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Indecomposable representations

of osp(3, 2), D(2, 1; α) and G(3)

Jérôme GERMONI

September 22, 2002

Abstract. We classify the finite-dimensional representations of the Lie superalgebras osp(3, 2),
D(2, 1;α) (the one-parameter family of deformations of osp(4, 2)) and G(3). In short, indecom-
posable representations in the non-trivial blocks are, up to isomorphism and duality, naturally
parametrized by positive roots of an infinite Dynkin diagram of type D∞ or A∞

∞. From this result
we can deduce the representation type of all basic classical Lie superalgebras but F (4).

Introduction.

Let g be one of the complex basic classical Lie superalgebras osp(3, 2), D(2, 1;α) for some
α ∈ C \ {0,−1}, or G(3). We want to classify all indecomposable finite-dimensional g-modules.

Let X+ be the set of isomorphism classes of simple finite-dimensional g-modules. For λ ∈ X+ we
choose a simple module S(λ) in λ. We set an edge between two elements of X+ if they have a non-
split extension. Blocks are connected components of the resulting graph. All the simple components
of an indecomposable module belong to the same block ; we say that the indecomposable module
itself belongs to this block.

If a block is reduced to one element, the corresponding simple module is typical in the sense of
Kac [6] and splits in any finite-dimensional module in which it is a subquotient. The other modules
and blocks are called atypical. For M a g-module in a block Γ, we set [M ] =

∑

λ∈Γ[M : S(λ)].λ ∈
NΓ.

The main result is the following :

Theorem 1 Let Γ be an atypical block of osp(3, 2), D(2, 1;α) or G(3). Then :
(a) As a graph, Γ is an infinite Dynkin diagram of type D∞ or A∞

∞. (Recall its vertices are
isomorphism classes of simple modules.)
(b) Up to isomorphism, the indecomposable projective modules in Γ are naturally parametrized by
the set of simple roots of Γ considered as a root system.
(c) Up to isomorphism and to duality, the indecomposable non-projective modules in Γ are nat-
urally parametrized by the set of positive roots of Γ : if Λ ∈ NΓ is a positive root, there are two
indecomposable representations M and M∗ in Γ, dual of each other, such that [M ] = [M∗] = Λ.

More precise versions of this theorem will be given in theorems 2.1.1, 3.1.1 and 4.1.1.
Say that two blocks (of possibly different superalgebras) are equivalent if the categories of

modules belonging to these two blocks are equivalent. According to the results announced by V.
Serganova in [11], it turns out that there is only one equivalence class of atypical blocks for all the
algebras osp(3, 2n) (n ≥ 1) and osp(2p + 1, 2) (p ≥ 1), and there are two of them for the algebras
osp(2p, 2) (p ≥ 2). The representation type of special linear superalgebras and related agebras was
determined in [2]. Hence we get :
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Corollary 2 The following Lie superalgebras have tame representation type : sl(m, 1) (m ≥ 1),
osp(m, 2p) (m ≤ 3 or p = 1), D(2, 1;α), G(3).

On the other hand, notice that the arguments used in [2] to prove that sl(m,n) has wild
representation type for m,n ≥ 2 can be adapted to show that osp(m, 2p) has wild representation
type if m ≥ 4 and p ≥ 2. The only remaining case in the class of basic classical Lie superalgebras
is F (4), which is most likely to have tame representation type.

As simple Lie algebras, basic classical Lie superalgebras have a root system, which, modulo the
choice of a basis, enables us to endow X+ with a partial order. We can define highest weight modules
L0(λ) (for λ ∈ X+) which, to some extent, play the role of Verma modules in the Bernstein-Gelfand-
Gelfand category O : namely, L0(λ) is projective in the category of finite-dimensional modules with
all subquotients lower than λ (see section 1.2).

For superalgebras of type II (i.e. osp(m, 2p) with m ≥ 3 and p ≥ 1, D(2, 1;α) with α ∈
C \ {0,−1}, G(3) or F (4), see [6]), the modules L0(λ) are constructed by homological induction,
and no longer by usual induction as highest-weight modules in O or as the so-called Kac modules
of sl(m,n) (see [10] or [2]). The situation is now more complicated : first, projective modules do
not have a filtration by highest weight modules in general ; next, the character and the composition
series of L0(λ) are not known.

Nevertheless, for osp(3, 2), D(2, 1;α) and G(3), everything can be computed by ad hoc methods :
it simplifies a lot that the Casimir separates atypical blocks.

Conventions : The ground field is C. Elements of Z/2Z will be denoted by 0 and 1, while 0
and 1 lie in Z : thus g0 and g0 denote different algebras. The symbols S and

∧

denote classical
symmetric and exterior algebras.

Acknowledgements : The author warmfully thanks O. Mathieu and V. Serganova for fruitful
discussions, the French Ministère des Affaires Etrangères for the Lavoisier grant that supported him
while this work was done, the referee for pointing out a number of misprints and mistakes in a first
version of the manuscript, and C. Cibils and the organizers of the conference “Homology and
representation theory” where this work was presented.

1 Homological induction

1.1 Preliminaries

In this section we denote by g = g0 ⊕ g1 a complex basic classical Lie superalgebra (see [6] or [9]).
We assume that g is either osp(m, 2n) with m ≥ 3 and n ≥ 1 or D(2, 1;α) for some α ∈ C \{0,−1}
or G(3) or F (4). We exclude the cases of sl(m,n) and osp(2, 2n) because for these algebras, we
can define highest weight modules (denoted by Vλ in [10] and K(λ) in [2]) by usual induction, so
that the considerations developed here are less useful. It follows from our assumption that g0 is
semi-simple.

We fix a Cartan subalgebra h of g0, and we denote by W the Weyl group of g0. Let ∆0 (resp. ∆1)
the set of even (resp. odd) roots, i.e. the set of weights of h in g0 (resp. g1). We put ∆ = ∆0 ∪∆1.

We choose a system of positive roots ∆+ in ∆. Let ≤ be the partial order on h defined by :
µ ≤ λ if λ − µ ∈ N∆+. We denote by ρ0 (resp. ρ1) the half-sum of positive even (resp. odd)
roots, and we set ρ = ρ0 − ρ1. The shifted action of W is defined, for w ∈ W and λ ∈ h∗, by :
w.λ = w(λ + ρ)− ρ. We denote by ℓ the length function on W .

The superalgebra g admits an even non degenerate bilinear invariant form, which allows to define
a Casimir element in the center of the enveloping algebra, and induces on h∗ a non degenerate
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bilinear form denoted (., .). For a non-isotropic root β ∈ ∆, we set β∨ = 2β/(β, β). If M is
a module with a highest weight λ, the eigenvalue of the Casimir element on M is : Cas(λ) =
(λ + ρ, λ + ρ)− (ρ, ρ).

We denote by b the Borel subalgebra corresponding to ∆+, and by Cλ the one-dimensional
b-module with weight λ ∈ h∗. When λ ∈ h∗ is dominant for g0 with respect to ∆+

0 , the simple
g0-module with highest weight λ will be denoted by L(g0, λ). We denote its character by χ(eλ) and
we extend χ to finite sums of symbols eλ by linearity. Thus :

χ(eλ) =

∑

w∈W (−1)ℓ(w)ew(λ+ρ0)

∏

β∈∆+

0

(eβ/2 − e−β/2)
.

We denote by g-mod the category of finite-dimensional g-modules with even morphisms of
representations. For every λ ∈ X+ we choose a module S(λ) in λ. Once a system of positive roots
is chosen, a simple finite-dimensional module S has a unique maximal weight with respect to ≤,
called the highest weight of S, which determines S up to isomorphism and parity. Thus X+ can
be identified with a subset of the set of dominant weights for g0, determined in proposition 2.3 of
[6] for a distinguished choice of ∆+. Elements in X+ will be called dominant weights (for g, with
respect to ∆+). A dominant weight is typical if and only if for every β ∈ ∆+

1 such that (β, β) = 0,
the scalar product (λ + ρ, β) is not zero.

