeling:

namely, the distribution of effective toughness. The power-law distribution of

the effective toughness, which can be seen in the vicinity of κ∗, has already

been discussed in Section 4.3. However, this power-law regime results from the
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collective interaction of the crack front motion at different scales. Hence such

a distribution holds in a domain where strong correlations are present, and

therefore it cannot be used in the proposed approach given in Eqs. (13) and

(15) because of the necessary assumption of statistical independence. However,

the scale (i.e., “grain size”) at which the latter condition holds is known. At

such a scale, one has to consider the maximum effective toughness over 1/λ.

Such a quantity has already been used in the study of the effective toughness

conditioned by the distance between consecutive active sites, d. It suffices

to consider the largest distance d = L/2 admissible to focus on the largest

effective toughness. Moreover, the distribution of effective toughness converges

for large d to a universal scaling form given in Eq. (10). Thus the shape of

the effective toughness distribution f is given by the universal function ψ.

It simply has to be translated to match κ∗ and scaled so that its standard

deviation scales as (L/ξ‖)
−1/ν . This is an important conclusion: When the crack

length is large compared to the heterogeneity of the microstructure, the effective

toughness assumes a unique universal form independent of the microstructure.

However the standard deviation of the distribution is scale-dependent.

Figure 4 shows the shape of the universal distribution ψ. This function has

a power-law behavior close to the origin, with the same exponent as the one

of the global toughness distribution, i.e., ψ(x) ∝ xβ . This implies that the

effective toughness does not exceed the threshold κ∗. For large arguments

x, ψ(x) has a rapid decay to 0. This behavior concerns the small effective

toughness and turns out to be inessential as explicitly shown in the following

section.
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6 Application to indentation cracks

6.1 Propagation probability

A natural application of the above discussion concerns indentation cracks. This

situation is a typical case where the stress intensity factor decreases strongly

with the distance c from the indentation center, K ∝Mc−3/2, where M is the

applied load (Ponton and Rawlings, 1989a,b), so that cracks are generally con-

fined to the immediate vicinity of the indent. However, radial/median cracks

grow assuming approximately a circular or partly circular shape (Lawn, 1993).

Hence the effective crack front length increases proportionally to c. This is a

significant difference with respect to the previously treated case where L was

assumed to remain constant.

The change of the crack front length with c is responsible for a continuous

change of both the length parameter 1/λ and the distribution of effective

toughness. Coming back to a one dimensional image, the problem consists

now of a crack propagating through a series of effective grains of increasing

size, the toughness of each grain being drawn from a distribution that is itself

grain size dependent. The generalization of Eq. (15) leads to

Q(c) ≈ exp
[
∫ c

0
log (Fr(K(r)))λ(r)dr

]

, (18)

where the “grain size” 1/λ now depends on the crack front length, 1/λ = Bc,

with B = π for a semi-circular crack shape, 2π for a circular one. The B

value is not specified in the sequel to account for any crack shape provided

it remains self-similar at different stages of growth. Moreover, since the nu-

merical prefactors in the scaling properties are not given, their values can be
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disregarded at this stage

1

λ(c)
∝ ξ⊥

(

c

ξ‖

)ζ

, (19)

and the cumulative probability Fr(K) of propagating through that grain de-

rives from a distribution whose shape is universal (i.e., independent on the

details of the toughness disorder at the microstructural scale, provided the

latter is small compared with the crack front length) but whose width directly

depends on the crack front length L ∝ c

Fc(K) = 1 −
∫ K∗

K
f(k, c)dk

= 1 −
∫ K∗

−K
K∗

0

(

c

ξ‖

)α

ψ

[

q

(

c

ξ‖

)α]

dq.

