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Abstract We carry out numerical and mathematical investigations of shear Alfvén waves inside of a spherical shell
filled with an incompressible conducting fluid, and bathed in a strong dipolar magnetic field. We focus on axisym-
metric toroidal and non-axisymmetric modes, in continuation of a previous work by Rincon & Rieutord (2003).
Analytical expressions are obtained for toroidal eigenmodes and their corresponding frequencies at low diffusivi-
ties. These oscillations behave like magnetic shear layers, in which the magnetic poles play a key role, and hence
become singular when diffusivities vanish. It is also demonstrated that non-axisymmetric modes are split into
two categories, namely poloidal or toroidal types, following similar asymptotic behaviours as their axisymmetric
counterparts when the diffusivities become arbitrarily small.

Key words. MHD – stars: oscillations – stars: magnetic fields

1. Introduction

Numerous astrophysical systems exhibit a pulsating be-
haviour that can be significantly influenced by the Lorentz
force when a strong magnetic field is present. This may for
instance be the case in neutron stars and magnetic white
dwarfs (Lou, 1995). Planetary cores, which are known to
sustain a strong dynamo (Stevenson, 1983), are also likely
to fall into this category.

One of the most exciting examples of couplings be-
tween pulsation and magnetism is given by the seismo-
logical activity of roAp stars. This class of stars, discov-
ered by Kurtz (1978), exhibits several kG (almost) dipolar
magnetic fields and luminosity variations on periods rang-
ing from 5 to 15 min. These oscillations seem to be well
approximated by a single spherical harmonic ℓ = 1 lined
up with the magnetic axis, suggesting a strong mixing be-
tween high order p-modes and Alfvénic type oscillations.

Many different models have been developed to obtain
a satisfying picture of the asteroseismology of these stars.
Following theoretical work by Biront et al. (1982), Roberts
& Soward (1983) and Campbell & Papaloizou (1986),
Dziembowski & Goode (1996) have studied acoustic star
models enveloped by a layer in which magnetic effects be-
come dominant. Using a boundary layer approximation,
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they came up with an outer boundary condition which
was then applied for the calculation of adiabatic acous-
tic modes. This model has undergone a lot of refinements
in order to take into account new physical processes. The
latest version, proposed by Bigot & Dziembowski (2002),
incorporates the centrifugal force (a non-axisymmetric ef-
fect, since the rotational and magnetic axis are often tilted
in roAp stars) and suggests that the axis of the modes is
not necessarily lined up with the magnetic axis. In spite of
these improvements, there are still non-negligible discrep-
ancies between the magnetically shifted eigenfrequencies
computed from these models and the observed ones, show-
ing that the precise coupling mechanism occurring in the
surface layers is likely to be more complex. An important
point is that a single ℓ value is sometimes assumed to
be sufficient to describe the oscillations. This may not be
the case, owing to the dipolar structure of the permanent
magnetic field which induces a coupling between spherical
harmonics thus producing a whole spectrum of ℓ’s (e.g.
Rincon & Rieutord 2003).

Motivated by the observation that chemical peculiar-
ities are observed near the magnetic poles of roAp stars,
Balmforth et al. (2001) have tried to determine what pre-
cise physical phenomena were occurring in the polar and
equatorial regions. Since the magnetic field is almost hor-
izontal near the equator and vertical near the poles, con-
vection is certainly inhibited in the latter region, allowing
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the diffusion of different chemical elements (an excess of
helium is observed on the polar caps). Oscillations trig-
gered by a κ-mechanism may therefore preferentially be
observed in this region. This approach stresses the impor-
tance of a global description of the eigenmodes in such
stars.

The work presented here originates partly from the
preceding remarks. It continues the study described in
Rincon & Rieutord 2003 (hereafter referred to as Paper I)
and should be viewed as a preliminary step to obtain
global models of the more complex magneto-gravito-
acoustic oscillations. We aim at understanding some of
the underlying physical mechanisms potentially involved
in roAp stars or similar astrophysical objects, by using
an approach that rigorously treats the couplings induced
by the geometry of the magnetic field. Our highly sim-
plified model consists of a non-rotating spherical shell of
incompressible magnetised fluid bathed in a dipolar mag-
netic field, with small magnetic and kinematic diffusivi-
ties. As a consequence of incompressibility, the modes we
compute are shear Alfvén waves. In Paper I, a spherical
harmonic decomposition of the linearised MHD equations
was obtained and results regarding poloidal axisymmetric
modes were presented (a short reminder of the classifi-
cation of modes is given later on in the paper). It was
shown that the least-damped modes are near the mag-
netic poles and exhibit internal shear layers which can
potentially play a role in mode selection. In the present
study, we focus on the other types of shear Alfvénic oscil-
lations in spherical shells, namely axisymmetric toroidal
and non-axisymmetric modes, and characterise numeri-
cally and mathematically their geometry, eigenspectrum,
and some by-products like boundary layers.

In Sect. 2, we recall the basic physical ingredients of
the model and shortly describe our numerical strategy.
Sect. 3 is devoted to the phenomenological description and
analytical study of axisymmetric toroidal modes. Sect. 4
covers non-axisymmetric modes and their resemblance to
their axisymmetric counterparts. Finally, Sect. 5 and 6
conclude the paper. Note that most of the mathematical
details involved in Sect. 3 are given in App. A and App. B
to preserve the clarity of the manuscript.

2. Description of the model

2.1. Basic equations

We first give a brief description of the model that is used
in calculating toroidal and non-axisymmetric modes and
which was already used in Paper I. More details on the ba-
sic equations and their expansion onto the spherical har-
monic base are given in Paper I.

The “star” we work with is a spherical shell of incom-
pressible plasma of density ρo, with a radius R and an
aspect ratio η. In all the numerical examples and figures,

we use η = 0.351. Within this shell is a dipolar magnetic
field generated in a perfectly conducting core:

B = Bo · R3

(

cos θ

r3
er +

sin θ

2r3
eθ

)

. (1)

We use the following underlined dimensionless variables:

r = Rr, v = VAv, B = BoB, t =
R

VA
t,

where VA, the Alfvén velocity, is given by the following
expression, µo being the magnetic permeability:

VA =
Bo√
ρoµo

. (2)

We apply the linearised magneto-hydrodynamic equations
to the kinetic v and magnetic b perturbations (we drop
the underlined notation). We assume these perturbations
have a time dependence of the form eλt, where λ = τ + iω
(τ is the damping rate, ω the pulsation and i2 = −1). This
leads to the following set of equations:

∇ · v = 0,
∇ · b = 0,
λ∇ × v = ∇ × ((∇ × b) × B) + E∇ × ∆v,
λb = ∇ × (v × B) + Em∆b.

(3)

where B denotes the permanent dipolar magnetic field.
The parameters E and Em are non-dimensional forms of
the kinematic and magnetic diffusivities, respectively, and
are given by the following expressions:

E =
ν

RVA
, Em =

1

σoµoRVA
, (4)

where σo is the conductivity of the fluid. In the case of
roAp stars, these parameters take on the following typical
values :

Em ∼ 10−8, E ∼ 10−13.

