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Abstract. In this article we obtain some exact results for the 2D Ising model with a

general boundary magnetic field and for a finite size system, by an alternative method

to that developed by B. McCoy and T.T. Wu. This method is a generalization of

ideas from V.N. Plechko presented for the 2D Ising model in zero field, based on the

representation of the Ising model using a Grassmann algebra. In this way, a Gaussian

1D action is obtained for a general configuration of the boundary magnetic field. In

the special case where the magnetic field is homogeneous, we check that our results are

in agreement with McCoy and Wu’s previous work, and we also compute the two point

correlation functions on the boundary. We use this correlation function to obtain the

exact partition function and the free energy in the special case of an inhomogeneous

boundary magnetic field.
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1. Introduction

Studied for the first time in 1925 (1), the Ising model is one of the most important models

of statistical physics. The two dimensional case, solved exactly for the first time in 1944

by Onsager (2), is the prototype of systems with second order phase transition and non

Gaussian critical exponents. It has therefore been studied extensively by various exact

and approximate methods. It also provides fruitful links with 1D Quantum Field Theory.

In particular, a way to express the Ising Hamiltonian as a Gaussian Grassmannian action

was established long time ago (3; 4), and used by Plechko to compute the partition

function of the 2D Ising model in zero field, on a large class of lattices (5; 6).

The 2D Ising model has also been used to study some boundary problems, for example

the effect of a magnetic field on the boundary magnetisation and also the analogy to

wetting transitions. It is quite remarkable that exact results can be obtained in this

case since the problem with general uniform field has not yet been solved except for

some exact results at the critical temperature (7; 8). In a series of papers, McCoy and

Wu computed the partition function and the correlation functions for the model, using

dimer statistics (9; 10; 11; 12; 13; 14). Another solution was proposed by Chatterjee,

using boundary Quantum Field Theory (15).

Here we propose an alternative derivation of the exact partition function including a

boundary magnetic field, generalizing the method introduced by Plechko. This method

appears to be simpler than the McCoy and Wu’s derivation, and allows exact calculations

for more complicated cases. By this method we demonstrate that the partition function

can be expressed as a Grassmann path integral of a 1D Gaussian action with general

or random magnetic fields after integrating over the bulk degrees of freedom. In the

special case of an homogeneous boundary magnetic field, we compute the free energy

on the lattice, and the boundary spin-spin correlation functions. We check that our

formula is equivalent to the one obtained by McCoy and Wu (9; 13). Moreover, we can

also compute the exact partition function and the free energy when there is an interface

between two opposite fields H and −H on one boundary, as the simplest example of

inhomogeneous boundary magnetic field.

The article is organized as follow: In section 2, we introduce the notations used

throughout the article. In section 3, following Plechko, we obtain a Grassmannian

path integral representation of the partition function, and in section 4, we present the

fermionization of the boundary, and obtain the fermionic action. In section 5, as a

preliminary and useful exercise, we solve in the same way the 1D Ising model with an

homogeneous magnetic field, in order to introduce the method to the reader. Section 6

is dedicated to the explicit calculation of the partition function for the two dimensional

Ising model ; We then give the corresponding 1D action. At this stage, we compare

our results with McCoy and Wu, taking the thermodynamic limit. In the section 7, we

compute the two point correlation function on the boundary, which is used, in section

8, to obtain the expressions of the partition function and the free energy in the case of

an interface on the boundary.
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2. General notation

In the following we consider the Ising model on a square lattice of size L with spins

σmn = ±1. For sake of simplicity, we limit ourself here to the case where the coupling

constant J is the same in both directions. The method works however if there are two

different coupling constants along vertical and horizontal bounds. Until section 4 we

consider inhomogeneous magnetic fields hn, placed on the sites of the first column m = 1

(see Figure 1). Periodic boundary conditions for the spins are imposed in the direction

parallel to the magnetic field line, σm1 = σmL+1, and free boundary conditions in the

transverse direction, formally equivalent to σ0n = σL+1n = 0.

