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Abstract

This article is a continuation of previous works by Bovier-Eckhoff-
Gayrard-Klein, Bovier-Gayrard-Klein and Helffer-Klein-Nier. The main
object is the analysis of the small eigenvalues (as h→ 0) of the Lapla-
cian attached to the quadratic form

C∞
0 (Ω) ∋ v 7→ h2

∫

Ω
|∇v(x)|2 e−2f(x)/h dx ,

where Ω is a bounded connected open set with C∞-boundary and f

is a Morse function on M = Ω . The previous works were devoted
to the case of a manifold M which is compact but without boundary
or R

n. Our aim is here to analyze the case with boundary. After the
introduction of a Witten cohomology complex adapted to the case with
boundary, we give a very accurate asymptotics for the exponentially
small eigenvalues. In particular, we analyze the effect of the boundary
in the asymptotics.

∗Laboratoire de Mathématiques, UMR CNRS 8628, Université Paris-Sud, Bâtiment
425, F-91405 Orsay, France.

†IRMAR, UMR CNRS 6625, Université de Rennes 1, Campus de Beaulieu, F-35042
Rennes Cedex, France.
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1 Introduction

We are interested in the exponentially small eigenvalues of the Dirichlet re-
alization of the semiclassical Witten Laplacian on 0-forms

∆
(0)
f,h = −h2∆ + |∇f(x)|2 − h∆f(x) .

Our aim is to extend to the case of a regular bounded open set Ω, or more
generally a compact manifold with boundary, results which were previously
obtained in the case when Ω is a compact manifold or the case of Rn. We
shall analyze the Dirichlet realization of this operator.
The function f is assumed to be a Morse function on Ω (with no critical
points at the boundary). It is known (see [Sim2], [Wit], [CFKS], [HelSj4]
and more recently [CL]) that, like in the case without boundary, there are

exactly m0 eigenvalues in some interval [0, Ch
6
5 ] for h > 0 small enough,

where m0 is the number of local minima in Ω . This is strongly due to the
fact that the Dirichlet case is concerned. These eigenvalues are actually ex-
ponentially small as h→ 0 .
Moreover this can be extended (see [CL]) to Laplacians on p-forms, p > 1,
but this time some critical points of the restriction of the Morse function to
the boundary (which will be assumed to be a Morse function) will play a role.

Our purpose is to derive with the same accuracy as in [HKN] asymp-

totic formulas for the m0 first eigenvalues of the Dirichlet realization of ∆
(0)
f,h.

A similar problem was considered by many authors via a probabilistic ap-
proach in [FrWe], [HolKusStr], [Mic], [Kol]. More recently, in the case of
Rn , A. Bovier, M. Eckhoff, V. Gayrard and M. Klein obtained in [BEGK]
and [BoGayKl], accurate asymptotic forms of the exponentially small eigen-
values. These results were improved and extended to the case of a compact
manifold in [HKN].
The Witten Laplacian is associated to the Dirichlet form

C∞
0 (Ω) ∋ u 7→

∫

Ω

|(h∇+∇f)u(x)|2 dx .

Note that the probabilists look equivalently at :

C∞
0 (Ω) ∋ v 7→ h2

∫

Ω

|∇v(x)|2 e−2f(x)/h dx .
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Bovier, Eckhoff, Gayrard and Klein considered this problem via a proba-
bilistic approach. They obtained, in the case of Rn and under additional
conditions on f and ∇f at ∞ , the following asymptotic behavior for the
first eigenvalues λk(h), k ∈ {2, . . . , m0}, with λ1(h) = 0, of ∆

(0)
f,h :

λk(h) =
h

π
|λ̂1(U

(1)
j(k))|

√√√√√

∣∣∣det(Hess f(U
(0)
k ))

∣∣∣
∣∣∣det(Hess f(U

(1)
j(k)))

∣∣∣

× exp−2

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
× (1 +O(h

1
2 | log h|)) , (1.1)

where the U
(0)
k denote the local minima of f ordered in some specific way, the

U
(1)
j(k) are “saddle points” attached in a specific way to the U

(0)
k (which appear

to be critical points of index 1) and λ̂1(U
(1)
j(k)) is the negative eigenvalue of

Hess f(U
(1)
j(k)).

Their article belongs to a family of works done by probabilists starting
at least from Freidlin and Wentzel (See [FrWe] for a presentation). The
first papers were only giving the asymptotic behavior of the logarithm of
the eigenvalues. The main contribution of [BoGayKl] and [BEGK] was to
determine the main term in the prefactor. The later [HKN] gave a complete
asymptotics in (1.1) and extended the results to more general geometries,
including cases when λ1(h) 6= 0.

In the case with boundary, we observe that the function exp−f
h

does not
satisfy the Dirichlet condition, so the smallest eigenvalue can not be 0. For
this case, we can mention as starting reference Theorem 7.4 in [FrWe], which
says (in particular) that, if f has a unique non degenerate local minimum

xmin, then the lowest eigenvalue λ1(h) of the Dirichlet realization ∆
(0)
f,h in Ω

satisfies :
lim
h→0
−h log λ1(h) = inf

x∈∂Ω
(f(x)− f(xmin)) . (1.2)

Other results are given in the case of many local minima but they are limited
to the determination of logarithmic equivalents (see Theorems 7.3 and 7.4 in
[FrWe]).

The approach given in [HKN] intensively uses, together with the tech-
niques of [HelSj4], the two facts that the Witten Laplacian is associated to
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a cohomology complex and that the function x 7→ exp−f(x)
h

is a distribu-
tion solution in the kernel of the Witten Laplacian on 0−forms permitting to
construct very efficiently quasimodes. We recall that the Witten Laplacian
is defined as

∆f,h = df,hd
∗
f,h + d∗f,hdf,h , (1.3)

where df,h is the distorted differential

df,h := e−f(x)/h (hdx) e
f(x)/h , (1.4)

and where d∗f,h is its adjoint for the L2-scalar product canonically associated
to the Riemannian structure. The restriction of df,h to p-forms is denoted

by d
(p)
f,h. With these notations, the Witten Laplacian on functions is

∆
(0)
f,h = d

(0)∗
f,h d

(0)
f,h . (1.5)

In the Witten-complex spirit and due to the relation

d
(0)
f,h∆

(0)
f,h = ∆

(1)
f,hd

(1)
f,h , (1.6)

it is more convenient to consider the singular values of the restricted differ-
ential d

(0)
f,h : F (0) → F (1) . The space F (ℓ) is the mℓ-dimensional spectral

subspace of ∆
(ℓ)
f,h, ℓ ∈ {0, 1},

F (ℓ) = Ran 1I(h)(∆
(ℓ)
f,h) , (1.7)

with I(h) = [0, Ch
6
5 ] and the property1

1I(h)(∆
(1)
f,h)d

(0)
f,h = df,h1

(0)
I(h)(∆

(0)
f,h) . (1.8)

The restriction df,h

∣∣
F (ℓ) will be more shortly denoted by β

(ℓ)
f,h

β
(ℓ)
f,h := (d

(ℓ)
f,h)/F (ℓ) . (1.9)

We will mainly concentrate on the case ℓ = 0.
In order to exploit all the information which can be extracted from well cho-
sen quasimodes, working with singular values of β

(0)
f,h happens to be more

efficient than considering their squares, the eigenvalues of ∆
(0)
f,h . Those quan-

tities agree better with the underlying Witten complex structure.

1The right end a(h) = Ch
6

5 of the interval I(h) = [0, a(h)] is suitable for technical
reasons. What is important is that a(h) = o(h). The value of C > 0 does not play any
role.
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The main result
Let us describe the result. We shall show that under a suitable generic
assumption (see Assumption 5.7), one can label the m0 local minima and
introduce an injective map j from the set of the local minima into the set of
the m1 generalized critical points with index 1 of the Morse functions in Ω.
At a generalized critical point U with index 1, we can associate the Hessians
Hess f(U), if U ∈ Ω, or (Hess f

∣∣
∂Ω

)(U), if U ∈ ∂Ω. When U ∈ Ω, λ̂1(U)
denotes the negative eigenvalue of Hess f(U).

Theorem 1.1.
Under Assumption (5.7), there exists h0 such that, for h ∈ (0, h0] , the spec-

trum in [0, h
3
2 ) of the Dirichlet realization of ∆

(0)
f,h in Ω, consists of m0 eigen-

values λ1(h) < . . . < λm0(h) of multiplicity 1, which are exponentially small
and admit the following asymptotic expansions :

λk(h) =
h

π
|λ̂1(U

(1)
j(k))|

√√√√√

∣∣∣det(Hess f(U
(0)
k ))

∣∣∣
∣∣∣det(Hess f(U

(1)
j(k)))

∣∣∣

(
1 + hc1k(h)

)
×

× exp−2

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
, if U

(1)
j(k) ∈ Ω ,

and

λk(h) =
2h1/2|∇f(U

(1)
j(k))|

π1/2

√√√√√

∣∣∣det(Hess f(U
(0)
k ))

∣∣∣
∣∣∣det(Hess f

∣∣
∂Ω

(U
(1)
j(k)))

∣∣∣

(
1 + hc1k(h)

)
×

× exp−2

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
, if U

(1)
j(k) ∈ ∂Ω ,

where c1k(h) admits a complete expansion : c1k(h) ∼
∑∞

m=0 h
mck,m .

This theorem extends to the case with boundary the previous result of
[BoGayKl] and its improvement in [HKN] (see also non rigorous formal com-
putations of [KolMa], who look also to cases with symmetry and the books
[FrWe] and [Kol] and references therein).

About the proof
As in [HelSj4] and [HKN], the proof will be deeply connected with the analysis
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of the small eigenvalues of a suitable realization (which is not the Dirichlet
realization) of the Laplacian on the 1-forms. In order to follow the same
strategy as in the boundaryless case, three main points have to be explained.
The first point was to find the right substitute for the Witten complex. Our
starting problem being the analysis of the Dirichlet realization of the Witten
Laplacian, we were led to find the right realization of the Witten Laplacian
on 1-forms in the case with boundary in order to keep the commutation
relation (1.6). The answer was present in the literature ([Schw], [Gu] and
[CL]) in connection with the analysis of the relative cohomology.
The second point was to get the “rough” localization of the spectrum of this
Laplacian on 1-forms. The analysis was performed in [CL], in the spirit of
Witten’s idea, extending the so called harmonic approximation. But these
authors, interested in the Morse theory, simplified the problem in the sense
that they use the possibility (inherent to Morse theory) to choose a right
metric and a right Morse function in order to simplify the analysis at the
boundary. We emphasize that we treat here the general case.
The third point is the construction of WKB solutions for the critical points
of the restriction of the Morse function at the boundary. For simplicity, we
restrict our attention to the case of 1-forms which is the only one needed for
our problem.

Structure of the paper
The paper is organized as follows. In the second section, we analyze in
detail the boundary complex adapted to our analysis. The third section is
devoted to the proof of rough estimates replacing the harmonic oscillator
approximation in the case without boundary (leading in particular to the
proof of the weak Morse Inequalities). In the fourth section, we give the WKB
construction for a solution of the Witten Laplacian on 1-forms localized at
a critical point of the boundary. The fifth section is devoted to the Morse
theory together with the right definition of saddle sets in the present case with
boundary. This permits us in particular to explain our main assumptions.
The sixth section is devoted to the construction of quasimodes and the proof
of the main theorem is given in the seventh section. Finally, we have given in
the appendix a partially independent treatment of the one-dimensional case,
which can be seen as a warm-up.
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2 Some self-adjoint realization of Witten Lapla-

cians with boundary.

2.1 Introduction

We work here on a C∞ connected compact oriented Riemannian manifold Ω
with boundary ∂Ω and Ω will denote its interior. After fixing basic notations
we specify the self-adjoint realization of the Witten Laplacian on which we
will focus and we assume in all the paper that the function f is a C∞ real
valued function on Ω.

2.2 Distorted differentials and associated Witten Lapla-
cians.

The cotangent (resp. tangent) bundle on Ω is denoted by T ∗Ω (resp. TΩ) and
the exterior fiber bundle by ΛT ∗Ω = ⊕n

p=0Λ
pT ∗Ω (resp. ΛTΩ = ⊕n

p=0Λ
pTΩ).

The fiber bundles ΛT∂Ω = ⊕n−1
p=0Λ

pT∂Ω and ΛT ∗∂Ω = ⊕n−1
p=0ΛpT ∗∂Ω are

defined similarly. The space of C∞, C∞0 , L2, Hs . . . sections in any of these
fiber bundles, E, on O = Ω or O = ∂Ω, will be denoted respectively by
C∞(O;E), C∞0 (O;E), L2(O;E), Hs(O;E). . . . When no confusion is possible
we will simply use the short notations ΛpC∞, ΛpC∞0 , ΛpL2 and ΛpHs for
E = ΛpT ∗Ω or E = ΛpT ∗∂Ω. Note that the L2 spaces are those associated
with the unit volume form for the Riemannian structure on Ω or ∂Ω (Ω and
∂Ω are oriented). The notation C∞(Ω;E) is used for the set of C∞ sections
up to the boundary. Finally since ∂Ω is C∞, C∞(Ω;E) is dense in Hs(Ω;E)
for s ≥ 0 and the trace operator ω → ω

∣∣
∂Ω

extends to a surjective operator

from Hs(Ω;E) onto Hs−1/2(∂Ω;E) as soon as s > 1/2.
The differential on C∞0 (Ω; ΛT ∗Ω) will be denoted by d and more precisely

d(p) : C∞0 (Ω; ΛpT ∗Ω)→ C∞0 (Ω; Λp+1T ∗Ω).

Its formal adjoint with respect the L2-scalar product inherited from the Rie-
mannian structure is denoted by d∗ with

d(p),∗ : C∞0 (Ω; Λp+1T ∗Ω)→ C∞0 (Ω; ΛpT ∗Ω).

Those differential d and codifferential d∗ are well defined on C∞(Ω; ΛT ∗Ω)
and satisfy dd = d∗d∗ = 0.
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For a function f ∈ C∞(Ω; R) and h > 0, we set

df,h = e−f(x)/h (hd) ef(x)/h and d∗f,h = ef(x)/h (hd∗) e−f(x)/h.

The Witten Laplacian is the differential operator defined on C∞(Ω; ΛT ∗Ω)

∆f,h = d∗f,hdf,h + df,hd
∗
f,h = (df,h + d∗f,h)

2,

which means, by restriction to the p-forms in C∞(Ω; ΛpT ∗Ω),

∆
(p)
f,h = d

(p),∗
f,h d

(p)
f,h + d

(p−1)
f,h d

(p−1),∗
f,h .

Note that df,hdf,h = 0, and d∗f,hd
∗
f,h = 0 respectively, imply that, for all u in

C∞(Ω; ΛpT ∗Ω),

∆
(p+1)
f,h d

(p)
f,hu = d

(p)
f,h∆

(p)
f,hu (2.1)

and

∆
(p−1)
f,h d

(p−1),∗
f,h u = d

(p−1),∗
f,h ∆

(p)
f,hu . (2.2)

Here are other relations with exterior and interior products and Lie deriva-
tives which will be useful :

df,h = hd+ df∧ ; (2.3)

d∗f,h = hd∗ + i∇f ; (2.4)

d ◦ iX + iXd = LX ; (2.5)

∆f,h = h2(d+ d∗)2 + |∇f |2 + h
(
L∇f + L∗

∇f

)
. (2.6)

2.3 Stokes formulas.

Before writing the distorted Stokes formula, we recall some notations which
are convenient for boundary problems even with the euclidean metric on
Ω ⊂ Rn. We refer the reader to [Schw] for details.

For any ω ∈ C∞(Ω; ΛpT ∗Ω), the form tω is the element of C∞(∂Ω; ΛpT ∗Ω)
defined by

(tω)σ(X1, . . . , Xp) = ωσ(X
T
1 , . . . , X

T
p ) , ∀σ ∈ ∂Ω ,
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with the decomposition into the tangential and normal components to ∂Ω at
σ : Xi = XT

i ⊕X⊥
i nσ.

If n∗
σ denotes the 1-form which is dual to the outgoing normal nσ at σ for

the Riemannian scalar product, we have

(tω)σ = inσ(n∗
σ ∧ ωσ) .

Note that tω can be identified with j∗ω ∈ C∞(∂Ω; ΛpT ∗∂Ω) where
j : ∂Ω→ Ω is the canonical injection.
The non tangential part of ω on ∂Ω is defined by

nω = ω
∣∣∣
∂Ω
− tω ∈ C∞(∂Ω; ΛpT ∗Ω).

If necessary tω and nω can be considered as elements of C∞(Ω; ΛpT ∗Ω) as
follows. A variant of the Collar Theorem which provides a diffeomorphism
between a neighborhood of ∂Ω and ∂Ω × [0, δ[, δ > 0 small enough, can be
written by taking for the normal coordinate the geodesic distance to ∂Ω,
xn = dΩ(x, ∂Ω) ∈ [0, δ[. Any form η ∈ C∞(∂Ω; ΛT ∗Ω) is then extended by
using the equation ∂xnη = 0 to ∂Ω × [0, δ[. After multiplication by a cut-off
function, this gives a form on Ω, which does not depend on xn in a neighbor-
hood of ∂Ω.
The Hodge operator ⋆ is locally defined in a local orthonormal frame (E1, . . . , En)
by

(⋆ωx)(Eσ(p+1), . . . , Eσ(n)) = ε(σ) ωx(Eσ(1), . . . , Eσ(p)) ,

for ωx ∈ ΛpT ∗
xΩ and with σ ∈ Σ(n) preserving {1, . . . , p}.

We recall the formulas

⋆(⋆ωx) = (−1)p(n−p)ωx , ∀ωx ∈ ΛpT ∗
xΩ , (2.7)

〈ω1 |ω2〉ΛpL2 =
∫
Ω
ω1 ∧ ⋆ω2 , ∀ω1, ω1 ∈ ΛpL2 , (2.8)

and

⋆d∗,(p−1) = (−1)pd(n−p)⋆ , ⋆d(p) = (−1)p+1d∗,(n−p−1)⋆ , (2.9)

⋆ n = t ⋆ , ⋆ t = n ⋆ , (2.10)

t d = d t , n d∗ = d∗ n . (2.11)

These formulas, combined with the Stokes formula,

∀ω ∈ C∞(Ω; ΛpT ∗Ω),

∫

Ω

dω =

∫

∂Ω

j∗ω =

∫

∂Ω

tω ,

lead to the Green formula.
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Lemma 2.1.
For all ω ∈ ΛpH2 and η ∈ ΛpH1, we have

〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

= 〈∆f,hω | η〉ΛpL2 + h

∫

∂Ω

(tη) ∧ (⋆ndf,hω)− h
∫

∂Ω

(td∗f,hω) ∧ (⋆nη) . (2.12)

Proof.
Since C∞(Ω; ΛT ∗Ω) is dense in ΛHs, while both terms of the identity are
bilinearly continuous on ΛpH2 × ΛpH1, the forms ω and η can be assumed
C∞ up to the boundary.
We write

〈df,hω | df,hη〉+ 〈d∗f,hω | d∗f,hη〉 = 〈hdω | hdη〉+ 〈hd∗ω | hd∗η〉
+ 〈df ∧ ω | hdη〉+ 〈hdω | df ∧ η〉+ 〈df ∧ ω | df ∧ η〉

+ 〈i∇fω | hd∗η〉+ 〈hd∗ω | i∇fη〉+ 〈i∇fω | i∇fη〉 .

Let us first compute

〈df ∧ ω | df ∧ η〉+ 〈i∇fω | i∇fη〉 = 〈i∇f(df ∧ ω) + df ∧ (i∇fω) | η〉
= 〈(i∇fdf)ω | η〉 = 〈|∇f |2 ω | η〉 ,

according to the identity

iX(α ∧ β) = (iXα) ∧ β + (−1)deg αα ∧ (iXβ) .

The Stokes formula, combined with

〈θ1 | d∗θ2〉xdx1 ∧ . . . ∧ dxn = θ1 ∧ ⋆d∗θ2 = θ1 ∧ (−1)deg θ2d(⋆θ2)

and

d(θ2 ∧ ⋆θ2) = dθ1 ∧ (⋆θ2) + (−1)deg θ1θ1 ∧ d(⋆θ2) ,

where (dx1, . . . , dxn) is orthonormal with a positive orientation, yields for
deg θ1 = deg θ2 ∓ 1 :

∫

∂Ω

t
[
θ1 ∧ (⋆θ2)

]
= 〈dθ1 | θ2〉 − 〈θ1 | d∗θ2〉

and ∫

∂Ω

t
[
θ2 ∧ (⋆θ1)

]
= 〈θ1 | dθ2〉 − 〈d∗θ1 | θ2〉 .
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From the first identity we deduce :

〈hd∗ω | hd∗η〉+ 〈i∇fω | hd∗η〉 = 〈h2dd∗ω | η〉+ 〈hdi∇fω | η〉

− h
∫

∂Ω

t [(hd∗ω + i∇fω) ∧ ⋆η]

= 〈h2dd∗ω | η〉+ 〈hdi∇fω | η〉 − h
∫

∂Ω

(td∗f,hω) ∧ (⋆nη) .

From the second one we get :

〈hdω | hdη〉+ 〈df ∧ ω | hdη〉 = 〈h2d∗dω | η〉+ 〈hd∗(df ∧ ω) | η〉

+ h

∫

∂Ω

t [η ∧ ⋆(hdω + df ∧ ω)]

= 〈h2d∗dω | η〉+ 〈hd∗(df ∧ ω) | η〉+ h

∫

∂Ω

(tη) ∧ (⋆ndf,hω) .

Finally the relations (cf (2.3), (2.4))

i∇f ◦ d + d ◦ i∇f = L∇f and d∗ ◦ (df∧) + (df∧) ◦ d∗ = L∗
∇f

lead to

〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

= 〈h2(d+ d∗)2 + |∇f |2 + h
(
L∇f + L∗

∇f

)
ω | η〉ΛpL2

+ h

∫

∂Ω

(tη) ∧ (⋆ndf,hω)− h
∫

∂Ω

(td∗f,hω) ∧ (⋆nη) ,

where the differential operator h2(d+d∗)2+|∇f |2+h
(
L∇f + L∗

∇f

)
is nothing

but ∆f,h.

Note that this writing does not depend on the choice of an orientation.
If µ and µ∂Ω denote the volume form in Ω and ∂Ω and if the normal vector
nσ is chosen according to (µ∂Ω)σ(X1, . . . , Xn−1) = µσ(nσ, X1, . . . , Xn−1), a
simple computation in normal frames leads to

tω1 ∧ ⋆nω2 = 〈ω1 | inσω2〉ΛpT ∗
σ Ω dµ∂Ω , (2.13)
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for ω1 ∈ C∞(Ω; ΛpT ∗Ω) and ω2 ∈ C∞(Ω; Λp+1T ∗Ω).
After choosing for nσ the outgoing normal vector, (2.12) is equivalent to

〈∆f,hω, η〉ΛpL2 = 〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

− h
∫

∂Ω

〈inσdf,hω | η〉ΛpT ∗
σ Ω(σ) dµ∂Ω + h

∫

∂Ω

〈n∗
σ ∧ d∗f,hω | η〉ΛpT ∗

σ Ω(σ) dµ∂Ω ,

(2.14)

which was used in [HelSj4] (see Lemma 1.1, p. 255, with the inward normal
vector).
As a consequence of (2.13) we get the following useful decomposition formula.

Lemma 2.2.
If nσ denotes the exterior normal vector at σ ∈ ∂Ω, and (∂f/∂n)(σ) =
nσ · ∇f(σ) is the normal derivative of f at σ, then the identity

‖df,hω‖2Λp+1L2+
∥∥d∗f,hω

∥∥2

Λp−1L2 = h2 ‖dω‖2Λp+1L2+h
2 ‖d∗ω‖2Λp−1L2+‖ |∇f |ω‖2ΛpL2

+ h〈(L∇f + L∗
∇f)ω |ω〉ΛpL2 − h

∫

∂Ω

〈ω |ω〉ΛpT ∗
σΩ

(
∂f

∂n

)
(σ) dµ∂Ω (2.15)

holds for any ω ∈ ΛpH1 such that tω = 0.

Proof.
Again both sides of the identity are continuous on ΛpH1 and we can assume
ω ∈ C∞(Ω; ΛpT ∗Ω).
We use the relation (2.12) with f replaced by 0, d0,h = hd and d∗0,h = hd∗.
We obtain

‖df,hω‖2Λp+1L2 +
∥∥d∗f,hω

∥∥2

Λp−1L2 − h2‖dω‖2Λp+1L2 − h2‖d∗f,hω‖2Λp−1L2 =

〈(∆f,h −∆0,h)ω |ω〉ΛpL2 + h

∫

∂Ω

(tω) ∧ ⋆n(df ∧ ω)− h
∫

∂Ω

(ti∇fω) ∧ (⋆nω)

= 〈(∆f,h −∆0,h)ω |ω〉ΛpL2 − h
∫

∂Ω

〈i∇fω | inσω〉ΛT ∗
σΩ dµ∂Ω .

The first term of the right-hand side equals

〈(∆f,h −∆0,h)ω |ω〉ΛpL2 = ‖|∇f |ω‖2ΛpL2 + h〈(L∇f + L∗
∇f)ω |ω〉ΛpL2 .

For the integral term, we write

i∇fω =
∂f

∂n
(σ) inσω + i∇T fω ,
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where ∇Tf denotes the tangential part of the gradient. The equality

ti∇T fω = i∇T ftω = 0

implies
〈i∇T fω | inσω〉ΛT ∗

σΩ = 0 .