2.2. Boundary conditions

The boundary conditions used in our model are as follows.
For the velocity, we use stress-free, non-penetrative, con-
ditions to minimise the importance of boundary layers.
This leads to the following conditions, valid for r = η and
r = 1:

∂

∂r

(vθ

r

)

= 0,
∂

∂r

(vϕ

r

)

= 0, vr = 0. (5)

As for the magnetic field, different conditions apply for the
inner and outer boundaries. On the interior, the perturba-
tion to the electric field is perpendicular to the conducting
core, and the perturbation to the magnetic field is tangent.
This gives the following three equations:

br = 0,

Em

r

∂

∂r
(rbθ) = −vθBr,

Em

r

∂

∂r
(rbϕ) = −vϕBr.

(6)

1 This is the aspect ratio of the Earth’s liquid core or that
of the radiative zone of a 3 M⊙ star.
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When the other boundary conditions are taken into ac-
count, and when λ is different from zero, these equations
are not independent and only correspond to two condi-
tions. On the outer boundary and beyond, the magnetic
field is continuous and potential, since there are no cur-
rents in empty space. By using the continuity of this field,
and the idea that it does not diverge toward infinity, it
is possible to define two boundary conditions, which are
more easily expressed in spherical harmonics (see Eq. (8)).

Eq. (3), together with these boundary conditions, de-
fines a generalised eigenvalue problem, where λ is the
eigenvalue and (v, b) is the eigenvector which can be com-
puted numerically.

2.3. Harmonic projection

In order to solve Eq. (3), the fields v and b are projected
onto the harmonic base:

v =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

uℓ
mR

m
ℓ + vℓ

mS
m
ℓ + wℓ

mT
m
ℓ ,

b =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓ
mR

m
ℓ + bℓ

mS
m
ℓ + cℓ

mT
m
ℓ ,

(7)

in which R
m
ℓ , S

m
ℓ , and T

m
ℓ are the normalised spherical

harmonics:

R
m
ℓ = Y m

ℓ er, S
m
ℓ = r∇Y m

ℓ , T
m
ℓ = r∇ × Y m

ℓ .

The full harmonic decomposition of Eq. (3) is given in
App. A of Paper I. The outer boundary condition on the
magnetic field reads:

∂aℓ
m

∂r
+

(ℓ + 2)aℓ
m

r
= 0,

cℓ
m = 0.

(8)

2.4. Classification and symmetries

The various eigenmodes fit naturally into different cate-
gories. Firstly, as was already shown in Paper I, there is no
coupling between different m’s. Hence, eigenmodes will be
made up of only one m. This leads to two types of modes:
axisymmetric oscillations (m = 0) and non-axisymmetric
ones (m 6= 0). Secondly, within the axisymmetric category,
it is possible to distinguish between poloidal modes and
toroidal ones, as the corresponding equations fully decou-
ple for m = 0 (see App. A of Paper I). Poloidal modes are
made up of uℓ

0, vℓ
0, aℓ

0, and bℓ
0 functions which correspond

to er and eθ components. Toroidal modes are made up of
wℓ

0 and cℓ
0 functions and are in the eϕ direction.

A certain number of symmetries are present in the
physical system and lead to a few simplifications. As was
pointed out in Paper I, a parity can be defined for eigen-
modes. However, there was a slight confusion as to the
parity of toroidal components (see Eq. (19) of Paper I)
since a mode is called even when the velocity perturba-
tion is symmetric with respect to the equator and the

magnetic perturbation antisymmetric, and a mode is odd
in the reverse situation. The corrected form for toroidal
eigenvectors reads:

(v, b) = (w2k+1
o , c2k

o ) even,
(v, b) = (w2k

o , c2k+1
o ) odd.

(9)

Non-axisymmetric modes also have a global parity. In
fact it is possible to anticipate this result without the use
of spherical harmonics. If we define M as being the op-
erator that gives the mirror image of a vector field with
respect to the equator2, and if (v, b, λ) is a solution, then
(Mv,−Mb, λ) is also a solution. By combining these two
solutions, it is possible to extract an even part and an odd
part from the original solution. Eigenvectors will take on
the following form:

(v, b) = (um+2k
m , wm+2k+1

m , am+2k+1
m , cm+2k

m ) even,
(v, b) = (um+2k+1

m , wm+2k
m , am+2k

m , cm+2k+1
m ) odd.

(10)
This symmetry enables us to work with half as many com-
ponents for a given resolution, which is advantageous from
the numerical point of view. Useful information about the
eigenspectra can be deduced from the symmetry of B with
respect to any meridian. For a given solution (v, b, λ) it is
possible to create a second solution (Sv,Sb, λ), where S is
the operator3 that gives the mirror image of a vector field
with respect to the meridian that passes through ϕ = 0.
When applied to spherical harmonics, the azimuthal or-
der m changes to −m. From this we conclude that the
eigenspectrum of modes with azimuthal order m is the
same as that of −m. This also leads to the decoupling
of poloidal and toroidal components in the axisymmetric
case (the poloidal modes being symmetric with respect
to S and the toroidal modes antisymmetric). By taking
into account that B is real, we deduce that the eigenspec-
trum for m is the conjugate of that for −m. Therefore,
each eigenspectrum is symmetrical with respect to the real
axis. Practically, this means that we only need to explore
eigenvalues for positive azimuthal orders, and only on the
upper half of the complex plane (ω ≥ 0).

If rotation were taken into account, a number of these
symmetries would break down. Apart from the situation
where the rotation and magnetic axis are aligned, different
m’s become coupled and mode parity is lost. The symme-
try with respect to S is lost even when the rotation axis
is lined up with the magnetic field.

2.5. Numerical aspects

Eigenmodes and eigenvalues are calculated numerically
using two different methods. The first method, based on
a QZ algorithm, gives all the eigenvalues (for the discre-
tised problem) whereas the second method is an iterative

2 In spherical coordinates, M is defined as follows:
MV (r, θ, ϕ) = Vr(r, π − θ, ϕ)er − Vθ(r, π − θ, ϕ)eθ + Vϕ(r, π −
θ, ϕ)eϕ.

3 In spherical coordinates, S is defined as follows:
SV (r, θ, ϕ) = Vr(r, θ,−ϕ)er +Vθ(r, θ,−ϕ)eθ −Vϕ(r, θ,−ϕ)eϕ.
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Arnoldi-Chebyshev algorithm which only computes a se-
lection of eigenvalues and their corresponding eigenmodes.

In our numerical calculations, we use a simplified ver-
sion of Eq. (7). Since different m’s are decoupled, we do
not have a summation over the azimuthal order. Also, be-
cause the divergence of both perturbations is zero, the
functions vℓ

m and bℓ
m can be expressed in terms of uℓ

m and
aℓ

m, respectively (see App. A of Paper I). Furthermore, in
the case of axisymmetric modes, the summation on ℓ will
actually start at 1 instead of 0 as a result of our boundary
conditions. In the non-axisymmetric case, the summation
on ℓ will start at |m| as expected. Finally, the sum on the
spherical harmonics is truncated at L. This leads to the
following formulas:

v =

L
∑

ℓ=ℓmin

uℓ
mR

m
ℓ + vℓ

mS
m
ℓ + wℓ

mT
m
ℓ ,

b =
L
∑

ℓ=ℓmin

aℓ
mR

m
ℓ + bℓ

mS
m
ℓ + cℓ

mT
m
ℓ .

(11)

Each of the functions uℓ
m, wℓ

m,aℓ
m and cℓ

m is written in the
form of a truncated Chebyshev series:

uℓ
m(r) =

Nr
∑

k=0

ũℓ
m(k)Tk(r).