The Hamiltonian is then given by

H = −J
L∑

m,n=1

(σmnσm+1n + σmnσmn+1)−
L∑

n=1

hnσ1n. (1)

The partition function (PF) Z is defined as

Z =
∑

{σmn}
exp(−βH),

where β = 1/kBT and the sum is over all possible spin configurations. We can write,

using σ2
mn = 1,

e−βH = [cosh(βJ)]2L2

L∏

n=1

cosh(βhn)(1 + uσ1n) ·
L∏

m,n=1

(1 + tσmnσm+1n)(1 + tσmnσmn+1),

with un = tanh(βhn) and t = tanh(βJ). We then define Q as

Q[h] = Tr
σmn

[
L∏

m,n=1

(1 + tσmnσm+1n)(1 + tσmnσmn+1) ·
L∏

n=1

(1 + unσmn)

]

, (2)

where Trσ is the normalized sum 1
2

∑

σ=±1. This PF has already been calculated by

McCoy and Wu (9) for a uniform field. This was done in two steps. First they proved

Figure 1. Description of the model on a periodical lattice with fixed conditions in

one direction.
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that this PF is the Pfaffian of a matrix, using dimer statistics, they then performed the

direct calculation of this Pfaffian. Here we treat the problem in a different way. Our

idea is to generalize the elegant method introduced by Plechko (5; 6) for the 2D Ising

model without magnetic field since this method appears to be simple, and provides a

direct link with Quantum Field Theory. This is because it is straightforward to obtain

the expression of the quadratic fermionic action. Here we show that we can derive such

a quadratic action in presence of a general boundary magnetic field.

3. Transformation of the PF using a Grassmann representation

Following Plechko, we introduce pairs of Grassmann variables in order to remove the

local interaction between spins. We briefly define some useful tools using Grassmann

algebra. For more details, we refer the reader to the book by Nakahara (16).

A Grassmann algebra A of size N is a set of N anti-commuting objects {ai}i=1,N

satisfying:

∀ 1 ≤ i, j ≤ N, aiaj = −ajai,

which implies a2
i = 0. Functions defined on such an algebra are particularly simple, they

are polynomials. It is possible to define a notion of integration (16) with the following

rules:
∫

da a = 1,

∫

da 1 = 0, (3)

and for any function f(a),
∫

da f(a) =
∂f(a)

∂a
. (4)

With these definitions, Gaussian integrals are expressed by
∫ N∏

i=1

da∗i dai exp

(
N∑

i,j=1

aiMija
∗
j

)

= detM. (5)

We also define a trace operator over an algebra A = {a, a∗} as

Tr
a,a∗

[f(a, a∗)] ≡
∫

da∗da f(a, a∗)eaa∗

, (6)

with the simple rules

Tr
a,a∗

[1] = 1, Tr
a,a∗

[aa∗] = 1.

This operator will be useful in the following, and the subscripts may be omitted when

the trace is performed on the Grassmann variables that are present in the expressions

inside the brackets. Grassmann variables are introduced in the PF in order to decouple

the spin variables. Terms containing the same spin are then put together and the sum

over the spin configurations is performed. We use the fact that

1 + tσσ′ =

∫

da∗da(1 + aσ)(1 + ta∗σ′)eaa∗

= Tr[(1 + aσ)(1 + ta∗σ′)] (7)
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and follow closely the notation in reference (5). We consider the following link variables

ψ(1)
mn = 1 + tσmnσm+1n,

ψ(2)
mn = 1 + tσmnσmn+1.

(8)

In order to decouple the products of two spins, we can express each object as a trace

operator over a product of two Grassmann polynomials using equation (7)

ψ(1)
mn = Tr

[
AmnA

∗
m+1n

]
,

ψ(2)
mn = Tr

[
BmnB

∗
mn+1

]
,

(9)

where

Amn = 1 + amnσmn, A
∗
mn = 1 + ta∗m−1nσmn,

Bmn = 1 + bmnσmn, B
∗
mn = 1 + tb∗mn−1σmn.

(10)

The next step is to gather together the different terms corresponding to the same spin.

For thus, we have to use the mirror symmetry introduced by Plechko (6). If we consider

an ensemble of objects {Oi;O∗
i }i=1..3 such as a pair of this objects (O∗

iOk) commutes

with all overs O or O∗ (for example Grassmann variables), but with no further particular

commutation properties, we obtain the following mirror symmetry:

(O∗
1O1)(O∗

2O2)(O∗
3O3) = O∗

1O∗
2O∗

3O3O2O1 = O∗
3O∗

2O∗
1O1O2O3. (11)

We want to apply this mirror ordering to objects (10), but the association AmnA
∗
m+1n

or BmnB
∗
mn+1 does not commute with all A, A∗, B and B∗. However, as we will finally

trace over the Grassmann variables, we can weaken the condition on commutativity of

the pairs, and only require that Tr [(O∗
iOk)Ol] = Tr [Ol(O∗

iOk)]. We then obtain the

mirror ordering (11) in the sense of the trace which can be applied to the AmnA
∗
m+1n

and BmnB
∗
mn+1.