The condition tω = 0 also gives

〈inσω | inσω〉 = 〈ω |ω〉 ,

which yields the result.

Remark 2.3.
If instead of the condition, tω = 0, we assume nω = 0, then the integral term
on ∂Ω in formula (2.15) comes with the sign +.

2.4 Tangential Dirichlet realization.

In this subsection, we specify the self-adjoint realization of ∆
(0)
f,h in which we

are interested. When f = 0, it is known as the relative problem (see [Gu]
and references therein). The good property of this self-adjoint realization,
denoted by ∆DT

f,h is that it coincides with the Dirichlet realization on 0-forms
and preserves the complex structure :

(1 + ∆
DT,(p+1)
f,h )−1d

(p)
f,h = d

(p)
f,h(1 + ∆

DT,(p)
f,h )−1

and

(1 + ∆
DT,(p−1)
f,h )−1d

(p−1),∗
f,h = d

(p−1),∗
f,h (1 + ∆

DT,(p)
f,h )−1 ,

on the form domain of ∆
DT,(p)
f,h .

The simplest self-adjoint realization is the Friedrichs extension ∆D
f,h, start-

ing from C∞0 (Ω; ΛT ∗Ω), which leads, when Ω is regular, with the elliptic reg-
ularity property, to the domain D(∆D

f,h) = H1
0 (Ω; ΛT ∗Ω) ∩ H2(Ω; ΛT ∗Ω).

The problem is that df,h does not preserve this domain. We will see that
it is more natural for our problem to impose Dirichlet boundary conditions
only on the tangential components, while completing these conditions with
conditions on the codifferential. Other classical self-adjoint extensions are
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possible with the same properties and we refer the reader to [Schw] and [CL]
for details.
We introduce the space

ΛpH1
0,T = H1

0,T (Ω; ΛpT ∗Ω) =
{
ω ∈ H1 (Ω; ΛpT ∗Ω) ; tω = 0

}
. (2.16)

In the case p = 0, it coincides with the standard space H1
0 (Ω), while for

p ≥ 1 the condition says only that the form vanishes on ∂Ω when applied
to tangential p-vectors. Since the boundary ∂Ω is assumed to be regular the
space

ΛpC∞0,T = C∞0,T (Ω; ΛpT ∗Ω) =
{
ω ∈ C∞

(
Ω,ΛpT ∗Ω

)
; tω = 0

}

is dense in ΛpH1
0,T . The next construction is a variant of known results in

the case f = 0 (see [Schw]). We will use the notations

Df,h(ω, η) = 〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

and

Df,h(ω) = Df,h(ω, ω) = ‖df,hω‖2Λp+1L2 +
∥∥d∗f,hω

∥∥2

Λp−1L2 .

Proposition 2.4.
The non negative quadratic form ω → Df,h(ω) is closed on ΛpH1

0,T . The as-

sociated Friedrichs (self-adjoint) extension is denoted by ∆
DT,(p)
f,h . Its domain

is
D(∆

DT,(p)
f,h ) =

{
u ∈ ΛpH2; tω = 0 and td∗f,hω = 0

}
,

and we have
∀ω ∈ D(∆

DT,(p)
f,h ), ∆

DT,(p)
f,h ω = ∆

(p)
f,hω .

Proof.
First we observe that the space ΛpH1

0,T is isomorphic to the direct sum

ΛpH1
0 ⊕ nΛpH1/2(∂Ω; ΛpT ∗Ω) ,

with continuous embedding. Since ∂Ω is regular, one can indeed construct a
right inverse R to the trace operator γ0 : ΛpH1 → ΛpH1/2(∂Ω; ΛpT ∗Ω), so
that any u ∈ ΛpH1 can be written as the sum

u = (u− Rγ0u) +Rγ0u ,
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with (u − Rγ0u) ∈ ΛpH1
0 . Once the operator R is chosen, the previous

decomposition gives an isomorphism u → (u − Rγ0u, γ0u) from ΛpH1
0,T to

ΛpH1
0 ⊕ nΛpH1/2(∂Ω; ΛpT ∗Ω). Hence its dual is the direct sum of ΛpH−1

and nΛpH−1/2(∂Ω; ΛpT ∗Ω) :

(
ΛpH1

0,T

)′
= ΛpH−1 ⊕ nΛpH−1/2(∂Ω; ΛpT ∗Ω) .

We have to check that ω 7→ D(p)
f,h(ω)+C ‖ω‖2ΛpL2 is equivalent to the square of

the ΛpH1 norm on ΛpH1
0,T . By (2.3)-(2.6) this is equivalent to the same result

for f = 0 and h = 1. This last case is known as Gaffney’s inequality which
is a consequence of the Weitzenböck formula (see [Schw], Corollary 2.1.6).
Hence the identity

∀η ∈ ΛpH1
0,T , D(p)

f,h(η, ω) = 〈η, A(p)ω〉

defines an isomorphism A(p) : ΛpH1
0,T → (ΛpH1

0,T )′ . The self-adjoint Friedrichs

extension ∆
DT,(p)
f,h is then defined as the operator

D(∆
DT,(p)
f,h ) =

{
ω ∈ ΛpH1

0,T , A
(p)ω ∈ ΛpL2

}
, ∆

DT,(p)
f,h ω = A(p)ω .

It remains to identify this domain and the explicit action of A(p). If η belongs
to D(∆

DT,(p)
f,h ), we use first the Green formula (2.12) in order to get

∀ω ∈ ΛpC∞0 , 〈A(p)ω | η〉 = D(p)
f,h(ω, η) = 〈∆(p)

f,hω | η〉 .

The inequality
|D(p)

f,h(ω, η)| ≤ C ‖ω‖ΛpH1 ‖η‖ΛpH1 ,

together with the density of ΛpC∞0 in ΛpH1
0 implies that ∆

(p)
f,hη ∈ D′(Ω; ΛpT ∗Ω)

is indeed the ΛpH−1 component of A(p)η.
Assume that ω belongs to ΛpH1

0,T ∩ ΛpH2; then the Green formula (2.12)
gives

h

∫

∂Ω

(td
(p−1),∗
f,h ω) ∧ ⋆nη = D(p)(ω, η)− 〈∆(p)

f,hω | η〉ΛpL2 , ∀η ∈ ΛpH1
0,T .

By density, one can define, for any ω in ΛpH1
0,T such that ∆

(p)
f,hω ∈ ΛpL2, a

trace of td∗f,hω by the previous identity, observing that the right-hand side
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defines an antilinear continuous form with respect to η. With this generalized
definition of td

(p)
f,hω we obtain

D(A(p)) =
{
ω ∈ Λp

0,TH
1, ∆

(p)
f,hω ∈ ΛpL2 and td

(p−1),∗
f,h ω = 0

}
.

The last point consists in observing that the boundary value problem

∆
(p)
f,hu = g, tu = g1, td

(p−1),∗
f,h u = g2 (2.17)

satisfies the Lopatinski-Shapiro conditions. At the principal symbol level
(h > 0 fixed), these conditions are indeed the same as for

(dd∗ + d∗d)(p)u = g, tu = g1, td(p−1),∗u = g2.

This is checked in [Schw]. Hence any solution to (2.17) with g ∈ ΛpL2,
g1 = g2 = 0 belongs to ΛpH2.

Proposition 2.5.
For any p ∈ {0, . . . , n}, the self-adjoint unbounded operator of domain

D(∆
DT,(p)
f,h ) =

{
ω ∈ ΛH2, tω = 0, td

(p−1),∗
f,h ω = 0

}
and defined by

∆
DT,(p)
f,h ω = ∆

(p)
f,hω , ∀ω ∈ D(∆

DT,(p)
f,h ) ,

has a compact resolvent.
Moreover, if z ∈ C \R+, the commutation relations

(z −∆
DT,(p+1)
f,h )−1d

(p)
f,hv = d

(p)
f,h(z −∆

DT,(p)
f,h )−1v ,

and

(z −∆
DT,(p−1)
f,h )−1d

(p−1),∗
f,h v = d

(p−1),∗
f,h (z −∆

DT,(p)
f,h )−1v ,

hold for any v ∈ ΛpH1
0,T .

Proof.
The domain of the operator is contained in ΛpH2, which is compactly em-
bedded in ΛpL2. This yields the first statement.
Since ΛpC∞0,T is dense in ΛpH1

0,T , it is sufficient to consider the case when
v ∈ ΛpC∞0,T . For such a v and for z ∈ C \ R+, we set

u = (z −∆
DT,(p)
f,h )−1v.
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Due to the ellipticity of the associated boundary problem (the Lopatinski-
Shapiro conditions are verified) u belongs to C∞(Ω; ΛpT ∗Ω). The commuta-
tion relations (2.1) and (2.2) can be applied since here f ∈ C∞(Ω; R) :

(z −∆
(p+1)
f,h )d

(p)
f,hu = d

(p)
f,h(z −∆

(p)
f,h)u = d

(p)
f,hv (2.18)

and

(z −∆
(p−1)
f,h )d

(p−1),∗
f,h u = d

(p−1),∗
f,h (z −∆

(p)
f,h)u = d

(p−1),∗
f,h v . (2.19)

Since u ∈ D(∆
DT,(p)
f,h ) , we have tu = 0 and td∗f,hu = 0. Since t commute with

the differential, we get

t df,hu = hd tu+ (t df) ∧ (tu) = 0.

For the tangential trace of the codifferential, we write

td∗f,h(df,hu) = ztu− tv − tdf,hd
∗
f,hu = ztu− tv − df,htd

∗
f,hu = 0 .

Hence d
(p)
f,hu belongs to D(∆

DT,(p+1)
f,h ) and the identity (2.18) yields

d
(p)
f,h(z −∆

DT,(p)
f,h )−1v = df,hu = (z −∆

DT,(p+1)
f,h )−1df,hv ,

which proves the first announced commutation relation.
For the second one, the verification that d

(p−1),∗
f,h u belongs to D(∆

DT,(p−1)
f,h ) is

even simpler. First the property, td
(p−1),∗
f,h u = 0 , is given by u ∈ D(∆

DT,(p)
f,h );

then td∗f,h(d
∗
f,hu) = t0 = 0. We obtain

d
(p−1),∗
f,h (z −∆

DT,(p)
f,h )−1v = d

(p−1),∗
f,h u = (z −∆

DT,(p−1)
f,h )−1d

(p−1),∗
f,h v .

Remark 2.6.
Note that the above commutation relations cannot be extended to v ∈ ΛpH1.
Assume for example that v is C∞ up to the boundary. Starting from the
identity

v = (z −∆
DT,(p)
f,h )(z −∆

DT,(p)
f,h )−1v ,

we can write

v = z(z −∆
DT,(p)
f,h )−1v − d(p),∗

f,h d
(p)
f,h(z −∆

DT,(p)
f,h )−1v

−d(p−1)
f,h d

(p−1),∗
f,h (z −∆

DT,(p)
f,h )−1v

= zu1 − d(p),∗
f,h u2 − d(p−1)

f,h u3 ,

(2.20)
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with the relations u1 ∈ D(∆
DT,(p)
f,h ) , u2 = d

(p)
f,h(z − ∆

DT,(p)
f,h )−1v ,

and u3 = d
(p−1),∗
f,h (z −∆

DT,(p)
f,h )−1v.

Now the commutation relations would imply u2 ∈ D(∆
DT,(p+1)
f,h ) and

u3 ∈ D(∆
DT,(p−1)
f,h ).

The form v should then satisfy on the boundary

tv = ztu1 − td
(p),∗
f,h u2 − d(p−1)

f,h tu3 = 0 .

From Proposition 2.5 and Stone’s Formula we deduce the

Corollary 2.7.
For any Borel subset E ⊂ R, the identities

1E(∆
DT,(p+1)
f,h )d

(p)
f,hv = d

(p)
f,h1E(∆

DT,(p)
f,h )v

and

1E(∆
DT,(p−1)
f,h )d

(p−1),∗
f,h v = d

(p−1),∗
f,h 1E(∆

DT,(p)
f,h )v

hold for all v ∈ ΛpH1
0,T .

In particular, if v is an eigenvector of ∆
DT,(p)
f,h corresponding to the eigenvalue

λ, then d
(p)
f,hv (resp. d

(p−1),∗
f,h v) belongs to the spectral subspace Ran 1{λ}(∆

DT,(p+1)
f,h )

(resp. Ran 1{λ}(∆
DT,(p−1)
f,h )).

Proposition 2.5 and Corollary 2.7 were stated for p-forms v ∈ ΛpH1
0,T (Ω),

belonging to the form domain of ∆
DT,(p)
f,h . It is convenient to work in this

framework because the multiplication by any cut-off function preserves ΛH1
0,T (Ω) :

(
ω ∈ ΛH1

0,T (Ω), χ ∈ C∞(Ω)
)
⇒ (χω ∈ ΛH1

0,T (Ω)) ,

while this property is no more true for D(∆DT
f,h ). In this spirit, we will often

refer to the next easy consequence of the spectral theorem.

Lemma 2.8.
Let A be a nonnegative self-adjoint operator on a Hilbert space H given as the
Friedrichs extension of a closed quadratic form qA with form domain Q(A).
Then for any a, b ∈ (0,+∞), the implication

(qA(u) ≤ a)⇒
(∥∥1[b,+∞)(A)u

∥∥2 ≤ a

b

)

holds for any u ∈ Q(A).
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2.5 Boundary reduced Witten complex

We end this section with the introduction of the reduced complex which is
standard in the boundaryless case since Witten (see [Wit], [Sim2], [CFKS],
[HelSj4] and the book [Zh]). This will motivate the preliminary analysis given
in the next section.
Let us assume that the dimension mΩ

p of F (p) = Ran 1[0,h3/2)(∆
DT,(p)
f,h ) is

independent of h ∈ (0, h0) for h0 > 0 small enough. The previous proposition

says that β
(p)
f,h = d

(p)
f,h

∣∣
F (p) and β

(p),∗
f,h = d

(p−1),∗
f,h

∣∣
F (p) (p = 0, . . . , n) define two

complexes of finite dimensional spaces :

0→ F (0)
β

(0)
f,h→ F (1)

β
(1)
f,h→ . . .

β
(n−1)
f,h→ F (n) → 0

0← F (0)
β

(0),∗
f,h← F (1)

β
(1),∗
f,h← . . .

β
(n−1),∗
f,h← F (n) ← 0 .

(2.21)

If bΩp , p ∈ {0, . . . , n}, denote the Betti numbers of the β
(p)
f,h complex, then the

polynomials,

M(X) =
n∑

p=0

mΩ
pX

p and B(X) =
n∑

p=0

bΩpX
p ,

satisfy
M(X)− B(X) = (1 +X)Q(X) , (2.22)

where the polynomial Q(X) has non negative coefficients.
In the boundaryless case, the numbers mp are exactly the number of criti-
cal points with index p and this is the core of Witten’s approach to Morse
inequalities. In the boundary case, it is no more true. The next section
explains the role of the boundary conditions on the spaces F (p).

3 First localization of the spectrum.

3.1 Introduction

In this section, we check that the number of eigenvalues of ∆
DT,(p)
f,h smaller

than h3/2 equals a Morse index mΩ
p which involves in its definition the bound-

ary condition. For this we need a first localization of the eigenvectors. Al-
though the results presented here are closely related to those of [CL], we need
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additional information and technical analysis for the following reason :
When one is interested only in the Morse theory the metric plays no rele-
vant role and it is possible, without loss of generality, to assume that it has
a simple form at the critical points. This simplification, which leads to a
much easier analysis, was used by many authors [CFKS], [CL], [Bis], [Bur],
and [He1]. Since we are interested in quantitative results with a prescribed
metric from the beginning, the dependence with respect to the metric has to
be analyzed carefully. One difficulty comes from the fact that the boundary
condition and therefore the domain of ∆

(p)
f,h depends on the metric g.

3.2 Morse-Witten theory for boundary value problems.

In order to make the connection between the tangential Dirichlet realization
of the Witten Laplacian ∆DT

f,h and the Morse theory, we assume additional
properties for the function f up to the boundary ∂Ω.

Assumption 3.1.
The real valued function f ∈ C∞(Ω) is a Morse function on Ω with no critical
points in ∂Ω. In addition its restriction f

∣∣
∂Ω

is a Morse function on ∂Ω.

With this assumption, the function f admits a finite number mΩ
p of crit-

ical points with index p in Ω. Those numbers have to be modified for the
boundary problem according to [CL] in order to take into account eigen-
vectors which possibly concentrate (as h → 0) on ∂Ω. Note first that the
assumption that there is no critical point on ∂Ω implies that the outgoing
normal derivative ∂nf(U) is not 0, if U is a critical point of f

∣∣
∂Ω

.

Definition 3.2.
For ℓ ∈ {0, . . . , n− 1}, the integer m∂Ω

ℓ,+ is the number of critical points U

of f
∣∣
∂Ω

with index ℓ such that ∂nf(U) > 0 (with the additional convention

m∂Ω
−1,+ = 0).

For p ∈ {0, . . . , n}, the integer mΩ
p is defined as

mΩ
p = mΩ

p +m∂Ω
p−1,+ .

We will prove the

Theorem 3.3.
Under Assumption 3.1, there exists h0 > 0, such that the tangential Dirichlet
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realization of the Witten Laplacian ∆DT
f,h introduced in Subsection 2.4 has, for

h ∈ (0, h0] , the following property :

For any p ∈ {0, . . . , n}, the spectral subspace F (p) = Ran1[0,h3/2)(∆
DT,(p)
f,h ) has

rank : dim F (p) = mΩ
p .

Moreover the Betti numbers bΩp are homotopy invariants and satisfy the ho-
mological relations (2.22).

Remark 3.4.
a) The role of the condition ∂nf(U) > 0 can be easily understood by con-
sidering the one-dimensional problem with f(x) = x on the interval [0, 1].

On 0-forms, ∆
DT,(0)
f,h corresponds to a Dirichlet realization, while ∆

DT,(1)
f,h cor-

responds to a realization with an h-dependent Robin boundary condition
h∂xu − (∂xf) u = 0 , where the function u(x) has to be identified with the
1-form u(x) dx.
b) With the normal boundary conditions nω = 0 and ndf,hω = 0, the num-
ber m∂Ω

p−1,+ has to be replaced by m∂Ω
p−1,− , which corresponds to the condition

∂nf(U) < 0 (see [CL]).

We shall use a similar technique to the one presented in [Sim2], [CFKS]
and [CL] by making rather rough estimates in terms of quadratic forms.
We first consider a model half-space problem which permits, after a care-
ful treatment of the metric, to separate tangential and normal coordinates.
The localization process and the proof of Theorem 3.3 will be achieved in
Subsection 3.4.

3.3 A model half-space problem.

We consider in this subsection a half-space model problem which will be
used in the localization of the eigenvectors of ∆DT

f,h on Ω and will provide
quasimodes.

We start first with some results on Rk, which will be applied later with
k = n− 1.

3.3.1 Witten Laplacian on Rk with one low-lying eigenvalue.

The metric g on Rk is a C∞ metric which equals the euclidean metric outside
a compact set K.
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Assumption 3.5.
The function f is a Morse C∞ real valued function and there exist C1 > 0
and a compact K such that :

∀x ∈ R
k \K, |∇f(x)| ≥ C−1

1 and |Hess f(x)| ≤ C1 |∇f(x)|2 . (3.1)

Note that the above assumption ensures that f admits a finite number of
critical points and mp will denote the number of critical points with index p .

Proposition 3.6.
Under Assumption 3.5, there exist h0 > 0, c0 > 0 and c1 > 0 such that the
following properties are satisfied for any h ∈ (0, h0] :
i) The Witten Laplacians ∆f,h as an unbounded operator on L2(Rk; ΛT ∗

R
k)

is essentially self-adjoint on C∞0 (Rk; ΛT ∗Rk) .
ii) For any Borel subset E in R, the identities,

1E(∆
(p+1)
f,h )d

(p)
f,hu = d

(p)
f,h1E(∆

(p)
f,h)u ,

and

1E(∆
(p−1)
f,h )d

(p),∗
f,h u = d

(p),∗
f,h 1E(∆

(p)
f,h)u ,

(3.2)

hold, for any u belonging to the form domain of ∆
(p)
f,h .

In particular, if v is an eigenvector of ∆
(p)
f,h associated with the eigenvalue λ,

then d
(p)
f,hv (resp. d

(p−1),∗
f,h v) belongs to the spectral subspace Ran 1{λ}(∆

(p+1)
f,h )

(resp. Ran 1{λ}(∆
(p−1)
f,h )).

iii) The essential spectrum σess(∆
(p)
f,h) is contained in [c1,+∞).

iv) The range of the spectral projection 1[0,c0h)(∆
(p)
f,h) has dimension mp , for

all h ∈ (0, h0] .

Proof.
We give the proof for the sake of completeness (see also [Jo]).
i) The operator

∆f,h = −h2∆ + Ψ(x) = df,hd
∗
f,h + d∗f,hdf,h

is non-negative on C∞0 (Rk; ΛT ∗Rk) and the matrix-valued function Ψ(x) is
C∞. By Simader’s result (see [Sima], [He3]), ∆f,h is essentially self-adjoint
on C∞0 (Rn−1; ΛT ∗Rk) .
ii) The proof is the same as in Proposition 2.5 and Corollary 2.7 with
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ΛpC∞0,T (Ω) replaced by ΛpC∞0 (Rk). By i), ΛpC∞0 (Rk) is dense in D(∆
(p)
f,h) and

therefore in the form domain of ∆
(p)
f,h.

iii) The localization of the essential spectrum is a consequence of our assump-
tions which imply the existence of C > 0 such that, for all u ∈ ΛpC∞0 (∁K),

〈u | ∆(p)
f,hu〉 ≥ 〈u | ∆

(p)
0,hu〉+

1

C
||u||2 − Ch||u||2 .

When h < h0, with h0 = 1
2C2

1
, we get

〈u | ∆(p)
f,hu〉 ≥

1

2C
||u||2 , ∀u ∈ ΛpC∞

0 (∁K) ,

and iii) by using Persson’s Lemma.
iv) The previous inequality combined with a simple partition of unity argu-
ment shows that any normalized eigenvector ψh associated with an eigen-
value λh in [0, c0h) of ∆

(p)
f,h is localized in a neighborhood of K. Take indeed

χi ∈ C∞(Rk), i = 1, 2, such that χ1 ∈ C∞0 (Rk), χ1 = 1 in a neighborhood of
K, χ2

1 + χ2
2 = 1, and write :

λh||ψh||2 = 〈χ1ψh |∆(p)
f,hχ1ψh〉+ 〈χ2ψh |∆(p)

f,hχ2ψh〉 − h2
∑

i=1,2

‖∇χiψh‖2 .

This leads, for h small enough, to

‖χ2ψh‖2 ≤ 2Cλh + 2C

(
∑

i=1,2

max
x∈K
|∇χi(x)|2

)
h2 ≤ 4Cc0h ,

1 = ||ψh|| ≤ (1 + C ′h)||χ1ψh|| ,
and

〈χ1ψh |∆(p)
f,hχ1ψh〉 ≤ C ′′h2 + c0h ≤ 2c0h ‖ψh‖2 ≤ C ′′′c0h ‖χ1ψh‖2 .

Hence the problem is reduced to the case of a boundaryless compact manifold
presented in [CFKS] and [HelSj4]. With c0 > 0 small enough, their related re-
sults, which rely here on harmonic approximations around the critical points
of f , and the two previous estimates imply that ψh has to lie within a dis-
tance less than 1/2 from a finite dimensional space with dimension mp. This
yields

dim Ran 1[0,c0h)(∆
(p)
f,h) = mp . (3.3)
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We will need the following version of those results in the specific case
when f admits a unique critical point with index p0.

Proposition 3.7.
If the Morse function f satisfies Assumption 3.5 and admits a unique critical
point at x = 0 with index p0, so mp = δp,p0, then there exist h0 > 0 and
c0 > 0 , such that the following properties hold for h ∈ (0, h0] :

i) For p 6= p0, ∆
(p)
f,h ≥ c0hId .

ii) If ψh
p0

is a normalized eigenvector of the one dimensional spectral subspace

Ran 1[0,c0h)(∆
(p0)
f,h ) , it satisfies

df,hψ
h
p0

= 0 , d
(p0−1),∗
f,h ψh

p0
= 0 and ∆

(p0)
f,h ψ

h
p0

= 0 ,

so that Ran 1[0,c0h)(∆
(p0)
f,h ) = Ker ∆

(p0)
f,h . Moreover

σ(∆
(p0)
f,h ) \ {0} ⊂ [c0h,∞) .

iii) If χ ∈ C∞0 (Rk) satisfies χ = 1 in a neighborhood of 0, then there exists
Cχ ≥ 1 , such that, for all h ∈ (0, h0/Cχ) , the inequality,

(1− χ)∆
(p)
f,h(1− χ) ≥ C−1

χ [1− χ]2 ,

holds in the sense of quadratic form on ΛpH1(Rk).

Proof.
One uses first for i) the property that : dim Ran 1[0,c0h)(∆

(p)
f,h) = mp. Let us

now show ii). Assume that ψh
p0

is an eigenvector of ∆
(p0)
f,h with eigenvalue

λh ∈ [0, c0h). If d
(p0)
f,h ψ

h
p0

was not 0, it would be an eigenvector of ∆
(p0+1)
f,h with

eigenvalue λh ∈ [0, c0h) . Hence df,hψ
h
p0

= 0 and similarly d
(p0−1),∗
f,h ψh

p0
= 0.