Lemma 1.1.1 (i) The category g-mod contains enough projective modules.
(ii) Projective and injective modules in g-mod coincide.
(iii) For any λ, µ ∈ X+, we have : Ext1g(S(λ), S(µ)) ≃ Ext1g(S(µ), S(λ)).

Proof : Since g0 is semi-simple, any finite-dimensional g0-module is projective and injective.
Besides induction takes projectives to projectives, so that for any finite-dimensional g-module M ,
Indg

g0
Resg0

M is projective in g-mod. Since it maps onto M , this proves (i).
By proposition 2.1.1 in [2], induced modules from g0 to g are also coinduced, so that projective

and injective modules coincide, whence (ii).
To prove (iii), recall that g admits a “Chevalley automorphism” σ that maps a root space gα

to g−α and fixes h (see [9], proposition 1.2). Hence we can define a contravariant duality functor
D by twisting the usual dual of a module by σ. This functor does not change the character of a
module, so it fixes finite-dimensional simple modules. Interpreting the groups Ext1g as equivalence
classes of short exact sequences, we get the isomorphism in (iii) by applying D.�

The lemma shows that g-mod is a nice category in the sense of [2], section 1. We will use the
notions and notations introduced therein. Recall that the Ext-quiver of g-mod is the quiver Q with
vertex set X+, where the number of arrows from λ to µ is dim Ext1g(S(λ), S(µ)). We know there
exists a system of relations R on Q such that the category of representations of the quiver with
relations Q/R is equivalent to g-mod. Blocks are connected components of Q (or, by abuse, parts
of X+). The block containing the trivial representation C is called principal and denoted by Γ0.
We denote by g-modΓ the category of finite dimensional g-modules all subquotients of which belong
to a given block Γ. Any indecomposable g-module lies in a unique g-modΓ.

1.2 Harish-Chandra categories and Zuckerman functors

Given two Lie superalgebras n ⊂ m, we denote by HC(m, n) the category of m-modules that restrict
to a (possibly infinite) direct sum of finite-dimensional simple n-modules.
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Let s0 be a Levi subalgebra of g0 containing h. Notice that any finite-dimensional g-module
lies in HC(g, s0), since by assumption g0 is semi-simple. The goal in the next two sections is to
collect a few properties of certain functors L

s0
i : HC(g, s0)→HC(g, g0) introduced by Santos in [9],

section 4. This section contains mainly abstrasct nonsense, but things become more specific in the
next one.

Let S0 be a simply-connected connected complex Lie group with Lie algebra s0. Let M̂(S0) be
the algebra defined as the inverse limit of s0-semi-simple quotients of U(s0) : as a s0-module, it is the

direct product of L∗⊗L, where L runs over the set Ŝ0 of isomorphism classes of finite-dimensional
S0-modules. This algebra contains a unique subalgebra M(S0) isomorphic as a s0-module to the

direct sum of L∗ ⊗ L, L running over Ŝ0, i.e. to the matrix coefficient algebra of S0.
We can define an approximately unital associative superalgebra R(g, S0) in [8], (1.131), which

is isomorphic to U(g)⊗U(s0)M(S0) as a left g-module and a right s0-module, and toM(S0)⊗U(s0)

U(g) as a right g-module and a left s0-module. For s0 = g0, R(g, S0) is the algebra denoted by
M(G) in [9], section 4. Extending [8], theorem 1.117, we can identify HC(g, s0) to the category of
approximately unital R(g, S0)-modules.

The following lemma describes some projectives in HC(g, s0).

Lemma 1.2.1 (i) If V lies in HC(s0, s0) then Indg
s0

V is projective in HC(g, s0). Such a module is
called a standard projective. Any module in HC(g, s0) is a quotient of a standard projective module.
(ii) If V lies in HC(s0, s0), then Resg0

Indg
s0

V is projective in HC(g0, s0).

(iii) If V lies in HC(h, h), then Ress0 Indg
h V is projective in HC(s0, h).

Proof : (i) Let a0 (resp. a1) be the even (resp. odd) part of g/s0 : they are semi-simple
s0-modules. Extending [9], lemma 2.6, Ress0 Indg

s0
V has an increasing filtration by submodules

(Wj)j≥−1 with W−1 = 0 and

Wj/Wj−1 ≃
⊕

k+l=j

S
k(a0)⊗

∧l
(a1)⊗ V.

Since s0 is reductive and since g/s0 and V are semi-simple modules, Wj/Wj−1 splits in Wj. Thus,
passing to the limit, we get that

Ress0 Indg
s0

V ≃ S(a0)⊗
∧

(a1)⊗ V.

This shows that Indg
s0

V does lie in HC(g, s0). Since Indg
s0

is left adjoint to the exact restriction
functor, it maps projectives in HC(s0, s0) (that is to say, any module !) to projectives in HC(g, s0).
The last part of (i) follows since any module M in HC(g, s0) is a quotient of Indg

s0
Ress0 M .

(ii) and (iii) : The same filtration argument as above shows that Resg0
Indg

s0
V (resp.

Ress0 Indg
h V ) is isomorphic to Ind

g0

s0 (
∧

(g1)⊗ V ) (resp. Ind
s0
h (S(a0) ⊗

∧

(a1)⊗ V )), which by (i) is
projective in HC(g0, s0) (resp. HC(s0, h)).�

Santos defined a right exact covariant functor

L
s0
0 = R(g, G0)⊗U(g)? : HC(g, s0) −→ HC(g, g0).

Notice that since S0 is connected, ⊗U(g) is the same as ⊗R(g,S0) on HC(g, s0). By lemma 1.2.1 (i),

for i ≥ 0, the i-th left derived functor L
s0
i of L

s0
0 is well defined.

The functor L
s0
0 has a purely classical counterpart, namely the Bernstein-Zuckerman right exact

functor
0L

s0
0 =M(G0)⊗U(g0)? : HC(g0, s0) −→ HC(g0, g0).
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Its derived functors will be denoted by 0L
s0
i . They can be computed by a variant of the Borel-

Weil-Bott theorem. The following lemma relates the super functor and the classical one : it means
that the g0-module structure of L

s0
i (M) only depends on that of M . It is also a consequence of

proposition 4.4 in [9].

Lemma 1.2.2 There is a commutative diagram of functors, for all i ≥ 0 :

HC(g, s0)
L

s0

i−→ HC(g, g0)

Resg0
↓ ↓Resg0

HC(g0, s0)
0L

s0

i−→ HC(g0, g0),

where Resg0
is the forgetful functor from g-modules to g0-modules.

Proof : First assume i = 0. As a left g0-module, R(g, G0) ≃ M(G0) ⊗U(g0) U(g), so that by
transitivity of tensor product we have for any M in HC(g, s0) :

Resg0
L

s0
0 (M) ≃M(G0)⊗U(g0) U(g)⊗U(g) M ≃M(G0)⊗U(g0) M = 0L

s0
0 Resg0

M.

Now, the functor Resg0
is exact and, by lemma 1.2.1 (ii), it maps projectives in HC(g, s0) to

projectives in HC(g0, s0). Hence the assertion for all i follows by deriving the assertion for i = 0.�

Now we want to relate the three categories HC(g, g0), HC(g, s0) and HC(g, h). First, mimicking
[9], section 4, or in [8], proposition 2.9, we define a right exact functor

L′0 = R(g, S0)⊗U(g)? : HC(g, h)→ HC(g, s0).

Notice that since H is connected, ⊗U(g) is the same as ⊗R(g,H). This functor has a purely classical
counterpart, namely :

0L′0 =M(S0)⊗U(s0)? : HC(s0, h) −→ HC(s0, s0).

The functor 0L′0 and its derived functors, denoted by 0L′i in the sequel, can be computed by a variant
of the Borel-Weil-Bott theorem.

Lemma 1.2.3 (i) There is an isomorphism of functors : Lh
0 ≃ L

s0
0 ◦ L

′
0.