It is also important to treat the spin boundary conditions separately from the bulk

quantities in order to obtain an expression valid not only in the thermodynamic limit,

but for all finite values of N . Indeed, in the direction parallel to the line of magnetic

fields where σmL+1 = σm1, the corresponding link element can be expressed as

ψ
(2)
mL = Tr

[
BmLB

∗
mL+1

]
= Tr [B∗

m1BmL] , (12)

where B∗
m1 = 1 + tb∗m0σm1. The equality (12) associated with definitions (10) imposes

b∗m0 = −b∗mL. The periodic conditions on spins therefore lead to anti-periodic conditions

on Grassmann variables. In the transverse direction, we have σ0n = σL+1n = 0,

corresponding to free boundary conditions. This implies the boundary conditions on

Grassmann variables a∗0n = 0 and therefore A∗
1n = 1. The PF Q[h] (2) can be written

in terms of the ψ
(k)
mn as

Q[h] = Tr
σmn

[
L∏

m,n=1

ψ(1)
mnψ

(2)
mn ·

L∏

n=1

(1 + unσmn)

]

. (13)
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Using the mirror symmetry (11), the boundary terms can be written as

L∏

n=1

ψ
(1)
Ln = Tr





−→
L∏

n=1

ALn



 ,

L∏

m=1

ψ
(2)
mL = Tr





−→
L∏

m=1

B∗
m1 ·
←−

L∏

m=1

BmL



 .

(14)

These products can be reorganized as follow (6):

L∏

n=1

ψ
(1)
Ln ·

L∏

m=1

ψ
(2)
mL = Tr





−→
L∏

m=1

B∗
m1 ·
−→
L∏

n=1

ALn ·
←−

L∏

m=1

BmL



 . (15)

For the bulk elements, we obtain the following arrangement

L∏

m=1

ψ(2)
mn = Tr





←−
L∏

m=1

Bmn ·
−→

L∏

m=1

B∗
mn+1



 , (16)

L−1∏

n=1

L∏

m=1

ψ(2)
mn ·

L∏

m=1

ψ
(2)
mL = Tr





−→
L∏

m=1

B∗
m1 ·

L−1∏

n=1

L∏

m=1

ψ(2)
mn ·
←−

L∏

m=1

BmL



 , (17)

L∏

n=1

L∏

m=1

ψ(2)
mn ·

L∏

n=1

ψ
(1)
Ln = Tr





−→
L∏

n=1





−→
L∏

m=1

B∗
mn ·ALn ·

←−
L∏

m=1

Bmn







 , (18)

where we use the fact that ψ
(1)
Ln are commuting objects as well as the associativity of the

product:

O∗
1(O1O∗

2)(O2O∗
3)O3 = (O∗

1O1)(O∗
2O2)(O∗

3O3). (19)

We now insert the product over the remaining ψ
(1)
mn inside the previous expression

Tr





L−1∏

m=1

ψ(1)
mn ·
−→

L∏

m=1

B∗
mn · ALn . . .



 = Tr



B∗
1nA1n ·

−→
L∏

m=2

A∗
mnB

∗
mnAmn . . .



 , (20)

and finally obtain

L∏

m,n=1

ψ(1)
mnψ

(2)
mn = Tr





−→
L∏

n=1

B∗
1nA1n





−→
L∏

m=2

A∗
mnB

∗
mnAmn ·

←−
L∏

m=2

Bmn



B1n



 . (21)

The PF is rewritten in a way that the sum on each spin can be performed by iteration

Q[h] = Tr
σmn

Tr





−→
L∏

n=1

B∗
1nA1n(1 + unσ1n)





−→
L∏

m=2

A∗
mnB

∗
mnAmn ·

←−
L∏

m=2

Bmn



B1n



 . (22)

In fact, as we do not yet fermionize (1 + unσ1n), we reproduce here the Plechko’s

derivation in the special case of free-periodic boundary conditions (5). This expression is

the basis of the rest of this paper. The sum over spins outside the magnetic field region

will lead to a quadratic action over Grassmann variables which therefore commutes with

the rest of the elements belonging to the first column (1, n).
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4. Grassmannian representation of the action on the lattice

The key point in equation (22) is that the trace over spin configurations is performed in

a iterative way. For example, the first summation is done on spins σLn in the products

A∗
LnB

∗
LnALnBLn. This operation leads to a quantity which is quadratic in Grassmann

variables, which can be put outside the general product (22). The same operation is

then performed on spins σL−1n and so on. This makes Plechko’s method efficient for the

2D Ising model in zero field. With a uniform magnetic field in the bulk, the spin trace

over the product of the four previous operators would lead to a quantity which is linear

and quadratic in Grassmann variables and does not commute with the other products.