This implies λh = 0.
For iii), we note that

∆
(p)
f,h ≥ |∇f(x)|2 (1− Ch) ,

with |∇f(x)|2 ≥ cχ > 0 for x 6∈ suppχ.
This implies

(1− χ)∆
(p)
f,h(1− χ) ≥ cχ(1− Ch)+ [1− χ]2 ,

for h ∈ (0, h0) and the result holds for Cχ > 0 large enough and h0 small
enough.

24



3.3.2 Small eigenvalues of the half space problems.

We work here on Rn
− = Rn−1×(−∞, 0). We assume that there are coordinates

(x′, xn) such that the metric g =
∑n

i,j=1 gij(x)dxidxj satisfies

gi,n = gn,i = 0 for i < n (3.4)

and

∀x ∈ Rn
− \K1, ∂xgij(x) = 0 , (3.5)

for some compact set K1 ⊂ Rn
−. In this paragraph, the coordinates (x, xn) are

fixed while different metrics on Rn
− are considered. The notation G(·) will be

used for the matrix valued map x 7→ G(x) = tG(x) = (gij(x))i,j ∈ GLn(R),
which is assumed to be a C∞ function. According to the standard notation,
the coefficients of G(x)−1 are written gij(x).

We also consider a function f which has a specific form in the same
coordinates (x′, xn).

Assumption 3.8.
The function f ∈ C∞(Rn

−) satisfies :

i) The estimates |∇f(x)| ≥ C−1 and |∂α
x f(x)| ≤ Cα hold, for all x ∈ Rn

−

and all α ∈ N
d, α 6= 0.

ii) The function f is the sum f(x′, xn) = −1
2
f+(xn) + 1

2
f−(x′) , where there

exists C1 > 0 such that :

C−1
1 ≤ |∂xnf+(xn)| ≤ C1 ,

and where f− is a Morse function on Rn−1 , which satisfies Assump-
tion 3.5 for the metric

∑n−1
i,j=1 gij(x

′, 0)dxidxj and admits a unique crit-
ical point at x′ = 0 with index p0.

The boundedness of |∂α
x f |, 1 ≤ |α| ≤ 2, avoids any subtle questions about

the domains.

Proposition 3.9.
Under Assumption 3.8-i), the unbounded operator ∆DT

f,h on L2(Rn
−; ΛT ∗

R
n
−) ,

with domain

D(∆DT
f,h ) =

{
ω ∈ ΛH2(Rn

−) , tω = 0 , td∗f,hω = 0
}
,
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is self-adjoint.
If E is any Borel subset of R, the relations

1E(∆
DT,(p+1)
f,h ) d

(p)
f,hu = d

(p)
f,h 1E(∆

DT,(p)
f,h )u ,

and

1E(∆
DT,(p−1)
f,h ) d

(p),∗
f,h u = d

(p),∗
f,h 1E(∆

DT,(p)
f,h )u ,

(3.6)

hold for any u ∈ ΛpH1
0,T (Rn

−) .

Proof.
The uniform estimate on ∇f permits the same proof as for Proposition 2.5
and Corollary 2.7 (Here C∞0,T denotes the space of C∞ compactly supported

functions in Rn
− with a vanishing tangential component on {xn = 0}).

We are looking for a result similar to Proposition 3.7 for the boundaryless
case. One difficulty here comes from the metric which, although diagonal in
the coordinates (x′, xn), is not constant. The general case can be reduced to
a simpler situation where gij(x) = gij(x

′) with gnn = 1 after several steps.
We need some notations.

Definition 3.10.
For a metric g which satisfies (3.5), the correspondingHs-norm on ΛpHs(Rn

−)
is denoted by ‖ ‖ΛpHs,g and the notation ‖ ‖ΛpHs is kept for the euclidean met-

ric ge =
∑n

i=1 dx
2
i .

Similarly, the quadratic form associated with ∆
DT,(p)
f,h is written

Dg,f,h(ω) =
∥∥d∗,gf,hω

∥∥2

Λp−1L2,g
+ ‖df,hω‖2Λp+1L2,g , ∀ω ∈ ΛpH1

0,T (Rn
−) ,

where the codifferential d∗,gf,h also depends on g .
A K-set is a set of metrics g which satisfy the conditions (3.5) and which is
compact for the C∞(K1)-topology.

A K-set is a set of metrics g which satisfy the conditions (3.5) and so that
G(x) and G(x)−1 are bounded in the C∞(K1)-topology. Note that, when the
metric g lies in a fixed K-set (h = 1), the Hs-norms are uniformly equivalent
to the norm associated with the euclidean metric ge . The required accuracy
while comparing the quadratic forms Dg,f,h needs some care.
The first result provides a reduction to the case ∂xnG = 0 .
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Lemma 3.11.
Let g1 and g2 be two metrics which satisfy (3.5) and coincide on {xn = 0}.
Let f be a function satisfying Assumption 3.8. There exist constants C12 ≥ 1
and h0 > 0 such that the inequality,

Dg2,f,h(ω) ≥ (1− C12h
2/5)Dg1,f,h(ω)− C12h

7/5 ‖ω‖2ΛpL2,g1
, (3.7)

holds for ω ∈ ΛpH1
0,T (Rn

−) , with p ∈ {0, . . . , n} and h ∈ (0, h0), as soon as

suppω ⊂
{
xn ≥ −C0h

2/5
}

.

Proof.
The matrices G1(x) and G2(x) associated with g1 and g2 in the coordinates
(x′, xn) satisfy the estimates

∣∣G1(x)
−1G2(x)− IdRn

∣∣ ≤ Ch2/5 ,

for all x ∈
{
xn ≥ −C0h

2/5
}
. Hence, for any differential form η ∈ ΛL2 sup-

ported in
{
xn ≥ −C0h

2/5
}

, the two L2-norms differ by

∣∣∣‖η‖2ΛL2,g1
− ‖η‖2ΛL2,g2

∣∣∣ ≤ Ch2/5 min
{
‖η‖2ΛL2,gi

, i = 1, 2
}
.

The relative error term has the right order, so that any L2-norm can be used.
Except for the conclusion, any of the two L2-norm is simply denoted by ‖ ‖.
The comparison of Dg1,f,h(ω) and Dg2,f,h(ω) amounts to finding a good esti-
mate for ‖

(
d∗,g1

f,h − d∗,g2

f,h

)
ω‖. Let ω =

∑
I ωIdx

I be a p−form supported in{
xn ≥ −C0h

2/5
}

.
The first point is to observe the inequality

||
(
d∗,g1

f,h − d∗,g2

f,h

)
ω||2 ≤ C

(
h2(
∑

ℓ,I

‖∂xℓ
(xnωI)‖2) + ‖xn|∇f |ω‖2 + h2‖ω‖2

)
.

(3.8)

The second point is to use the Dirichlet realization of ∆
(p)
f,h, corresponding to

Dirichlet boundary conditions on all components. The Weitzenböck formula
(actually we only need the structure of the Laplacian and not the detailed
intrinsic expression) gives :

∆
(p)
f,h = −h2

∑

i,j

∇i g
ij(x)∇j + h2R(4) + |∇f(x)|2 + h

(
L∇f + L∗

∇f

)
. (3.9)
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The first term is h2 times the Bochner Laplacian, while the Ricci curvature
R(4) and the term (L∇f + L∗

∇f) are tensors with bounded coefficients. We
remind that the covariant derivative ∇i on forms is expressed in terms of the
partial derivative ∂xj

, the Christoffel symbols Γj
i,ℓ and of the gradient ∇xm

of the coordinate function xm :

∇i = ∂xi
−
∑

j,m,ℓ

Γj
i,ℓgjmdxℓ ∧ (i∇xm.) . (3.10)

By writing the two sides of (3.9) as quadratic forms on ΛpH1
0 (Rn

−) , we get,
for any p-form ω̃ such that ω̃

∣∣
{xn=0}

= 0 , the estimate

(
h2(
∑

ℓ,I

‖∂ℓ(ω̃I)‖2) + ‖|∇f |ω̃‖2
)
≤ C

(
‖df,hω̃‖2 + ‖d∗,g·f,h ω̃‖2 + h‖ω̃‖2

)
.

(3.11)
We apply this inequality with ω̃ = xnω, which satisfies the full Dirichlet
condition. With (3.8), this leads to the inequality :

‖
(
d∗,g1

f,h − d∗,g2

f,h

)
ω‖2 ≤ C

(
‖df,hxnω‖2 + ‖d∗,g·f,h xnω‖2 + h‖xnω‖2 + h2‖ω‖2

)
.

(3.12)
It remains to commute xn and df,h or d∗,g·f,h and we get, using also our as-

sumption that |xn| ≤ Ch
2
5 in suppω ,

‖
(
d∗,g1

f,h − d∗,g2

f,h

)
ω‖2 ≤ C

(
h

4
5‖df,hω‖2 + h

4
5‖d∗,g·f,hω‖2 + h

9
5‖ω‖2

)
. (3.13)

We conclude with

(1− Ch2/5)−1Dg2,f,h(ω) = (1− Ch2/5)−1
[∥∥d∗,g2

f,h ω
∥∥2

ΛL2,g2
+ ‖df,hω‖2ΛL2,g2

]

≥
∥∥d∗,g2

f,h ω
∥∥2

ΛL2,g1
+ ‖df,hω‖2ΛL2,g1

≥
(∥∥d∗,g1

f,h ω
∥∥

ΛL2,g1
−
∥∥(d∗,g2

f,h − d∗,g1

f,h )ω
∥∥

ΛL2,g2

)2

+ ‖df,hω‖2ΛL2,g1

≥ (1− h2/5)Dg1,f,h(ω) + (1− 1

h2/5
)
∥∥(d∗,g2

f,h − d∗,g1

f,h )ω
∥∥2

ΛL2,g1
,

and estimate (3.13).

The second result permits to consider again a simpler metric with
gnn = 1.
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Lemma 3.12.
Let g1 and g2 be two conformal metrics which satisfy (3.5) and :

g2 = eϕ(x)g1 .

Let f be a function satisfying Assumption 3.8. Then there exist constants
C12 ≥ 1 and h0 > 0 , such that the inequality,

∀ω ∈ ΛpH1
0,T (Rn

−), Dg2,f,h(ω) ≥ C−1
12 Dg1,f,h(ω)− C12h

2 ‖ω‖2ΛpL2,g1
, (3.14)

holds, for all p ∈ {0, . . . , n} and all h ∈ (0, h0) .

Proof.
For a given metric g =

∑n
i,j=1 gijdxidxj , which satisfies property (3.5) and

G = (gij)1≤i,j≤n , the normalized volume form equals

Vg(dx) = (detG(x))1/2 dx1 ∧ . . . ∧ dxn ,

the pointwise scalar product of two p-forms equals

〈ω | η〉g(x) =
∑

#I=p

ωI(Γp(G
−1)η)I(x) ,

with Γp(A) = A⊗ · · · ⊗ A , and the Hodge operator is given by

ω ∧ (⋆g η)(x) = 〈ω | η〉g(x) Vg(dx) .

The term which requires some care in the conformal change of metric in

Dg,f,h(ω) =
∥∥d∗,gf,hω

∥∥2

Λp−1L2,g
+ ‖df,hω‖2Λp+1L2,g

is the first one, because d∗,gf,h depends on g. We have indeed

d∗,gf,hω = ef/h(−1)p ⋆g d ⋆g e
−f/hω, ∀ω ∈ ΛpH1 .

Let g1 and g2 be as above. Our assumptions imply the uniform estimate

sup
x∈Rn

−

|ϕ(x)| < +∞ .

The previous identities give, for two p-forms ω and η, the pointwise relations :

〈ω | η〉g2(x) = e−pϕ(x)〈ω | η〉g1(x) ,
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and

ω ∧ (⋆g2η) = 〈ω | η〉g2Vg2(dx)

= e−pϕ(x)〈ω | η〉g1e
nϕ(x)

2 Vg1(dx) = e(−p+ n
2
)ϕ(x)ω ∧ (⋆g1η) ,

which yields
⋆g2η = e(−p+ n

2
)ϕ(x) ⋆g1 η .

Let us compute first with f = 0 and h = 1, the pointwise scalar product

〈d∗,g2ω | d∗,g2η〉g2(x) = e−(p−1)ϕ(x)〈d∗,g2ω | d∗,g2η〉g1(x)

= e−(p−1)ϕ(x)〈⋆g2 d ⋆g2 ω | ⋆g2 d ⋆g2 η〉g1(x)

= e−(p−1)ϕ(x)〈⋆g2 d ⋆g1

(
e(p+n/2)ϕ(x)ω

)
| ⋆g2 d ⋆g1

(
e(p+n/2)ϕ(x)η

)
〉g1(x)

= e−(p−1)ϕ(x)e2(p−1−n/2)ϕ(x)〈d∗,g1
(
e(p+n/2)ϕ(x)ω

)
| d∗,g1

(
e(p+n/2)ϕ(x)η

)
〉g1(x).

Hence we get

〈d∗,g2ω | d∗,g2η〉g2(x)Vg2(dx)

= e(p−1)ϕ(x)〈d∗,g1
(
e(p+n/2)ϕ(x)ω

)
| d∗,g1

(
e(p+n/2)ϕ(x)η

)
〉g1(x)Vg1(dx).

and
‖d∗,g2ω‖2ΛL2,g2

≥ e−(p−1)µ ‖d∗,g1ω‖2ΛL2,g1
.

With f and h ∈ (0, h0), this gives the existence of C > 0 such that :

∥∥ef/hhd∗,g2(e−f/hω)
∥∥2

ΛL2,g2
≥ e−(p−1)µ

∥∥ef/hhd∗,g1(e−f/h+(p+n/2)ϕω)
∥∥2

ΛL2,g1

≥ e−(3p−1+n)µ
∥∥(d∗,g1

f,h + hi∇(p+n/2)ϕ)ω
∥∥2

ΛL2,g1

≥ C−1
∥∥d∗,g1

f,h ω
∥∥2

ΛL2,g1
− Ch2 ‖ω‖2ΛL2,g1

.

Proposition 3.13.
Assume that the metric g satisfies (3.4) and (3.5) and let f be a Morse
function satisfying Assumption 3.8. Then there exist constants h0 > 0, c0 > 0
and c1 > 0, such that the self-adjoint operator ∆DT

f,h satisfies the following
properties for h ∈ (0, h0] :

i) The essential spectrum σess(∆
DT,(p)
f,h ) is contained in [c1,+∞).
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ii) For p ∈ {0, . . . , n} , the range of the spectral projection 1[0,c0h)(∆
DT,(p)
f,h )

has dimension
{
δp,p0+1 if ∂xnf(0) = −1

2
∂xnf+(0) > 0 ,

0 if ∂xnf(0) = −1
2
∂xnf+(0) < 0 .

iii) In the case when ∂xnf(0) = −1
2
∂xnf+(0) > 0, the spectral subspace asso-

ciated with the small eigenvalues of ∆
DT,(p0+1)
f,h equals :

Ran 1[0,c0h)(∆
DT,(p0+1)
f,h ) = Ker ∆

DT,(p0+1)
f,h = Cϕh ,

where
‖ϕh − ψh

p0
∧
(
e−f+(xn)/2h dxn

)
‖ΛpL2 = O(h1/10) ,

and ψh
p0

belongs to the kernel of an (n − 1)-dimensional Witten Laplacian

∆
(p0)

g̃′,f−/2,h
in a metric g̃′, which is conformal to g′ =

∑n−1
i,j=1 gij(x

′, 0)dxidxj on

Rn−1.
iv) For any χ ∈ C∞0 (Rn

−) such that χ = 1 in a neighborhood of 0, there exists
Cχ > 0 such that the lower bounds

(1− χ)∆
DT,(p)
f,h (1− χ) ≥ C−1

χ [1− χ]2 , 0 ≤ p ≤ n ,

hold, for any h ∈ (0, h0/Cχ), in the sense of quadratic form on ΛpH1
0,T (Rn

−) .

Proof.
The clue of this result is an accurate lower bound for the quadratic form
Dg,f,h(η) , when evaluated for η such that supp η ⊂

{
xn ≥ −C0h

2/5
}

. By
Lemmas 3.11 and 3.12, one can find a metric g̃, which satisfies (3.4) and
(3.5), with G̃(x) = G̃(x′) independent of the xn-coordinate, g̃nn = 1 and a
constant C > 1 such that

Dg,f,h(η) ≥ C−1Dg̃,f,h(η)− Ch7/5 ‖η‖2ΛL2,g̃ . (3.15)

Take two cut-off functions χ̃i ∈ C∞(R) , such that χ̃1 ∈ C∞0 (R) , χ̃1 = 1 in a
neighborhood of 0 such that χ̃2

1 + χ̃2
2 = 1 . This partition of unity gives, for

any ω ∈ ΛH1
0,T (Rn

−) ,

Dg,f,h(ω) ≥ Dg,f,h(χ̃1(h
−2/5xn)ω) +Dg,f,h(χ̃2(h

−2/5xn)ω)− Ch6/5 ‖ω‖2ΛL2,g .
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Since |∇f(x)|2 ≥ C−1 on Rn
− , the second term is bounded from below by∥∥χ̃2(h

−2/5xn))ω
∥∥2

ΛL2,g
. Hence we get

Dg,f,h(ω) ≥ Dg,f,h(χ̃1(h
−2/5xn)ω)− Ch6/5

∥∥χ̃1(h
−2/5xn)ω

∥∥2

ΛL2,g

+
C−1

2

∥∥χ̃2(h
−2/5xn)ω

∥∥2

ΛL2,g
.

Finally after changing the constant C ≥ 1, the inequality (3.15) yields

Dg,f,h(ω) ≥ C−1Dg̃,f,h(χ̃1(h
−2/5xn)ω)− Ch6/5

∥∥χ̃1(h
−2/5xn)ω

∥∥2

+ C−1
∥∥χ̃2(h

−2/5xn)ω
∥∥2

, (3.16)

where the L2-norms in the right hand side can be computed with the metric
g or g̃ while possibly adapting the constant C. Here and in the sequel, we
omit the subscript (ΛL2, g) for L2-norms.
Now the problem is reduced to the analysis of Dg̃,f,h with the metric g̃.

(a) The case n = 1.
We have x = xn ∈ R−, f(x) = −1

2
f+(xn) . Here the metric is g̃ = dx2

n. We
keep the reference to the index n for the later application.
The space Λ0H1

0,T (R−) is simply H1
0(R−), while

Λ1H1
0,T =

{
α(xn) dxn , α ∈ H1(R−)

}
.

The identity (2.15) reads :

∀β ∈ H1
0 (R−), Dg̃,−f+/2,h(β) = h2 ‖∂xnβ‖2+

h2

4
‖∂xnf+ β‖2+

h

2
〈∂2

xn
f+(xn)β | β〉 ,

for the 0-forms and for the 1-forms :

∀α ∈ H1(R−), Dg̃,−f+/2,h(α dxn) = h2 ‖∂xnα‖2 +
h2

4
‖∂xnf+α‖2

+ h〈∂2
xn
f+(xn)α | α〉+ h

2
∂xnf+(0) |α(0)|2 .

On 0-forms, we get

∀β ∈ Λ0H1
0,T , Dg̃,−f+/2,h(β) ≥ (C−2 − hC) ‖β‖2 ,
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and deduce that there exist c1 > 0 and h0 > 0 such that, for all h ∈ (0, h0] ,

∆
DT,(0)
g̃,−f+/2,h ≥ c1Id .

On 1-forms, there are two subcases :

(a1) Subcase ∂xnf+(0) > 0 :
The inequality,

∀α ∈ H1
0,T , Dg̃,−f+/2,h(α dxn) ≥ (C−2 − hC) ‖α‖2 ,

implies the existence of h0 > 0 such that

∆
DT,(1)
−f+/2,h ≥ c1Id , ∀h ∈ (0, h0] .

(a2) Subcase ∂
xn
f+(0) < 0 :

If ∆
DT,(1)
−f+/2,h(α dxn) = λhα dxn , with λh < c1 , Proposition 3.9 implies

d∗−f+/2,h(α dxn) = 0 ,

which means
α(xn) = C e−f+(xn)/2h .

The 1-form e−f+(xn)/2h dxn belongs to Ker (∆
DT,(1)
−f+/2,h) .

(b) The case n > 1.
First note that any ω ∈ ΛpH1

0,T (Rn
−) is a sum

ω =
∑

#I=p−1

αI(x)dx
′I ∧ dxn +

∑

#J=p

βJ(x)dx′
J

=: α ∧ dxn + β ,

with αI , βJ ∈ H1(Rn
−) , βJ(x′, 0) = 0 , while dx′I = dx′i1 ∧ · · · ∧ dx′i#I

,

I = {i1 < . . . < i#I} ⊂ {1, . . . , n− 1} .
If in addition ω ∈ ΛpH2(Rn

−), the condition td∗ω = 0 reads ∂xnα(x′, 0) = 0
(for the metric g̃ ). Hence the variables (x′, xn) can be separated andDg̃,f,h(ω)
equals

∫

Rn−1

[ ∑

#I=p−1

Dn
−f+/2,h(αI(x

′, .) dxn) +
∑

#J=p

Dn
−f+/2,h(βJ(x′, .))

]
dλ(x′)

+

∫ 0

−∞

D′
f−/2,h(α(., xn)) +D′

f−/2,h(β(., xn)) dxn ,
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where we used the notations D′
f−/2,h for the quadratic form of the Witten

Laplacian on Rn−1 and Dn
−f+/2,h for the quadratic form of the 1-dimensional

Witten Laplacian on R− with boundary conditions. The measure dλ(x′)
simply equals (det G̃(x′))1/2 dx′.
Again there are two subcases.

(b1) Subcase ∂xnf+(0) > 0 :
The analysis of the one dimensional problem implies

Dn
−f+/2,h(αI(x

′, .) dxn) ≥ c1 ‖αI(x
′, .)‖2

and

Dn
−f+/2,h(βJ(x′, .)) ≥ c1 ‖βJ(x′, .)‖2 .

Hence we get
∀ω ∈ ΛpH1

0,T , Dg̃,f,h(ω) ≥ c1 ‖ω‖2

and there exists c1 > 0 such that

∆
DT,(p)
f,h ≥ c1Id , ∀p ∈ {0, . . . , n} .

(b2) Subcase ∂xnf+(0) < 0 :
Then there exists c1 > 0 such that

Dg̃,f,h(ω) ≥
∫

Rn−1

∑

#I=p−1

Dn
−f+/2,h(αI(x

′, .) dxn) dλ(x′)

+

∫ 0

−∞

D′
f−/2,h(α(., xn)) dxn + c1 ‖β‖2 . (3.17)

If ω is a p-form with p 6= p0 + 1, the lower bound

D′
f−/2,h(α) ≥ C−1

1 h ‖α‖2 ,
which was given in Proposition 3.7, yields :

Dg̃,f,h(ω) ≥ C−1h ‖ω‖2 ,
while the equality Dg̃,f,h(ω) = 0 implies that p = p0 + 1 and that
ω = c ψh

p0
∧ (e−f+(xn)/2h dxn) , where ψp0 belongs to the kernel of the (n− 1)-

dimensional Witten Laplacian associated with the metric

g̃′ =

n−1∑

i,j=1

g̃i,j(x
′, 0)dxidxi .
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We have now all the ingredients to check every statement for a general met-

ric g. We focus on the subcase ∂xnf+(0) < 0, which covers all possibilities.
Statements i) and iv)
Statement i) is a consequence of iv) together with Persson’s Lemma. It is
sufficient to check that, for all R > 0, there exists cR > 0, such that, for all
ω ∈ ΛpH1

0,T (Rn−) supported in {min(|x′|, |xn|) > R}, one has

Dg,f,h(ω) ≥ cR ‖ω‖2 .

The inequalities (3.16) and (3.17), together with the estimate

D′
f−/2,h(αI(·, xn)) ≥ c′R ‖α(·, xn)‖2 if suppω ⊂ {|x′| > R} ,

provided by Proposition 3.7-iii), yield the result.
Statements ii) and iii)
If p 6= p0 + 1 the inequalities (3.16), (3.17) and the inequality,

D′
f−/2,h(α(., xn)) ≥ C−1h ‖α(., xn)‖2 ,

imply
Dg,f,h(ω) ≥ c0h ‖ω‖2 ,

and
∆

DT,(p)
f,h ≥ c0h Id .

By Proposition 3.9, the only possibility, for λh ∈ [0, c0h) , to be an eigenvalue

of ∆
DT,(p0+1)
f,h is λh = 0 . When g = g̃ the corresponding spectral subspace is

one dimensional and equals Cψp0 ∧ (e−f+(xn)/2h dxn) . For a general metric

g, the equation ∆
DT,(p0+1)
g,f,h ω = 0, ‖ω‖ = 1, which implies Dg,f,h(ω) = 0 , and

the inequality (3.16) leads to

C2h6/5
∥∥χ̃1(h

−2/5xn)ω
∥∥2 ≥ Dg̃,f,h(χ̃1(h

−2/5xn)ω) +
∥∥χ̃2(h

−2/5xn)ω
∥∥2

.

Without the last term, Lemma 2.8 implies

dist L2(χ̃(h−2/5xn)ω,Cψp0 ∧ (e−f+(xn)/2h dxn)) ≤ Ch1/10 .

The upper bound of the last term,

∥∥χ̃2(h
−2/5xn)ω

∥∥2 ≤ Ch6/5 ,
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implies
dist L2(ω,Cψp0 ∧ (e−f+(xn)/2h dxn)) = O(h1/10) .