(ii) For any i ≥ 0, there is a commutative diagram of functors :

HC(g, h)
L′

i−→ HC(g, s0)

Ress0
↓ ↓Ress0

HC(s0, h)
0L′

i−→ HC(s0, s0),

Proof : As in [8], proposition 2.18 (a), we see that if N is in HC(g, s0), then N⊗U(g)R(g, S0) ≃ N .
In particular, for N = R(g, G0), we get for any M in HC(g, h) that :

Lh
0(M) = R(g, G0)⊗U(g) M = R(g, G0)⊗U(g) R(g, S0)⊗U(g) M = L

s0
0 ◦ L

′
0(M).

This proves (i). Assertion (ii) is proved by the same method as lemma 1.2.2 : associativity
of tensor product implies the claim for i = 0 ; Ress0 is exact and, by lemma 1.2.1 (iii), maps
projectives to projectives, therefore we can derive the claim for all i from the case i = 0.�
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1.3 Zuckerman functors and generalized Verma modules

Let p be a parabolic subalgebra of g containing b, with nilpotent radical u and Levi component
s = p/u = s0⊕ s1 (see [9], section 2). Then s0 is a Levi subalgebra of g0. In this section, we use the

functor Lh
0 to define nice highest weight modules (lemma 1.3.2(i)). But when we want to compute

these modules, it will be convenient to use a second construction with s0 = g0 (see lemma 1.3.4(ii))
and the charater formula in lemma 1.3.3(ii).

Lemma 1.3.1 (i) Let E be a finite-dimensional p-module and M = Indg
p E. Then L

s0
0 M is the

biggest finite-dimensional quotient of M ; all the modules L
s0
i M are finite-dimensional.

(ii) The annihilator in U(g) of any module M in HC(g, s0) is contained in the annihilator of L
s0
i M

for any i : in particular all these modules have the same central character.

Proof : (i) is proposition 4.10 and (ii) is proposition 4.5 in [9].�

Lemma 1.3.2 (i) Let λ ∈ X+. Then Lh
0 Indg

b
Cλ is projective in the category g-mod≤λ of finite-

dimensional g-modules all simple subquotients of which have a highest weight lower than or equal
to λ.
(ii) For every λ ∈ X+, we have : Ext1g(S(λ), S(λ)) = 0.

Proof : (i) As a quotient of Indg
b Cλ, the module Lh

0 Indg
b Cλ is generated by a vector of weight λ.

Assume we are given a surjective map π : M → Lh
0 Indg

b
Cλ in the category g-mod≤λ. Let v ∈ M

be a vector of weight λ that maps to a generator of Lh
0 Indg

b Cλ under π. Since g0 is semi-simple,
the h-module M is semi-simple, hence, by maximality of λ, there is a map of b-modules Cλ →M ,
1 7→ v, which induces a map of g-modules Indg

b Cλ → M . As M is finite-dimensional, this map

factors through Lh
0 Indg

b
Cλ, thereby producing a section of π. This proves assertion (i).

Assertion (ii) follows since any extension of S(λ) by itself is in g-mod≤λ and since the multiplicity

of S(λ) in Lh
0 Indg

b Cλ is 1.�

For p, s0 as above, let E be a finite-dimensional p-module. We denote by Π(p, E) the multiset
of highest weights of the s0-module

∧

(g/(g0 + p)) ⊗ E (the weights appear with multiplicity, and
the exterior algebra is a classical, not super exterior algebra).

For i ∈ N, we denote by Πi(p, E) the set of elements µ ∈ Π(p, E) such that there is an element
w ∈ W of length i such that w(µ + ρ0)− ρ0 is dominant for g0. (If µ + ρ0 is singular, µ does not
belong to any Πi(p, E).) Notice that these definitions involve only the semi-simple Lie algebra g0.

The character formulas in the following lemma were first proved in [9], proposition 5.2.

Lemma 1.3.3 (Notations as above.)
(i) The set of highest weights of g0-modules occurring in L

s0
i Indg

p E is included in Πi(p, E).

(ii)
∑

i≥0

(−1)i chL
s0
i Indg

p E =
∑

i≥0

(−1)i
∑

µ∈Πi(p,E)

χ(eµ).

(iii) In particular, if p = b and E = Cλ, then :
∑

i≥0

(−1)i chLh
i Indg

b Cλ = χ(
∏

β∈∆+

1

(1+ e−β)eλ). This

expression is anti-invariant under the shifted action of W .

Remark. Theorem 6.8 in [9] states that when λ is dominant and typical, the module Lh
i Indg

b
Cλ is

simple if i = 0 and zero if i > 0. Thus one could expect that in general the right handside of (iii)
is the character of the highest weight module Lh

0 Indg
b Cλ. It is often the case (see lemma 1.3.5) but

not always (e.g., λ = λ0 for g = osp(3, 2)).
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Proof : By lemma 2.6 in [9], the g0-module Resg0
Indg

p E admits a finite filtration by g0-

submodules V ′
r such that the successive subquotients are Ind

g0

p0

∧r(g/(g0 + p))⊗ E. This filtration

can be refined into a filtration (Vp)0≤p≤♯Π(p,E) with subquotients Vp/Vp−1 ≃ Ind
g0

p0
L(p0, µp), where

p 7→ µp is an indexation of Π(p, E) and L(p0, µp) is the simple s0-module with highest weight µp

on which u0 acts trivially. Thus we can write down a convergent spectral sequence of g0-modules
with E1-term given by :

Ep,q
1 = 0L

s0
p+q Ind

g0

p0
L(p0, µp)⇒ Resg0

L
s0
p+q Indg

p E.

By a variant of the Borel-Weil-Bott theorem, 0L
s0
i Ind

g0

p0
L(p0, µp) is L(g0, w(µp + ρ0) − ρ0) if

there exists an element w ∈ W of length i such that w(µp + ρ0) − ρ0 is dominant for g0, and it is
zero otherwise. This implies (i). Assertion (ii) follows from the Euler-Poincaré principle, and the
formula in (iii) is a particular case. This formula can also be written as :

X(λ) := χ
(

∏

β∈∆+

1

(1 + e−β)eλ
)

=

∑

w∈W (−1)ℓ(w)w
(

∏

β∈∆+

1

(eβ/2 + e−β/2).eλ+ρ0−ρ1

)

∏

β∈∆+

0

(eβ/2 − e−β/2)

=

∏

β∈∆+

1

(eβ/2 + e−β/2)
∏

β∈∆+

0

(eβ/2 − e−β/2)

∑

w∈W (−1)ℓ(w)ew(λ+ρ).

The anti-invariance under the shifted action of u ∈W is now obvious : X(u.λ) = (−1)ℓ(u)X(λ).�

Now we want to compare L
s0
i Indg

p L(p, λ) and Lh
i Indg

b Cλ in special situations : the goal here is
part (ii) of lemma 1.3.4. Once the abstract nonsense is removed, the proof boils down to compute
Zuckerman functors in a classical setting, using the Borel-Weil-Bott theorem.

From now on, we assume that b is distinguished, i.e. that only one simple root βs is odd (see [6],
proposition 1.5). We denote by θ̃ the unique simple root of g0 which is not a simple root for g as
in [7], example 3.3. There is a Z-grading on g such that gα has degree 0 for α a simple even root
and gβs

has degree 1. This grading is concentrated in degrees −2, −1, 0, 1, 2 and the homogenous
spaces are eigenspaces for a central element z ∈ g0. Let p = g0+g1+g2 : it is a parabolic subalgebra
of g with Levi component s0 = g0. Notice that g/(g0 + p) ≃ g−1. Given λ ∈ X+, we denote by
L(p, λ) the g0-module with highest weight λ on which g1 + g2 acts trivially.

Lemma 1.3.4 Assume b that is distinguished and that p = g0 + g1 + g2. Let λ ∈ h∗ be dominant
for s0 = g0. Then :
(i) L′0 Indg

b Cλ ≃ Indg
p L(p, λ) and L′i Indg

b Cλ = 0 if i > 0.

(ii) For any i ∈ N, we have : L
s0
i Indg

p L(p, λ) ≃ Lh
i Indg

b Cλ.

Proof : Set I = Indg
b Cλ. First, we want to show that (i) is true at the level of s0-modules.

Extending [9], lemma 2.6, Ress0 I has an increasing filtration by modules (Vj)j≥−1 with V−1 = 0
and

Vj/Vj−1 ≃
⊕

k+l=j

Ind
s0
b0∩s0

S
k(g−2)⊗

∧l
(g−1)⊗ Cλ.