(20)

Note that forK(c) > K∗, the crack cannot be arrested so that Fc(K) = 1. This

leads to the introduction of a characteristic crack size c∗ such that K(c∗) = K∗

which is a lower bound on the crack size at arrest. For a large crack size as

compared to the scale of heterogeneities, effective toughness values will always

remain in the immediate vicinity of K∗ (i.e., F close to unity) so that the

power-law behavior of ψ at the origin can be used to give a more precise

description of log(Fc(K))

log(Fc(K)) ∝ −
c

ξ‖

(

K∗ −K

K∗

)

1

1−ζ

. (21)

where the scaling relations summarized in Table 1 have been used. Gathering

these expressions, Eq. (18) can be rewritten as

Q(c) ≈ exp







−A (c∗)2−ζ
∫ c

c∗

(

r

c∗

)1−ζ
(

K∗ −K(r)

K∗

)
1

1−ζ dr

c∗







, (22)

where A is a prefactor whose dependence with respect to the material param-

eters ξ is

A ∝
ξζ−1
‖

ξ⊥
. (23)
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A change of variable x = c/c∗ using the scaling of the stress intensity factor

K(c) = K∗(c∗/c)3/2 then leads to

Q(xc∗) ≈ exp
{

−A(c∗)2−ζ
∫ x

1
u1−ζ

(

1 − u−3/2
)

1

1−ζ du
}

. (24)

The integral in Eq. (24) can be recast in terms of an incomplete beta function.

It can be noted that the same distribution was chosen a priori in (Charles and

Hild, 2002). Equation (24) therefore constitutes an a posteriori validation, even

though the “grain size” is no longer constant in the present analysis.

If the further hypothesis (u − 1) ≪ 1 can be made (i.e., small standard

deviation of the crack arrest distance as compared to c∗, in practice x − 1 <

5%), the following algebraic expression of the decay of Q(xc∗) with x results

Q(xc∗) ≈ exp
(

−A′(c∗)2−ζ(x− 1)
2−ζ

1−ζ

)

, (25)

where the numerical value of the above exponents is (2 − ζ)/(1 − ζ) ≈ 2.6

and 2 − ζ ≈ 1.63, and the dependence of A′ on the characteristic pa-

rameters ξ⊥ and ξ‖ is similar to that of A [Eq. (23)]. In particular, the

width ∆ of the distribution of reduced crack size c/c∗ appears to scale as

∆ ∝ (c∗)−(1−ζ) ≈ (c∗)−0.63, becoming more and more deterministic as the

load is increased, i.e., ∆ ∝ M−2(1−ζ)/3 ∝ M−0.42, with a power-law behavior

reminiscent of a Weibull-type result, but with the great difference that the

exponent is independent of the concerned material!

6.2 Analysis of indentation experiments

The previous results are now applied to experimental data. Several indentation

tests, with different applied masses m (i.e., M ∝ m), have been performed on

an alumina (Al2O3) ceramic. Figure 5 shows an SEM picture of the material.
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One can see a fine-grain (i.e., 10µm) alumina polycrystal with an intergran-

ular glassy phase. A microanalysis shows that the latter contains SiO2, CaO

and Al2O3 components. Vickers indentation with four different masses have

been performed on previously polished sample surfaces: namely, m = 0.2 kg,

0.3 kg, 0.5 kg and 1 kg. For each applied mass, mean indentation-generated

crack lengths are measured. For the chosen loading range, it was checked that

radial/median crack system is predominant by SEM observations and that

c/2a > 1, where a is the size of the mean indent half-diagonal length (Pon-

ton and Rawlings, 1989a,b). For each applied mass, measured crack lengths

ci are associated to an experimental propagation probability Q(ci). The crack

lengths are ranked in ascending order (i.e., c1 < c2 < . . . < cN) and the cor-

responding experimental probability are evaluated as Q(ci) = 1 − i/(N + 1),

where N is the number of measured crack radii for the considered applied

mass.

Equation (24) is used in the following analysis. Only two parameters have to

be identified, namely the scale parameter A and the characteristic radius c∗.