It remains to check that Ker ∆
DT,(p0+1)
f,h is not reduced to {0} . The state-

ments of Lemma 3.11 and Lemma 3.12 are symmetric with respect to the
choice of the metric. Hence the reverse inequality of (3.16) (with exchange
of g and g̃),

Dg̃,f,h(ω) ≥ C−1Dg,f,h(χ̃1(h
−2/5xn)ω)− Ch6/5

∥∥χ̃1(h
−2/5xn)ω

∥∥2

+ C−1
∥∥χ̃2(h

−2/5xn)ω
∥∥2

, (3.18)

also holds for any ω ∈ ΛH1
0,T (Rn

−). We apply it with ω = ψp0∧(e−f+(xn)/2h dxn))
and this leads to

Dg,f,h(χ̃(h−2/5xn)ωh) ≤ Ch6/5 .

The Min-Max principle then says that ∆
DT,(p0+1)
f,h admits an eigenvalue smaller

than Ch6/5 . It has to be 0 due to the previous supersymmetric argument.

3.4 Reduction to the local half-space problem.

We end here the proof of Theorem 3.3 by introducing, after a partition of
unity, the right coordinates which permit the comparison with the model
half-space problem.

Proof of Theorem 3.3.
Let {Uk , 1 ≤ k ≤ K} denote the union of the critical points of f and f

∣∣
Ω
.

Consider a partition of unity
∑N

k=1 χ
2
k = 1 such that the C∞0 (Ω) function χk

identically equals 1 in a neighborhood of Uk when 1 ≤ k ≤ K. The refinement
of this partition of unity will be specified later by the local construction of
adapted coordinates.
We recall that the operator ∆DT

f,h is the Friedrichs extension associated with
the quadratic form :

Dg,f,h(ω) = ‖df,hω‖2ΛL2,g +
∥∥d∗,gf,hω

∥∥2

ΛL2,g
,

on ΛH1
0,T (Ω) . The standard IMS localization formula ([CFKS]) gives

Dg,f,h(ω) =
N∑

k=1

Dg,f,h(χkω)− h2 ‖|∇χk|ω‖2ΛL2,g .
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for any ω ∈ D(∆DT
f,h ) and by density for any ω ∈ ΛH1

0,T .
If suppχk does not meet the boundary, the term Dg,f,h(χkω) behaves
like in the boundaryless case :

• If k > K, then we have

Dg,f,h(χkω) ≥ C−1 ‖ω‖2ΛL2,g .

• If k ≤ K, ω ∈ ΛpH1
0,T and Uk is a critical point of f with index pk 6= p ,

then Dg,f,h(χkω) ≥ C−1h .

• If k ≤ K, ω ∈ ΛpH1
0,T and Uk is a critical point of f with index

pk = p, then there exists a fixed 1-dimensional space F
(p)
k determined

by Hess f(Uk) such that,

Dg,f,h(χkω) ≤ C−1h6/5 ‖ω‖2ΛpL2,g ,

implies
dist (χkω, F

(p)
k ) ≤ Ch1/10 ‖ω‖ΛpL2,g .

Again like in the proof of Proposition 3.13-iii), this last statement refers
to Lemma 2.8 at the level of quadratic forms.

Consider now the case when suppχk ∩ ∂Ω 6= ∅ , with the support of χk

centered around a point U0 ∈ ∂Ω . There are two subcases :

1) (∂f
∂n

)(U0) < |∇f(U0)| .
Then the cut-off χk is chosen so that, in a neighborhood V of suppχk ,

∀x ∈ V ∩ ∂Ω, (
∂f

∂n
)(x) < (1− δ) |∇f(x)| ,

with δ > 0. Locally it is possible to construct a function f̂ such that

∂nf̂ =
∣∣∣∇f̂

∣∣∣ in V ∩ ∂Ω and
∣∣∣∇f̂

∣∣∣ = |∇f | in V . By setting ω̃ = χkω, the

Green formula (2.15) and the inequality Dg,f̂ ,h(ω̃) ≥ 0 imply

h

∫

∂Ω

〈ω̃ | ω̃〉ΛpT ∗
σ Ω

(
∂f

∂n

)
(σ) dσ ≤ (1− δ)h

∫

∂Ω

〈ω̃ | ω̃〉ΛpT ∗
σ Ω

(
∂f̂

∂n

)
(σ) dσ

≤ (1−δ)
[
h2 ‖dω̃‖2Λp+1L2 + h2 ‖d∗ω̃‖2Λp−1L2 + ‖|∇f | ω̃‖2ΛpL2 + C1h ‖ω̃‖2ΛpL2

]
.
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With (2.15), we obtain

Dg,f,h(χk ω) = Dg,f,h(ω̃) ≥ δ

2
‖|∇f | ω̃‖2ΛpL2 ≥ C−1

V ‖χkω‖2ΛpL2 .

2) ∂nf(U0) = |∇f(U0)|.
Then U0 ∈ ∂Ω is a critical point of f

∣∣
∂Ω

with ∂nf > 0. Around U0, we now
introduce adapted local coordinates. Due to the condition ∂nf(U0) 6= 0, the
eikonal equation :

|∂nΦ|2 + |∇T Φ|2 = |∇Φ|2 = |∇f |2 , (3.19)

with the boundary condition

Φ
∣∣
∂Ω,U0

= f
∣∣
∂Ω,U0

, (3.20)

admits a second local solution which satisfies

∂nΦ
∣∣
∂Ω,U0

= −∂nf
∣∣
∂Ω,U0

. (3.21)

Like in [HelSj4], we set

f+ = Φ− f and f− = Φ + f .

We have the relations

f = −1

2
f+ +

1

2
f− , Φ =

1

2
f+ +

1

2
f− , (3.22)

∇f+ · ∇f− = 0 , (3.23)

f+

∣∣
∂Ω,U0

= 0 , −∂nf+

∣∣
∂Ω,U0

= 2∂nf
∣∣
∂Ω,U0

6= 0 , (3.24)

and f−
∣∣
∂Ω,U0

= 2f
∣∣
∂Ω,U0

, ∂nf−
∣∣
∂Ω,U0

= 0 . (3.25)

Let (x1, . . . , xn−1) = x′ denote a set of coordinates on ∂Ω in a neighborhood
of U0 and such that xj(U0) = 0 . We extend them in a neighborhood of U0

in Ω as constant along the integral curve of the vector field ∇f+. Then we
take xn = −1

2
f+(x) for the last coordinate. In these coordinates the function

f and the metric g have the form

f(x) = xn +
1

2
f−(x′) and g = gnn(x) dx2

n +

n−1∑

i,j=1

gij(x) dxidxj . (3.26)
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The boundary ∂Ω is locally defined by {xn = 0} and Ω corresponds to {xn < 0}.
In order to apply Proposition 3.13, it remains to check that the function f can
be extended to Rn

−, so that it satisfies Assumption 3.8 when U0 is a critical
point f

∣∣
∂Ω

. Indeed the additional assumption does not depend on the metric
g and we can assume that the gij are constant in the coordinates (x′, xn). It
suffices to choose, in a small enough neighborhood of U0 = (0, . . . , 0) , Morse
coordinates (x1, . . . , xn) for f− in the metric

∑
i,j<n gijdxidxj :

f(x) = xn +

n−1∑

j=1

λjx
2
j .

Then this function is extended to Rn
− by :

f̃(x) = xn +

[
χ(x′) +

1− χ(x′)

|x′|

][n−1∑

j=1

λjx
2
j

]
,

for some cut-off function χ supported in a neighborhood of x′ = 0.
With this choice of coordinates, the quantity Dg,f,h(χkω) take the form dis-
cussed in Proposition 3.13.

We can now discuss the lower bound of Dg,f,h(χkω), depending on the
localization by the cut-off χk, such that suppχk ∩ ∂Ω 6= ∅.

• If k > K, we are in case 1) and

Dg,f,h(χkω) ≥ C−1 ‖χkω‖2ΛL2,g .

• If k ≤ K, the origin of the coordinate system is U0 = Uk. If ω ∈
ΛpH1

0,T and Uk is not a critical point of f
∣∣
∂Ω

with index pk = p− 1 and
∂nf(Uk) > 0 , then Dg,f,h(χkω) ≥ C−1h .

• If k ≤ K, ω ∈ ΛpH1
0,T and Uk is a critical point of f

∣∣
∂Ω

with index
pk = p − 1 and ∂nf(Uk) > 0, then according to Proposition 3.13-iii)

there exists a fixed 1-dimensional space F
(p)
k such that the inequality,

Dg,f,h(χkω) ≤ C−1h6/5 ‖χkω‖2ΛpL2,g ,

implies :
dist (χkω, F

(p)
k ) ≤ C h1/10 ‖ω‖ΛpL2,g .
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The partition of unity is chosen so that the previous choice of coordinates is
possible in a neighborhood of any χk and the set of metrics
g = gnn(x)dxn

2 +
∑

i,j<n gijdxidxj in the local coordinate systems form a
K-set according to Definition 3.10. Hence, the constant C can be chosen
uniformly. We now introduce the set Ap of indices k, 1 ≤ k ≤ K, such that

• either Uk is a critical point of f with index p ,

• or Uk is a critical point of f
∣∣
∂Ω

with index p−1 such that ∂nf(Uk) > 0 .

For ω ∈ ΛpH1
0,T (Ω) with ‖ω‖ΛpL2,g = 1 , we get

(
Dg,f,h(ω) ≤ C−1h6/5

)
⇒


 dist (ω,

∑

k∈Ap

F
(p)
k ) ≤ Ch1/10


 .

Hence the dimension of the spectral subspace,

F (p) = Ran1[0,h3/2)(∆
DT,(p)
f,h ) ⊂ Ran1[0,ch6/5)(∆

DT,(p)
f,h ) ,

is at most #Ap = mΩ
p .

We next verify that dim F (p) ≥ #Ap = mΩ
p . According to the Min-Max

principle, it suffices to find an orthonormal set of p-forms ωh
k ∈ ΛpH1

0,T (Ω) ,
k ∈ Ap , such that

Dg,f,h(ω
h
k) = o(h3/2) .

Indeed it is enough to take a truncated element of the kernel of the local
model for ∆

DT,(p)
f,h around Uk , k ∈ Ap . We give the details for the case

Uk ∈ ∂Ω. By taking the same cut-off χ1,k , χ2,k , χ2
1,k + χ2

2,k = 1 , and the
same coordinate system as above, we write on Rn

−

Dgk,fk,h(ω) ≥ Dgk,fk,h(χ1,kω) + C−1 ‖χ2,kω‖2 − Ch2
∑

i=1,2

‖|∇χi,k|ω‖2 ,

where gk and fk are defined on Rn
− according to the previous construction and

coincide with g and f in a neighborhood of suppχk . According to Proposi-
tion 3.13, there exists ηh

k ∈ ΛpH1
0,T (Rn

−) in the domain of the associated Wit-

ten Laplacian, such that Dgk,fk,h(η
h
k ) = 0 . By taking ωh

k =
∥∥χ1,k η

h
k

∥∥−1
χk η

h
k ,

40



we obtain the existence of h0 > 0, C ′ and C ′′ such that :

∥∥χ2,k η
h
k

∥∥2 ≤ C ′h2
∥∥ηh

k

∥∥2
,

and

Dg,f,h(ω
h
k) ≤ C ′h2

∥∥ηh
k

∥∥2

∥∥χ1,k η
h
k

∥∥2 ≤ C ′′h2 ,

for h ∈ (0, h0] .

4 Accurate WKB analysis near the boundary

for ∆
(1)
f,h.

4.1 Preliminary discussion

We work here under Assumption 3.1 while Assumption 3.8 will be satisfied
for the local half-space model.
We have seen in the previous section that, for p ≥ 1, some quasimodes of
∆

DT,(p)
f,h being near the spectral subspace in 1

[0 , h
3
2 ]

(∆
DT,(p)
f,h ) are localized near

the boundary ∂Ω and more precisely near critical points of f
∣∣
∂Ω

with index
p−1 such that ∂nf > 0. In the boundaryless case, the WKB-analysis done in
[HelSj4] says that the small eigenvalues are of order O(e−C/h) and provides

an accurate approximate basis of Ran1[0,h3/2)(∆
(p)
f,h) .

In order to get a similar result, we need an accurate WKB analysis at the
boundary in the spirit of the Helffer-Sjöstrand treatment of the tunneling
effect in [HelSj1] and [He2]. Here again the boundary condition and the fact
that we are working with systems for p > 0 adds some technical difficulties.
In an analytic framework, this could be attacked by studying the propagation
of analytic regularity for microhyperbolic boundary value problems. At the
boundary one has to consider first the tangential propagation of regularity
and then the propagation into the interior. Having in mind our initial mo-
tivation of analyzing the Witten Laplacian on 0-forms, we shall study this
problem with arguments as simple as possible and restrict our attention to
the case p = 1. Nevertheless, this “simple” presentation agrees with the
general principle.
For an accurate comparison between eigenvectors and WKB quasimodes near
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a local minimum U0 of f
∣∣
∂Ω

with ∂nf(U0) > 0 , we introduce another self-

adjoint realization of ∆
(1)
f,h in a neighborhood ΩU0,ρ with mixed boundary

conditions : tangential Dirichlet boundary conditions on ∂ΩU0,ρ ∩ ∂Ω and
full Dirichlet boundary on ∂ΩU0,ρ \ ∂Ω .

4.2 Local WKB construction.

The next construction is done locally around a local minimum U0 of f
∣∣
∂Ω

with ∂nf(U0) > 0 . The function Φ is a local solution of the eikonal equation
|∇Φ|2 = |∇f |2 , which satisfies (3.20) and (3.21). Local coordinates (x′, xn)
are introduced like in Subsection 3.4 after the identities (3.22)-(3.25) and
lead to

f(x′, xn) = xn +
1

2
f−(x′) and Φ(x′, xn) = −xn +

1

2
f−(x′) ,

with

xn < 0 in Ω and xn = 0 on ∂Ω ,

and we normalize f so that f(U0) = f(0) = f−(0) = 0 .
We first consider a local solution uwkb

0 near the point x = 0 of

e
Φ
h ∆

(0)
f uwkb

0 = O(h∞) , (4.1)

with uwkb
0 in the form

uwkb
0 = a(x, h)e−

Φ
h , (4.2)

a(x, h) ∼
∑

j

aj(x)h
j , (4.3)

and the condition at the boundary

a(x, h)e−
Φ
h = e−

f
h on ∂Ω , (4.4)

which leads to the condition

a(x, h)
∣∣
∂Ω

= 1 . (4.5)

This construction of a, as a solution of (4.1) in Ω, (which can be first formal
and then realized by using a Borel summation) is standard (see for example
Chapter 2 (p. 11-12) in Dimassi-Sjöstrand [DiSj]).
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In order to verify locally the boundary condition for our future uwkb
1 , we

substract e−
f
h and still obtain

e
Φ
h ∆

(0)
f (uwkb

0 − e− f
h ) = O(h∞) . (4.6)

We now define the WKB solution uwkb
1 by considering :

uwkb
1 := df,hu

wkb
0 = df,h(u

wkb
0 − e− f

h ) . (4.7)

According to (4.4) and (4.7), the 1-form uwkb
1 = df,hu

wkb
0 satisfies locally

the tangential condition tu = 0 on the boundary.
The local L2 norm of uwkb

1 is of effective order h
1
2
+ n−1

4 , if one has in mind the
relation

e
Φ
h df,h

[
a(x, h)e−

Φ
h

]
= a(df − dΦ) + hda

= 2a0(x) dxn + hb1(x, h) ,

where b1(·, h) is a one-form admitting the expansion :

b1(x, h) ∼
+∞∑

k=0

hkbk(x) ,

and a0 satisfies :
a0(0) = 1 .

On the other hand we have

∆
(1)
f,hu

wkb
1 = ∆

(1)
f,hdf,hu

wkb
0 = df,h∆

(0)
f,hu

wkb
0 = O(h∞)e−

Φ
h ,

in a neighborhood of 0.

Moreover, uwkb
1 satisfies up, to O(h∞) e−

f
h , the second boundary condition

td∗f,hu = 0. The relation

d∗f,hu
wkb
1 = ∆

(0)
f,hu

wkb
0 = O(h∞)e−

Φ
h

gives indeed

d∗f,hu
wkb
1

∣∣
/∂Ω

= O(h∞)e−
f
h , (4.8)

in the neighborhood of 0 in the boundary.
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4.3 Another local Dirichlet realization of ∆
(1)
f,h.

Let U0 be a local minimum of f
∣∣
∂Ω

with ∂nf(U0) > 0 , let x = (x′, xn) be
the local coordinate system defined above, and let x 7→ |x| be the euclidean
norm in these coordinates.
For ρ > 0 , we consider the domain

ΩU0,ρ =
{
|x− (0, 1)|2 < ρ2 + 1 , xn < 0

}
,

which has the shape of a thin lens stuck on ∂Ω with radius ρ and thickness
O(ρ2). Its boundary is split into

ΓD := ∂ΩU0,ρ ∩ Ω =
{
|x− (0, 1)|2 = ρ2 + 1, xn ≤ 0

}
,

and

ΓTD := ∂ΩU0,ρ ∩ ∂Ω = {|x′| < ρ, xn = 0} .

On this domain, we introduce the functional space

Λ1H1
0;0,T (ΩU0,ρ) =

{
u ∈ Λ1H1(ΩU0,ρ); tu

∣∣
ΓTD

= 0, u
∣∣
ΓD

= 0
}
.

The Friedrichs extension associated with the quadratic form :

Λ1H1
0;0,T (ΩU0,ρ) ∋ ω 7→ DD

g,f,h(ω) = ‖df,hω‖2 +
∥∥d∗f,hω

∥∥2
,

is denoted by ∆
D,DT,(1)
f,h . The domain of ∆

D,DT,(1)
f,h is contained in Λ1H2(ΩU0 , ρ

′)

for any 0 < ρ′ < ρ . An element ω ∈ D(∆
D,DT,(1)
f,h ) satisfies indeed :

∀η ∈ Λ1H1
0;0,T , 〈∆D,DT,(1)

f,h ω | η〉 = 〈df,hω | df,hη〉+〈d∗f,hω | d∗f,hη〉 =: DD
g,f,h(ω, η) .

By testing with η ∈ C∞0 (ΩU0,ρ), this gives ∆f,hω ∈ Λ1L2(ΩU0,ρ) and therefore
ω admits a second trace on ΓTD . By testing with any η ∈ C∞0;0,T (ΩU0,ρ) , we
get

td∗f,hω
∣∣
ΓTD

= 0 .

Along ΓTD , ω solves an elliptic boundary value problem ∆
(1)
f,hω ∈ Λ1L2 ,

tω = 0 , td∗f,hω = 0 , which provides the H2 regularity outside the edges.
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Remark 4.1. It is actually possible to characterize the domain, for ρ > 0
small enough, by :

D(∆
D,DT,(1)
f,h ) =

{
u ∈ Λ1H2(ΩU0, ρ) , tu

∣∣
ΓTD

= 0 , td∗f,hu
∣∣
ΓTD

= 0 ,

and u
∣∣
ΓD

= 0 .
}

For this regularity result it suffices to consider the case f = 0 and h = 1 .
The boundary conditions are written for u = u1 dx1 + · · ·+un dxn in the form

ui

∣∣
∂ΩU0,ρ

= 0 , for i = 1, . . . , n− 1 ,

un

∣∣
ΓD

= 0 , ∂xnun

∣∣
ΓTD

= 0 ,

while the principal part of ∆
(1)
f,h is a scalar Laplace operator, as can be seen

from the Weitzenböck formula. Hence componentwise and at the principal
symbol level, the most difficult case is a Dirichlet-Neumann problem for the
operator

∑n
j=1 ∂xi

gij∂xj
according to (3.9) and (3.10). The theory of bound-

ary value problems on domains with conical singularities ([Kon]) and edges
([Gri], [Da]) provides the H2-regularity when ρ < ρlim, where ρlim can be
computed explicitly (ρlim = π/2 for this mixed Dirichlet-Neumann problem).
Notice that we do not need this result and that the H2-regularity away from
the edge is sufficient for our analysis.

We now prove the

Proposition 4.2.
For ρ > 0 small enough, there exist hρ > 0 and Cρ > 0, such that the self-

adjoint operator ∆
D,DT,(1)
f,h satisfies the following properties :

a) For h ∈ (0, hρ), the spectral projection 1[0,h3/2)(∆
D,DT,(1)
f,h ) has rank 1.

b) Any family of L2-normalized eigenvectors (uh)h∈(0,hρ) of ∆
D,DT,(1)
f,h such

that the corresponding eigenvalue E(h) is O(h), satisfies

∀ρ′ < ρ, ∀α ∈ N
d, ∃Nα ∈ N, ∃Cα,ρ′ > 0 such that, ∀x ∈ ΩU0,ρ′ ,∣∣∂α

xu
h(x)

∣∣ ≤ Cα,ρ′h
−Nα exp

(
−Φ(x)

h

)
.

(4.9)

c) There exists ερ > 0 such that the first eigenvalue E1(h) of ∆
D,DT,(1)
f,h sat-

isfies
E1(h) = e−ερ/h .
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d) If uh
1 denotes the eigenvector of ∆

D,DT,(1)
f,h associated to eigenvalue E1(h)

and normalized by the condition i∂xn
uh

1(0) = i∂xn
uwkb

1 (0) , then

∀ρ′ < ρ, ∀α ∈ Nd, ∀N ∈ N, ∃CN,α,ρ′ > 0 such that, ∀x ∈ ΩU0,ρ′ ,∣∣∂α
x (uh

1 − uwkb
1 )(x)

∣∣ ≤ CN,α,ρ′h
N exp

(
−Φ(x)

h

)
.

(4.10)

Once this is proved, one easily gets rough exponentially small upper
bounds for the mΩ

ℓ first eigenvalues of ∆
DT,(ℓ)
f,h (ℓ ∈ {0, 1}) on Ω, by con-

structing quasimodes suitably localized near each of the critical points.
Our final analysis provides the exact exponential scale with a complete ex-
pansion of the prefactor, and we do not develop this point here.

The next subsections are devoted to the proof of Proposition 4.2. We
now introduce some specific notations and preliminary results. Again with
the coordinate system (x′, xn) with x′(U0) = 0 , xn(U0) = 0 , and the nor-
malization f(0) = 0 , the function f

∣∣
ΩU0,ρ0

is extended to Rn
− according to

Lemma 3.11, so that Assumption 3.5 is satisfied with only one tangential
critical point at x′ = 0 . The corresponding tangential Dirichlet realization
∆

DT,(1)

f̃ ,h
on Λ1L2(Rn

−) has a 1-dimensional kernel and its second eigenvalue is

larger than C−1h6/5.
An ingredient for the proof is a variant of the integration by part formula of
Lemma 2.2.

Lemma 4.3.
Let ρ > 0 and let ϕ be a real-valued Lipschitz function on ΩU0,ρ. The relation

Re DD
g,f,h(ω, e

2ϕ
hω) = h2

∥∥∥de
ϕ
hω
∥∥∥

2

Λ2L2
+ h2

∥∥∥d∗e
ϕ
hω
∥∥∥

2

Λ0L2

+ 〈(|∇f |2 − |∇ϕ|2 + hL∇f + hL∗
∇f)e

ϕ
hω | eϕ

hω〉Λ1L2

− h
∫

ΓTD

〈ω |ω〉Λ1T ∗
σ Ω e

2ϕ(σ)
h

(
∂f

∂n

)
(σ) dσ (4.11)

holds for any ω ∈ Λ1H1
0;0,T (ΩU0,ρ). Moreover, when ω ∈ D(∆

D,DT,(1)
f,h ) , the

left-hand side equals Re 〈e2ϕ
h ∆

(1)
f,hω | ω〉.

Proof.
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For ω ∈ Λ1H1
0;0,T (ΩU0,ρ) , we have e2

ϕ
hω ∈ Λ1H1

0;0,T (ΩU0,ρ) . We compute

DD
g,f,h(ω, e

2ϕ
hω) = 〈df,hω | df,h(e

2ϕ
hω)〉+ 〈d∗f,hω | d∗f,h(e

2ϕ
hω)〉

= 〈df,hω | e
ϕ
h df,h(e

ϕ
hω)〉+ 〈eϕ

h df,hω | dϕ ∧ (e
ϕ
hω)〉

+〈d∗f,hω | e
ϕ
h d∗f,h(e

ϕ
hω)〉 − 〈eϕ

h d∗f,hω | i∇ϕ(e
ϕ
hω)〉

= 〈df,h(e
ϕ
hω | df,h(e

ϕ
hω)〉 − 〈dϕ ∧ (e

ϕ
hω) | df,h(e

ϕ
hω)〉

+〈df,h(e
ϕ
hω) | dϕ ∧ (e

ϕ
hω)〉 − 〈dϕ ∧ (e

ϕ
hω) | dϕ ∧ (e

ϕ
hω)〉

+〈d∗f,h(e
ϕ
hω) | d∗f,h(e

ϕ
hω)〉+ 〈i∇ϕ(e

ϕ
hω) | d∗f,h(e

ϕ
hω)〉

−〈d∗f,h(e
ϕ
hω) | i∇ϕ(e

ϕ
hω)〉 − 〈i∇ϕ(e

ϕ
hω) | i∇ϕ(e

ϕ
hω)〉 .