By the Borel-Weil theorem, since λ is dominant for s0, we get :

0L′0(Vj/Vj−1) ≃
⊕

k+l=j

S
k(g−2)⊗

∧l
(g−1)⊗ L(p, λ) and L′i(Vj/Vj−1) = 0 (i ≥ 1).
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It follows by induction that

0L′0(Vj) ≃
⊕

k+l≤j

S
k(g−2)⊗

∧l
(g−1)⊗ L(p, λ) and L′i(Vj) = 0 (i ≥ 1).

Since lim
→

Vj = Ress0 I and since the direct limit functor commutes with 0L′0 =M(S0)⊗U(s0)?,

we get :

(∗) 0L′0 Ress0 Indg
b Cλ ≃

⊕

k,l∈N

S
k(g−2)⊗

∧l
(g−1)⊗ L(p, λ).

Moreover the direct limit functor commutes with any tensor product, so that it takes standard
projectives in HC(s0, h) to standard projectives in HC(s0, h). It is moreover exact and commutes
with 0L′0, hence : lim

→

0L′i = 0L′i lim→
. Consequently, we get : 0L′iI = 0 for i ≥ 1.

To prove (i), since by (∗) the s0-modules Indg
b Cλ and Indg

p L(p, λ) are isomorphic, it is enough
to show there is a epimorphism of g-modules φ : L′0I → Indg

p L(p, λ). But (∗) implies there is a
morphism of p-modules L′0I → L(p, λ), because by weight considerations, g1⊕g2 kills the summand
corresponding to k = l = 0. The existence of φ follows, hence (i) is proved.

(ii) Since we know that Lh
0 ≃ L

s0
0 ◦ L

′
0, we can write down a Grothendieck spectral sequence

with E2-term given by : L
s0
i ◦L

′
j(Indg

b
Cλ). By (i), this spectral sequence degenerates and converges

to Lh
i+j Indg

b Cλ, hence we get the isomorphism in (ii).�

To simplify notations, we set Li(λ) = L
s0
i Indg

p L(p, λ) = Lh
i Indg

b Cλ, and Π(λl) = Π(p, L(p, λl)),
and we use the same convention for Πi.

Lemma 1.3.5 Assume b is distinguished and that p = g0 + g1 + g2. Let λ ∈ X+. Then :
(i) If (λ, θ̃∨) > −2(ρ, θ̃∨), then : Li(λ) = 0 for any i > 0.
(ii) If λ is atypical, and if the modules Li(λ) are zero for i > 0, then the module L0(λ) is not
simple.

Proof : To prove (i), we show that any µ ∈ Π(λ) is dominant or singular whence Πi(λ) = ∅ for
i > 0. We know that µ is dominant for g0, so it is enough to check that (µ, θ̃∨) ≥ −1. For that
purpose, we notice that µ = λ−

∑

β∈I β for some I ⊂ ∆+
1 . A case-by-case verification shows that

for any β ∈ ∆+
1 , we have : (β, θ̃∨) ≥ 0. Hence :

(µ, θ̃∨) = (λ−
∑

β∈I

β, θ̃∨) ≥ (λ− 2ρ1, θ̃
∨) = (λ, θ̃∨)− 2(ρ1, θ̃

∨) + 2(ρ0, θ̃
∨)− 2 > −2.

Under the assumption of (ii), the character of the module L0(λ) is given by the right-hand side
of lemma 1.3.3 (iii). By theorem 1 in [6], if it is simple, then λ is typical. This proves (ii).�

2 Representations of osp(3, 2)

2.1 Notations and result

Let g = osp(3, 2) (see [6]). The even part of g is g0 ≃ so(3)⊕sp(2) ≃ sl(2)⊕sl(2), hence dim h∗ = 2.
We can choose a basis (ε, δ) of h∗ such that

∆0 = {±ε;±2δ}, ∆1 = {±ε± δ;±δ},
and (ε, ε) = −(δ, δ) = 1, (ε, δ) = 0.
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We choose the following distinguished set of positive roots : ∆+ = {ε; 2δ} ∪ {±ε + δ; δ} which
corresponds to the simple roots −ε + δ and ε. Here we have θ̃ = 2δ and 2ρ = ε − δ so that
−2(ρ, θ̃∨) = 1. Besides, g0 is isomorphic to sl(2) ⊕ C. Using the basis (ε, δ), dominant weights for
g0 (resp. g0) will be identified with N/2 × N (resp. N/2× C). By proposition 2.3 in [6], the set of
dominant weights for g is : X+ = {(a, b) ∈ N/2 × N | b = 0 ⇒ a = 0}. The atypical dominant
weights are λ0 = (0, 0) and λl = (l − 1, l) (for l ∈ N∗). For example, S(λ0) is the trivial module,
S(λ1) is the standard module. It can be checked that Cas(λl) = 0 for any l ∈ N.

Theorem 2.1.1 Let g = osp(3, 2).
(a) Up to a shift of parity, the principal block Γ0 = {λl | l ∈ N} is the unique atypical block.
(b) The projective indecomposable modules have the following radical layer structure :

S(λ0) S(λ1) S(λ2) S(λl)
S(λ2) S(λ2) S(λ0) S(λ1) S(λ3) S(λl−1) S(λl+1) (l ≥ 3)
S(λ0) S(λ1) S(λ2) S(λl)

(c) Consider Γ0 as the basis of a root system of type D∞ as follows :

λ1 λ2 λ3 λ4 . . .
|

λ0

Given a non-projective indecomposable module M in Γ0, let [M ] =
∑

l∈N
[M : S(λl)].λl ∈ NΓ0. The

map M 7→ [M ] is onto the set of positive roots of Γ0. Two indecomposable module are mapped to
the same positive root if and only if they are isomorphic or dual to each other. The only self-dual
non-projective indecomposable modules are the simple ones.

This theorem follows from proposition 2.3.2 and section 2.4.

2.2 Highest weight modules and simple modules

Part (iii) of the following lemma has been known for long (see e.g. [12] or [7]).

Lemma 2.2.1 (i) We have : L0(λ0) ≃ L1(λ1) ≃ S(λ0) and L1(λ0) ≃ L0(λ1) ≃ S(λ1).
(ii) For l ≥ 2, Li(λl) is zero if i > 0 and L0(λl) is described by :

0→ S(λ0)⊕ S(λ1) −→ L0(λ2) −→ S(λ2)→ 0,
0→ S(λl−1) −→ L0(λl) −→ S(λl)→ 0 if l ≥ 3.

(iii) The characters of the atypical simple modules of osp(3, 2) are :

ch S(λl) =































χ(eλ0) = 1/2.χ(
∏

β 6=−ǫ+δ

(1 + e−β)eλ0) if l = 0,

χ(e(0,1) + e(1,0)) = χ(
∏

β 6=ǫ+δ

(1 + e−β)eλ1)− ch S(λ0) if l = 1,

χ(
∏

β 6=ǫ+δ

(1 + e−β)eλl) if l ≥ 2.
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Remark. If sθ̃ ∈ W denotes the symmetry in h∗ with respect to the root θ̃, we notice that :
sθ̃(λ0 + ρ) − ρ = λ1. The coefficient 1/2 in the character formula for S(λ0) is the coefficient j−1

0

introduced in [7]. The module S(λ1) is an “exceptional” representation (see [7], Example 3.3) : the
sum χ(

∏

β 6=ǫ+δ(1 + e−β)eλ1) is the character of the radical of L0(λ2), which “exceptionally” splits
into two components.

Proof : The highest weights of the submodules of the g0-module
∧

g−1 are : (0, 0), (1,−1), (1,−2)
and (0,−3). We thus obtain : Π0(λ0) = Π1(λ1) = {(0, 0)} and Π1(λ0) = Π0(λ1) = {(0, 1), (1, 0)}.
Assertion (i) now follows from lemma 1.3.3. We also obtain that Ext1g(S(λ1), S(λ0)) = 0 (otherwise
the extension would have appeared in L0(λ1), by lemma 1.3.2).