Typically, we could reach a spatial resolution of L =
350, Nr = 930 for axisymmetric toroidal modes (when
analysing boundary layers) and L = 858, Nr = 340 for
non-axisymmetric modes.

We also define Chebyshev and harmonic spectral coef-
ficients:

Ck =
max

ℓ
|ũℓ

m(k)|

max
ℓ,k

|ũℓ
m(k)|

, Cℓ =
max

k
|ũℓ

m(k)|

max
ℓ,k

|ũℓ
m(k)|

.

They are useful for characterising certain aspects of a
mode’s structure, as will be seen in Sect. 3.7, as well as
the convergence of the discretization.

3. Axisymmetric toroidal modes

3.1. Basic properties

In this section, we discuss the basic properties of axisym-
metric toroidal modes. As a reminder, the fields v and b

are both orientated in the direction eϕ. From the point of
view of spherical harmonics they are made up of (wℓ

0, c
ℓ
0)

components.
The equations that govern toroidal modes can be sim-

plified. It is no longer necessary to take the curl of the
Navier-Stokes equation to remove the pressure term, be-
cause this term vanishes owing to axisymmetry. This leads
to the following, nearly symmetric system:

λbϕ = (B · ∇)vϕ − 3 cos θ/2r4vϕ + Em∆′bϕ,
λvϕ = (B · ∇)bϕ + 3 cos θ/2r4bϕ + E∆′vϕ.

(12)

Note that ∇ · v = 0, ∇ · b = 0 and ∆′ = ∆ − 1/r2 sin2 θ.

3.2. Eigenvalue spectrum

In many ways, the eigenvalue spectrum of toroidal
modes is similar to that of the poloidal modes presented
in Paper I. The complex eigenvalues are grouped into
“horizontal” branches, as can be seen in Fig. 1. These
“eigenbranches”, indexed by n, correspond to modes with
n nodes in the radial direction (see Fig. 2). Both perturba-
tions have n nodes, but in different positions. Depending
on parity, diffusion modes (ω = 0, τ 6= 0) also appear but
these modes are of little interest to asteroseismology. In
all that follows, we will only consider oscillatory modes.

Figure 1. Eigenvalue spectrum for odd modes and E =
Em = 10−4. The plusses (+) correspond to oscillatory
modes and the diamonds (⋄) to diffusion modes, which
only appear for the odd parity. The letters n and q quan-
tify the oscillatory mode spectrum.

A careful look at the eigenvalues along a single branch
reveals a regular structure. These values are remarkably
well lined up, much better than their poloidal counter-
parts, and they are equally spaced out. This suggests the
following empirical law:

λn,q = αn + q · βn (13)

where αn and βn (< 0) depend on the value of n, and
q is given in Fig. 1. By looking at the slope of the
eigenbranches, it is possible to determine the ratio be-
tween the real and imaginary parts of βn. In our case,
Re(βn) ≃ Im(βn).

We can then look at the corresponding eigenmodes.
When q increases, two phenomena appear. First of all, for
the least-damped modes, the number of nodes in the hor-
izontal direction seems to increase. However, these nodes
are not all conspicuous. Secondly, modes that have a
higher damping rate gradually depart from the magnetic
poles. Fig. 3 illustrates both of these phenomena. Care
must be taken with highly damped modes: the spectral
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Figure 2. Axisymmetric toroidal modes with different vertical structures, for E = Em = 10−3. The left quadrant in
each image corresponds to magnetic dissipation and the right one to magnetic energy. From left to right, and from
top to bottom, the modes represented here correspond to (n, q) = (2, 0), (3, 0), (4, 0) and (5, 0). A logarithmic scale is
used in this figure and most of the other figures in this paper, as it brings out more details on the modes’ structure.

coefficients indicate that the solutions are convergent, but
the corresponding eigenvalues are highly unstable numer-
ically due to round-off errors. This limits the number of
modes that can be analysed safely.

3.3. Mode structure and resonant field lines

The structure of the modes can be understood if one
computes the resonance frequencies of different field lines
for the ideal case E = Em = 0. As each field line can oscil-
late at its own frequency, the resonance frequencies form
a continuous spectrum called the Alfvén continuum. (For
our configuration, there will be a continuum for each value
of n). These eigenvalues are purely imaginary because the
ideal MHD operator which gives the squared eigenvalues
λ2 is self-adjoint.

For a first approximation of these frequencies, we can
apply the same formula as was used by Alfvén (1945),
which is derived from the time it takes for a wave traveling
along a field line to go from one boundary to the other.
This corresponds to a WKB-type approximation, in which
the curvature terms have been neglected:

T =

∫

Field line

dl

‖VA‖
=

(

n +
1

2

)

π

ωf.l.
, (14)

where n is the number of nodes along the field line. A field
line will then be resonant if it satisfies the relation ωf.l. = ω
where ω is the frequency of the mode. Since the density is
constant, the integral can be calculated analytically and

is given by:

∫

dl

‖VA‖
=















2

sin8 θ1

[

cos7 θ

7
− 3 cos5 θ

5
+cos3 θ−cos θ

]θ1

θη

1 − η4

4
if θη = θ1 = 0,

(15)
with [f(θ)]θ1

θη
= f(θ1) − f(θη). θη and θ1 are the colati-

tudes of the field line on the inner and outer boundaries
and satisfy the relation sin2 θη = η sin2 θ1. This formula is
the same as Eq. (26) by Kato & Watanabe (1958), except
for the bounds on the integral. We see that the oscillation
rate decreases for field lines further from the magnetic
poles, hence one can expect eigenmodes with lower eigen-
frequencies to be further from the poles.

Taking the variations of B into account, in order to
obtain better results, yields the following equations, which
still only apply to individual field lines:

iωf.l.b =
cos θ

r3

dv

dr
− 3 cos θ

2r4
v,

iωf.l.v =
cos θ

r3

db

dr
+

3 cos θ

2r4
b,

v(η) = 0,

b(1) = 0.

(16)

where cos θ =
√

1 − r sin2 θ1. The boundary conditions
are derived from a simple analytical model (see Eq. (B.8))
and were used to establish the n + 1/2 quantification in
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Figure 3. Different modes from the n = 3 eigenbranch.
From top to bottom, q takes on the values 1, 3 and 9.

Eq. (14). With this approach, the resonant field line coin-
cides much better with the mode (see Fig. 4).

3.4. Polar eigenspectrum

We will now give a precise calculation (in the adiabatic
case (E = Em = 0)) of the resonance frequencies corre-
sponding to the field line along the magnetic axis. This
analysis is motivated by the role of resonating polar field
lines in the asymptotic limit of small diffusivities. The adi-
abatic eigenfrequencies will be denoted by the superscript
“0”.