The boundary magnetic field affects only the last products depending on spins σ1n and

this makes the problem very similar to a 1D Ising model in a uniform magnetic field :

it is therefore solvable.

4.1. Trace over spins inside the bulk

For spins σmn inside the bulk, 1 ≤ n ≤ L and 2 ≤ m ≤ L, we have to evaluate

successively

Tr
σmn

[A∗
mnB

∗
mnAmnBmn] = = exp(Qmn),

with

Qmn = amnbmn + t2a∗m−1nb
∗
mn−1 + t(a∗m−1n + b∗mn−1)(amn + bmn). (23)

These terms commute with all Grassmannian terms and can be pulled out of the

remaining products. We obtain

Tr
{σmn}m=2..L





−→
L∏

m=2

A∗
mnB

∗
mnAmn ·

←−
L∏

m=2

Bmn



 = exp

(
L∑

m=2

Qmn

)

. (24)

The PF can now be written as

Q[h] = Tr








exp

(
L∑

n=1

L∑

m=2

Qmn

)

·
−→
L∏

n=1

Tr
σ1n

((1 + unσ1n)B∗
1nA1nB1n)

︸ ︷︷ ︸

boundary spins σ1n







. (25)

4.2. Trace over the boundary spins

In the expression (25), we can evaluate separately the trace over spins σ1n, leading to

Tr
σ1n

[1 + unσ1n)B∗
1nA1nB1n] = 1 + a1nb1n + tb∗1n−1(a1n + b1n) + unLn, (26)

Ln = a1n + b1n + tb∗1n−1. (27)

The presence of a magnetic field on a site introduces a linear Grassmann term. This

term no longer commutes with the others, and we need to compute the product in (25)

carefully.
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We would like to change artificially the fixed boundary conditions to periodic ones in

order to simplify the subsequent calculations based on Fourier transformation. The

quadratic part of equation (26) is equal to Q1n with fixed boundary conditions: We can

write

Q1n = Q
p
1n − ta∗LnLn, (28)

Q
p
1n = a1nb1n + t2a∗0nb

∗
1n−1 + t(a∗0n + b∗1n−1)(a1n + b1n),

where we introduce the boundary quantities a∗0n = a∗Ln. Q
p
1n corresponds to periodic

boundary conditions for the Grassmann variables (or anti-periodic conditions for the

spins). We obtain

Tr
σ1n

[(1 + unσ1n)B∗
1nA1nB1n] = exp (Qp

1n + unLn − ta∗LnLn) . (29)

The correction to periodic conditions due to the free boundary condition for the spins

is included in −ta∗LnLn.

4.3. Grassmann variables associated with the magnetic field

Here we introduce a pair of Grassmann variables associated with the boundary magnetic

field. In the rest of the article, we will refer to it as the fermionic magnetic field. We

have

exp(unLn) = 1 + unLn =

∫

dh∗ndhn (1 + unhn)(1 + h∗nLn)ehnh∗

n, (30)

therefore

Tr
σ1n

[(1 + unσ1n)B∗
1nA1nB1n] = Tr

hn,h∗

n

[exp (Qp
1n + (h∗n − ta∗Ln)Ln + unhn)] ,

We now perform a translation in the fermionic magnetic field

Hn = hn, H∗
n = h∗n − ta∗Ln, (31)

which leads to
−→
L∏

n=1

Tr
σ1n

[(1 + unσ1n)B∗
1nA1nB1n] = Tr

Hn,H∗

n



exp

(
L∑

n=1

Q
p
1n +H∗

nLn +Hnta
∗
Ln

)

·
−→
L∏

n=1

eunHn



 .

It is also useful to write the last L products as a non local action along the boundary

line
−→
L∏

n=1

eunHn = exp

(
L∑

n=1

unHn +

L−1∑

m=1

L∑

n=m+1

umunHmHn

)

. (32)

4.4. Fermionic action of the PF

Putting equations (32,32) into (25), we obtain the Grassmannian representation of the

PF

Q[h] =

∫

Da∗DaDb∗DbDH∗DH expS[a, a∗, b, b∗, H,H∗], (33)
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with the action S defined as

S =

L∑

mn=1

(Qp
mn + amna

∗
mn + bmnb

∗
mn) +

L∑

n=1

H∗
nLn +

L∑

n=1

Hnta
∗
Ln

+
∑

m<n

umunHmHn +
L∑

n=1

HnH
∗
n.