Let l ≥ 2. Since (λ, θ̃∨) = l > 1, lemma 1.3.5 implies that Li(λl) = 0 for i > 0. Besides, we
have :

Π(λl) = {(l − 1, l), (l − 2, l − 1), (l − 1, l − 1), (l, l − 1),
(l − 2, l − 2), (l − 1, l − 2), (l, l − 2), (l − 1, l − 3)}.

We know that L0(λl+1) is not simple. But the only weights in Γ0 ∩ Π(λl+1) are λl and λl+1 :
hence L0(λl+1) is a non-split extension of S(λl+1) by S(λl), and the highest weights of the g0-
modules in S(λl) belong to Π(λl) ∩Π(λl+1).

It is immediate to check that Π0(λ2) is the disjoint union of Π0(λ0), Π0(λ1) and Π(λ2)∩Π(λ3).
It follows that the set of highest weights of the g0-submodules of S(λ2) is exactly Π(λ2) ∩ Π(λ3),
that L0(λ2) has three composition factors, namely S(λ2), S(λ0) and S(λ1), and (since S(λ0) and
S(λ1) have no non-split extension) that the radical of L0(λ2) is the direct sum S(λ0)⊕ S(λ1).

To finish the proof of the lemma, we must compute ch S(λl+1) for l ≥ 2, which is inductively
done using : ch S(λl+1) = chL0(λl+1)− ch S(λl).�

2.3 Projective modules

Lemma 2.3.1 The atypical projective modules of osp(3, 2) are described by assertion (b) of theo-
rem 2.1.1.

Remark. By analogy with sl(m,n) (see [2], section 3.6), one could hope that the highest weight
modules L0(µ) play a part in a reciprocity principle with the modules P (λ) and S(λ). But this is
not the case, since the modules P (λ0) and P (λ1) do not have a filtration by modules L0(µ).

Proof : By the proof of lemma 1.1.1, the projective cover P (λl) of S(λl) in g-mod is a direct
summand in Q̃(λl) = Indg

g0
L(g0, λl). As a g0-module, Q̃(λl) is isomorphic to

∧

g1⊗L(g0, λl). Now

we know the characters of all the simple modules we can recover the composition series of Q̃(λl)
by decomposing this tensor product of g0-modules. If Q(λl) denotes the quotient of Q̃(λl) by its
typical submodules (which are direct summands), we obtain after computations :

(§) ch Q(λl) =







2 ch S(λl) + ch S(λ2) if l ∈ {0, 1},
2 ch S(λ2) + ch S(λ0) + ch S(λ1) + ch S(λ3) if l = 2,
2 ch S(λl) + ch S(λl−1) + ch S(λl+1) if l ≥ 3.

For all l ∈ N, we have : P (λl)/ rad P (λl) ≃ S(λl). Moreover, rad P (λl)/ rad2 P (λl) is the direct
sum of simple modules S(µ) which have a non-split extension by S(λl). By lemmas 1.1.1 and 2.2.1,
we get :

(§§) radP (λl)/ rad2 P (λl) ≃







S(λ2) if l ∈ {0, 1},
S(λ0)⊕ S(λ1)⊕ S(λ3) if l = 2,
S(λl−1)⊕ S(λl+1) if l ≥ 3.
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Since projective modules in g-mod are injective, they have a simple socle. Hence for l ≥
2, rad2 P (λl) is not reduced to zero and, comparing (§) and (§§), it is isomorphic to S(λl). In
particular, we see that P (λ2) is self-dual, so that the socle of P (λ0) and P (λ1) cannot be S(λ2).
Thus for l ∈ {0, 1}, we also have : rad2 P (λl) ≃ S(λl).�

Proposition 2.3.2 The category of atypical finite-dimensional representations of osp(3, 2) is equiv-
alent to the category of representations of the quiver :

(Γ0)

λ1

d+

1

⇋
d−
1

λ2

d+

2

⇋
d−
2

λ3

d+

3

⇋
d−
3

λ4

d+

4

⇋
d−
4

. . .

d+

0

x









y

d−
0

λ0

with relations :

(R)















d−1 d+
0 = d−0 d+

1 = d+
2 d+

0 = d−0 d−2 = 0,
d−l d−l+1 = d+

l+1d
+
l = 0 if l ≥ 1,

d+
0 d−0 = d+

1 d−1 = d−2 d+
2 ,

d+
l−1d

−
l−1 = d−l d+

l if l ≥ 3.

Proof : Formula (§§) in the proof of lemma 2.3.1 shows that the quiver in the theorem is the
Ext-quiver of g-modΓ0

. Now, let us choose irreducible morphisms D±
l between projective modules

corresponding to the arrows d±l (recall that according to the conventions in section 1 of [2], an
arrow from λ to µ corresponds to a morphism from P (µ) to P (λ)).

The first two lines of relations are satisfied because P (λl) has no simple quotient isomorphic to
S(λl′) as soon as λl and λl′ are separated by strictly more than one arrow in the quiver Γ0.

For the last two lines of relations, we observe from the description of projective modules that
for every l ∈ N, we have : dim rad Endg(P (λl)) = 1. Hence D−

0 D+
0 , D−

1 D+
1 and D+

2 D−
2 are

proportionnal, and so are D−
l−1D

+
l−1 and D−

l D+
l for l ≥ 3. Now, we keep all the D+

l (l ∈ N) and

D−
0 , and we multiply successively the morphisms D−

l (l ≥ 1) by accurate scalars to obtain the
relations in the theorem.

These computations and theorem 1.4.1 in [2] proves that g-modΓ0
is equivalent to Γ0/R

′-mod
for some system of relations R′ on Γ0 that contains R. Let e be the composition g-modΓ0

∼
→

Γ0/R
′-mod →֒ Γ0/R-mod. Using lemmas 2.3.1 and 2.4.1 (i), we see that for any l, the functor e

maps P (λl) to the module p(λl) defined below (for any l). Hence e is actually an equivalence and
R and R′ coincide.�

2.4 Representations of Γ0/R

In this section, Γ0 and R are the quiver and the system of relations on Γ0 defined in theorem 2.3.2.
Given a representation of Γ0, consider the dual vector space on which d±l as the transpose of d∓l :
this defines a duality functor on Γ0-mod, which obviously preserves the system of relations R. At
the level of g-modules, this duality corresponds to the contravariant duality mentionned in the
proof of lemma 1.1.1 (iii).

For l ∈ N, consider the Γ0-graded vector space which has dimension 2 in degree λl, dimension
1 (resp. 0) in degree µ if µ 6= λl is (resp. is not) linked to λl by an arrow in Γ0. An arrow of Γ0

for which λl is a source (resp. a target) acts as (1 0) : C2 → C (resp. t(0 1) : C→ C2), any other
arrow acts trivially. Thus we get a Γ0/R-module denoted by p(λl).
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Lemma 2.4.1 (i) The modules p(λl) are the projective and the injective modules in Γ0/R-mod.
(ii) Let m be an indecomposable Γ0/R-module. The following conditions are equivalent :

(a) m has no projective direct summand ;
(b) d−l d+

l = 0 for every l ∈ N.

Proof : On any Γ0/R-module, any composition of 3 or more arrows is zero, and the only possibly
non-zero products of 2 arrows are d+

l d−l and d−l d+
l . It follows easily that the maximal dimension of

a Γ0/R-module generated by a single vector v of degree λl is 3 (resp. 5, resp. 4) if l ∈ {0, 1} (resp.
l = 2, resp. l ≥ 3).

Now, assume we are given a surjection π : m→ p(λl). Let v ∈ m be such that π(v) generates
p(λl). The remark above shows that the submodule m′ generated by v has a lower dimension
than p(λl). But π maps m′ onto p(λl), hence they are isomorphic, π has a section and p(λl) is
projective. Since it is self-dual, it is injective too.

To prove assertion (ii), assume there is a vector v ∈m such that d−l d+
l v 6= 0. Then v generates

a submodule of m that is isomorphic to p(λl). This latter module being injective, it splits in m.
Conversely, the product d−l d+

l is not zero in p(λl).�

Let us introduce the following quiver with two connected components :

(Γ+) (Γ−)
λt

1 ← λs
2 → λt

3 ← λs
4 → . . .