These frequencies are solutions of Eq. (16) with cos θ =
1. By combining the two first equations, solving for v and
assuming λ = iω, we obtain:

r2 d2v

dr2
− 3r

dv

dr
+

(

15

4
+ ω2r8

)

v = 0. (17)

(We have dropped the notation ωf.l..) The solution to this
equation is (see Abramowitz & Stegun (1972)):

v = Ar2J 1

8

(

ωr4

4

)

+ Br2J− 1

8

(

ωr4

4

)

, (18)

where A and B are two constants and Jν is the Bessel
function of the first kind of order ν. The corresponding

Figure 4. The kinetic energy and dissipation of eigenmode
(n, q) = (1, 8) with resonant field lines superimposed. The
diffusivities are E = Em = 4.10−5. The dotted line corre-
sponds to Eq. (14), which is a WKB-type approximation,
and the dashed one to Eq. (16), which takes the variations
of B into account. As opposed to other figures in this pa-
per, a linear intensity scale is used instead of a logarithmic
one. This gives a thinner appearance to the mode’s struc-
ture.

solution for b is:

b = iBr2J 7

8

(

ωr4

4

)

− iAr2J− 7

8

(

ωr4

4

)

, (19)

The boundary conditions determine the eigenfrequencies,
via the following relation:

J 1

8

(

ωη4

4

)

J 7

8

(ω

4

)

+ J− 1

8

(

ωη4

4

)

J− 7

8

(ω

4

)

= 0. (20)

We will use the notation λ0
n = iω0

n to mean the nth
eigenvalue calculated with this model. Asymptotically, for
high frequencies, these values are well approximated by

the WKB frequencies found in Paper I: ω0
n ∼ 2(2n+1)π

1−η4 .

The corresponding solutions are written b0
n and v0

n and
are given by the formulas:

v0
n = r2J 7

8

(

ω0
n

4

)

J 1

8

(

ω0
nr4

4

)

+ r2J− 7

8

(

ω0
n

4

)

J− 1

8

(

ω0
nr4

4

)

,

b0
n = ir2J− 7

8

(

ω0
n

4

)

J 7

8

(

ω0
nr4

4

)

− ir2J 7

8

(

ω0
n

4

)

J− 7

8

(

ω0
nr4

4

)

.

(21)

It is worth noting the striking similarity between these
expressions and Eq. (30) by Kato & Watanabe (1958),
which corresponds to the radial variation of geomagnetic
poloidal modes (instead of toroidal ones) calculated for a
dipolar background in which the θ-dependence of ‖B‖ has
been neglected.

In order to show the physical meaning of these eigen-
values, we took an eigenspectrum and prolongated the
lines formed by the eigenbranches (see Fig.1). The inter-
sections between the lines and the imaginary axis (τ = 0)
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n Num. ω0

n WKB

0 3.8167 3.8171 6.3789
1 17.6147 17.5996 19.1367
2 30.6762 30.6363 31.8945
3 43.6358 43.5575 44.6524
4 56.5614 56.4305 57.4102
5 69.4727 69.2767 70.1680
6 82.3822 82.1057 82.9258
7 95.2896 94.9228 95.6836

Table 1. A comparison between numerical polar eigenfre-
quencies (Num.), adiabatic ones (ω0

n) and a WKB ap-
proximation. The numerical values were obtained using
a least square method on the eigenvalues corresponding
to E = Em = 10−4 and correspond to the intersection
between the eigenbranches and the imaginary axis.

correspond to what could be called “numerical polar eigen-
frequencies”. The agreement between these values and λ0

n

is rather good, as can be seen in Tab. 1. This leads to
the conclusion that the polar eigenfrequencies are a good
indicator of the eigenbranches’ positions.

3.5. Asymptotic behaviour for small diffusivities

The next step is to look at the behaviour of eigenmodes
and eigenvalues when the diffusivities E and Em approach
zero. There are two important reasons for this. First of all,
realistic astrophysical values of E and Em are very small
(. 10−8) and still out of reach for numerical solvers. Being
able to extrapolate the behaviour of eigenmodes gives an
educated guess as to what they would actually be for low
diffusivities. A second reason is that it may be possible
this way to refine analytically the adiabatic eigenvalues
λ0

n defined by Eq. (20) to obtain a better approximation
of the true eigenvalues.

We therefore analysed the behaviour of the mode n =
1, q = 0 for different values of the diffusivities. Figure 5
and Fig. 6 show how its eigenvalue, its position and its
“thickness” vary. In order to calculate the mode’s position
and thickness, we took a profile of the magnetic energy
|b|2 along a meridional cut with a fixed radius4 of 0.5 and
a horizontal extent going from θ = 0 to θ = π/2. From
this profile, we calculated a mean value θ and a standard
deviation σθ. These correspond to estimates of the mode’s
position and thickness, respectively.

From these graphs it is possible to deduce some of
the physical phenomena that are taking place. In the case
where E = Em, we observe that the eigenvalue approaches
the n = 1 polar eigenfrequency given by Eq. (20). At the
same time, the mode seems to get thinner and closer to
the magnetic poles. We observe from Fig. 5 and Fig. 6

4 The choice of this radius is arbitrary. If we pick differ-
ent radii, we get approximately the same empirical laws (see
Eq. (22)).

Figure 5. Behaviour of eigenvalue (n, q) = (1, 0) for dif-
ferent values of E and Em. ∆ω corresponds to the differ-
ence between the theoretical polar eigenfrequency, solu-
tion to Eq. (20), and the actual frequency of the mode.
When Em = 10−3, the eigenvalue never attains λ0

n. When
E = Em, the slope of the ∆ω line is 1/2, meaning that
∆ω is proportional to E1/2.

Figure 6. Behaviour of an eigenmode for different values
of E and Em. θ is an estimate of the mode’s position and
σθ an estimate of the thickness. In the case E = Em the
position and thickness seem to be approaching zero; the
slope of both lines is 1/4.

that:
λ1,0 = λ0

1 + E1/2(τ1 + iω1) + Eτ2,

θ ∝ E1/4,
σθ ∝ E1/4,

(22)

in which λ0
1 is the polar eigenvalue, and τ1, ω1 and τ2 are

constants. It turns out that τ1 = ω1. These laws suggest
that toroidal modes become singular when E = Em ap-
proach zero thus revealing their true nature, namely that
of magnetic shear layers.
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By identifying Eq. (13) with Eq. (22), we find that:

α1 = λ0
1 + E1/2(τ1 + iω1) + Eτ2. (23)

A comparison between β1 and τ1 + iω1 permits the iden-
tification:

β1 = E1/2(τ1 + iω1). (24)

Therefore, we can cast Eq. (13) into a new form, which sep-
arates the adiabatic contribution from the non-adiabatic
ones:

λn,q = λ0
n + E1/2(q + 1)(τ1

n + iω1
n) + Eτ2

n. (25)

The third term, τ2
n, is roughly proportional to the square of

the frequency and can therefore become noticeable when
n is sufficiently large. If the eigenvalues were reduced to
the first two terms, then for arbitrary values of E, they
would all fall on the lines given by:

Im(λ) − ω0
n

ω1
n

=
Re(λ)

τ1
n

. (26)

When Em is fixed, the situation is different. The eigen-
value does not appear to converge toward its correspond-
ing polar eigenvalue. At the same time, the mode struc-
ture does not become singular, which is consistent with
the behaviour of the eigenvalue. The same experiment
can be repeated, but with E fixed instead of Em. The
same phenomenon appears. However, the limit eigenvalue
for (Em = 0, E = 10−3) is not the same as for (Em =
10−3, E = 0).