Only one identification procedure is presented here, although a number of al-

ternative methods can be used (Charles et al., 2003). Following Equation (24),

for each load series, the best c∗ parameter is sought by prescribing that the

constant A be an intrinsic material parameter (i.e., unknown but identical for

all series). Figure 6 shows the result of the identification. A good agreement is

obtained. Table 2 gives the value of the parameters c∗ for the different applied

masses. The value of A1/(2−ζ) is found to be equal to 0.15 µm−1.

Furthermore, a rescaling procedure can be followed to compare all the exper-

imental data on a single curve. Because of the algebraic expression of Q, one

has to refer to a common conventional c∗, denoted as c0, to be able to compare
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all data on a unique scale. Thus a rescaled propagation probability, Qrescaled,

is introduced such that

Qrescaled = Qq (26)

where

q =
(

c0
c∗

)2−ζ

. (27)

A check of the proposed scaling result is that Qrescaled plotted as a function of

c/c∗ should fall onto a unique master curve. This is expected to be true for any

c0 choice. To treat all experimental points on an equal footing, the selection

of the geometrical average of c∗ over all series was made, c0 = exp(〈log(c∗i )〉)

where 〈...〉 denotes the arithmetic average. Figure 7 shows the prediction for

the indentation experiments on alumina, and a good data collapse is observed.

Finally, Equation (24) also predicts that c∗ follows a power-law of the applied

load m. Figure 8 shows this comparison in a log-log scale together with a

line showing the expected power-law dependence (i.e., c∗ ∝ m2/3 through

the definition of a stress intensity factor K∗ ∝ m/(r∗)3/2). Again a good

agreement is obtained, although no more fitting parameter was used in this

last confrontation.

7 Conclusions

A model for the propagation of a planar crack in a two-dimensional random

landscape of toughness has been introduced. The complex interplay between

the disorder and the elastic crack does not allow one to consider the successive

failures of individual grains as independent events. The onset of propagation

can be described as a genuine second order phase transition characterized by

universal critical exponents.
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When the toughness fluctuations are large enough or when the associated

correlation length in the direction of propagation is short enough, the advance

of the front stops being steady. The motion becomes jerky, the front jumps

from one stable position to another one. In these strong pinning conditions the

effective toughness of the material cannot be estimated by a simple arithmetic

average of the toughness of the individual grains. These successive bursts

take place over a continuous range of scales without any characteristic length

besides the grain size and the lateral extension L of the front. Over these

scales the front develops universal features that do not depend on the details

of the toughness disorder. In particular, the front roughness appears to be

self-affine: its width scales as w(L) ∝ Lζ with ζ ≈ 0.37. The motion of the

front is thus correlated up to the system size L in the lateral direction and Lζ

in the direction of propagation. When a front of finite extent L is considered,

a coarse-grained approach at the scale of effective grains of size L × Lζ can

be performed. A key result is that up to scaling factors only dependent on

the system size, the distribution of effective toughness of these effective grains

adopts a universal form. The latter is completely independent of the details of

the microscopic toughness. If the lateral extent of the front remains constant

during the propagation, the latter can thus be treated as the advance of a one-

dimensional crack through a series of effective grains characterized by the same

well-defined effective toughness p.d.f. This result is extended to the case of self-

similar cracks when the lateral front size is itself a growing quantity in the

course of propagation. The coarse-grained approach remains valid but instead

of advancing through effective grains of constant size, the one-dimensional

crack propagates through effective grains of growing size together with a non-

steady toughness distribution.

As an application to explore the predictive power of this scaling approach,
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the statistical distribution of crack arrest distances for indentation has been

examined. The proposed scaling approach provides an analytical expression

for the crack arrest length distribution whose dependence with respect to the

material characteristics is limited to only two scalar parameters (a length scale,

and a reference toughness). The rest of the analytical expression is universal,

(independent of the considered material). These results have been validated

against experimental data obtained from a polycrystalline sintered alumina.
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Fig. 5. Alumina used in the study with an average grain size of the order of 10 µm.

One can note the glassy intergranular phase.
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