↓
λt

0

λs
1 → λt

2 ← λs
3 → λt

4 ← . . .
↑
λs

0

By Gabriel’s theorem about representations of finite-type quivers (see [1], theorem 4.5.6), there
is a bijection v+ (resp. v−) from the set of positive roots of the root system of type D∞ to
the set of isomorphim classes of finite-dimensional representations of Γ+ (resp. Γ−). Moreover, a
representation of Γ+ or Γ− can naturally be made into a representation of Γ0/R.

Lemma 2.4.2 Any non-projective indecomposable representation of Γ0/R is of the form v±(β),
where β is a positive root of D∞. The representations vσ(β) and vσ′

(β′) are isomorphic if and only
if either σ = σ′ and β = β′, or σ = −σ′ and β = β′ is a simple root.

Proof : If m = ⊕λl∈Γ0
mλl

is a non-projective Γ0/R-module, we define a representation m̂ of
Γ+∪Γ− by setting m̂λt

l
equal to the kernel of all the arrows starting from λl, and m̂λs

l
= mλl

/mλt
l
.

It makes sense because by lemma 2.4.1 the product of any two arrows acting on m is zero. If m is
indecomposable, then m̂ is indecomposable too. The rest of the claim is trivial.�

3 Representations of D(2, 1; α)

3.1 Notations and result

Let α ∈ C \ {0,−1}, and let g be the basic classical Lie superalgebra D(2, 1;α) (see [6]). It is
denoted by Γ(−(1 + α)/2, 1/2, α/2) in [13] and [14]. Recall from [13] that if α = 1, it is isomorphic
to osp(4, 2), and that the algebras corresponding to α, −1− α−1 and α−1 are isomorphic (hence if
α ∈ Q we can assume α > 0, or even α > 1).

The root system of g can be realized in the space h∗ = C3 endowed with a basis (ε1, ε2, ε3) and
with the bilinear whose matrix is diag(−(1 + α)/2, 1/2, α/2), by : ∆0 = {±2ǫi | 1 ≤ i ≤ 3} and :
∆1 = {±ǫ1 ± ǫ2 ± ǫ3}. We choose as simple roots β4 = ǫ1 − ǫ2 − ǫ3, 2ǫ2 and 2ǫ3. The last positive
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even root is : θ̃ = 2ε1. The non-simple positive odd roots are : β1 = ǫ1 + ǫ2 − ǫ3, β2 = ǫ1 − ǫ2 + ǫ3

and β3 = ǫ1 + ǫ2 + ǫ3. We have ρ = −β4 and −2(ρ, θ̃∨) = 2.
The even part of g is : g0 ≃ sl(2)⊕sl(2)⊕sl(2), and the degree 0 part of g is : g0 ≃ C⊕sl(2)⊕sl(2).

We identify the set of dominant weights for g0 (resp. g0) with N × N × N (resp. C × N × N). By
proposition 2.2 in [6], the set of dominant weights for g is : X+ = {(a, b, c) ∈ N×N×N | a = 0⇒
b = c = 0 and a = 1⇒ (b + 1) = ±α(c + 1)}. Besides, the eigenvalue of the Casimir element is :

Cas(a, b, c) = −
1 + α

2
(a− 1)2 +

1

2
(b + 1)2 +

α

2
(c + 1)2.

A dominant weight λ = (a, b, c) is atypical if and only if one of the following scalar products is
zero :

2(λ + ρ, β1) = −(1 + α)(a− 1) + (b + 1)− α(c + 1)
2(λ + ρ, β2) = −(1 + α)(a− 1)− (b + 1) + α(c + 1)
2(λ + ρ, β3) = −(1 + α)(a− 1) + (b + 1) + α(c + 1)
2(λ + ρ, β4) = −(1 + α)(a− 1)− (b + 1)− α(c + 1)

Notice that if α 6∈ Q, the only atypical dominant weights are λ0 = (0, 0, 0) (corresponding to the
trivial module) and λl = (l + 1, l − 1, l − 1) for l ≥ 1. For example, λ1 is the highest root of g, i.e.
S(λ1) is the adjoint representation.

If α ∈ Q, we assume α = p/q, with p and q relatively prime positive integers. For k ∈ N, let Γk

be the set of atypical simple modules λ ∈ X+ such that Cas(λ) = p(p + q)k2/2. For l ∈ Z we set
moreover :

λk,l =















(−l + 2,−l − kp,−l + kq) if l ≤ −kp,
(−l + 1, l + kp− 1,−l + kq − 1) if −kp + 1 ≤ l ≤ 0,
(l + 1, l + kp− 1,−l + kq − 1) if 0 ≤ l ≤ kq − 1,

(l + 2, l + kp, l − kq) if kq ≤ l.

Theorem 3.1.1 Let α ∈ C \ {−1, 0} and let g = D(2, 1;α).
(i) The principal block of g is : Γ0 = {λl | l ∈ N}. This block is equivalent to the principal block
of osp(3, 2) : statements (b) and (c) in theorem 2.1.1 hold for the principal block of D(2, 1;α).
(ii) If α 6∈ Q, Γ0 is the unique atypical block.
(iii) Let α ∈ Q, α > 0, written as α = p/q with p and q relatively prime. Then any atypical block
is one of the Γk. Besides, let k ≥ 1.

(a) The map Z→ Γk, l 7→ λk,l is a bijection ;
(b) The projective cover of S(λk,l) (l ∈ Z) has the following radical layer structure :

S(λk,l)
S(λk,l−1) S(λk,l+1)

S(λk,l)

(c) Consider the symbols λk,l (l ∈ Z) as a basis of a root system of type A∞
∞ as follows :

. . . λk,−2 λk,−1 λk,0 λk,1 λk,2 . . .

Given a non-projective indecomposable module M in Γ0, let [M ] =
∑

l∈N
[M : S(λl)].λl ∈ NΓ0. The

map M 7→ [M ] is onto the set of positive roots of Γ0. Two indecomposable module are mapped to
the same positive root if and only if they are isomorphic or dual to each other. The only self-dual
non-projective indecomposable modules are the simple ones.
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Assertion (i) will be proved in section 3.2, the rest of the theorem in section 3.3. In [13], J.
van der Jeugt described simple representations of D(2, 1;α), which gives some redundancy with
some lemmas in this section. In [14], Yi Ming Zou gives a list of monogenous indecomposable
modules for D(2, 1;α), but it seems to be incomplete. Indeed, for instance, Zou finds no non-
simple representation admitting the trivial module as a simple component.

3.2 The principal block

Lemma 3.2.1 (i) We have : L0(λ0) ≃ L1(λ1) ≃ S(λ0) and L1(λ0) ≃ L0(λ1) ≃ S(λ1).
(ii) For l ≥ 2, Li(λl) is zero if i > 0 and L0(λl) is described by :

0→ S(λ0)⊕ S(λ1) −→ L0(λ2) −→ S(λ2)→ 0,
0→ S(λl−1) −→ L0(λl) −→ S(λl)→ 0 if l ≥ 3.

(iii) For l ≥ 2, we have : ch S(λl) = χ





∏

β∈∆+

1
\{β3}

(1 + e−β)eλl



 .

Proof : The highest weights of the g0-module
∧

g−1 are : (0, 0, 0), (−1, 1, 1), (−2, 2, 0), (−2, 0, 2),
(−3, 1, 1), (−4, 0, 0). This implies :

Π0(λ0) = Π1(λ1) = {(0, 0, 0)} and Π1(λ0) = Π0(λ1) = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 1)}.

Assertion (i) follows, and we also get : Ext1g(S(λ1), S(λ0)) = 0.
The end of the proof can be copied verbatim on that of lemma 2.2.1.�

Lemma 3.2.2 Assertion (i) of theorem 3.1.1 holds.