3.6. Asymptotic solutions

Having separated the adiabatic and non-adiabatic contri-
butions to the eigenvalue, we will now give a justification
of Eq. (25), based on an analytical model. We assume that
the diffusivities are of the form E = Kε and Em = Kmε,
with ε approaching zero. We find that to zeroth order in ε,
eigenmodes can be put in the following form (see App. A):

b0(r, ν̂) = b0
n(r)f(ν̂),

v0(r, ν̂) = v0
n(r)f(ν̂),

(27)

where (b0
n, v0

n) are given by Eq. (21), and ν̂ =
ε−1/4 sin θ/

√
r remains constant along field lines. We prove

in App. A that the function f satisfies the following dif-
ferential equation (see Eq. (A.10)):

λ1
nC1f = −λ0

nν̂2C2

2
f + C3

[

d2f

dν̂2
+

1

ν̂

df

dν̂
− f

ν̂2

]

, (28)

where λ0
n and λ1

n are the two first orders of λ, and C1, C2

and C3 are constants given by the following formulas:

C1 =

∫ 1

η

r3
(

|b0
n|2 + |v0

n|2
)

dr,

C2 =

∫ 1

η

r4
(

|b0
n|2 + |v0

n|2
)

dr,

C3 =

∫ 1

η

Km|b0
n|2 + K|v0

n|2 dr.

(29)

The function f vanishes at the pole since b and v are
toroidal. In order to mimic the confinement of eigenmodes
near the poles, we also impose the condition that f ap-
proaches zero as ν̂ goes to infinity. We then look for the
eigenfunctions f and eigenvalues λ1

n that satisfy Eq. (28).

The variable ν̂ is rescaled to ρ = ν̂eiπ/8 4

√

ω0
nC2

2C3

where

λ0
n = iω0

n. This leads to the following equation:

d2f

dρ2
+

1

ρ

df

dρ
−
(

1

ρ2
+ ρ2 +

λ1
ne−iπ/4C1
√

ω0
nC2C3/2

)

f = 0, (30)

A general solution f of Eq. (30) can be expressed via
a linear combination of the following functions:

s1(ρ) = ρ e−ρ2/2M
(

a, 2, ρ2
)

,

s1(ρ) = ρ e−ρ2/2U
(

a, 2, ρ2
)

,

a = 1 +
λ1

ne−iπ/4C1
√

8ω0
nC2C3

,

(31)

where M and U are confluent hypergeometric func-
tions, solutions to Kummer’s equation (see Abramowitz
& Stegun (1972), M is known as Kummer’s function).
When a is not a negative integer, it can be shown that
s1 diverges when ρ goes to infinity and s2 diverges when
ρ approaches 0. Hence, the only way to satisfy our set of
boundary conditions is to assume that a is a negative in-
teger, namely a = −q. In that case, the functions M and
U both become proportional to the generalised Laguerre
polynomials (see Abramowitz & Stegun (1972)):

M(−q, 2, x) =
L

(1)
q (x)

q + 1
=

x−1ex

(q + 1)!

dq

dxq

(

x1+qe−x
)

. (32)

In summary, we obtain the following expressions for
toroidal axisymmetric eigenvalues:

λn,q = λ0
n + ε1/2λ1

n,q + O(ε),

λ0
n = iω0

n ≃ 2(2n + 1)π

1 − η4
,

λ1
n,q = −2(1 + q)(1 + i)

√

ω0
nC2C3

C1
.

(33)

The corresponding modes are given by:

b = b0 + O(ε1/2),

v = v0 + O(ε1/2),

b0(r, θ) = b0
n(r)ρ e−ρ2/2L

(1)
q (ρ2),

v0(r, θ) = v0
n(r)ρ e−ρ2/2L

(1)
q (ρ2),

(34)

in which the variable ρ is given by the following expression:

ρ = ε−1/4eiπ/8

{

ω0
nC2

2C3

}1/4
sin θ√

r
. (35)

The form of Eq. (33) corresponds perfectly to that of
Eq. (25). A quantitative comparison reveals the accuracy
of these formulas (see Tab. 2). It is particularly interesting
to compare the profiles along meridional cuts with these
theoretical predictions. Figure 7 shows such a comparison,
for different values of q, a comparison which turns out to
be excellent. Naturally, the analytical formulas are more
accurate when both diffusivities take on small values.
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Figure 7. Comparison between different numerical profiles of the magnetic field and theoretical ones. These profiles are
calculated along a meridional cut at a radius r ≃ 0.5, and E = Em = 4.10−5.

n Num.(ε1/2τ 1) Num.(ε1/2ω1) Theo.

0 −0.0690 −0.0685 −0.0688
1 −0.1224 −0.1237 −0.1239
2 −0.1601 −0.1608 −0.1608
3 −0.1907 −0.1910 −0.1910
4 −0.2171 −0.2173 −0.2172
5 −0.2406 −0.2406 −0.2407
6 −0.2621 −0.2624 −0.2621
7 −0.2822 −0.2819 −0.2820

Table 2. Comparison between numerical and theoretical
first order eigenvalues (ε1/2λ1). The two sets of numeri-
cal values (columns 2 and 3) are based on the numerical
eigenspectrum given in Fig. 1 and are calculated using a
least square method. These values should be very close to
each other. The last column is based on Eq. (33).

3.7. Boundary layers

To complete our study of axisymmetric toroidal eigen-
modes, we also present some results regarding the ex-
istence of boundary layers. In our case, we expected
the presence of Hartmann layers, which are very thin.
Typically their non-dimensional thickness is given by
B−1

r

√
EEm in which Br is non dimensional (e.g. Pothérat

et al., 2002). This can be penalising for numerical calcu-
lations as a high resolution is needed to properly resolve
them.

Two different methods were used to study boundary
layers. The first approach consists in coming up with a
highly simplified analytical model. In this model, devel-

oped in App. B for clarity reasons, the permanent mag-
netic field is constant and vertical, and the fluid domain
is enclosed between two parallel planes. This model leads
to the conclusion that there should be a Hartmann layer
on the lower boundary and nothing on the upper plane.
This Hartmann layer only produces a finite discontinuity
of the normal gradient of both perturbations when the dif-
fusivities vanish (see Eq. (B.3)). The model also justifies a

posteriori the effective boundary conditions v(η) = 0 and
b(1) = 0 (see Eq. (B.8)) which were used in the calculation
of polar eigenvalues (see Sect. 3.4).

The second approach is numerical. By looking at the
Chebyshev spectral coefficients, we can see the signature
of Hartmann layers. Assuming the layer is described by
an exponential variation as proposed by Pothérat et al.
(2002), it is possible to come up with a corresponding the-
oretical prediction, which can then be compared with the
actual Chebyshev spectral coefficients of the eigenmodes.

Figure 9 shows such a comparison. The values used
for Br are those at the magnetic poles, because of the
mode’s localization. In other words, the theoretical inner
boundary has a thickness of η3

√
EEm and the outer one a

thickness of
√

EEm (see Eq. (1)). The theoretical bound-
ary layers are multiplied by a constant so as to match the
numerical ones. From this figure, we clearly deduce the
presence of two boundary layers, one on the inside and
one on the outside, unlike what was predicted by the ana-
lytical model. This is so probably because in the simplified
model, the two outer boundary conditions become redun-
dant when E and Em approach zero, whereas they do not
in the spherical setup.
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Figure 8. Several non-axisymmetric eigenvalue spectra.
The diffusivities E and Em both take on the value 10−3.
These branches overlap with the axisymmetric ones.