We set ω̃ = e
ϕ
hω ∈ Λ1H1

0;0,T (ΩU0,ρ). The operator dϕ∧ is the adjoint of i∇ϕ

and the tensor relation

i∇ϕ(dϕ ∧ η) = (i∇ϕdϕ) ∧ η − dϕ ∧ (i∇ϕη) = |∇ϕ|2 η − dϕ ∧ (i∇ϕη)

leads to

DD
g,f,h(ω, e

2ϕ
hω) = DD

g,f,h(ω̃, ω̃)− 〈|∇ϕ|2 ω̃ | ω̃〉
−〈dϕ ∧ ω̃ | df,hω̃〉+ 〈df,hω̃ | dϕ ∧ ω̃〉
+〈i∇ϕω̃ | d∗f,hω̃〉 − 〈d∗f,hω̃ | i∇ϕω̃〉 .

After taking the real part, we obtain

Re DD
g,f,h(ω, e

2ϕ
hω) = DD

g,f,h(ω̃, ω̃)− 〈|∇ϕ|2 ω̃ | ω̃〉 .

We conclude by applying Lemma 2.2 .

4.4 Exponential decay of eigenvectors of ∆
D,DT,(1)
f,h .

The estimate, ∂α
xu

h(x) = O(h−Nαe−
Φ(x)

h ) , which is stated in Proposition 4.2-
b), will be proved in several steps. We will first consider H1-estimates and
deduce afterwards higher order estimates from elliptic regularity. Even for
H1-estimates we need two steps :
1) We prove the exponential decay along the boundary ΓTD by applying
Lemma 4.3 with a function ϕ similar to 1

2
f−.

2) The exponential decay in the interior of ΩU0,ρ is then obtained with ϕ
similar to Φ once the boundary term is well controlled.
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Proof of a) and b) in Proposition 4.2.
Statement a)
Actually it is a simple comparison with the full half-space problem via Min-
Max principle as we did for Theorem 3.3. Any ω ∈ Λ1H1

0;0,T (ΩU0,ρ) can indeed
be viewed as an element of Λ1H1

0,T (Rn
−) by setting ω = 0 on Rn

− \ ΩU0,ρ .
Statement b)

Let uh ∈ D(∆
D,DT,(1)
f,h ) satisfy

∆
(1)
f,hu

h = E(h)uh , E(h) = O(h) ,
∥∥uh
∥∥ = 1 .

We will use the notation

ũh = e
ϕh

h uh .

The integration by part formula (4.11) will be applied with ϕ = ϕh, where
with ϕh similar to 1

2
f− or ϕh similar to Φ . We recall

f(x′, xn) = xn +
1

2
f−(x′) and Φ(x′, xn) = −xn +

1

2
f−(x′) ,

where x′ = 0 is a local minimum for f− with f−(0) = 0 . Moreover we have
∇xn · ∇f−(x′) = 0 , so that :

|∇f |2 = |∇xn|2 +
1

4
|∇f−|2 .

The proof which follows is somewhat reminiscent of [HelSj5], which was deal-
ing with Schrödinger operators with miniwells. We will first show the decay
along the boundary before we“propagate” the decay in the normal direction
inside Ω.
Step 1 : Decay along ΓTD .
We take

ϕh(x) =
1

2
ϕh
−(x′) ,

with

ϕh
−(x′) =

{
f−(x′)− Ch log f−(x′)

h
, if f−(x′) > Ch ,

f−(x′)− Ch logC , if f−(x′) ≤ Ch ,

where the constant C > 1 will be fixed later. We associate the sets

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) < Ch} ,

and

Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) > Ch} .
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The condition E(h) = O(h) , formula (4.11), and the equality |∇ϕh| = 1
2
|∇f |

in Ωh
− imply the existence of C1 > 0 such that :

C1h
∥∥ũh
∥∥2

Λ1L2(Ωh
−

)
≥
∥∥hdũh

∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2

Λ0L2 + 〈|∇xn|2ũh | ũh〉Λ1L2

− h
∫

ΓTD

〈ũh | ũh〉Λ1T ∗
σ Ω

(
∂xn

∂n

)
(σ) dσ

+
1

4
〈(|∇f−|2 − |∇ϕh

−|2 − 4C1h)1Ωh
+
(x)ũh | ũh〉 ,

with C1 determined by f and the upper bound of E(h) .
For x ∈ Ωh

−, one immediately gets from the definitions that

∣∣ũh(x)
∣∣ ≤ exp

C

2
|uh(x)| a.e. .

We obtain, for a constant C2(C) which may depend on the choice of C ,

C2(C)h ≥
∥∥hdũh

∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2

Λ0L2

+ 〈|∇xn|2ũh | ũh〉Λ1L2 − h
∫

ΓTD

〈ũh | ũh〉Λ1T ∗
σ Ω

(
∂xn

∂n

)
(σ) dσ

+
1

4
〈(|∇f−|2 − |∇ϕh

−|2 − 4C1h)1Ωh
+
(x)ũh | ũh〉+ C1h〈1Ωh

−

(x)ũh | ũh〉 .

For x ∈ Ωh
+, we write

∇ϕh
−(x′) = ∇f−(x′)

(
1− Ch

f−(x′)

)
,

and

1

4
(|∇f−|2 − |∇ϕh

−|2) =
|∇f−|2

4

(
2Ch

f−
− C2h2

f 2
−

)
≥ Ch

|∇f−|2
4f−

.

Since there exists C4 > 0, which is determined by f−, such that

C4 ≥
|∇f−(x′)|2
4f−(x′)

≥ C−1
4 ,

we get

∀x ∈ Ωh
+,

1

4
(|∇f−(x)|2 − |∇ϕh

−(x)|2)− C1h ≥
(
C

C4

− C1

)
h .
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We obtain for any C ≥ max(1, 2C1C4), the existence of δ(C) > 0 and
C3(C) > 0 such that :

C3(C)h ≥
∥∥hdũh

∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2

Λ0L2

+(1 + 2δ(C)h)〈|∇xn|2ũh | ũh〉Λ1L2

−h
∫

ΓTD

〈ũh | ũh〉Λ1T ∗
σ Ω

(
∂xn

∂n

)
(σ) dσ ,

with limC→+∞ δ(C) = +∞.
We now can use (4.11), with ϕ = 0 , f = xn , ĥ = h

1+δ(C)h
, in order to

get, for all η ∈ Λ1H1
0;0,T (Ω, U0,ρ) ,

(1 + δh)−1 ‖hdη‖2Λ2L2 + (1 + δh)−1 ‖hd∗η‖2Λ0L2

+(1+δh)〈|∇xn|2 η | η〉−h
∫

ΓTD

〈η | η〉Λ1T ∗
σΩ

(
∂xn

∂n

)
(σ) dσ ≥ −hĈ ||η||2Λ1L2 ,

with δ = δ(C) and Ĉ independent of C .
This leads, by choosing C large enough and then h0 > 0 small enough, to
the existence of a constant C5 > 0 such that, for all h ∈ (0, h0],

C5h ≥
1

C5
h3
∥∥ũh
∥∥2

Λ1H1 .

Since ϕh ≥ 1
2
f− + C6h log h , we have proved the existence of N0 > 0 such

that : ∥∥∥e
f−
2h uh

∥∥∥
Λ1H1

≤ C7h
−N0 , (4.12)

where x′ = 0 is a local minimum for f− , with f−(0) = 0 . Note that, since
f
∣∣
ΓTD

= 1
2
f− , this implies also, using the trace theorem,

∥∥∥e
f
huh
∣∣
ΓTD

∥∥∥
Λ1H1/2(ΓTD)

≤ C8 h
−N0 . (4.13)

Step 2 : Normal decay inside Ω .
We follow a similar approach by working with the normal coordinate xn . We
take

ϕh(x) =
1

2
ϕh

+(xn) +
1

2
f−(x′) ,
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with

ϕh
+(xn) =

{
2|xn| − Ch log 2|xn|

h
, if 2|xn| > Ch ,

2|xn| − Ch logC , if 2|xn| ≤ Ch ,

where the constant C ≥ 1 will be fixed later. We associate the sets

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| < Ch}

and

Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| > Ch} .

The formula (4.11) is used like in Step 1, with ũh = e
ϕh

h uh and E(h) =
O(h). The difference comes from the fact that the boundary term is already
estimated with (4.13).

We have indeed, on the boundary xn = 0 , the inequality : e
ϕh

h ≤ e
f
h .

From (4.11), (4.12), (4.13), and the inequality

|ũh(x)| ≤ eC e
f−(x)

2h |uh(x)| , a.e. in Ωh
− ,

we get, for a C-dependent constant C2(C), the estimate

C2(C)2h−2N0 ≥ C1h
∥∥ũh
∥∥2

Λ1L2(Ωh
−

)
+ C1h

∥∥∥e
f
hu
∥∥∥

2

H1/2(ΓTD ;Λ1T ∗ΩU0,ρ)

≥
∥∥hdũh

∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2

Λ0L2 + 〈(|∇f |2 − |∇ϕh|2 − C1h)1Ωh
+
(x)ũh | ũh〉 ,

with C1 > 0 independent of C ≥ 1 .
For x ∈ Ωh

+ we have

∇ϕh
+ = −2(∇xn)(1− Ch

|xn|
) ,

and

|∇f |2 −
∣∣∇ϕh

∣∣2 ≥ |∇xn|2 −
1

4

∣∣∇ϕh
+

∣∣2 ≥ Ch

4C3|xn|
.

We can assume |xn| ≤ 1 in ΩU0,ρ and we take C ≥ 8C1C3. The conclusion
is simpler than in Step 1. By adding the estimated term C1h〈ũh1Ωh

−

(x) |ũh〉 ,
we get

C4h
−2N0 ≥

∥∥hdũh
∥∥2

Λ2L2 +
∥∥hd∗ũh

∥∥2

Λ0L2 + C1h
∥∥ũh
∥∥

Λ1L2 ,
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which gives the existence of C5 and N1 such that :
∥∥∥e

Φ
h uh
∥∥∥

Λ1H1(ΩU0
,ρ)
≤ C5 h

−N1 . (4.14)

Step 3 : Elliptic regularity.
We now set ũh = e

Φ
h uh. For ρ′ ⊂ ρ, we take a cut-off χ ∈ C∞(ΩU0,ρ) with

compact support in ΩU0,ρ ∪ ΓTD and such that χ = 1 on a neighborhood of
ΩU0,ρ′. The form vh = χũh satisfies the boundary value problem

{
vh −∆vh = rh

0 in Rn
− ,

tvh = 0 and td∗vh = rh
1 on {xn = 0} ,

with
∥∥rh

0

∥∥
Λ1L2(Rn

−
)
= O(h−N1) and

∥∥rh
1

∥∥
Λ0H1/2(Rn−1)

= O(h−N1) .

This implies the existence of N1 > 0 such that :
∥∥vh
∥∥

Λ1H2 = O(h−N1) .

We conclude by induction for any finite decreasing sequence (ρk)0≤k≤K and
associated cut-offs χk , with χk = 1 in a neighborhood of ΩU0,ρk

and suppχk ⊂
{χk−1 = 1} .

4.5 Small eigenvalues are exponentially small.

We now check that the eigenvalue E1(h) of ∆
D,DT,(1)
f,h lying in [0, h3/2) is

actually of order O(e−ερ/h), for some ερ > 0. We prove this by comparing
with the half-space problem, for which we know that the first eigenvalue is
0. The Min-Max principle or Lemma 2.8 are not sufficient here and we need
the full accuracy of the spectral theorem.

Proof of Proposition 4.2-c).
We assume that ρ > 0 is small enough, so that f admits an extension
f̃ = xn + 1

2
f̃−(x′) on Rn

− , which satisfies Assumption 3.8. So the Lapla-

cian ∆
DT,(1)

f̃ ,h
has a one dimension kernel and its second eigenvalue is larger

than Ch6/5. With this function f̃ , we associate the second solution of the

eikonal equation
∣∣∣∇Φ̃

∣∣∣
2

=
∣∣∣∇f̃

∣∣∣
2

, which has the expression :

Φ̃(x) = −xn +
1

2
f̃−(x′) .
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Let uh be a normalized eigenvector of ∆
D,DT,(1)
f,h associated with the first

eigenvalue E1(h), which belongs to the interval (0, h3/2] . Let χ ∈ C∞(ΩU0,ρ)
be a cut-off function with compact support in ΩU0,ρ ∪ ΓTD and such that
χ = 1 in a neighborhood of 0 . The form vh = χuh belongs to Λ1H2(Rn

−) and
satisfies

{
(∆

(1)

f̃ ,h
−E1(h))v

h = −h2[∆, χ]uh , in Rn
− ,

tvh = 0 , td∗
f̃ ,h
vh = i∇χu

h , on {xn = 0} .

The functions rh
0 = −h2[∆, χ]uh and rh

1 = i∇χu
h vanish in a neighborhood V1

of x = 0 . Due to the exponential decay of uh stated in Proposition 4.2-b),
there exist C and N0, such that they also satisfy

∣∣rh
j (x)

∣∣ ≤ Ch−N0e−
Φ̃(x)

h .

Due to the trace theorem, it is possible to find θ̃h ∈ Λ1H2(Rn
−), such that

tθ̃h = 0 and td∗θ̃h = e
f̃(x)

h i∇χu
h ,

with, using the property Φ̃
∣∣
{xn=0}

= f̃
∣∣
{xn=0}

,

∥∥∥θ̃h
∥∥∥

Λ1H2
≤ C h−N0 .

Moreover by possibly taking a smaller neighborhood V1, the forms θ and θ̃
can be chosen so that supp θ ∩ V1 = supp θ̃ ∩ V1 = ∅ .
For any given neighborhood of 0, V2 ⊂ V1 there exist c1, c2 > 0 such that

∀x ∈ R
n
− \ V2, (|xn| ≤ c1)⇒

(
f̃(x) ≥ c2

)
.

With a cut-off χ1 ∈ C∞0 (]− 1, 1[) , χ1 = 1 in a neighborhood of 0 , the 1-form

θh = χ1

(
xn

c1

)
e−

f̃(x)
h θ̃h satisfies

tθh = 0 , td∗
f̃ ,h
θh = i∇χu

h = rh
1 , with

∥∥θh
∥∥

Λ1H2 = O(e−
c3
h ) . (4.15)

Hence the form wh = vh − θh belongs to the domain of ∆
DT,(1)

f̃
and solves

(∆
(1)

f̃ ,h
− E1(h))w

h = rh
2 ,
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with
∥∥wh

∥∥
Λ1L2 = 1 + O(e−c3/h) and ‖r2‖Λ1L2 = O(e−c3/h) . The spectral

theorem then implies that there exists an eigenvalue λ(h) of ∆
(1)

f̃ ,h
such that

|E1(h)− λ(h)| = O(e−c3/h) .

The inclusion, σ(∆
(1)

f̃ ,h
) \ {0} ⊂ [Ch6/5,+∞) , with E1(h) = O(h3/2) , implies

λ(h) = 0 .

4.6 Accurate comparison with the WKB solution.

We now compare the eigenvector associated with an exponentially small
eigenvalue with its WKB approximation. We adapt the method presented
in [He2, HelSj2] by following the same strategy as in Subsection 4.4. The
H1-estimates are done in two steps with ϕh similar to 1

2
f− and then with ϕh

similar to Φ . Finally the elliptic regularity is used for the C∞-estimates.

Proof of Proposition 4.2-d).

Let uh ∈ D(∆
D,DT,(1)
f,h ) be an eigenvector associated with the first eigenvalue

E1(h) of ∆
D,DT,(1)
f,h :

∆
DDT,(1)
f,h uh = E1(h)u

h ,
∥∥uh
∥∥ = 1 .

According to Proposition 4.2-c), we know that E1(h) = O(e−
ερ
h ), with ερ > 0,

while the second eigenvalue of DD,DT,(1)
f,h is larger than h3/2.

By taking ρ > 0 small enough, the WKB approximation uwkb
1 presented in

Subsection 4.2 satisfies





∆
(1)
f,hu

wkb
1 = O(h∞)e−

Φ(x)
h in ΩU0,ρ ,

tuwkb
1

∣∣
ΓTD

= 0 ,

td∗f,hu
wkb
1

∣∣
ΓTD

= O(h∞)e−
Φ(x)

h ,

and there exists a c > 0, such that for any ρ′ > 0, we have

∥∥uwkb
1

∥∥
Λ1L2(ΩU0,ρ′)

∼ ch
n+1

4 .
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The cut-off function χ ∈ C∞(ΩU0,ρ) is supported in ΩU0,ρ/2∪ΓTD and satisfies
χ = 1 on ΩU0,ρ′ , with 0 < ρ′ < ρ/2 . Later, we will take ρ′ > 0 small enough,
so that χ can be taken in the form

χ(x′, xn) = χ1(x
′)χn(xn) .

By Lemma 2.8, the real constant factor c(h) in the truncated WKB approx-
imation vwkb

1 = c(h)χuwkb
1 can be chosen so that
∥∥vwkb

1 − uh
1

∥∥
Λ1H1 = O(h∞)

and, due to the exponential decay of uh
1 and uwkb

1 ,
∥∥χ(uh

1 − c(h)uwkb
1 )

∥∥
Λ1H1 = O(h∞) .

We set
wh = χ(uh

1 − c(h)uwkb
1 ) .

The 1-form wh satisfies in ΩU0,ρ

(∆
(1)
f,h − E1(h))w

h = χ(x)(∆
(1)
f,h −E1(h))(u

h
1 − c(h)uwkb

1 )

+[∆
(1)
f,h, χ](uh

1 − c(h)uwkb
1 )

= r̃h
0 e

−
Φ(x)

h + rh
0 ,

(4.16)

where r̃h
0 and rh

0 satisfy, according to Proposition 4.2-b),

r̃h
0 = O(h∞) , supp rh

0 ⊂ supp∇χ and rh
0 = O(h−N0)e−

Φ(x)
h .

The last estimate can be done for any Ck0-norm, with k0 ∈ N.
On the boundary ∂ΩU0,ρ = ΓTD ∪ ΓD , we have similarly

twh
∣∣
ΓTD

= 0, wh
∣∣
ΓD

= 0 ,

and td∗f,hw
h
∣∣
ΓTD

= r̃h
1 (x′) e−

f(x)
h + rh

1 ,

with

r̃h
1 = O(h∞) , supp rh

1 ⊂ supp∇χ ∩ ΓTD and rh
1 = O(h−N0)e−

f(x)
h .

With the different of choices for ϕh given below, we will use the notation

w̃h = e
ϕh

h wh .
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The 1-forms w and w̃ belong to Λ1H2(ΩU0,ρ) and their supports do not meet
ΓD. Hence the integration by part formula (2.12) can be use in addition to
(4.11).
Step 1 : Comparison along ΓTD.
Like in the proof of Proposition 4.2-b) presented in Subsection 4.4, we intro-
duce the sets

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) < Ch} ,

and Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; f−(x′) > Ch} .

For any N ∈ N , we take

ϕh
N =

1

2
ϕh

N,−(x′) ,

with ϕh
N,−(x′) = min

{
ϕh
−(x′) +Nh log h−1 , ψ(x)

}
,

ϕh
−(x′) =

{
f−(x′)− Ch log f−(x′)

h
, if f−(x′) > Ch ,

f−(x′)− Ch logC , if f−(x′) ≤ Ch ,

and ψ(x′) = min
{
ϕh
−(y′) + (1− ε)|f−(x′)− f−(y′)| , y′ ∈ supp∇χ1

}
.

We recall that the cut-off χ writes χ(x′, xn) = χ1(x
′)χn(xn) . The constant

C ≥ 1 will be fixed at the end like in the proof of Proposition 4.2-b). The
constants ρ′ ∈ (0, ρ/2) and ε > 0 are chosen so that, for h ∈ (0, hN,ρ′,ε) ,

ϕh
N,−(x′) = ϕh

−(x′) +Nh log h−1 in ΩU0,ρ′ .

Note the inequalities

ϕh
N(x) ≤ 1

2
f−(x) +Nh log h−1 in ΩU0,ρ

ϕh
N(x) ≤ 1

2
f−(x) ≤ Φ(x) , if x′ ∈ supp∇χ1 ,

and ϕh
N(x) ≤ 1

2
f−(x) +Nh log h−1 ≤ Φ(x) , if xn ∈ suppχ′

n .

In particular, we have for h ∈ (0, hN,ρ′,ε)

ϕh
N(x) ≤ Φ(x) , for x ∈ supp∇χ ,

which implies
∥∥∥∥e

ϕh
N
h rh

0

∥∥∥∥
Λ1L2

+

∥∥∥∥e
ϕh

N
h rh

1

∥∥∥∥
Λ0L2(ΓTD)

= ON (h−N0) .
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We apply the integration by part formula (4.11), where the left-hand side is

computed with (2.12), and we obtain for the form w̃h = e
ϕh

N
h wh :

∥∥∥∥r̃
h
0 + e

ϕh
N (x)

h rh
0

∥∥∥∥
Λ1L2

∥∥∥w̃h

∥∥∥
Λ1L2

+

∥∥∥∥r̃
h
1 + e

ϕh
N (x)

h rh
1

∥∥∥∥
Λ0L2(ΓTD)

∥∥w̃h
∥∥

Λ1L2(ΓTD)

≥
∥∥hdw̃h

∥∥2

Λ2L2 +
∥∥hd∗w̃h

∥∥2

Λ0L2

+〈|∇xn|2w̃h | w̃h〉Λ1L2 − h
∫

ΓTD

〈w̃h | w̃h〉Λ1T ∗
σΩ

(
∂xn

∂n

)
(σ) dσ

+
1

4
〈(|∇f−|2 − |∇ϕh

N,−|2 − 4C1h)1Ωh
+
(x)w̃h | w̃h〉 ,

where the constant C1 > 0 is determined by f and r̃h
ℓ = O(h∞) for ℓ = 1, 2 .

In Ωh
− the weight e

ϕh
N (x)

h is bounded by C2(C)h−N and this provides
∥∥w̃h

∥∥
Λ1L2(Ωh

−
)
≤ C2(C)h−N

∥∥wh
∥∥

Λ1L2(Ωh
−

)
≤ C3(C,N) ,

due to
∥∥wh

∥∥
Λ1H1 = O(h∞) .

Hence we can add to both sides of the previous inequality the term C1h
∥∥w̃h

∥∥2

Λ1L2(Ωh
−

)
,

which is controlled in the left-hand side by a (C,N)-dependent constant. We
obtain

C3(C,N)(h−N0
∥∥w̃h

∥∥
Λ1H1 + 1) ≥

∥∥hdw̃h
∥∥2

Λ2L2 +
∥∥hd∗w̃h

∥∥2

Λ0L2

+〈|∇xn|2w̃h | w̃h〉Λ1L2 − h
∫

ΓTD

〈w̃h | w̃h〉Λ1T ∗
σΩ

(
∂xn

∂n

)
(σ) dσ

+
1

4
〈(|∇f−|2 − |∇ϕh

N,−|2 − 4C1h)1Ωh
+
(x)w̃h | w̃h〉+ C1h〈1Ωh

−

(x)w̃h | w̃h〉 .

In Ωh
+, the point x fulfills almost surely one of the two possibilities :

• Either ∇ϕh
N,− = ∇ψ , and we get

1

4
(|∇f−|2 −

∣∣∇ϕh
N,−

∣∣2) ≥ 2ε− ε2

4
|∇f−(x′)|2 ≥ δρ,ε > 0 ,

where the last lower bound is due to the fact that ϕN,−(x) = ψ(x)
cannot occur in a neighborhood of x′ = 0 for ǫ > 0 small enough and
h ∈ (0, hN,ρ′,ǫ);
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• or ∇ϕh
N,− = ∇f−(1− Ch

f−(x′)
) , and we get like in the proof of Proposi-

tion 4.2-b)
1

4
(|∇f−|2 −

∣∣∇ϕh
N,−

∣∣2) ≥ C

C4
h .

Taking C ≥ max(1, 2C1C4) and h ∈ (0, hN,ρ′,ǫ] , with hN,ρ′,ǫ > 0 small enough,
leads to

C3(C,N)(h−N0
∥∥w̃h

∥∥
Λ1H1 + 1) ≥

∥∥hdw̃h
∥∥2

Λ2L2 +
∥∥hd∗w̃h

∥∥2

Λ0L2

+〈|∇xn|2w̃h | w̃h〉Λ1L2

−h
∫

ΓTD

〈w̃h | w̃h〉Λ1T ∗
σ Ω

(
∂xn

∂n

)
(σ) dσ

+2δ(C) h
∥∥w̃h

∥∥2

Λ1L2 .

After treating the right-hand side like in the proof of Proposition 4.2-b)-
Step 1, we obtain, for a possibly larger N0 ,

∥∥w̃h
∥∥

Λ1H1(ΩU0,ρ)
≤ C4 h

−N0 .

Our choice of (ε, ρ′) imply

∀x ∈ ΩU0,ρ′ , ϕh
N ≥ f(x) +Nh log h−1 − C log

C5

h
.

We have proved the existence of N1 and ρ′0, such that, for any N ∈ N and
ρ′ ∈ (0, ρ′0] , there exists hN,ρ′ > 0 and CN,ρ′ > 0 , such that

∥∥∥e
f−
2h (uh

1 − c(h)uwkb
1 )

∥∥∥
Λ1H1(ΩU0,ρ′)

≤ CN,ρ′ h
N−N1

holds for any h ∈ (0, hN,ρ′). This last estimate and Φ
∣∣
ΓTD

= f
∣∣
ΓTD

= 1
2
f−
∣∣
ΓTD

imply ∥∥∥e
Φ
h (uh

1 − c(h)uwkb
1 )

∥∥∥
Λ1H1/2(ΩU0,ρ′∩ΓTD)

= O(h∞) .