(34)

This action can be separated into three terms

S = Sbulk + Sint + Sfield, (35)

with

Sbulk =
L∑

mn=1

(Qp
mn + amna

∗
mn + bmnb

∗
mn),

Sfield =
∑

m<n

umunHmHn +

L∑

n=1

HnH
∗
n,

Sint =

L∑

n=1

H∗
nLn +

L∑

n=1

Hnta
∗
Ln.

(36)

The PF written as (33) is just a Gaussian integral over the set of variables

(a, a∗, b, b∗, H,H∗). If we first integrate over the variables (a, a∗, b, b∗) corresponding to

the action Sbulk +Sint, this leads to a new Gaussian action depending only on fermionic

magnetic field (Hn, H
∗
n). This new action is very similar to that for a one dimensional

problem. Actually the way we integrate (33) is close to solving a 1D Ising model with

a magnetic field and Grassmann variables. In the next section we present briefly this

case since we will use similar tools later. Our method can then be checked using the

transfer matrix technics.

5. 1D Ising model with a homogeneous magnetic field

The treatment is similar to the 2D Ising model, except that there is only one kind of

link variables and no mirror symmetry involved. The exact solution in the case of a

homogeneous magnetic field u = tanh(βh) using the transfer matrix method is simply

2LQ1D(h) =
(

1 + t+
√

(1− t)2 + 4tu2
)L

+
(

1 + t−
√

(1− t)2 + 4tu2
)L

. (37)

If we apply the Grassmann transformations as before, we can write an equation similar

to (33):

Q1D(h) =

∫

Da∗DaDH∗DH exp(Sbulk + Sint + Sfield), (38)

with

Sbulk =

L∑

n=1

(ana
∗
n + ta∗n−1an), Sint =

∑

n

H∗
nLn,

Sfield =
∑

n

HnH
∗
n + u2

∑

m<n

HmHn, Ln = an + ta∗n−1.
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The Grassmann variables an and Hn are anti-periodic in space, and can be Fourier

transformed using an = 1√
L

∑

q r
n
q+ 1

2

aq+ 1

2

with rq = e2iπq/L. In the new basis, the actions

are almost diagonalized

Sbulk + Sint =

L/2−1
∑

q=0

(1− trq+ 1

2

)aq+ 1

2

a∗
q+ 1

2

+ (1− tr̄q+ 1

2

)a−q− 1

2

a∗−q− 1

2

+

L/2−1
∑

q=0

H∗
q+ 1

2

(aq+ 1

2

+ tr̄q+ 1

2

a∗−q− 1

2

) +

L/2−1
∑

q=0

H∗
−q− 1

2

(a−q− 1

2

+ trq+ 1

2

a∗
q+ 1

2

), (39)

where the bar defines the complex conjugate. For L odd, we have to take care of the

momenta on the diagonal of the Brillouin zone: it leads to additional terms in (39);

However, these terms are irrelevant for large L. In the following, we restrict ourselves

to L even.

The non local sum in Sfield can be written in the Fourier modes as
∑

m<n

HmHn =
∑

q

1

rq+ 1

2

− 1
Hq+ 1

2

H−q− 1

2

, (40)

=

L/2−1
∑

q=0

(

1

rq+ 1

2

− 1
− 1

r̄q+ 1

2

− 1

)

Hq+ 1

2

H−q− 1

2

.

We can separate the previous sums (39) into independent blocks of four Grassmann

variables (aq+ 1

2

, a∗
q+ 1

2

, a−q− 1

2

, a∗−q− 1

2

). To compute the individual block integrals, we use

the general Gaussian formula:
∫

da∗da db∗db exp(αaa∗ + ᾱbb∗ + va+ v∗a∗ + wb+ w∗b∗) = αᾱ exp

(

−ww
∗

ᾱ
− vv∗

α

)

,

where (v, v∗, w, w∗) are Grassmann variables and (α, ᾱ) two independent complex

numbers. We obtain

Q1D(h) = Q1D(0)

∫

DH∗DH exp





L/2−1
∑

q=0

Hq+ 1

2

H∗
q+ 1

2

+H−q− 1

2

H∗
−q− 1

2

+γ1D
q+ 1

2

H∗
−q− 1

2

H∗
q+ 1

2

+ u2δq+ 1

2

Hq+ 1

2

H−q− 1

2

)

, (41)

where

Q1D(0) =

L/2−1
∏

q=0

|1− trq+ 1

2

|2, γ1D
q+ 1

2

=
2it sin θq+ 1

2

1− 2t cos θq+ 1

2

+ t2
, (42)

δq+ 1

2

= −i cot(
1

2
θq+ 1

2

), θq+ 1

2

=
2π

L

(

q +
1

2

)

. (43)

Q1D(0) is the PF in zero field, and is equal to 1 + tL in this case.