For larger diffusivities, the agreement between the nu-
merical and theoretical results is not as good. This is not
too surprising as the eigenmodes are in general further
from the poles. At smaller diffusivities, the radial reso-
lution rapidly becomes insufficient for good comparisons.

Figure 9. Comparison between numerical (E = Em =
10−4) and theoretical spectral coefficients which confirms
the presence of boundary layers.

The theoretical spectral coefficients for the inner boundary
diminish very little for the first several hundred Chebyshev
components.

A final comment can be made about the numerical
approach. By looking at the relative amplitude of the layer
on the boundary, it is possible to determine what type of
discontinuity it produces when both diffusivities approach
zero. In our case, the amplitudes for both the inner and
outer layers, obtained by comparing the numerical and
theoretical spectral coefficients, were proportional to E in
the case where E = Em, which suggests that there will
be a discontinuity on the gradient of the perturbations
when both diffusivities approach zero. This is the same
behaviour as the single boundary layer in the analytical
model.

4. Non-axisymmetric modes

We now focus on non-axisymmetric modes (m 6= 0). From
the numerical point of view, they are twice as demand-
ing as their axisymmetric counterparts for a given resolu-
tion: the (uℓ

m, aℓ
m) components are coupled to the (wℓ

m, cℓ
m)

components, which gives birth to eigenvectors twice as
large.

4.1. Eigenvalue spectrum

As was the case for poloidal and toroidal eigenspectra,
non-axisymmetric eigenvalues are located along “horizon-
tal” branches. However, where there used to be one branch
in the poloidal or toroidal case, there are now two branches
next to each other for each m 6= 0 (see Fig. 8). This is per-
haps not surprising as non-axisymmetric modes contain
poloidal and toroidal components at the same time.

As diffusivities become small, the two branches start to
differ. When compared with poloidal or toroidal branches,
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it becomes immediately obvious that a first group of eigen-
values resembles the toroidal branch and a second group
matches its poloidal counterpart (see Fig. 10).

Figure 10. Comparison between axisymmetric poloidal,
axisymmetric toroidal and non-axisymmetric (m = 1)
eigenvalues. The diffusivities E and Em both take on the
values 4.10−5. The lower non-axisymmetric branch corre-
sponds to poloidal-like modes. The upper branch contains
toroidal-like modes when τ is sufficiently negative. The
letters “a”,“b”,“c” and “d” label non-axisymmetric modes
that are represented in Fig. 12.

It is then interesting to look at the structure of the
corresponding modes. Not surprisingly, modes along the
lower branch have a very similar appearance to that of
poloidal modes. The radial nodes are in the same positions
and the horizontal nodes look the same. As for the modes
on the upper branches, it appears that the least-damped
ones are poloidal-like, and the most damped toroidal-
like. Figure 11 shows a comparison between axisymmetric
poloidal and toroidal modes and non-axisymmetric modes
with similar appearances. Figure 12 shows the transition
from poloidal properties to toroidal ones, when looking at
successive modes on the upper branch.

One way to characterise whether a mode is more
poloidal or toroidal is to calculate the following ratio:

χ=
H(uℓ

m) + H(vℓ
m) + H(aℓ

m) + H(bℓ
m)

H(wℓ
m) + H(cℓ

m)
, (36)

where H(x) represents the energy of component x. χ is the
ratio of “poloidal” energy (both kinetic and magnetic) to
“toroidal” energy. Explicitly, it is given by:

χ=

L
∑

ℓ=ℓmin

∫ 1

η

[

|uℓ
m|2 + |aℓ

m|2 + ℓ(ℓ + 1)
(

|vℓ
m|2 + |bℓ

m|2
)]

r2dr

L
∑

ℓ=ℓmin

∫ 1

η

ℓ(ℓ + 1)
(

|wℓ
m|2 + |cℓ

m|2
)

r2dr

,

(37)

When this test is applied to the modes of Fig. 12, we
confirm that “poloidal” modes have strong aℓ

m,bℓ
m,uℓ

m and
vℓ

m components whereas “toroidal” ones have strong wℓ
m

and cℓ
m components (see Tab. 3).

Mode χ

a 17.4
b 3.16
c 0.209
d 0.0153

Table 3. Energy ratios as defined in Eq. (36) for modes
shown in Fig. 10 and 12.

4.2. Asymptotic numerical behaviour

We can take a more detailed look at the behaviour
of an entire pair of branches for different values of E
and Em (keeping E = Em), to see whether the eigen-
values have poloidal or toroidal characteristics. Non-
axisymmetric “poloidal” eigenvalues appear to obey the
following empirical law:

λ = iω0 + iω1Eγ + τ1Eδ, (38)

where γ ∼ 1.5 and δ ∼ 1. This is different from what
was observed in the case of axisymmetric toroidal modes,
which show a slower convergence toward an asymp-
totic adiabatic value. In addition each non-axisymmetric
poloidal eigenvalue seems to have its own asymptotic fre-
quency, as may also be the case for axisymmetric poloidal
modes. A plot of the behaviour of different eigenvalues
with respect to diffusivities is given in Fig. 13. ωi was esti-
mated using a least-square method for the poloidal modes
and differs for each one of them.

Non-axisymmetric “toroidal” eigenvalues behave
roughly like their axisymmetric counterparts. All the
values on a single branch seem to converge toward one fre-
quency, the corresponding polar eigenvalue (see Eq. (20)).
This value is used in Fig. 13 as the asymptotic frequency
of the toroidal modes. The rate at which eigenvalues
converge is about the same as in the axisymmetric case,
namely λi − λ ∝ E1/2.

It is also interesting to note that the shape of the
toroidal eigenbranch remains more or less the same in the
axisymmetric and non-axisymmetric cases (see Fig. 14,
bottom). This indicates that the quantization of these
modes in the horizontal direction is very similar to the
one of the axisymmetric modes. However, the spacing be-
tween each mode is not the same (see Fig. 10).

By looking at the behaviour of the structure of differ-
ent modes, it is possible to observe different characteristics
(see Fig. 15). Poloidal-like modes seem to converge toward
a non-degenerate structure. In other words, their widths
(σθ) do not approach zero, nor do their positions (θ). Their
nodes become more distinct at low diffusivities.
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Poloidal modes Toroidal modes

Figure 11. Comparison between axisymmetric poloidal and toroidal modes and non-axisymmetric modes with similar
properties. The axisymmetric modes are above, and the “corresponding” non-axisymmetric ones below.

Figure 13. Behaviour of τ and ∆ω (= ωi−ω) for four non-
axisymmetric modes. The toroidal modes start off with
a poloidal structure, and undergo a metamorphosis into
a toroidal appearance. The poloidal non-axisymmetric
modes approach their inviscid values much faster.

Toroidal-like modes, on the other hand, exhibit more
complex behaviour as the toroidal character appears only
below some given diffusivity. We understand this be-
haviour as the consequence of the E1/4-scale of toroidal
modes. It is only when E1/4 ≪ 1 that the toroidal char-
acter may appear but this condition is not easy to satisfy
with non-axisymmetric modes for which the lowest diffu-
sivities reached yet are ∼ 10−5 because of memory storage
requirements.

5. Discussion

The main result of this study is that there are two basic
behaviours for shear Alfvén modes, both in the axisym-
metric and the non-axisymmetric cases. The first one is
the poloidal behaviour, for which modes remain regular as
diffusivities approach zero, except for internal shear lay-
ers located on resonant field lines. The second one is the
toroidal behaviour: these modes become singular as dif-
fusivities approach zero and each branch appears to have
only one eigenfrequency in the adiabatic limit.