Step 2 : Comparison in the normal direction.
After replacing ρ′ by ρ, Step 1 provides the estimate

∥∥∥e
f
h (uh

1 − c(h)uwkb
1 )

∥∥∥
Λ1H1

= O(h∞) . (4.17)

58



We work in ΩU0,ρ with the above estimate and ρ′ ∈ (0, ρ/2) will be taken
again small enough.
In order to get the interior estimate with the weight e

Φ
h , we modify the

previous analysis like in the proof of Proposition 4.2-b). The sets Ωh
± are

now given by

Ωh
− = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| < Ch} ,

and Ωh
+ = {x = (x′, xn) ∈ ΩU0,ρ ; 2|xn| > Ch} .

The function ϕh
N , N ∈ N, is given by

ϕh
N(x) = min

{
ϕh(x) +Nh log h−1, ψ(x)

}
,

with ϕh(x) =
1

2
ϕh

+(xn) +
1

2
f−(x′) ,

ϕh
+(xn) =

{
2|xn| − Ch log 2|xn|

h
, if 2|xn| > Ch ,

2|xn| − Ch logC , if 2|xn| ≤ Ch ,

and ψ(x) = min
{
ϕh(y) + (1− ε)dAg(x, y), y ∈ supp∇χ

}
.

We recall that the Agmon distance dAg(x, y) is the distance between x and
y for the metric |∇f |2 dx2 and Φ(x) = dAg(x, U0)).
Again, the constant C ≥ 1 will be fixed in the end like in the proof of
Proposition 4.2-b), while the constants ρ′ ∈ (0, ρ/2) and ε > 0 are chosen so
that

ϕh
N(x) = ϕh(x) +Nh log h−1 in ΩU0,ρ′ .

Now we have the inequalities

ϕh
N(x) ≤ Φ(x) +Nh log h−1 in ΩU0,ρ

and ϕh
N(x) ≤ Φ(x) in supp∇χ .

Hence the estimate,
∥∥∥∥e

ϕh
N
h rh

0

∥∥∥∥
Λ1L2

+

∥∥∥∥e
ϕh

N
h rh

1

∥∥∥∥
Λ0L2(ΓTD)

= O(h−N0) ,

is still valid.
The inequality (4.17) implies that the L2-norm of the trace of w̃h on ΓTD is
O(h∞) and provides

∥∥w̃h
∥∥

Λ1L2(Ωh
−

)
≤ C2(C)h−N

∥∥∥e
f−
2h wh

∥∥∥
Λ1L2(Ωh

−
)
≤ 1

2
C3(C,N) .
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With these estimates, the integration by part formula (4.11) and (2.12) lead
to

C3(C,N)(h−N0
∥∥w̃h

∥∥
Λ1L2 + 1) ≥

∥∥hdw̃h
∥∥2

Λ2L2 +
∥∥hd∗w̃h

∥∥2

Λ0L2

+ 〈(|∇f |2 − |∇ϕh
N |2 − C1h)1Ωh

+
(x)w̃h | w̃h〉+ C1h

∥∥w̃h
∥∥2

Λ1L2(Ωh
−

)
.

Finally, for almost all x ∈ ΩU0,ρ we have :
either : ∇ϕh

N(x) = ∇ψ(x)
and

|∇f |2 −
∣∣∇ϕh

N

∣∣2 = (2ε− ε2) |∇f(x)|2 ≥ δρ,ε > 0 ;

or : ∇ϕh
N (x) = ∇ϕh(x)

and we get like in the proof of Proposition 4.2-b)

|∇f |2 −
∣∣∇ϕh

∣∣2 ≥ 1− 1

4

∣∣∇ϕh
+(xn)

∣∣2 ≥ Ch

4|xn|
.

By assuming |xn| ≤ 1 and by taking C ≥ max(8C1, 1), we get that,∥∥∥∥e
ϕh

N
h wh

∥∥∥∥ = O(h−N0) , for some N0 > 0.

Like in Step 1, this leads to

∥∥∥e
Φ
h (uh

1 − c(h)uwkb
1 )

∥∥∥
Λ1H1(ΩU0,ρ′)

= O(h∞) ,

for ρ′ ∈ (0, ρ/2) small enough.

Step 3 :
The estimates in higher order Sobolev spaces is done like in the proof of
Proposition 4.2-b) by a bootstrap argument after writing a boundary value
problem for χ(uh

1 − c(h)uwkb
1 ) in R

n
−.
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5 Saddle sets and main assumptions

5.1 Preliminaries

Here we adapt to the case with boundary the method of selecting the proper
critical points with index 1 that we used in [HKN]. Some definitions and
intermediate quantities have to be modified in order to take into account
the effect of the boundary. We recall that the intuition for getting the good
labelling of local minima, which is useful even to state properly the assump-
tions and results, comes from the probabilistic approach. The local minima
have to be labelled according to the decreasing order of exit times. We refer
to [BoGayKl], [BEGK] and [FrWe] for details.

The existence of such a labelling is an assumption which is generically
satisfied. After this, it is possible to construct accurately quasimodes lead-
ing, with the help of the Witten complex structure, to accurate asymptotic
expansions of the low lying eigenvalues.

5.2 Saddle sets.

We recall that we work here on a compact connected oriented Riemannian
manifold Ω = Ω ∪ ∂Ω with boundary and that the function f satisfies As-
sumption 3.1. According to our preliminary results on the Witten Laplacian
∆DT

f,h in Theorem 3.3, we introduce the following definition of generalized
critical points with index 1.

Definition 5.1.
A point U ∈ Ω will be called a generalized critical point of f with index 1 if :

• either U ∈ Ω and U is a critical point of f with index 1 ,

• or U ∈ ∂Ω and U is a local minimum of f
∣∣
∂Ω

, such that ∂nf(U) > 0
(n being the outgoing normal vector).

The set of generalized critical points with index 1 is denoted by U (1) .
Meanwhile U (0) denotes the set of local minima of f

∣∣
Ω

. From now we will
use the notation

mp = #U (p) , for p = 0, 1 , (5.1)

instead of mΩ
p .

Finally it is convenient to call U the union of all critical points of f and f
∣∣
∂Ω

.
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The saddle set (or set of saddle points) will be defined in the same spirit
as in [HKN] and chosen in U (1). We need some notations.

Definition 5.2.
a) For any E ⊂ Ω , the set of connected components2 of E is denoted by
Conn(E) .
b) For any A,B ⊂ Ω, H(A,B) denotes the quantity

H(A,B) = inf {c ∈ (−∞,+∞), ∃C ∈ Conn (f−1((−∞, c])) ,
C ∩ A 6= ∅ and C ∩ B 6= ∅} . (5.2)

This quantity H(A,B) is the least height to be reached to go from A to
B. A simple result which was checked in [HKN] in a slightly more general
framework is the

Proposition 5.3.
When A and B are closed nonempty subsets of Ω, H(A,B) is a minimum :

∃C ∈ Conn
(
f−1((−∞, H(A,B)])

)
, C ∩ A 6= ∅ and C ∩ B 6= ∅ .

We are now able to introduce the right notion of saddle set.

Definition 5.4.
Under Assumption 3.1, let A and B be two closed subsets of Ω. We say that
Z ⊂ Ω is a saddle set for (A,B) , if it is not empty and satisfies the following
conditions :

(sp1) Z ⊂
(
U (1) ∩ f−1({H(A,B)})

)
,

(sp2) {C ∈ Conn (f−1((−∞, H(A,B)]) \ Z) , C ∩ A 6= ∅, C ∩ B 6= ∅} = ∅ .
If we compare this definition to the definition of “strict” saddle set in

[HKN], we note that we have dropped the conditions

Z ∩ A = ∅ and Z ∩B = ∅ .
We will effectively use the notion with ∂Ω ⊂ B and so the saddle set can
meet B .

In order to check that this definition is coherent, it is useful to recall a few
remarks coming from the local analysis of a Morse function which satisfies
Assumption 3.1.

2We remind that the connected components are non empty closed subsets relatively to
the induced topology on E and therefore, Ω being assumed compact, they are compact if
E is a closed subset of Ω.
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Local structure of the level sets of a Morse function
In order to analyze the local situation near a point x0 of Ω, let us introduce :

A<
f (x0) :=

{
x ∈ Ω ; f(x) < f(x0)

}
∩Bx0

where Bx0 is a ball centered at x0. Similarly, we can introduce

A≤
f (x0) :=

{
x ∈ Ω ; f(x) ≤ f(x0)

}
∩ Bx0 .

Interior points :
First we observe that, near a non critical point x0 ∈ Ω of f , one can find Bx0

and a set of local coordinates such that

A<
f (x0) = {y1 < 0} ∩ Bx0 .

Secondly, if x0 is a critical point of index p, then there exists a ball Bx0

around x0 and a set of local coordinates centered at x0 such that

A<
f (x0) =

{
−

p∑

ℓ=1

y2
ℓ +

n∑

ℓ=p+1

y2
ℓ < 0

}
∩ Bx0 ,

and

A≤
f (x0) =

{
−

p∑

ℓ=1

y2
ℓ +

n∑

ℓ=p+1

y2
ℓ ≤ 0

}
∩Bx0 .

We now observe that

1. When p = 0 (local minimum), A<
f (x0) is empty and A≤

f (x0) is reduced
to {x0} .

2. When p = 1 , A<
f (x0) has two connected components and x0 belongs to

the closure of each of the two components. This property is crucial in
the discussion of (sp2).

3. When p ≥ 2, A<
f (x0) is (arcwise) connected.

Points on the boundary :
If x0 belongs to ∂Ω, Assumption 3.1 leads to two cases :
First case.
If x0 is not a critical point of f

∣∣
∂Ω

, then the hypersurfaces {f = f(x0)} and
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∂Ω intersect transversally in a neighborhood of x0. Hence there is a ball Bx0

around x0 and a set of local coordinates such that

A<
f (x0) = {y1 < 0, yn ≤ 0} ∩ Bx0 ,

and
A≤

f (x0) = {y1 ≤ 0, yn ≤ 0} ∩Bx0 ,

with Ω ∩Bx0 = {yn < 0} ∩ Bx0 .
Second case.
If x0 is a critical point of f

∣∣
∂Ω

with index p − 1 and with ±∂nf(x0) > 0,
there are local coordinates (y1, . . . , yn−1, yn), constructed from the relations
(3.22)–(3.25), such that (y1, . . . , yn−1) are Morse coordinates for f

∣∣
∂Ω

and
such that

A<
f (x0) =

{
±yn −

p−1∑

i=1

y2
i +

n−1∑

i=p

y2
i < 0 , yn ≤ 0

}
∩Bx0 ,

and

A≤
f (x0) =

{
±yn −

p−1∑

i=1

y2
i +

n−1∑

i=p

y2
i ≤ 0 , yn ≤ 0

}
∩Bx0 .

These local models permit to see that

1. If x0 is a local minimum of f
∣∣
∂Ω

such that ∂nf(x0) < 0 , then

A<
f (x0) = ∅ and A≤

f (x0) = {x0} .

2. If x0 is a local minimum of f
∣∣
∂Ω

such that ∂nf(x0) > 0 , then

A<
f (x0) ∩ ∂Ω = ∅ and A≤

f (x0) ∩ ∂Ω = {x0} .

3. In all other cases, A<
f (x0) admits one or two connected components

with a non empty intersection with ∂Ω (two components if p = 2 and
∂nf(x0) < 0 and one in all other cases).

Proposition 5.5.
If A and B1 are disjoint non empty subsets of the set of the local minima of
f in Ω, then the pair (A,B), with B = B1 ∪ ∂Ω , admits a saddle set.

Proof.
We have to prove that a set C , belonging to Conn ( f−1( (−∞, H(A,B)] ) )
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and satisfying C ∩A 6= ∅, C ∩B 6= ∅ contains an element z ∈ U (1) such that
f(z) = H(A,B) . Then it suffices to take Z = U (1) ∩ f−1((−∞, H(A,B)]) .
Let C be a compact connected component of f−1((−∞, H(A,B)]) in Ω. Since
f is a Morse function, there are two possibilities, resulting from the previous
local analysis of f and of the connectedness of C :

• Either it is reduced to one point which is a local minimum of f in Ω,

• or it is the closure of a finite union of bounded connected components
Ωi of f−1 ((−∞, H(A,B))) . Note that the Ωi are open subsets of Ω .

The first case cannot occur. Indeed C ∩ A 6= ∅ and C ∩ B 6= ∅ would imply
that the point xC (such that C = {xC}) is a local minimum (xC ∈ A ⊂ Ω)
and belongs to ∂Ω (xC ∈ B \B1 ⊂ ∂Ω).
Hence, we are in the second case and we have

C = ∪N
i=1Ωi ,

where Ω1, . . . ,ΩN are bounded connected components of f−1 ( (−∞, H(A,B)) ) .
Every x ∈ A∩C (resp. x ∈ B ∩C) belongs to some Ωi . The Ωi are labelled
such that, for all i ∈ {1, . . . ,M}, A∩Ωi 6= ∅ , and for all i ∈ {M + 1, . . . , N},
A ∩ Ωi = ∅ . We have

A ∩ C ⊂ M∪
i=1

Ωi and B1 ∩ C ⊂
N∪

i=M+1
Ωi .

There are several cases :
If C ⊂ ∪M

i=1 Ωi , then C ∩ B1 = ∅ and C ∩ B 6= ∅ imply that there exist
i ∈ {1, . . . ,M} and x0 ∈ Ω such that x0 ∈ Ωi ∩ ∂Ω. This implies first
f(x0) = H(A,B) and the local description of A<

f (x0) implies x0 ∈ U (1) ∩ ∂Ω.

If C 6⊂ ∪M
i=1 Ωi, then C ∩ ∪N

i=M+1 Ωi 6= ∅. Since C is connected, we have

C ∩ (
M∪
i=1

Ωi) ∩
(

N∪
j=M+1

Ωj

)
6= ∅ .

Therefore, there exist i ≤ M and j ≥ M + 1 such that C ∩ Ωi ∩ Ωj 6= ∅ .
Assume x0 ∈ C ∩Ωi ∩Ωj and note that i 6= j implies f(x0) = H(A,B) . The
local description of A≤

f (x0) says that x0 ∈ ∂Ω is possible only if it is a critical

point of f
∣∣
∂Ω

with index 1. But again this cannot occur because Ωi ∩A<
f (x0)

would contain a point x1 ∈ ∂Ω. Hence x0 ∈ Ω . The local description of
A<

f (x0) shows that x0 has to belong to U (1) .
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On the uniqueness of the saddle set
Like in the boundaryless case studied in [HKN], it is not possible to give a
satisfactory definition of a unique saddle set and we introduce a new definition
which explicitly specifies this case.

Definition 5.6.
Let A,B be closed nonempty disjoint subsets of Ω . The point z ∈ U (1) is said
to be a unique (one point)-saddle set3 for the pair (A,B) if

( ∩
C∈C(A,B)

C) ∩
[
U (1) ∩ f−1(H(A,B))

]
= {z} ,

where C(A,B) denotes the set of closed connected sets C ⊂ f−1((−∞, H(A,B)]) ,
such that C ∩A 6= ∅ and C ∩B 6= ∅ .

5.3 Main assumption, notations and first consequences.

We now give the main assumption like in [HKN] and inspired by [BEGK],

which ensures that each exponentially small eigenvalue of ∆
(0)
f,h is simple, with

a different asymptotic behavior.
We set here

C0 = ∂Ω .

Assumption 5.7.
Under Assumption 3.1, there exists a labelling of the set of the local minima

of f U (0) =
{
U

(0)
1 , . . . , U

(0)
m0

}
such that, by setting

Ck =
{
U

(0)
k , . . . , U

(0)
1

}
∪ C0 ,

we have :

i) For all k ∈ {1, . . . , m0} , U (0)
k is the unique minimizer of

H(U, Ck \ {U})− f(U), U ∈ Ck \ C0 .

ii) For all k ∈ {1, . . . , m0} , the pair
(
{U (0)

k }, Ck−1

)
admits a unique (one

point)-saddle set {z∗k} .
3or more shortly, a unique saddle point,
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Remark 5.8.
Like in [HKN], it is possible to check that this hypothesis is generically sat-
isfied. More precisely, it is satisfied if all the critical values of f are distinct
and all the quantities f(U (1))− f(U (0)), with U (1) ∈ U (1) and U (0) ∈ U (0) are
distinct. We refer the reader to [HKN].

By its definition, the point z∗k is a generalized critical point with index 1,
z∗k ∈ U (1).

Definition 5.9. (The map j)

If the generalized critical points of index 1 are numbered U
(1)
j , j = 1, . . . , m1,

we define the application k → j(k) on {1, . . . , m0} by :

U
(1)
j(k) = z∗k . (5.3)

Definition 5.10.
Under Assumption 5.7 and for k ∈ {1, . . . , m0}, we denote by Ek the con-

nected component of U
(0)
k in

f−1((−∞, f(U
(1)
j(k))]) \ {U

(1)
j(k)} .

Proposition 5.11.
Under Assumption 5.7, the following properties are satisfied :

a) The sequence
(
f(U

(1)
j(k))− f(U

(0)
k )
)

k∈{1,...,m0}
is strictly decreasing.

b) The set Ek is a relatively compact subset of f−1((−∞, f(U
(1)
j(k))]) and

Ek = Ek ∪
{
U

(1)
j(k)

}
while Ek ∩ ∂Ω ⊂

{
U

(1)
j(k)

}
.

c) For any (k, j) ∈ {1, . . . , m0}×{1, . . . , m1}, the relation U
(1)
j ∈ Ek implies

either (j = j(k′) for some k′ > k) or j 6∈ j({1, . . . , m0}) .

d) For any k 6= k′ ∈ {1, . . . , m0} , the relation U
(0)
k′ ∈ Ek implies

(
k′ > k and f(U

(0)
k′ ) > f(U

(0)
k )
)
.

e) The application j : {1, . . . , m0} → {1, . . . , m1} is injective.
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Proof.
a) The condition i) of Assumption 5.7 gives

f(U
(1)
j(k))− f(U

(0)
k ) = H(U

(0)
k , Ck \ {U (0)

k })− f(U
(0)
k )

< H(U
(0)
k−1, Ck \ {U

(0)
k−1})− f(U

(0)
k−1)

≤ H(U
(0)
k−1, Ck−1 \ {U (0)

k−1})− f(U
(0)
k−1)

= f(U
(1)
j(k−1))− f(U

(0)
k−1) .

b) It suffices to consider the local description of A≤
f (U

(1)
j(k)) and A<

f (U
(1)
j(k)) in

the two cases U
(1)
j(k) ∈ Ω and U

(1)
j(k) ∈ ∂Ω . The last statement comes from

C0 = ∂Ω and the assumed uniqueness of a saddle point between U
(0)
k and

Ck−1 ⊃ C0.
c) Assume U

(1)
j(k′) ∈ Ek .

Since U
(1)
j(k) 6∈ Ek, one has k 6= k′. Moreover the inequality f(U

(1)
j(k′)) ≤

f(U
(1)
j(k)) implies that the connected component of f−1((−∞, f(U

(1)
j(k′))]), which

contains U
(1)
j(k′) is contained in Ek. Hence Ek contains U

(0)
k and U

(0)
k′ . Finally

Ek is modified into a closed connected set Êk lying in f−1((−∞, f(U
(1)
j(k))]) \{

U
(1)
j(k)

}
in the following way. Take the coordinates (x1, . . . , xn) around U

(1)
j(k)

which are Morse coordinates if U
(1)
j(k) ∈ Ω and such that f(x) − f(U

(1)
j(k)) =

xn +
∑n−1

j=1 x
2
j , if U

(1)
j(k) ∈ ∂Ω . Consider, for ρ > 0 small enough, Ek,ρ :=

Ek ∩ {|x| ≤ ρ} and its radial projection on Ered
k,ρ := Ek ∩ {|x| = ρ}. Then

Êk,ρ := (Ek \ Ek,ρ) ∪ Ered
k,ρ is closed and can be considered as the image of

Ek by a continuous application. Hence it is connected. We have found a
closed connected set Êk,ρ ∈ Ω lying in Ek ⊂ f−1((−∞, f(U

(1)
j(k))]) , which

contains U
(0)
k and U

(0)
k′ , for k′ 6= k , and does not contain U

(1)
j(k) . Therefore

one cannot have k ≤ k′ , because this would contradict the assumption that
U

(1)
j(k) is the unique saddle point between U

(0)
k and Ck−1 (Assumption 5.7-ii)

and Definition 5.6). Indeed the existence of another saddle point is obtained

by using Proposition 5.5 by slightly increasing the value of f(U
(1)
j(k)) . Hence,

the only possibility is k′ > k .
d) Assume U

(0)
k′ ∈ Ek with k 6= k′ . By the same argument as for c), one

then takes a closed connected set Ck,k′ ⊂ Ek ⊂ f−1((−∞, f(U
(1)
j(k))]) such
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that U
(0)
k , U

(0)
k′ ∈ Ck,k′ and U

(1)
j(k) 6∈ Ck,k′ . This implies k′ > k .

Assume now by contradiction that
{
k′ > k, U

(0)
k′ ∈ Ek and f(U

(0)
k′ ) ≤ f(U

(0)
k )
}
6= ∅ ,

and let k0 be its smallest element.
We deduce from the existence of Ck,k0 as a closed connected subset of

Ek ⊂ f−1((−∞, f(U
(1)
j(k))]) containing U

(0)
k and U

(0)
k0

, the inequality

f(U
(1)
j(k0)

) = H(U
(0)
k0
, Ck0−1) ≤ f(U

(1)
j(k)) .

Since the connected component C of U
(1)
j(k0)

in f−1((−∞, f(U
(1)
j(k0)

)]) contains

U
(0)
k0

and a point in Ck0−1 , it is contained in Ek and Ek contains a point of
Ck0−1 . As a consequence of b), this point cannot belong to C0.
Hence there exists k1 < k0 such that U

(0)
k1
∈ C ⊂ Ek . Finally, the condition i)

of Assumption 5.7 for k0 gives

f(U
(1)
j(k0)

)− f(U
(0)
k0

) = H(U
(0)
k0
, Ck0−1)− f(U

(0)
k0

)

< H(U
(0)
k1
, Ck0 \ {U (0)

k1
})− f(U

(0)
k1

)

≤ f(U
(1)
j(k0)

)− f(U
(0)
k1

) .

For the last inequality we used the existence of a connected set C containing
U

(0)
k1

and the point U
(0)
k0
∈ Ck0 \ {U (0)

k1
} such that f(C) ∈ (−∞, f(U

(1)
j(k))] , with

the definition of H(U
(0)
k1
, Ck0 \ {U (0)

k1
}) .

Hence we obtain
f(U

(0)
k1

) < f(U
(0)
k0

) ≤ f(U
(0)
k ) ,

with k1 < k0 and U
(0)
k1
∈ Ek in contradiction with the definition of k0 . Hence

we have proved

∀k′ > k, (U
(0)
k′ ∈ Ek)⇒

(
f(U

(0)
k′ ) > f(U

(0)
k )
)
.

e) Assume j(k) = j(k′). The point U
(1)
j(k) = U

(1)
j(k′) ∈ U (1) is the unique saddle

point for (U
(0)
k , Ck−1) and for (U

(0)
k′ , Ck′−1) .

Then we have

either Ek = Ek′ ,

or ∃k1 < k′, U
(0)
k1
∈ Ek and ∃k2 < k, U

(0)
k2
∈ Ek′ .
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According to d), the first case implies

k ≤ k′ and k′ ≤ k ,

while the second case gives

k ≤ k1 < k′ and k′ ≤ k2 < k .

Hence only the first case is possible with k′ = k .

6 Quasimodes.

Like in the boundaryless case, we associate with every U
(0)
k (k ∈ {1, . . . , m0})

a quasimode for ∆
DT,(0)
f,h which is approximately supported in Ek , while the

quasimodes for ∆
DT,(1)
f,h will be supported in the balls B(U

(1)
j , 2 ε1) , j ∈

{1, . . . , m1} . A ball B(U, ρ) , with U ∈ Ω and ρ > 0 , is a geodesic ball
and the geodesic distance is denoted by dΩ . The parameter ε1 > 0 is fixed
so that :

• dΩ(U,U ′) ≥ 10 ε1 for U , U ′ ∈ U , U 6= U ′ .

• For all U ∈ U and all k ∈ {1, . . . , m0} , U 6∈ Ek implies

dΩ(U,Ek) ≥ 10 ε1 .

• The construction of the WKB-approximation of Subsection 4.6 is pos-
sible in the ball B(U

(1)
j , 2 ε1). If U

(1)
j is a boundary point, this means

the introduction of the coordinates (x′, xn) and the existence of Φ .

The parameter ε1 > 0 will be kept fixed, while we need another parameter
ε ∈ (0, ε0) , which has to be modified at each step of the final induction.

According to Proposition 5.11-b), Assumption 5.7 implies that Ek inter-
sects ∂Ω at most at one point :

Ek ∩ ∂Ω ⊂
{
U

(1)
j(k)

}
.

The construction presented in [HKN] has to be adapted when this intersection
is not empty and we focus on those changes.
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For every k ∈ {1, . . . , m0} , we introduce the open set

Ωk =
◦

Ek ∪
(

∪
U∈U∩∂Ek, U 6=U

(1)
j(k)

B(U, 3 ε1)

)
,

which satisfies

Ωk = Ek ∪ {U (1)
j(k)} ∪

(
∪

U∈U∩∂Ek, U 6=U
(1)
j(k)

B(U, 3 ε1)

)
.