The remaining integrals over (H,H∗) are easy to evaluate, if we use
∫

da∗da db∗db exp(aa∗ + bb∗ + αa∗b∗ + βab) = 1− αβ. (44)
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After some algebra and simplifications, we finally obtain

Q1D(h) =

L/2−1
∏

q=0

(

1 + t2 − 2t cos θq+ 1

2

+ 4tu2 cos2(
1

2
θq+ 1

2

)

)

. (45)

Results (37) and (45) are equivalent when L is even but are written in a different

way. This has been tested numerically for finite size systems, and analytically in the

thermodynamic limit.

Using Grassmann variables to express the PF in terms of products over Fourier modes

is of course less efficient in this case. However in 2D, the method is very similar and

leads to a final expression which is close to (45) and (41) as seen in the next section.

6. Explicit calculation of the PF

In this section, we perform the Gaussian integration of the Grassmannian form of Q
(33) : we start by reducing the number of Grassmann variables per site, then we integrate

over the variables in the bulk, in order to obtain the 1D action, expressed in terms of

the fermionic magnetic field. Finally, this last integral is evaluated, leading to the PF

on the lattice. In order to validate our method, we check that our result is identical

that obtained by McCoy and Wu, in the thermodynamic limit.

6.1. Reduction of number of Grassmann variables per site

In the 2D case, we can easily integrate half of the Grassmann variables, for example

(amn, bmn), by using the identity
∫

dbda eab+aL+bL̄ = eL̄L. (46)

Since the original measure is db∗dbda∗da, moving db to the right of da∗ implies a minus

sign. After integrating over (a, b) we define cmn = a∗mn and c∗mn = −b∗mn, which removes

the minus signs from the new measure dc∗dc. We thus obtain the following actions

Sbulk =
L∑

m,n=1

cmnc
∗
mn + t(c∗mn + cmn)(cm−1n − c∗mn−1)− t2cm−1nc

∗
mn−1,

Sint =

L∑

n=1

tHnc0n + (tc∗1n−1 + c∗1n + c1n)H∗
n,

Sfield =
∑

m<n

umunHmHn +
L∑

n=1

HnH
∗
n.

(47)

Taking into account the different boundary conditions, we Fourier transform these

variables as in the 1D case

cmn =
1

L

L−1∑

p,q=0

rm
p r

n
q+ 1

2

cpq+ 1

2

, c∗mn =
1

L

L−1∑

p,q=0

r̄m
p r̄

n
q+ 1

2

c∗
pq+ 1

2

, (48)
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and compute the bulk action

Sbulk =

L−1∑

p,q=0

(

1− tr̄p − trq+ 1

2

− t2r̄prq+ 1

2

)

cpq+ 1

2

c∗
pq+ 1

2

+

−tr̄pcpq+ 1

2

cL−pL−q− 1

2

+ trq+ 1

2

c∗
pq+ 1

2

c∗
L−pL−q− 1

2

.

(49)

The result implies a coupling between modes (p, q + 1
2
) and (L − p, L − q − 1

2
) ∼

(−p,−q − 1
2
). As in 1D, the sum can be expressed as a sum over independent blocks

containing the variables cpq+ 1

2

, c−p−q− 1

2

, c∗
pq+ 1

2

and c∗−p−q− 1

2

. These different blocks are

indeed independent if we restrict to momenta (p, q) corresponding to the white points

(set S1) of the Brillouin zone in figure 2. In this case, the modes (p, q) belonging to S1

and the modes (L − p, L − q) (corresponding to S2) completely fill the Brillouin zone.