The toroidal behaviour matches the description of the
resistive Alfvén spectrum given by Kerner et al. (1986) in
the context of tokamak-like configurations. The eigenval-
ues lie on well-defined curves in the complex plane which
join the endpoints of the ideal Alfvén continua, as is sug-
gested by Eq. (26). The slope of the eigenbranches is 45◦

and the damping rates of the eigenmodes are proportional
to ε1/2, which is in complete agreement with a quadratic
variation of the permanent magnetic field θ-profile near
the magnetic axis.

Poloidal modes on the other hand, look like true eigen-
modes of the ideal MHD operator with a finite number of
resonances in the Alfvén continuum (resonating field lines,
see paper I). Such features are similar to those of “quasi-
modes” (see Poedts & Kerner, 1991, Goossens et al., 2002)
which combine a regular and singular behaviour; however,
unlike quasimodes, the damping rate of our modes always
seem to vanish in the ideal limit (e.g. Fig. 13 or Fig. 5 of
Paper I).

Presently, we understand the origin of the difference
between the toroidal and poloidal behaviour as the pres-
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a b

c d

Figure 12. Transition from poloidal to toroidal characteristics in non-axisymmetric modes. The diffusivities are E =
Em = 4.10−5 and m is equal to 1. The letters underneath each diagram correspond to labels on Fig. 10.

ence or absence of a coupling between magnetic field lines
by total pressure. Indeed, neglecting diffusion terms, mag-
netic and velocity perturbations verify:

∂v

∂t
= −∇p∗ + (B · ∇)b + (b · ∇)B

∂b

∂t
= (B · ∇)v − (v · ∇)B

(39)

where p∗ = p + B · b is the perturbed total pressure.
These equations show that the time evolution of a per-
turbation depends on the global form of the perturbation
only through the pressure gradient term. This is clear if
one considers a local perturbation, namely an Alfvén wave
packet. Terms like (B ·∇)b or (B ·∇)v modulate the evo-
lution of the perturbation according to its derivative along
the field lines while terms like (b · ∇)B and (v · ∇)B in-
troduce a dependence with respect to the local value of
the perturbation. Last, the term ∇p∗ makes the evolution
of the perturbation sensitive to the pressure perturbation
which cannot be restricted to a single field line. In pure
toroidal modes (axisymmetric ones) this term is zero and
therefore no coupling is possible in the ideal MHD case. In
non-axisymmetric modes of toroidal type it is weak and
strengthens as one shifts to modes with a strong poloidal
character. Modes studied by Kerner et al. (1986) have a

weak, O(E
1/2
m ), pressure term and are thus similar to our

toroidal modes.

6. Conclusions

In this paper we completed the study of shear Alfvén
modes of a spherical shell started in Paper I. The global
picture that emerges is that both non-axisymmetric and
axisymmetric modes can be divided into two subclasses:
the toroidal and poloidal ones. In the limit of small dif-
fusivities, relevant for astrophysical objects, only poloidal
modes survive since toroidal ones become singular as mag-
netic shear layers.

However, toroidal modes may play some important role
in the excitation process, especially if rotation is present.
Indeed, it is well-known (e.g. Rieutord, 1991) that the
Coriolis force induces a coupling between toroidal and
poloidal components, even in the axisymmetric case. This
coupling may not strongly influence the frequency of the
modes (except for some rotational splitting) but may rep-
resent a channel by which modes lose energy through dis-
sipative shear layers; in such a case this mechanism may
decide whether a mode is or is not excited by, say, a κ-
mechanism.

For astrophysical applications where the compressibil-
ity is an important aspect, pure Alfvén modes coexist
with magneto-acoustic modes. The incorporation of these
modes will undoubtedly lead to a much more complicated
spectrum of eigenvalues as well as a whole new range of
physical phenomena. In particular, we can expect new
resonances, namely those coming from the interaction of
eigenmodes and the slow acoustic, or cusp, continuum
(see Sakurai et al., 1991). Taking into account compress-
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Figure 14. Behaviour of non-axisymmetric eigenbranches
for different values of the diffusivities. E(= Em) takes on
the values 10−3, 4.10−4, 2.10−4, 10−4 and 4.10−5. As dif-
fusivities diminish, both eigenbranches get closer to the
imaginary axis since |τ | decreases. The first figure corre-
sponds to “poloidal” eigenvalues and the second one to
“toroidal” ones. The classification between the two types
of values was done by hand. The dotted line represents
the line given by Eq. (26) for n = 1.

ibility will however not affect the splitting between pure
poloidal and pure toroidal axisymmetric modes; because
of the divergence-less nature of purely toroidal modes, we
can expect that these modes will not be affected by com-
pressibility and remain unchanged. All the complications
will concentrate on the poloidal set of eigenmodes. In the
case of non-axisymmetric modes where the poloidal and
toroidal characters are mixed, we may expect that only
modes with a strong poloidal shape will suffer important
changes. However, the importance of these changes, which
incorporate the resonances with the cusp continuum, as
well as its influence on the shape of the spectrum, can
hardly be anticipated and will be investigated in subse-
quent work.

Figure 15. Behaviour of non-axisymmetric modes for dif-
ferent values of the diffusivities. The “poloidal” modes
seem to converge toward a non-singular structure. The
“toroidal” ones, on the other hand, do not stop shrink-
ing. The behaviour of their mean position (not shown),
however, is much more irregular.
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Appendix A: θ-dependence of asymptotic

axisymmetric toroidal modes

We begin with the toroidal equations (12), and express
them explicitly in “semi-dipolar” coordinates (r, ν, ϕ). The
coordinate ν is equal to sin θ/

√
r, and remains constant

along field lines. Choosing ν as a coordinate instead of θ
simplifies the expression of terms like (B ·∇)b. We obtain
the following system:

λb =
√

1 − rν2

[

1

r3

∂v

∂r
− 3v

2r4

]

+ Em∆′b,

λv =
√

1 − rν2

[

1

r3

∂b

∂r
+

3b

2r4

]

+ E∆′v,

(A.1)

where ∆′ takes on the following expression :

∆′b =
∂2b

∂r2
− ν

r

∂2b

∂ν∂r
− 3ν2

4r2

∂2b

∂ν2
− 9ν

4r2

∂b

∂ν

+
2

r

∂b

∂r
+

1

r3

[

∂2b

∂ν2
+

1

ν

∂b

∂ν
− b

ν2

]

.

In order to analyse the asymptotic limit of small dif-
fusivities, we suppose E and Em are of the form Kε and
Kmε respectively, where K and Km are two constants, and
ε a free parameter that approaches zero. We then rescale
ν to ν̂ = ε−1/4ν, in accordance with our numerical results,
and neglect terms smaller than O(ε1/2). This leads to the
following system:

λb =

(

1 − 1

2
ε1/2rν̂2

)[

1

r3

∂v

∂r
− 3v

2r4

]

+
ε1/2Km

r3
Θ[b],

λv =

(

1 − 1

2
ε1/2rν̂2

)[

1

r3

∂b

∂r
+

3b

2r4

]

+
ε1/2K

r3
Θ[v],

(A.2)
where the differential operator Θ is given by:

Θ[b] =
∂2b

∂ν̂2
+

1

ν̂

∂b

∂ν̂
− b

ν̂2
.