Proof : The proof of theorem 2.3.2 can be repated verbatim : the only difference is that there are
more g0-submodules in the decomposition of Q̃(λl), but the character formula (§) in the proof of
lemma 2.3.1, from which everything else is deduced, still holds for the principal block of D(2, 1;α).�

3.3 Other blocks

Lemma 3.3.1 Let k ∈ N, and let Γk be the set of atypical dominant weights λ ∈ X+ such that
Cas(λ) = p(p + q)k2/2. Then any atypical dominant weight belongs to a unique Γk (for some
k ∈ N). If k ≥ 1, we have : Γk = {λk,l | l ∈ Z}.

Proof : It is straightforward to see that λk,l does belong to Γk and that all the λk,l are distinct.
Thus it is enough to check that any atypical dominant weight λ = (a, b, c) is one of the λk,l or one
of the λl.

If (λ + ρ, β1) = 0, then we have : q(b − a + 2) = p(a + c). Since p and q are relatively prime,
the ratio k = (a + c)/q is a positive integer. Set l = a − 1, we know by assumption that l ≥ 0
and l − kq + 1 = −c ≤ 0, hence λ = λk,l. Similarly, if (λ + ρ, β2) = 0, we set k = (a + b)/p and
l = −a + 1, and again we get : λ = λk,l.

Finally, if (λ + ρ, β3) = 0, then the number (b− a + 2)/p = (a− c− 2)/q is an integer. Let σ be
its sign and k its absolute value. If k = 0, then λ = λa−1 ∈ Γ0. Otherwise, we set : l = σ(a − 2).
Again we have λ = λk,l.�

Clearly any Γk (for k ∈ N∗) is a union of blocks. In fact Γk is one block, as follows from the
following lemma.
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Lemma 3.3.2 Let k ∈ N∗.
(i) We have : L0(λk,0) ≃ L1(λk,0) ≃ S(λk,0).
(ii) For l > 0 (resp. l < 0), the g-module L0(λk,l) is a non-split extension of S(λk,l) by S(λk,l−1)
(resp. by S(λk,l+1)). The modules Li(λk,l) are zero for l 6= 0 and i > 0.

(iii) We have : ch S(λk,l) = χ





∏

β∈∆+

1
\{βk,l}

(1 + e−β)eλk,l



, where βk,l ∈ ∆+
1 is the root orthogonal

to λk,l + ρ.

Remark. If l = 0 the root βk,l in (iii) can be either β1 or β2 but the character formula is the same.
This follows from remark 3.2 in [7].

Proof : Since λk,0 is minimal in X+, the module L0(λk,0) is simple. Clearly Li(λk,0) is zero for
i ≥ 2. We notice that sθ̃.λk,0 = λk,0, hence by lemma 1.3.3, the sum chL0(λk,0) − chL1(λk,0) is
zero, and (i) follows. We could have seen this directly since Π0(λk,0) and Π1(λk,0) are equal to :

{(1, kp − 1, kq − 1), (0, kp − 2, kq − 2), (0, kp, kq), (0, kp, kq − 2), (0, kp − 2, kq)}.

(If kp or kq equals 1, a weight with a coordinate −1 must be removed.)
If l = ±1, we have Π1(λk,l) = {(0, kp + l − 1, kq − l − 1)} : it contains no dominant weight, so

that L1(λk,l) = 0. Hence : chL0(λk,l) =
∑

µ∈Π0(λk,l)\Π1(λk,l)
χ(eµ). Besides, if i ≥ 2 or if |l| ≥ 2 and

i ≥ 1, the set Πi(λk,l) is empty, so Li(λk,l) = 0 too. Thus, by lemma 1.3.5, the module L0(λk,l) is
not simple for l 6= 0. But the only element in Γk ∩ Π0(λk,l) is λk,l−1 (resp. λk,l+1) if l > 0 (resp.
l < 0). Assertion (ii) follows.

Let l = ±1 again. The set Π0(λk,l) is contained in :

{(2, kp + l − 1, kq − l − 1),
(1, kp + l − 2, kq − l − 2), (1, kp + l, kq − l), (1, kp + l − 2, kq − l), (1, kp + l, kq − l − 2),
(0, kp + l − 1, kq − l − 1), (0, kp + l − 1, kq − l − 1), (0, kp + l − 1, kq − l + 1),
(0, kp + l + 1, kq − l − 1), (0, kp + l − 3, kq − l − 1), (0, kp + l − 1, kq − l − 3)}.

This inclusion is an equality except if kp or kq is 1 or 2 : in such a case, pairs of weights of the
form {(a, b,−2), (a, b, 0)}, {(a, b,−3), (a, b, 1)}, {(a,−2, c), (a, 0, c)}, {(a,−3, c), (a, 1, c)} should be
removed.

All the highest weights of the g0-modules occurring in S(λk,0) must belong to :

A = Π0(λk,−1) ∩Π(λk,1) = {(1, kp − 1, kq − 1), (0, kp − 2, kq − 2), (0, kp, kq)}.

Moreover, Π0(λk,l)\Π1(λk,l) is the disjoint union of A and B = Π0(λk,l)∩Π0(λk,2l). Thus we obtain :
ch S(λk,0) =

∑

µ∈A χ(eµ) and ch S(λk,l) =
∑

µ∈B χ(eµ). The formula in (iii) is just another way
to write down these formulas. The computation of ch S(λk,l) for |l| ≥ 2 is now immediate by
induction.�

Proposition 3.3.3 Let α = p/q ∈ Q>0 and k ∈ N∗. The category of finite-dimensional D(2, 1;α)-
modules in Γk is equivalent to the category of representations of the following quiver :

(Γk) · · · •
d+

−3

⇋
d−
−2

λk,−2

•
d+

−2

⇋
d−
−1

λk,−1

•
d+

−1

⇋
d−
0

λk,0

•
d+

0

⇋
d−
1

λk,1

•
d+

1

⇋
d−
2

λk,2

•
d+

2

⇋
d−
3

• . . .

with relations (d+)2 = (d−)2 = (d+d− + d−d+) = 0, where d± =
∑

l∈Z
d±l .
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Proof : We will determine only the structure of projective modules, i.e. prove assertion (iii-b)
of theorem 2. We refer to section 5.2 in [2] for the end of the proof of this theorem, and to section
5.3 therein for the proof of assertion (iii-c) and a construction of indecomposable modules.

By the proof of the previous lemma, we see that rad P (λk,l)/ rad2 P (λk,l) is the direct sum
S(λk,l−1)⊕S(λk,l+1). Now, we proceed as before : we compute the composition series of Q̃(λk,l) =
Indg

g0
L(g0, λk,l) and we find that its atypical simple factors in Γk are : S(λk,l) (with multiplicity

2), S(λk,l+1) and S(λk,l−1). We can conclude as for the principal block of osp(3, 2). This sketches
the proof of assertion (iii-b) of theorem 2.�

4 Representations of G(3)

4.1 Roots and weights

Let g be the basic classical Lie superalgebra G(3) (see [6]). Its root system can be realized in
the space h∗ = C3 endowed with a basis (δ, ε1, ε2) and with the bilinear defined by : (ε1, ε1) =
(ε2, ε2) = −2(ε1, ε2) = −(δ, δ) = 2. We take as simple roots ε1, ε2 − ε1 and −ε1 − ε2 + δ. Then
positive even roots are : ∆+

0 = {ε1, 2ε1 + ε2, ε1 + ε2, ε1 + 2ε2, ε2, ε2 − ε1, 2δ} and positive odd roots
are : ∆+

1 = {(±(uε1 + vε2) + δ | (u, v) ∈ {0, 1}2}. We have ρ = 2ε1 + 3ε2 − 5δ/2, θ̃ = 2δ and
−(ρ, θ̃∨) = 5/2.

The even part of g is : g0 ≃ sl2 ⊕G2, and the degree 0 part of g is : g0 ≃ C⊕G2. We identify
the set of dominant weights for g0 (resp. g0) with N × N × N (resp. C × N × N) by means of the
fundamental weights (δ;ω1 = ε1 + ε2;ω2 = ε1 + 2ε2). By proposition 2.2 in [6], the set of dominant
weights for g is : X+ = {(a, b, c) ∈ N × N × N | a = 0 ⇒ b = c = 0, a 6= 1 and a = 2 ⇒ b = 0}.
Besides, the eigenvalue of the Casimir element is :

Cas(a, b, c) = 2b2 + 6bc + 10b + 6c2 + 18c − 2a2 + 10a.