For ε > 0, this set Ωk is modified as

Ω̃k(ε, δ) =
{
x ∈ Ω, dΩ

(
x,Ωk \B(U

(1)
j(k), ε)

)
< δ
}
∪ B(U

(1)
j(k), ε) ,

with δ ∈ (0, εε) , δε > 0 small enough.
The cut-off function χk,ε ∈ C∞0 (Ω) , 0 ≤ χk,ε ≤ 1 is chosen so that

suppχk,ε ⊂ Ω̃k(ε, δε) and χk,ε

∣∣∣eΩk(ε,δε/2)\B(U
(1)
j(k)

,ε)
= 1 .

Around U
(1)
j(k), the cut-off function χk,ε is chosen (more accurately below) so

that U
(1)
j(k) 6∈ suppχk,ε and

∀x ∈ B(U
(1)
j(k), ε) ,

(
χk,ε(x) 6= 0 , and f(x) < f(U

(1)
j(k))

)
⇒ (x ∈

◦

Ek ⊂ Ωk) .

(6.1)
Like in [HKN] we deduce from Proposition 5.11 the following properties for
χk,ε .

Proposition 6.1.
By taking δ = δε with ε ∈ (0, ε0] , 0 < ε0 ≤ ε1 small enough, the cut-off
functions χk,ε (k ∈ {1, . . . , m0}) satisfy the following properties :

a) If x belongs to suppχk,ε and f(x) < f(U
(1)
j(k)) , then x ∈

◦

Ek .

b) There exist C > 0 and, for any ε ∈ (0, ε0] , a constant Cε > 0 , such that,
for x ∈ supp∇χk,ε ,

either x 6∈ B(U
(1)
j(k), ε) and f(U

(1)
j(k)) + C−1

ε ≤ f(x) ≤ f(U
(1)
j(k)) + Cε ,

or x ∈ B(U
(1)
j(k), ε) and

∣∣∣f(x)− f(U
(1)
j(k))

∣∣∣ ≤ Cε .
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c) For any U ∈ U , U 6= U
(1)
j(k), the distance dΩ(U, supp∇χk,ε) is bounded

from below by 3ε1 > 0 . If in addition U ∈ suppχk,ε, then U ∈ Ek .

d) If, for some k′ ∈ {1, . . . , m0}, U (0)
k′ belongs to suppχk,ε , then k′ ≥ k and

f(U
(0)
k′ ) > f(U

(0)
k ), f(U

(1)
j(k′)) ≤ f(U1

j(k)) , if k 6= k′ .

e) For any j ∈ {1, . . . , m1} , such that U
(1)
j ∈ suppχk,ε ,

either j 6∈ j ({1, . . . , m0}) ,
or j = j(k′) , for some k′ ≥ k and U

(0)
k′ ∈ suppχk,ε .

The cut-off function χk,ε is used in the construction of quasi-modes for

∆
DT,(0)
f,h . Like in the boundaryless case, the construction of quasi-modes for

∆
DT,(1)
f,h will rely on the approximation by the Dirichlet problem in small

neighborhoods of U
(1)
j , j ∈ {1, . . . , m1}. For interior points U

(1)
j ∈ Ω, this

neighborhood is B(U
(1)
j , 2ε1). For points U

(1)
j in the boundary ∂Ω, this

Dirichlet realization is ∆
D,DT,(1)
f,h , which was studied in Subsection 4.6 and as-

sociated with the neighborhood Ω
U

(1)
j ,ρ

with ρ > 0 small enough. Once ρ > 0

is fixed uniformly for all U
(1)
j ∈ ∂Ω , the parameter ε1 > 0 is reduced so that

B(U
(1)
j , 2ε1) ⊂ ΩU0,ρ for all U

(1)
j ∈ ∂Ω. For all j ∈ {1, . . . , m1}, uj denotes a

normalized eigenvector associated with the first (exponentially small) eigen-

value of this Dirichlet realization. The cut-off function θj ∈ C∞0 (B(U
(1)
j , 2ε1))

is taken such that θj = 1 on B(U
(1)
j , ε1).

Note that the function χk,ε depends on ε ∈ (0, ε0], while θj is kept fixed
like ε1 > 0.

Definition 6.2.
For any k ∈ {1, . . . , m0}, the (ε, h)-dependent function ψ

(0)
k is defined by

ψ
(0)
k (x) =

∥∥∥χk,ε(x)e
−(f(x)−f(U

(0)
k ))/h

∥∥∥
−1

χk,ε(x)e
−(f(x)−f(U

(0)
k ))/h .

For any j ∈ {1, . . . , m1}, the h-dependent 1-form ψ
(1)
j is defined by

ψ
(1)
j (x) =

(
‖θjuj‖−1) θj(x)uj(x) .
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For any k ∈ {1, . . . , m0} , we set

λapp
k (ε, h) =

∣∣∣
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉∣∣∣
2

.

Remark 6.3.
a) For the sake of conciseness, we omit the (ε, h)- and h- dependence in the

notations ψ
(0)
k and ψ

(1)
j .

b) Note that, for boundary points U
(1)
j ∈ ∂Ω, the quasimode ψ

(1)
j only belongs

to the form domain Λ1H1
0,T (Ω) of ∆

DT,(1)
f,h . This brings no additional difficulty

to what was done in [HKN] for the boundaryless case, because the preliminary
approximation of the spectral subspace with quasimodes only requires the Min-
Max principle or Lemma 2.8.

We end this section by reviewing the quasimodal estimates which are de-
rived from Propositions 5.11 and 6.1. We refer the reader to [HKN] for the

details. The asymptotic expansion of
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
has also be done in

[HKN] when U
(1)
j(k) ∈ Ω is an interior point. We will simply complete this

analysis by establishing the asymptotic expansion of
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
, when

U
(1)
j(k) ∈ ∂Ω .

Remind that the parameter ε1 > 0 is fixed, while ε0 and ε ∈ (0, ε0] will
be adapted in the different steps of the proof. We shall denote by α a
generic positive constant which is independent of ε ∈ (0, ε0].

From Proposition 5.11-d) and the good localization of ∇χk,ε, we deduce

the following estimates for ψ
(0)
k .

Proposition 6.4.
The system of (ε, h)-dependent functions (ψ

(0)
k )k∈{1,...,m0} of Definition 6.2 is

almost orthogonal with
(
〈ψ(0)

k | ψ
(0)
k′ 〉
)

k,k′∈{1,...,m0}
= IdCm0 +Oε(e

−α/h) ,

and there exists α > 0 and, for any ε ∈ (0, ε0], C(ε) and h0(ε) such that, for
any h ∈ (0, h0(ε)] ,

〈∆(0)
f,hψ

(0)
k | ψ

(0)
k 〉 =

∥∥∥d(0)
f,hψ

(0)
k

∥∥∥
2

≤ C(ε)e
−2

“
f(U

(1)
j(k)

)−f(U
(0)
k )−αε

”
/h
.
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Corollary 6.5.
There exists ε0 > 0 and α > 0 such that, for any choice of ε in (0, ε0] and for

all k ∈ {1, . . . , m0} , the (ε, h)-dependent quasimodes ψ
(0)
k satisfy the estimate

〈∆(0)
f,hψ

(0)
k | ψ

(0)
k 〉 ≤ Cεe

−α/h .

The exponential decay of the first eigenvector uj, associated with an ex-

ponentially small eigenvalue, of the Dirichlet realization of ∆
(1)
f,h around U

(1)
j ,

provides the next estimates for ψ
(1)
j . We refer the reader to [HKN] or [HelSj4]

for U
(1)
j ∈ Ω and to Subsection 4.6 for U

(1)
j ∈ ∂Ω.

Proposition 6.6.

The system of h-dependent 1-forms,
(
ψ

(1)
j

)
j∈{1,...,m1}

given in Definition 6.2

is orthonormal and there exists α > 0 independent of ε such that

Df,h(ψ
(1)
j ) = O(e−α/h) ,

for all j ∈ {1, . . . , m1} .

Before we state the next result, let us specify the choice of χk,ε inB(U
(1)
j(k), ε)

in the case when U
(1)
j(k) ∈ ∂Ω. We assume ε ∈ (0, ε0), with 0 < ε0 <

ε1

10
. We

use again the coordinate system (x′, xn) introduced in Section 3 and Subsec-
tion 4.6 such that :

x′(U
(1)
j(k)) = 0 , xn(U

(1)
j(k)) = 0 , ∂Ω ∩ B(U

(1)
j(k), 2ε1) ⊂ {xn = 0}

and

f(x′, xn) = f(U
(1)
j(k)) + xn +

1

2
f−(x′), xn < 0 in Ω ∩B(U

(1)
j(k), 2ε1) .

The function Φ(x) which equals the Agmon distance dAg(x, U
(1)
j(k)) is given by

Φ(x′, xn) = −xn +
1

2
f−(x′) .

The construction of the coordinate system (x′, xn) which block diagonalizes
the metric everywhere (see (3.26)) permits4, when n > 1, to choose the

4The case n = 1 is easier (no Laplace method has to be used) and we refer the reader
to the appendix.
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boundary coordinates x′ = (x1, . . . , xn−1) such that dx1∧dx2 . . .∧dxn−1∧dxn

is the Riemannian volume form in B(U
(1)
j(k), 2ε1). This means

⋆(dx1 ∧ . . . ∧ dxn−1) = dxn, ⋆dxn = (−1)n−1dx1 ∧ . . . ∧ dxn−1 . (6.2)

The cut-off function χk,ε fulfills the following conditions which are illustrated
in Figure 1 :

i) The support of χk,ε does not meet ∂Ω (already stated).

ii) In a neighborhood

V =
{
x ∈ B(U

(1)
j(k), ε), |x′| < νε

}
(6.3)

of the curve {x′ = 0, xn < 0}, the function χk,ε only depends on xn :
χk,ε(x) = χk,ε(xn) , for x ∈ V .

U (1)
j(k)

∂Ωk

Ωk

∂Ω= fxn = 0g
x0 = 0

χk;ε � 1 χk;ε � 0

Figure 1: Case U
(1)
j(k) ∈ ∂Ω. The support of ∇χk,ε is localized between the

dashed curve. The function f is constant along ∂Ωk .

In Subsection 4.6, we found the WKB approximation uwkb
1 of an eigenvector

uh
1 , such that

e
Φ(x)

h uwkb
1 = −2a0(x) dxn + hb1(x, h) ,

a0(0) = 1 , b1(x, h) ∼∑ℓ h
ℓbℓ(x) ,
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and

∀x ∈ B(U
(1)
j(k), 2ε1), e

Φ(x)
h

∣∣∂α
x (uh

1(x)− uwkb
1 (x))

∣∣ ≤ Cα,Nh
N .

The normalized eigenvector that we take here is

uj(k) =
(−1)n−1

∥∥uh
1

∥∥ uh
1 .

Let us first compute accurately
∥∥uh

1

∥∥ =
∥∥θj(k)u

h
1

∥∥+O(h∞) =
∥∥θj(k)u

wkb
1

∥∥+O(h∞) .

We have, denoting by dx the Riemannian volume measure,
∥∥θj(k)u

wkb
1

∥∥2
=
∫

4θj(k)(x)
2〈dxn | dxn〉a0(x)

2e−
2Φ(x)

h dx

= 4
∫
θj(k)(x)

2a0(x)
2e

2xn
h e−

f−(x′)

h dx1 ∧ . . . ∧ dxn ,
(6.4)

where the integral is over xn < 0. The Laplace method, applied with the
function f− = 2f

∣∣
∂Ω
− 2f(U

(1)
j(k)) , gives

∥∥θj(k)u
wkb
1

∥∥2
= 2h

(πh)
n−1

2

(
δf,∂Ω(U

(1)
j(k))

)1/2
(1 +O(h))

with

δf,∂Ω =
∣∣ det

(
1

2
(∂jkf−)j,k=1,...,n−1

) ∣∣ .

Note that the Laplace method gives actually a full asymptotic expansion.
After the normalization we get, for all x ∈ B(U

(1)
j(k)),

ψ
(1)
j(k)(x) = (−1)n

√
2π

(
δf,∂Ω(U

(1)
j(k))

)1/4

(πh)
n+1

4

(
b0k(x) dxn + hb1k(x, h)

)
e−

Φ(x)
h ,

(6.5)
with b0,k(0) = 1 and b1k(x, h) ∼

∑+∞
ℓ=0 h

ℓb1kℓ(x).

For the quasimode ψ
(0)
k , a direct Laplace method provides (see [HKN])

∀x ∈ Ω, ψ
(0)
k (x) =

∣∣∣det Hess f(U
(0)
k )
∣∣∣
1/4

(πh)n/4
ak(h)χk,ε(x)e

−
f(x)−f(U

(0)
k

)

h , (6.6)

with ak(h) ∼
∑∞

ℓ=0 h
ℓak,ℓ and ak,0 = 1.
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Proposition 6.7.
There exist ε0 and sequences (ck,m)m∈N∗, such that the (ε, h)-dependent and

h-dependent quasimodes ψ
(0)
k and ψ

(1)
j ( (k, j) ∈ {1, . . . , m0} × {1, . . . , m1}

and ε ∈ (0, ε0]) satisfy :

〈ψ(1)
j | d

(0)
f,hψ

(0)
k 〉 = 0 if j 6= j(k) ,

〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k 〉 = (−1)n−1h

1/2

π1/2
|λ̂1(U

(1)
j(k))|1/2

∣∣∣∣∣
det(Hess f(U

(0)
k ))

det(Hess f(U
(1)
j(k)))

∣∣∣∣∣

1/4

× exp−1

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
×
[
1 + hc1k(h)

]
,

if j = j(k) and U
(1)
j(k) ∈ Ω ,

and

〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k 〉 = (−1)n−1

√
2h1/4

π1/4

∣∣∣∣∣
det(Hess f(U

(0)
k ))

δf,∂Ω(U
(1)
j(k)))

∣∣∣∣∣

1/4

× exp−1

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
×
[
1 + hc1k(h)

]
,

if j = j(k) and U
(1)
j(k) ∈ ∂Ω ,

with c1k(h) ∼
∑∞

m=0 ck,mh
m.

Remark 6.8.
We recall that we were computing above in coordinates such that the Rieman-
nian volume form is dx1 ∧ . . . ∧ dxn−1 ∧ df(U

(1)
j(k)). The prefactor in the last

formula of Proposition 6.7 can be expressed more intrinsically by observing
that :

∣∣∣δf,∂Ω(U
(1)
j(k))

∣∣∣ =
∣∣∣∇f(U

(1)
j(k))

∣∣∣
−2

×
∣∣∣det(Hess f

∣∣
∂Ω

(U
(1)
j(k)))

∣∣∣ .

Proof of Proposition 6.7.
The first statement for j 6= j(k) is a consequence of our choice of ε1 > 0 and

χk,ε which gives according to Proposition 6.1-c) suppψ
(1)
j ∩ supp∇χk,ε = ∅.

We conclude with d
(0)
f,hψ

(0)
k = Cε,h

(
d(0)χk,ε

)
e−f/h.
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The second case was completely treated in [HKN] for the boundaryless prob-
lem.
The last one, j = j(k) with U

(1)
j(k) ∈ ∂Ω, is adapted from the second one by

using the specific approximations (6.6) and (6.5). With

d
(0)
f,h

(
χk,εe

− f(x)
h

)
= e−

f(x)
h hd(0)χk,ε ,

we obtain the existence, for any ε > 0, of σε > 0 such that

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h1−n

4 ak(h)

∣∣∣det Hess f(U
(0)
k )
∣∣∣
1/4

πn/4

×
∫

B(U
(1)
j(k)

,ε)

〈ψ(1)
j(k) | dχk,ε〉(x)e−

(f(x)−f(U
(0)
k

))

h dx

+Oε

(
e−

f(U
(1)
j(k)

)−f(U
(0)
k

)+σε

h

)
,

with ak(h) ∼ 1 +
∑∞

ℓ=1 h
ℓak,ℓ .

The two additional conditions i) and ii) given above for the cutoff function
χk,ε permit to reduce the integration domain to the neighborhood V, intro-
duced in (6.3) :

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h1−n

4 ak(h)

∣∣∣det Hess f(U
(0)
k )
∣∣∣
1/4

πn/4

×
∫

V

〈ψ(1)
j(k) |χ′

k,ε dxn〉(x)e−
(f(x)−f(U

(0)
k

))

h dx

+Oε

(
e−

f(U
(1)
j(k)

)−f(U
(0)
k

)+σε

h

)
,

for some σε > 0.
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Finally (6.5) and (6.2) lead to

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉

= h1−n
2
− 1

4

√
2π
∣∣∣det Hess f(U

(0)
k )
∣∣∣

1
4
(
δf,∂Ω

(U
(1)
j(k))

)1/4

πn/2+1/4

× (−1)n

∫

V

e−
Φ(x)+f(x)−f(U

(0)
k

)

h

(
χ′

k,ε(xn) +Oε(h)
)
dx1 ∧ dx2 ∧ . . . ∧ dxn ,

and, with f + Φ = f− + f(U
(1)
j(k)) , to

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= h3/4−n

2

√
2π
∣∣∣det Hess f(U

(0)
k )
∣∣∣
1/4 (

δf,∂Ω(U
(1)
j(k))

)1/4

πn/2+1/4

×(−1)ne−
f(U

(1)
j(k)

)−f(U
(0)
k

)

h

[∫

V−

e−f−(x)/h(χ′
k,ε(xn) +Oε(h))dx1 ∧ dx2 ∧ . . . ∧ dxn

]
.

The Laplace method, applied with f− = 2f
∣∣
∂Ω
− 2f(U

(1)
j(k)), gives

∫

|x′|≤ν

e−f−(x)/hdx1 ∧ . . . ∧ dxn−1 ∼
(πh)

n−1
2

(
δf,∂Ω(U

(1)
j(k))

)1/2

∞∑

ℓ=0

dℓh
ℓ ,

with d0 = 1.
We conclude for the main term by using

∫

R

χ′
k,ε(xn) dxn = −1 .

Corollary 6.9.
Let ψ

(0)
k and ψ

(1)
j denote the (ε, h)-dependent and h-dependent quasimodes of

Definition 6.2. Assume that the 1-forms (w
(1)
j )j∈{1,...,m1} satisfy

∥∥∥w(1)
j − ψ

(1)
j

∥∥∥ = O(e−α/h) ,
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for some α > 0 independent of ε ∈ (0, ε0]. Then there exist ε′0 > 0 and α′ > 0
such that, for all ε ∈ (0, ε′0], the estimates

∣∣∣〈w(1)
j | d(0)

f,hψ
(0)
k 〉
∣∣∣ ≤ Cεe

−(f(U
(1)
j(k)

−f(U
(0)
k )+α′)/h , if j 6= j(k) , (6.7)

and
〈w(1)

j(k) | d
(0)
f,hψ

(0)
k 〉 = 〈ψ(1)

j(k) | d
(0)
f,hψ

(0)
k 〉
(
1 +Oε(e

−α′/h)
)
, (6.8)

hold for all (k, j) ∈ {1, . . . , m0} × {1, . . . , m1}.
The proof is a straightforward consequence of Propositions 6.4 and 6.7

which give : ∥∥∥d(0)
f,hψ

(0)
k

∥∥∥ ≤ Cεe
−

“
f(U

(1)
j(k)

)−f(U
(0)
k )−α′′ε

”
/h
.

7 Result and final proof.

7.1 Main result

Let us first recall some notations. The local minima U
(0)
k (k ∈ {1, . . . , m0})

are labelled according to Assumption 5.7, the generalized critical points with
index 1, U

(1)
j(k) are those introduced in Definition 5.9 and the quantity λk(ε, h)

is associated with the quasimodes ψ
(0)
k , ψ

(1)
j(k), in Definition 6.2 :

λapp
k (ε, h) =

∣∣∣
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉∣∣∣
2

.

At a generalized critical point U with index 1, the Hessians Hess f(U) or
Hess f

∣∣
∂Ω

are computed in normal coordinates for the metric g, while consid-
ering only the tangential coordinates x′ = (x1, . . . , xn−1) for the second case.
We refer to Remark 6.8 for the right normalization when U ∈ ∂Ω. When
U ∈ Ω, λ̂1(U) denotes the negative eigenvalue of Hess f(U).

Theorem 7.1.
Under Assumptions 3.1 and 5.7, the first eigenvalues λ1(h), . . . , λm0(h) of

δ
DT,(0)
f,h admit the following asymptotic expansion. There exist ε0 > 0 and
α > 0, such that, for any ε ∈ (0, ε0],

∀k ∈ {1, . . . , m0} , λk(h) = λapp
k (ε, h)

(
1 +Oε(e

−α/h)
)
.

80



Moreover there exist sequences (ck,m)m∈N∗ such that, for any ε ∈ (0, ε0],

λapp
k (ε, h) =

h

π
|λ̂1(U

(1)
j(k))|

√√√√√

∣∣∣det(Hess f(U
(0)
k ))

∣∣∣
∣∣∣det(Hess f(U

(1)
j(k)))

∣∣∣

(
1 + hc1k(h)

)

× exp−2

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
, if U

(1)
j(k) ∈ Ω ,

and

λapp
k (ε, h) =

2h1/2|∇f(U
(1)
j(k))|

π1/2

√√√√√

∣∣∣det(Hess f(U
(0)
k ))

∣∣∣
∣∣∣det(Hess f

∣∣
∂Ω

(U
(1)
j(k)))

∣∣∣

(
1 + hc1k(h)

)

× exp−2

h

(
f(U

(1)
j(k))− f(U

(0)
k )
)
, if U

(1)
j(k) ∈ ∂Ω ,

with c1k(h) ∼
∑∞

m=0 h
mck,m .

This theorem implies the theorem announced in the first section. The
core of the proof is essentially the same as in the case without boundary
treated in [HKN]. We give it for the sake of completeness. The main idea is

that the eigenvalues of ∆
DT,(0)
f,h

∣∣
F (0) = β

(0)∗
f,h β

(0)
f,h are the singular values of β

(0)
f,h.

The Fan inequality for singular values permits to control the relative error
for all singular values, when the matrix of β

(0)
f,h is expressed in different bases.

The proof will be done in two steps.

7.2 Finite dimensional reduction

Theorem 3.3 and the results of Section 5 lead to the

Proposition 7.2.
There exist α, α′ > 0 such that :

1[0,h3/2)(∆
DT,(ℓ)
f,h ) = 1[0,e−α/h)(∆

DT,(ℓ)
f,h ) , for ℓ = 0, 1 .

Moreover if one sets

∀i ∈ {1, . . . , mℓ} , v
(ℓ)
i = 1[0,h3/2)(∆

DT,(ℓ)
f,h )ψ

(ℓ)
i , (7.1)
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where the ψ
(ℓ)
i are the (ε, h)- and h- dependent quasimodes introduced in

Definition 6.2, the system
(
v

(ℓ)
i

)
i∈{1,...,mℓ}

is a basis of F (ℓ) such that :

1) ∀i ∈ {1, . . . , mℓ} ,
∥∥∥v(ℓ)

i − ψ(ℓ)
i

∥∥∥ = O(e−α′/h) ;

2) V (ℓ) :=
(
〈v(ℓ)

i |v
(ℓ)
i′ 〉
)

i,i′∈{1,...,mℓ}
= IdC

mℓ +O(e−α′/h) .

Remark 7.3.
Note that here again we omit the (ε, h)-dependence (resp. h-dependence) of

the functions v
(0)
k (resp. 1-forms v

(1)
j ) in the notation.

Proof.
Let ℓ ∈ {0, 1} and i ∈ {1, . . . , mℓ}. According to Lemma 2.8, Corollary 6.5

and Proposition 6.6,
∥∥∥1[h3/2/2,+∞)(∆

DT,(ℓ)
f,h )ψ

(ℓ)
i

∥∥∥ is estimated from above by

O(e−α′/h) . The second estimate then comes from the almost orthonormal-

ity of
(
ψ

(ℓ)
i

)

i∈{1,...,mℓ}
. Since we know by Proposition 3.6-iii) that F (ℓ) has

dimension mℓ, the system (v
(ℓ)
i )i∈{1,...,mℓ} is a basis of F (ℓ) . We conclude with

〈∆DT,(ℓ)
f,h v

(ℓ)
i | v

(ℓ)
i 〉 ≤ 〈∆

DT,(ℓ)
f,h ψ

(ℓ)
i | ψ

(ℓ)
i 〉 ≤ e−2α/h .

Definition 7.4.
The basis (e

(ℓ)
i )i∈{1,...,mℓ} of F (ℓ) is the orthonormal basis derived from (v

(ℓ)
i )i∈{1,...,mℓ}

by the Gram-Schmidt orthonormalization procedure

e
(ℓ)
i =

∑

i′

[
(V (ℓ))−1/2

]
ii′
v

(ℓ)
i′ .

The m1×m0 matrixM is the matrix of5 β
(0)
f,h in the bases (e

(0)
k )k∈{1,...,m0} and

(e
(1)
j )j∈{1,...,m1}. Its square M∗M is called the interaction matrix.

According to (2.21), them0 eigenvalues of the restricted Witten Laplacian

∆
DT,(0)
f,h

∣∣
F (0) = β

(0)∗
f,h β

(0)
f,h are the eigenvalues of the interaction matrix M∗M.