Following the form of Eq. (25), we develop the solutions
in the following manner:

λ = λ0 + ε1/2λ1,

b = b0 + ε1/2b1,
v = v0 + ε1/2v1.

(A.3)

At zeroth order, we obtain the equations that give the
polar eigenspectrum (see Eq. (16) for cos θ = 1). We con-
clude that the zeroth order solutions to Eq. (A.2) are of
the form:

b0(r, ν̂) = b0
n(r)f(ν̂),

v0(r, ν̂) = v0
n(r)f(ν̂),

λ0 = λ0
n,

(A.4)

where (b0
n, v0

n) is given by Eq. (21), and λ0
n is the corre-

sponding eigenvalue. λ0
n gives us the position of the differ-

ent eigenbranches (as already seen in Sect. 3.4). Finding a
quantization on the function f would enable us to explain
the different eigenvalues on a given branch. This requires
looking at the first order of Eq. (A.2) (in which we sub-
stitute results from the zeroth order):

λ0
nb1 − 1

r3

∂v1

∂r
+

3v1

2r4
= −λ1

nb0
nf

−λ0
nrν̂2b0

nf

2
+

b0
nΘ[f ]

r3
,

λ0
nv1 − 1

r3

∂b1

∂r
− 3b1

2r4
= −λ1

nv0
nf

−λ0
nrν̂2v0

nf

2
+

v0
nΘ[f ]

r3
,

b1(r = 1, ν̂) = 0,

v1(r = η, ν̂) = 0.

(A.5)

(We now use the notation λ1
n for λ1). This equation is

of the form L0Ψ1 = L1Ψ0, where L0, L1 are respectively
zeroth and first order linear operators, and Ψ0, Ψ1 are
zeroth and first order solutions. It is solvable only if its
right-hand side is orthogonal to the kernel of the adjoint of
the operator L0, with respect to the following dot product:

〈[

u
w

]

,

[

x
y

]〉

=

∫ 1

η

u∗(r)x(r) + w∗(r)y(r)

‖B(r, 0)‖ dr, (A.6)

where u∗ is the complex conjugate of u, and ‖B(r, 0)‖ =

1/r3. The adjoint operator L†
0 is deduced from L0 by using

integration by parts:

L†
0

[

u
w

]

=







(λ0
n)∗u +

1

r3

∂w

∂r
− 3w

2r4

(λ0
n)∗w +

1

r3

∂u

∂r
+

3u

2r4






. (A.7)

The adjoint boundary conditions are chosen so as to cancel
out terms like w∗(1)b(1)−w∗(η)b(η), which come from the
integration by parts:

u(r = 1) = 0, w(r = η) = 0. (A.8)

The zeroth order eigenvalue λ0
n is purely imaginary. As a

result the operator L0 is antisymmetric: L†
0 = −L0. The

boundary conditions being the same for both operators,
the kernel of L†

0 is the same as that of L0:

u = b0
n, w = v0

n. (A.9)
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By calculating the dot product between (b0
n, v0

n) and
the terms of Eq. (A.5) we obtain the following equation:

−λ1
nC1f − λ0

nν̂2C2

2
f + C3Θ[f ] = 0 (A.10)

where:

C1 =

〈[

u
w

]

,

[

b0
n

v0
n

]〉

=

∫ 1

η

r3
(

|b0
n|2 + |v0

n|2
)

dr,

C2 =

〈[

u
w

]

, r

[

b0
n

v0
n

]〉

=

∫ 1

η

r4
(

|b0
n|2 + |v0

n|2
)

dr,

C3 =

〈[

u
w

]

,
1

r3

[

Kmb0
n

Kv0
n

]〉

=

∫ 1

η

Km|b0
n|2 + K|v0

n|2 dr.

(A.11)

Equation (A.10) gives the quantization along each eigen-
branch.

Appendix B: Simplified analytical model

The model presented here justifies the use of effective
boundary conditions throughout the paper for the adi-
abatic calculations. In this model, we use Cartesian coor-
dinates (x, y, z), and the fluid domain is enclosed between
two infinite horizontal planes located at z = 0 and z = 1.
The permanent magnetic field is constant and in the ver-
tical direction (B = Bez). The perturbations take on the
form b = b(z)ey and v = v(z)ey, in order to mimic the
toroidal direction eϕ. Equation (3) becomes:

λb =
dv

dz
+ Em

d2b

dz2
,

λv =
db

dz
+ E

d2v

dz2
.

(B.1)

The corresponding boundary conditions are:

dv

dz
(0) = 0, Em

db

dz
(0) = −v(0),

dv

dz
(1) = 0, b(1) = 0.

(B.2)

Since the two conditions on the derivative of v are stress
free conditions, they lack physical meaning when both dif-
fusivities vanish. Therefore, we can expect them to disap-
pear in that situation. The solutions to Eq. (B.1) are:

v = k−1
1 k2 sin k2

(

eik1z + eik1(2−z)
)

−i
(

1 − e2ik1

)

cos(k2(z − 1)),

b = k2 sin k2

(

ζ−k−1
1 + iξ

) (

eik1z − eik1(2−z)
)

+
(

1 − e2ik1

)

(ζ− + iξk2) sin(k2(z − 1)),

(B.3)

where5:

ζ+ =

√

1 +
(√

E +
√

Em

)2

λ,

ζ− =

√

1 +
(√

E −
√

Em

)2

λ,

ξ =
√

EEm − E,

k1 =
i(ζ− + ζ+)

2
√

EEm

∼ i√
EEm

,

k2 =
i(ζ− − ζ+)

2
√

EEm

∼ −iλ.

(B.4)

The quantities k1, k2, −k1,and −k2 are solutions of the
dispersion relation of Alfvén waves in a uniform field
(Chandrasekhar, 1961):

−(λ + Ek2)(λ + Emk2) = k2 (B.5)

where the non-dimensional Alfvén velocity is 1 and the
angle between the wave vector k and the permanent mag-
netic field is 0.

The eigenvalue λ must satisfy the following relation:
{

−ζ−λ + i[(ζ−)2 + ξλ]k1

}

sink1 cos k2

=
{

−ζ−λ + i[(ζ−)2 + ξλ]k2

}

sin k2 cos k1.
(B.6)

If the ratio between E and Em remains constant, we
obtain the following formula for λ:

λ = iΩn −
(

E + Em

2

)

Ω2
n + O(E2), (B.7)

where Ωn =
(

n + 1
2

)

π.
When E and Em approach zero, the solutions given

in Eq. (B.3) obey the following effective boundary condi-
tions:

v(0) = 0 b(1) = 0, (B.8)

and their gradients admit a discontinuity on the lower
boundary. It is interesting to note that the stress-free con-
dition has disappeared on the lower boundary, as was ex-
pected. On the upper boundary, it simply became redun-
dant with the condition b(1) = 0.

When comparing the eigenvalues given in Eq. (B.7) to
the ones given in Eq. (33), we notice that the term O(ε1/2)
is lacking in the first formula. This is because in the sim-
plified model, eigenmodes are invariant in the ex direction,
thus removing any quantization in that direction.

5 When taking the square root of a complex number z, we
choose the root such that arg(

√
z) ∈] − π/2, π/2]