This avoids counting the Grassmann variables twice. We also need to symmetrize the

action, which can be written as

Sbulk =
∑

p,q∈S1

(

αpq+ 1

2

cpq+ 1

2

c∗
pq+ 1

2

+ ᾱpq+ 1

2

c−p−q− 1

2

c∗−p−q− 1

2

+ βpcpq+ 1

2

c−p−q− 1

2

+ βq+ 1

2

c∗
pq+ 1

2

c∗−p−q− 1

2

)

,

(50)

αpq+ 1

2

= 1− tr̄p − trq+ 1

2

− t2r̄prq+ 1

2

, βp = t(rp − r̄p), (51)

and for the interacting part

Sint =
1

L

∑

p,q∈S1

cpq+ 1

2

(rpH
∗
q+ 1

2

− tH−q− 1

2

) + c∗
pq+ 1

2

r̄p(1 + trq+ 1

2

)H∗
−q− 1

2

+

c−p−q− 1

2

(r̄pH
∗
−q− 1

2

− tHq+ 1

2

) + c∗−p−q− 1

2

rp(1 + tr̄q+ 1

2

)H∗
q+ 1

2

.

(52)

The last action, Sfield, is the same as in 1D.

p

q

(0, 0)

(L− 1, L− 1)

Figure 2. Integration domain for the Fourier modes in the case where L is even

(L=6). The set S1 of modes corresponds to the white points. The other modes (set

S2) are obtained by the symmetry (p, q)→ (L− p, L− q).
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6.2. Integration over bulk variables : 1D action

The integration over the variables c and c∗ is performed using the following identity,

similar to formula (41):
∫

da∗da db∗db exp(αaa∗ + ᾱbb∗ + βab+ β̄a∗b∗ + av + bw + a∗v∗ + b∗w∗)

= (αᾱ− ββ̄) exp

[
1

αᾱ− ββ̄
(
ᾱv∗v + αw∗w + β̄vw + βv∗w∗)

]

. (53)

We obtain
∫

Dc∗Dc eSbulk+Sint =
∏

p,q∈S1

(

αpq+ 1

2

ᾱpq+ 1

2

− βpβq+ 1

2

)

exp
(

γpq+ 1

2

H∗
−q− 1

2

H∗
q+ 1

2

+ λpq+ 1

2

Hq+ 1

2

H∗
q+ 1

2

+ λ̄pq+ 1

2

H−q− 1

2

H∗
−q− 1

2

+ ǫpq+ 1

2

H−q− 1

2

Hq+ 1

2

)

, (54)

where we have identified the different coefficients of the Grassmannian fields forming a

quadratic action:

γpq+ 1

2

=
1

L

1

αpq+ 1

2

ᾱpq+ 1

2

− βpβq+ 1

2

(

−αpq+ 1

2

(1 + tr̄q+ 1

2

) + ᾱpq+ 1

2

(1 + trq+ 1

2

)(55)

−βp(1 + trq+ 1

2

)(1 + tr̄q+ 1

2

) + β̄q+ 1

2

)

, (56)

and

λpq+ 1

2

=
1

L

1

αpq+ 1

2

ᾱpq+ 1

2

− βpβq+ 1

2

(

trpβq+ 1

2

+ trpαpq+ 1

2

(1 + tr̄q+ 1

2

)
)

,

ǫpq+ 1

2

=
1

L

t2βq+ 1

2

αpq+ 1

2

ᾱpq+ 1

2

− βpβq+ 1

2

. (57)

Inside the product (54), the quantities in front of the exponentials can be simplified

using cosine functions,

αpq+ 1

2

ᾱpq+ 1

2

− βpβq+ 1

2

= (1 + t2)2 − 2t(1− t2)
[

cos θp + cos θq+ 1

2

]

,

and are invariant under the transformation (p, q + 1
2
)→ (L− p, L− q− 1

2
). In (54), the

product over S1 of these coefficients define a bulk PF Q0:

Q2
0 =

L−1∏

p,q=0

[

(1 + t2)2 − 2t(1− t2)
(

cos θp + cos θq+ 1

2

)]

. (58)

In the thermodynamic limit and in zero field, the free energy per site corresponding to

Q0 is equal to the one corresponding to Q[0], since the boundary conditions do not play

any role on the bulk properties. In this limit, the second order phase transition occurs

at a temperature given by the solutions of the equation (1 + t2)2 − 4t(1 − t2) = 0, or

tc =
√

2 − 1, when the cosines, in the long-wave length limit (p, q) ∼ (0, 0), approach

unity. In this case the product, hence the free energy, is singular.