For k ∈ N, we denote by Γk the set of dominant weights λ ∈ X+ such that Cas(λ) = 6k(k + 1).
For l ∈ N, we set :

λ0,0 = (0, 0, 0),
λ0,1 = (5, 0, 0),
λk,0 = (2, 0, k − 1) if k ≥ 1,
λk,1 = (3, 0, k − 1) if k ≥ 1,

λk,l =







(l + 2, 2l − 2, k − l) if 2 ≤ l ≤ k,
(l + 3, 3k − l, l − k − 1) if k + 1 ≤ l ≤ 3k,
(l + 4, l − 3k − 1, 2k) if 3k + 1 ≤ l.

Remark. For l ≥ 2, the difference λk,l − λk,l−1 is either the positive odd root βk,l orthogonal to
λk,l + ρ, or the sum βk,l + βk,l−1.

Theorem 4.1.1 Let g = G(3). Every atypical block of g is one of the Γk. For every k ∈ N, Γk is
equivalent to the principal block of osp(3, 2).

In other terms, as a graph, Γk is a Dynkin diagram of type D∞ ; the map N→ Γk, l 7→ λk,l is
bijective ; statements (b) and (c) of theorem 2.1.1 apply to Γk.
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4.2 Highest weight modules and simple modules

Easy calculations, in the spirit of lemma 3.3.1, show that Γk is the set {λk,l | l ∈ N}, and that X+

is the union of all the Γk’s. Next lemma implies that Γk is only one block. It can be used to check
the character formulas announced in [7].

Lemma 4.2.1 Assertions (i) and (ii) of lemma 2.2.1 hold for G(3), with λk,l in place of λl.

Proof : We know that λk,0 is minimal in Γk, hence L0(λk,0) is simple. On the other hand, λk,0

is the unique element in Γk lower than λk,1, but S(λk,0) does not appear in L0(λk,1) : indeed, for
k = 0, the g0-module L(p, λ0,1)⊗

∧5
g−1 does not contain L(p, λ0,0), and for k ≥ 1, the g0-module

L(p, λk,1)⊗ g−1 does not contain L(p, λk,0). Hence L0(λk,1) is simple too.
If l ≥ 3, the module L0(λk,l) is not simple, hence is a non-split extension of S(λk,l) by S(λk,l−1) :

indeed, λk,l−1 is the only element in Γk of the form λk,l −
∑

β∈I β, for I ⊂ ∆+
1 . If the radical of

L0(λk,2) did not contain both λk,0 and λk,1, then either of these would be alone in their block,
which is impossible since they are atypical.�

4.3 Projective modules

By the proof of theorem 2.1.1, the following lemma will imply theorem 4.1.1.

Lemma 4.3.1 Indecomposable projective modules in Γk are described by assertion (b) of theo-
rem 2.1.1, with λk,l in place of λl.

Proof : By lemmas 4.2.1 and 1.1.1(iii), the first radical layer of indecomposable projective
modules is S(λk,2) if l = 0, 1, it is S(λk,0)⊕ S(λk,1)⊕ S(λk,3) if l = 2, and S(λk,l−1)⊕ S(λk,l+1) if
l ≥ 3.

We claim that rad2 P (λk,l)/ rad3 P (λk,l) cannot contain S(λk,l±2) if l ≥ 3. Indeed, this would
imply that P (λk,l) has an indecomposable quotient with composition series S(λk,l), S(λk,l±1),
S(λk,l±2), which is impossible by the previous lemma. This argument also excludes the presence
of S(λk,l+2) if l = 1, 2 and of S(λk,3) if l = 0. It follows that the second radical layer of P (λk,l)
contains only copies of S(λk,l) (and, possibly, of S(λk,1−l) if l = 0, 1).

If the second radical layer of P (λk,l) was not simple, then the third radical layer would not
be empty : since P (λk,l) is injective, it has an indecomposable socle. In this third radical layer,
we could find only the same as in the first one, i.e. S(λk,l±1) (and S(λk,0) if l = 2). But assume
S(λk,l±1) appears : then P (λk,l) has an indecomposable quotient with composition series S(λk,l),
S(λk,l±1), S(λk,l), S(λk,l±1). This is not compatible with the previous lemma.

It follows from these considerations that the modules P (λk,l) have the structure described in
theorem 2.1.1(b) for l ≥ 2. For l ≤ 1, the composition series of P (λk,l) could be : S(λk,l), S(λk,2),
S(λk,1−l).

To exclude this possibility, a direct argument works for k = 0 : by the proof of lemma1.1.1,
P (λ0,0) is a direct summand in

∧

g1, which does not contain the g0-module with highest weight
λ0,1. Hence P (λ0,0) has the composition series we claim. The same is true for P (λ0,1) because
projectives are injective, hence the same simple module (here, S(λ0,0)) cannot appear as the socle
of two different indecomposable projectives. For k 6= 0, proposition 4.4.1, which has an independant
interest, allows to conclude.�
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4.4 A translation functor

We introduce a little notation. Let ad = S(λ1,0) be the adjoint module : as a g0-module, it is the
sum of three modules with highest weights (2, 0, 0), (1, 1, 0) and (0, 0, 1). For k ∈ N, let g-modk

be the category of g-modules that belong to Γk. Given any g-module M , we denote by pk(M) the
maximal summand of M that lies in g-modk, i.e. the generalised eigenspace of the Casimir with
eigenvalue 6k(k+1). Given a g-module M in g-modk, we set : Tk,k′M = pk′(M⊗ad). It is standard
to show that Tk,k′ is an exact functor, left and right adjoint to Tk′,k (see e.g. lemma II7.6 in [5]).

Proposition 4.4.1 The functors Tk,k+1 and Tk+1,k are mutually inverse equivalences of categories
between g-modk and g-modk+1.

We start with a

Lemma 4.4.2 For every g0-module L, we have : L0(Indg
p L⊗ ad) ≃ L0(Indg

p L)⊗ ad.

Proof : Let N be a finite-dimensional g-module.

Homg(L0(Indg
p L⊗ ad), N) ≃ Homg(Indg

p L⊗ ad, N)
≃ Homg(Indg

p L, ad∗⊗N)
≃ Homg(L0(Indg

p L), ad∗⊗N)
≃ Homg(L0(Indg

p L)⊗ ad, N).�

Proof (of the proposition) : Since Tk,k+1 and Tk+1,k are exact and adjoint of each other, it is
enough to show that they do not annihilate simple modules.

Let L (resp. L′) be the g0-module with highest weight λk,l (resp. λk+1,l). We claim that L⊗ ad
is the direct sum of L′ and of g0-modules the highest weight of which is not in Γk+1. For any
weight β of ad (i.e., any root of g), the weight λk,l + β is dominant, singular or can be lifted to the
dominant chamber (of g0) by an element of the Weyl group of length 1. By exercise 24.9 in [4],
the highest weights of the g0-modules that appear in L⊗ ad are of the form λk,l + β. To prove the
claim, it is enough to check that (λk,l + ∆)∩Γk+1 = {λk,l+1} and that no cancellation can happen.

Using the previous lemma, we get now :

L0(Indg
p L)⊗ ad ≃ L0(Indg

p L′)⊕M,

where M has a filtration by modules of the form L0(Indg
p L(p, µ)), with µ 6∈ Γk+1. Hence :

(∇) Tk,k+1(L0(λk,l)) = pk+1(L0(Indg
p L)⊗ ad) ≃ L0(Indg

p L′) = L0(λk+1,l).

Now, the radical R of L0(λk,l) is a quotient of a sum of modules L0(λk,m) with m < l. Using (∇)
and the exactness of Tk,k+1, we obtain that Tk,k+1R is a quotient of a sum of modules L0(λk+1,m),
with m < l, hence is properly embedded in L0(λk+1,l). It follows that Tk,k+1 does not annihilate
S(λk,l), hence it is faithful. Analogous considerations show that Tk+1,k is faithful as well.�
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