5We recall from (1.9) that β
(0)
f,h is defined from F (0) into F (1) by the restriction of d

(0)
f,h

to F (0) .
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Hence it is theoretically possible to determine the low lying eigenvalues of
∆

DT,(0)
f,h by analyzing the matrix M. The problem is that the coefficients of

the matrixM are not known at this level accurately enough in order to split
the different exponentially small scales. Like in [HKN], we will work with
the matrix

I =
(
〈v(1)

j | β(0)
f,hv

(0)
k 〉
)

(j,k)∈{1,...,m1}×{1,...,m0}
. (7.2)

of the map β
(0)
f,h, written in the bases (v

(0)
k )k∈{1,...,m0} in F (0) and

(
v

(1),∗
j

)
j∈{1,...,m1}

dual to (v
(1)
j )j∈{1,...,m1} in F (1) . This permits to use directly all the accurate

information that we have on the quasimodes ψ
(ℓ)
i . The fact that these bases

are not orthonormal does not make any problem if one notices that the eigen-
values ofM∗M are the squares of the singular values of β

(0)
f,h.

7.3 Singular values and induction.

The first eigenvalues λk(h), 1 ≤ k ≤ m0, of ∆
DT,(0)
f,h are the squares of the

singular values6 µm0+1−k(M) ofM. In other words,

λk(h) =
[
µm0+1−k

(
β

(0)
f,h

)]2
.

We will use the simple consequence of the Fan inequalities (see [Sim1],
[GoKr]) :

Proposition 7.5.
For any matrices A and B such that,

max
{
‖B‖ ,

∥∥B−1
∥∥} ≤ 1 + ρ ,

the singular values of A and AB satisfy

µk(A)

(1 + ρ)
≤ µk(AB) ≤ (1 + ρ)µk(A)

and the same holds with AB replaced by BA.

6The singular values µk(A) are numbered here as usual in the decreasing order with
µ1(A) = ‖A‖.
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Hence a small change of bases induces a small relative variation of the
singular values and it is not necessary to work with orthonormal bases in
order to estimate the singular values.

For example, we have, for any k ∈ {1, . . . , m0} ,

µk(β
(0)
f,h) = µk(M) = µk(I)

(
1 +O(e−α/h)

)
,

where I is the matrix of the map β
(0)
f,h introduced in (7.2).

We will construct by reverse induction onK, fromm0 down toK = 0, two
bases (v

(0)
k,K)k∈{1,...,m0} of F (0) and of F (1) (v

(1)
j,K)j∈{1,...,m1} so that the following

properties hold for ε ∈ (0, ε0] and some α > 0 independent of ε.

1) The systems (v
(0)
k,K)K<k≤m0 and (v

(1)
j(k),K)K<k≤m0 are orthonormal.

We then set

F
(0)
K = Span

{
v

(0)
k,K , K < k ≤ m0

}
and F

(1)
K = Span

{
v

(1)
j(k),K , K < k ≤ m0

}
.

2) For 1 ≤ k ≤ K, v
(0)
k,K belongs to

(
F

(0)
K

)⊥
and for j 6∈ {j(k), K < k ≤ m0},

v
(1)
j,K belongs to

(
F

(1)
K

)⊥
.

3) The estimates,

∀i ∈ {1, . . . , mℓ} ,
∥∥∥v(ℓ)

i,K − ψ
(ℓ)
i

∥∥∥ = Oε(e
−α/h) ,

hold for ℓ = 0, 1.
4) For K < k ≤ m0, the equalities

β
(0)
f,hv

(0)
k,K = νkv

(1)
j(k),K and ∆

DT,(0)
f,h v

(0)
k,K = ν2

kv
(0)
k,K

hold with
νk = 〈ψ(1)

j(k) | d
(0)
f,hψ

(0)
k 〉
(
1 +Oε(e

−α/h)
)
.

They imply, observing also that νk 6= 0 ,

∆
DT,(ℓ)
f,h F

(ℓ)
K ⊂ F

(ℓ)
K , ℓ ∈ {0, 1} .

5) For all j 6∈ {j(k), K < k ≤ m0} and all k ∈ {1, . . . , K}, we have

〈v(1)
j,K | β

(0)
f,hv

(0)
k,K〉 = 〈v(1)

j,K | d
(0)
f,hψ

(0)
k 〉 .
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We recall that the ψ
(ℓ)
i and the v

(ℓ)
i depend on h ∈ (0, h0] and ε ∈ (0, ε0] ,

while α > 0 enters in the exponential estimates. The parameters ε0 > 0 and
α > 0 belong to intervals which have to be reduced each time that one refers
to Corollary 6.9. This is done a finite number of times at each step of the
induction.

Initialization : the case K = m0.
We take v

(0)
k,m0

= v
(0)
k and v

(1)
j,m0

= v
(1)
j according to the definition of the

previous section. Conditions 1), 2) and 4) are empty. Conditions 2) and 3)
are given in Proposition 7.2. For Condition 5), we write

〈v(1)
j | β(0)

f,hv
(0)
k 〉 = 〈1[0,h3/2)(∆

DT,(1)
f,h )v

(1)
j | d(0)

f,h1[0,h3/2)(∆
DT,(0)
f,h )ψ

(0)
k 〉

= 〈1[0,h3/2)(∆
DT,(1)
f,h )v

(1)
j | d

(0)
f,hψ

(0)
k 〉 = 〈v(1)

j | d
(0)
f,hψ

(0)
k 〉 .

Recursion : from K to K − 1.
Assume that the result is true for K > 0 . Conditions 1) and 4) say that the

quantities |νk|, K < k ≤ m0 are singular values of β
(0)
f,h (ν2

k is an eigenvalue

of ∆
DT,(0)
f,h

∣∣
F (0)). Moreover the estimate,

νk = 〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k 〉
(
1 +Oε(e

−α/h)
)
, (7.3)

and Proposition 6.7 imply

|νk| ≥ Cεh
1/2e−(f(Uj(K+1))−f(U

(0)
K+1))/h ≥ Cεe

−(f(Uj(K))−f(U
(0)
K )−2α1)/h , (7.4)

with α1 independent of ε > 0 .
Let us consider the dual basis (v

(1),∗
j,K ) in F (1) . For j = j(k) , K < k ≤ m0 ,

v
(1),∗
j,K equals v

(1)
j,K and consequently

∥∥∥v(1),∗
j,K − ψ

(1)
j

∥∥∥ = Oε

(
e−α/h

)
.

The matrix of β
(0)
f,h : (F

(0)
K )⊥ → (F

(1)
K )⊥ in the bases (v

(0)
k,K)1≤k≤K and

(v
(1),∗
j,K )j 6∈{j(k),K<k≤m0} equals

(
〈v(1)

j,K | β
(0)
f,hv

(0)
k,K〉

)

j 6∈{j(k),K<k≤m0},1≤k≤K
. (7.5)
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Conditions 3) and 5) and Corollary 6.9 lead to

∥∥∥βf,h

∣∣
(F

(0)
K )⊥

∥∥∥ = Oε(e
−(f(Uj(K))−f(U

(0)
K )−α1)/h) .

Hence the quantity |νk|, K < k ≤ m0 are the first largest singular values of

β
(0)
f,h ,

∀k ∈ {K + 1, . . . , m0} , |νk| = µm0+1−k(β
(0)
f,h) =

√
λk(h) ,

and we have

√
λK(h) = µm0+1−K(β

(0)
f,h) =

∥∥∥β(0)
f,h

∣∣
(F

(0)
K )⊥

∥∥∥ . (7.6)

Let us now consider more carefully β
(0)
f,h

∣∣
(F

(0)
K )⊥

and its matrix (7.5) in the

bases (v
(0)
k,K)1≤k≤K , (v

(1),∗
j,K )j 6∈{j(k),K<k≤m0}. With the same arguments as above

relying on Corollary 6.9 and Conditions 3) and 5), its coefficients have the
form

〈ψ(1)
j(K) | d

(0)
f,hψ

(0)
K 〉
(
δj(K),j δK,k +Oε(e

−α2/h)
)
. (7.7)

Since the two bases are Oε(e
−α/h)-close to orthonormal bases, we obtain

√
λK(h) =

∣∣∣〈ψ(1)
j(K) | d

(0)
f,hψ

(0)
K 〉
∣∣∣ (1 +Oε(e

−α3/h)) .

We set

νK =
〈ψ(1)

j(K) | d
(0)
f,hψ

(0)
K 〉∣∣∣〈ψ(1)

j(K) | d
(0)
f,hψ

(0)
K 〉
∣∣∣

√
λK(h) . (7.8)

We have
β

(0)
f,hv

(0)
K,K = νKv

(1),∗
j(K),K +Oε(νKe

−α4/h). (7.9)

We next define the new bases (v
(0)
k,K−1) and (v

(1)
j,K−1).

Of course we keep v
(0)
k,K−1 = v

(0)
k,K and v

(1)
j(k),K−1 = v

(1)
j(k),K for K < k ≤ m0 .

We then take

v
(0)
K,K−1 =

∥∥∥1{λK}(∆
DT,(0)
f,h )vK,K

∥∥∥
−1

1{λK}(∆
DT,(0)
f,h )vK,K ,

and

v
(1)
j(K),K−1 =

1

νK
β

(0)
f,hv

(0)
K,K−1 .
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For 1 ≤ k ≤ K − 1 and j 6∈ {j(k), K − 1 < k ≤ m0} , we take

v
(0)
k,K−1 = v

(0)
k,K − 〈v

(0)
k,K | v

(0)
K,K−1〉v

(0)
K,K−1 ,

and

v
(1)
j,K−1 = v

(0)
j,K − 〈v

(1)
j,K | v

(1)
j(K),K−1〉v

(1)
j(K),K−1 .

By construction, conditions 1), 2) and 4) are satisfied by these new bases.

Condition 3) will be satisfied as well if
∥∥∥v(0)

K,K − v
(0)
K,K−1

∥∥∥ = Oε(e
−α5/h) holds.

The identity (7.6) gives

∀k ∈ {1, . . . , K} , v
(0)
k,K = 1[0,λK ](∆

DT,(0)
f,h )v

(0)
k,K . (7.10)

Moreover Corollary 6.9 yields

∀k ∈ {1, . . . , K − 1} , ∀j ∈ {1, . . . , m1} ,
∣∣∣〈v(1)

j,K | β
(0)
f,hv

(0)
k,K〉

∣∣∣ = Oε(
√
λKe

−α6/h) .

Like in the proof of Proposition 7.2, we obtain for some α7 > 0

1[0,λK)(∆
DT,(0)
f,h ) = 1[0,λKe−α7/h)(∆

DT,(0)
f,h ) . (7.11)

We now write, by spectral decomposition and using (7.11) and (7.10),

λK

∥∥∥1{λK}(∆
DT,(0)
f,h )v

(0)
K,K

∥∥∥
2

+Oε(λKe
−α7/h)

∥∥∥1[0,λK)(∆
DT,(0)
f,h )v

(0)
K,K

∥∥∥
2

= 〈∆DT,(0)
f,h v

(0)
K,K | v

(0)
K,K〉 , (7.12)

and observe that by (7.9)

〈∆DT,(0)
f,h v

(0)
K,K | v

(0)
K,K〉 =

∥∥∥β(0)
f,hv

(0)
K,K

∥∥∥
2

= λK

(
1 +Oε(e

−α4/2h)
)
. (7.13)

Hence we obtain
∥∥∥1{λK}(∆

DT,(0)
f,h )v

(0)
K,K

∥∥∥ = 1 +Oε(e
−α8/h) .

We conclude with
∥∥∥1[0,λK)(∆

DT,(0)
f,h )v

(0)
K,K

∥∥∥
2

=
∥∥∥v(0)

K,K

∥∥∥
2

−
∥∥∥1{λK}(∆

DT,(0)
f,h )v

(0)
K,K

∥∥∥
2

= Oε(e
−2α/h) +Oε(e

−2α8/h) .
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We have proved ∥∥∥v(0)
K,K − v

(0)
K,K−1

∥∥∥ = Oε(e
−α5/h) .

This implies

∥∥∥β(0)
f,hv

(0)
K,K − νKv

(1)
j(K),K−1

∥∥∥ =
∥∥∥β(0)

f,hv
(0)
K,K − β

(0)
f,hv

(0)
K,K−1

∥∥∥
=
∥∥∥β(0)

f,h1[0,λK ](∆
DT,(0)
f,h )(v

(0)
K,K − v

(0)
K,K−1)

∥∥∥
= Oε(

√
λKe

−α5/h) ,

while we have
∥∥∥β(0)

f,hv
(0)
K,K − νKv

(1),∗
j(K),K

∥∥∥ = Oε(νKe
−α4/h) .

The almost orthonormality of (v
(1)
j,K)j∈{1,...,m0} inherited from Condition 3)

and the almost orthogonality of (ψ
(1)
j ){1,...,m1} imply

∥∥∥v(1)
j(K),K − v

(1),∗
j(K),K

∥∥∥ = Oε(e
−α/2h) .

This yields ∥∥∥v(1)
j(K),K−1 − v

(1)
j(K),K

∥∥∥ = Oε(e
−α9/h) .

Let us verify Condition 5) for the new bases.
For k ∈ {1, . . . , K − 1} , the construction of the new bases and the induction
gives

v
(0)
k,K−1 = v

(0)
k,K − 〈v

(0)
k,K | v

(0)
K,K−1〉v

(0)
K,K−1

= v
(0)
k,m0
−∑K≤K ′≤m0

tk,K ′ v
(0)
K ′,K ′−1

= v
(0)
k −

∑
K≤K ′≤m0

tk,K ′ v
(0)
K ′,K−1 ,

with tk,K ′ := 〈v(0)
k,K ′ | v(0)

K ′,K ′−1〉 .
Hence we get, with v

(0)
k = 1[0,h3/2)(∆

DT,(0)
f,h )ψ

(0)
k ,

β
(0)
f,h v

(0)
k,K−1 = β

(0)
f,h v

(0)
k −

∑

K≤K ′≤m0

tk,K ′ β
(0)
f,hv

(0)
K ′,K−1

= 1[0,h3/2)(∆
DT,(1)
f,h ) d

(0)
f,hψ

(0)
k −

∑

K≤K ′≤m0

tk,K ′ νK ′ v
(1)
j(K ′),K−1 .
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Meanwhile, for j 6∈ {j(k) , K − 1 < k ≤ m0} , the vectors v
(1)
j,K−1 were con-

structed such that

v
(1)
j,K−1 ∈ (F

(1)
K−1)

⊥ =
(
Span{v(1)

j(K),K−1, . . . , v
(1)
j(m0) ,K−1}

)⊥
.

We obtain, for all k ∈ {1, . . . , K − 1} and all j 6∈ {j(k), K − 1 < k ≤ m0},

〈v(1)
j,K−1 | β

(0)
f,hv

(0)
k,K−1〉 = 〈1[0,h3/2)

(
∆

DT,(1)
f,h

)
v

(1)
j,K−1 | d

(0)
f,hψ

(0)
k 〉

= 〈v(1)
j,K−1 | d

(0)
f,hψ

(0)
k 〉 .

Conclusion for K = 0 : When K = 0, we obtain an orthonormal basis
(v

(0)
k,0)0<k≤m0 of F

(0)
0 = F (0) and an orthonormal basis (v

(1)
j(k))0<k≤m0 of F

(1)
0 ⊂

F (1) such that for ǫ ∈ (0, ǫ0) and α > 0 independent of ǫ,

∀k ∈ {1, . . . , m0} , β
(0)
f,hv

(0)
k,0 = νkv

(1)
j(k),0 ,

|νk| = µm0+1−k(β
(0)
f,h) .

νk = 〈ψ(1)
j(k) | d

(0)
f,hψ

(0)
k 〉(1 +Oǫ(e

−α/h)) .
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[HelSj1] B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit
I, Comm. Partial Differential Equations 9 (4), p. 337-408, (1984).

91
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Théor. 38, p. 296-307 (1983).

[Wit] E. Witten. Supersymmetry and Morse inequalities. J. Diff. Geom. 17,
p. 661-692 (1982).

[Zh] Weiping Zhang. Lectures on Chern-Weil theory and Witten deforma-
tions. Nankai Tracts in Mathematics. Vol. 4. World Scientific (2002).

A An example in dimension 1

We present more directly the 1-dimensional case. We just look at the case
of an interval [a, b] . We describe techniques which were first developed for
Neumann in [BoHe], adapting to one dimensional problem the techniques
developed in [HelSj1]. We just take the simple example of an interval (a, b)
with a < 0 < b and the Dirichlet realization of the semi-classical Witten
Laplacian

∆
(0)
f,h := −h2 d

2

dx2
+ f ′(x)2 − hf ′′(x) , (A.1)

associated to a function f on C∞([a, b]) admitting a unique minimum at 0

f(0) = f ′(0) = 0 , (A.2)
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and no local maxima :

f ′(x) 6= 0 on [a, b] \ {0} . (A.3)

In particular we get :
f ′(a) < 0 , f ′(b) > 0 . (A.4)

The function (a, b) ∋ x 7→ uh := exp−f(x)
h

satisfies

∆
(0)
f,h exp−f((x)

h
= 0 , (A.5)

but does not satisfy the Dirichlet condition at a and b. Of course, one can
take a cut-off function χ with compact support in (a, b) and equal to one on
[a+ ǫ, b− ǫ) but considering uχ = χuh, we get

∆
(0)
f,h(χuh) = O(exp−min(f(a), f(b))

h
) exp

θ(ǫ)

h
,

with θ(ǫ)→ 0 as ǫ→ 0 .
The best which can be obtained with this construction is the following

estimate for the ground state energy :

0 ≤ λ1(h) ≤ Cη(exp−2 min(f(a), f(b))

h
) exp

η

h
, ∀η > 0 . (A.6)

By taking an η-dependent cut-off function (η = Ch log h ), one can arrive to

λ1(h) = h−NO(exp−2 min(f(a), f(b))

h
) , (A.7)

for some N > 0 .
This does not give a lower bound. We also observe that this quasimode works
also for the Neumann problem.

In order to have a better result, one can simply proceed in the following
way. Let us assume for simplification that

f(a) < f(b) . (A.8)

Then the main effect is in a and we can continue to use a simple cut-off near
b. In order to satisfy the Dirichlet condition at a, we have to add a correction.
For this we need another “formal” solution, which is given by the

94



Lemma A.1.
For any formal series

∑
j αjh

j , there exists on [a, a+ η0) (η0 > 0) a formal
WKB solution

uwkb
− := c(x, h) exp

f(x)

h
, (A.9)

in the kernel of ∆
(0)
f,h , such that

c(x, h) ∼
∑

j≥0

cj(x)h
j , (A.10)

and
c(a, h) ∼

∑

j

αjh
j . (A.11)

Proof
We expand the relation :

exp−f(x)

h
∆

(0)
f,h(c(x, h) exp

f(x)

h
) ∼ 0 , (A.12)

in powers of h.
This explicitely leads to the following equation :

2f ′′c+ 2f ′c′ + hc′′ ∼ 0 , (A.13)

or
[2cf ′ + hc′]′ ∼ 0 . (A.14)

We first observe that the coefficient of h0 vanishes (this corresponds to the
fact that −f is a solution of the eikonal equation). Looking now at the
coefficient of h, we obtain :

−2f ′(x)c′0(x)− 2f ′′(x)c0(x) = 0 , c0(a) = α0 . (A.15)

Observing that f ′(x) 6= 0 near a, there is no problem for solving the equation,
in the neighborhood of a, which can be more simply written as

(c0f
′)′ = 0 , c0(a) = α0 . (A.16)

At the step j + 1, we will find :

−2f ′(x)c′j(x)− 2f ′′(x)cj(x) = c′′j−1(x) , cj(a) = αj , (A.17)

or
2cj(x)f

′(x) + c′j−1(x) = 2αjf
′(a) + c′j−1(a) . (A.18)

�
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The good quasimode
We define :

uwkb = χuh − exp−2f(a)

h
χ̃uwkb

− , (A.19)

where

• χ satisfies χ = 1 on [a , b− ǫ) and vanishes near b ;

• uwkb
+ is associated to α0 = 1, αj = 0 for j > 0 ;

• χ̃ satisfies χ̃ = 1 on [a , a+ ǫ0) and vanishes outside [a , a + 2ǫ0) .

Here ǫ and ǫ0 can be chosen arbirarily small (one condition is 2ǫ0 < η0) but
will be then fixed independently of h .

We fix some summation (by the Borel procedure) for c(x, h) with the
property that c(a, h) = 1. So the corresponding function uwkb (we use the
same notation) satisfies the Dirichlet condition at a and b. Let us compute :

∆
(0)
f,hu

wkb = [∆
(0)
f,h, χ]uh

− exp−2f(a)
h

[∆
(0)
f,h, χ̃]uwkb

−

− exp−2f(a)
h
χ̃∆

(0)
f,hu

wkb
− .

(A.20)

There are three terms in the right hand side that we write r1 + r2 + r3 and
that we analyze separately.

• r1 is supported near b and its size is (with in mind our assumption that

f(a) < f(b)) of order O(exp−f(b)
h

) exp θ(ǫ)
h

. We can choose ǫ > 0 such
that :

||r1||L2 = O(exp−f(a)

h
) exp−η1

h
, supp r1 ⊂ (b− ǫ , b) , (A.21)

for some η1 > 0.

• r2 is supported in (a+ ǫ0 , a+2ǫ0) and its size is exp−2f(a)
h

exp f(a+ǫ0)
h

.
If we observe that f(a+ ǫ0) < f(a), we get

||r2||L2 = O(exp−f(a)

h
) exp−η2

h
, supp r2 ⊂ (a+ ǫ0 , a+ 2ǫ0) ,

(A.22)
for some η2 > 0.
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• r3 is supported in [a, a + 2ǫ0) and its size is O(h∞) exp−2f(a)
h

exp f(x)
h

.
In particular, we get :

||r3||L2 = O(h∞) exp−f(a)

h
, supp r3 ⊂ [a , a + 2ǫ0) . (A.23)

So this is r3 which is the dominant term for the computation of the L2 norm
of the error and we have finally obtained

∆
(0)
f,hu

wkb = O(h∞) exp−f(a)

h
, (A.24)

in L2((a, b)), for a suitable choice of ǫ and ǫ0.
It is easy, to get a lower bound for ||uwkb|| assuming for example

f ′′(0) > 0 . (A.25)

In this case, we immediately get from this first computation, that there
is a unique eigenvalue of ∆

(0),Dir
f,h in the interval [0 , h

3
2 ] which is actually

exponentially small and that there exists ρ(h) ∼ h−
1
4ρ0 with ρ0 6= 0 such

that the normalized positive eigenvector v1(x, h) satisfies :

v1(x, h)− ρ(h)uwkb = O(h∞) exp−f(a)

h
. (A.26)

We note also that h
1
4ρ(h) has a complete expansion in powers of h, depending

only on the Taylor expansion of f at the origin. We have indeed :

1

ρ(h)2
∼ ||uwkb||2 . (A.27)

In this situation, elementary Hilbertian computations (see [HelSj1]) give
that :

λ1(h) =
〈∆(0)

f,hu
wkb | uwkb〉
||uwkb||2 +O(h∞) exp−2f(a)

h
. (A.28)

For a more precise estimate of the right hand side, we have consequently
to come back to a more careful estimation of the terms 〈rj | uwkb〉 modulo

O(h∞) exp−2f(a)
h

. Let us determine the significant terms.

• We can clearly forget 〈r1 | uwkb〉 which satisfies, for η1 > 0 ,

exp
2f(a)

h
〈r1 | uwkb〉 = exp−η1

h
. (A.29)
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• For r2, we get :

exp
2f(a)

h
〈r2 | uwkb〉 = exp

2f(a)

h
〈r2 | uh〉+O(h∞) . (A.30)

• For r3, we get :

exp
2f(a)

h
〈r3 | uwkb〉 = O(h∞) . (A.31)

From this analysis, we get :

λ1(h) =
〈r2 | uh〉
||uh||2

+O(h∞) exp−2f(a)

h
, (A.32)

with r2 defined after (A.20). So

exp
2f(a)

h
λ1(h) =

〈[∆(0)
f,h, χ̃]uwkb

− | uh〉
||uh||2

+O(h∞) . (A.33)

The computation is now elementary (and rather standard).

〈[∆(0)
f,h, χ̃]uwkb

− | uh〉 = −h
∫ b

a
(h(χ̃′′c(x, h) + 2χ̃′c′) + 2χ̃′c(x, h)) f ′(x)dx

= −h
∫ b

a
χ̃′[2cf ′ + c′]dx

∼ −2hf ′(a)− h2c′(a) .

In the last line, we have used the eikonal equation (modulo O(h∞)) and an
integration by parts. We are happy to recover as expected that the result is
independent of the choice of χ̃, with the above properties. We finally get :

exp
2f(a)

h
λ1(h) =

d(h)

||uh||2
+O(h∞) , (A.34)

with
d(h) = −2hf ′(a)(1 +O(h)) . (A.35)

So we have proved :

Proposition A.2.
Under assumptions (A.2), (A.3), (A.4), (A.8) and (A.25), the lowest eigen-

value of ∆
(0)
h,f has the following expansion :

exp
2f(a)

h
λ1(h) = −2(π)−

1
2 h

1
2f ′(a)f ′′(0)

1
2 (1 +O(h)) . (A.36)
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Note that there are in principle no problem for computing explicitly a
complete expansion of the right hand side in (A.36). Note also that we have
proceeded differently in the general case but that we of course recover (A.36)
as subcase of Theorem 1.1 .

Remark A.3.
The treatment in our main text is a little different but we recall that by
applying df,h to the localized quasimode constructed for ∆

(0)
f,h near a or near

b, we get two orthogonal quasimodes showing the existence of a spectral space
of dimension ≥ 2 corresponding to exponentially small eigenvalues.
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