The previous coefficients γpq+ 1

2

are not symmetrical in (p, q) since the model itself is not

symmetrical in both directions. However they are antisymmetric γp,q+ 1

2

= −γL−p,L−q− 1

2

.
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This is useful in order to reduce the summation over the variables (p, q) in the action

(54). This implies

∑

p,q∈S1

γpq+ 1

2

H∗
−q− 1

2

H∗
q+ 1

2

=

L/2−1
∑

q=0

γ2D
q+ 1

2

H∗
−q− 1

2

H∗
q+ 1

2

,

with

γ2D
q+ 1

2

=
1

2

L−1∑

p=0

(

γpq+ 1

2

− γp−q− 1

2

)

,

After simplification, we find that

γpq+ 1

2

=
1

L

2it sin θq+ 1

2

(1 + t2)2 − 2t(1− t2)(cos θp + cos θq+ 1

2

)
.

and

γ2D
q+ 1

2

=
1

L

L−1∑

p=0

2it sin θq+ 1

2

(1 + t2)2 − 2t(1− t2)(cos θp + cos θq+ 1

2

)
. (59)

The factors γ2D play the role of Fourier coefficients of an effective interaction

between the boundary spins in the magnetic field. We can notice from (41) that

coefficients γ1D describe the nearest neighbor interaction of the 1D Ising model. Here

the spins on the boundary can be mapped onto a 1D model.

The factors λpq+ 1

2

have a different symmetry, λpq+ 1

2

= λ̄−p−q− 1

2

, which allows the same

kind of manipulation as before. Hence, defining

Λq+ 1

2

=
1

2

L−1∑

p=0

(λpq+ 1

2

+ λ̄p−q− 1

2

),

=
t

L

L−1∑

p=0

(1− t2) cos(θp)− t(1 + 2t cos θq+ 1

2

+ t2)

(1 + t2)2 − 2t(1− t2)(cos θp + θq+ 1

2

)
,

(60)

we can write

∑

p,q∈S1

λpq+ 1

2

Hq+ 1

2

H∗
q+ 1

2

+ λ̄pq+ 1

2

H−q− 1

2

H∗
−q− 1

2

=

L/2−1
∑

q=0

Λq+ 1

2

Hq+ 1

2

H∗
q+ 1

2

+ Λ−q− 1

2

H−q− 1

2

H∗
−q− 1

2

.

Moreover, further reduction of the terms containing ǫpq+ 1

2

in the action (54) leads to the

following simplification

∑

p,q∈S1

ǫpq+ 1

2

H−q− 1

2

Hq+ 1

2

=

L/2−1
∑

q=0

t2γ2D
q+ 1

2

H−q− 1

2

Hq+ 1

2

.

Finally, the problem of the boundary field is reduced to a 1D Gaussian action in

Grassmann variables which is given by:

S1D =

L/2−1
∑

q=0

[

(1 + Λq+ 1

2

)Hq+ 1

2

H∗
q+ 1

2

+ (1 + Λ−q− 1

2

)H−q− 1

2

H∗
−q− 1

2

+ γ2D
q+ 1

2

H∗
−q− 1

2

H∗
q+ 1

2

− t2γ2D
q+ 1

2

Hq+ 1

2

H−q− 1

2

]

+

L−1∑

q,q′=0

∆q,q′[u]Hq+ 1

2

Hq′+ 1

2

,

(61)
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with

∆q,q′ [u] =
1

L

∑

m<n

umunr
m
q+ 1

2

rn
q′+ 1

2

.

This action is of the same form as that for the 1D problem (39),except for the additionnal

terms Λ and −t2γ2D, which are not present in the 1D case. This is due to the fact that

Q0 is not the true action in the zero field case : if we integrate (61) with respect to the

Grassmann fields when u = 0, this will lead to a non zero corrective factor in front of Q0,

which is however irrelevant in the thermodynamic limit (the free energy corresponding

to this factor is of order L instead of L2). Q0 is therefore not the finite size zero field

partition function for the periodic/free spin boundary case. The factor comes from the

free boundary conditions that restore these conditions.

Using this 1D Gaussian action, the partition function for the 2D Ising model with an

inhomogeneous or random boundary magnetic fields reads :

Q[h] = Q0

∫

dH∗dH exp (S1D) . (62)

In the following, we will compute the remaining Gaussian integrals in two special cases

where ∆qq′[u] simplifies. The first one is the case of an homogeneous magnetic field,

where ∆qq′[u] = u2δq+1/2δ(q+q′) with δ(q−q′) the Kronecker symbol, and δq+1/2 defined

in (43). The second case corresponds to the simplest case of inhomogeneous magnetic

field, when half of the boundary spins is subject to +H and the other half to −H .

6.3. Expression for the partition function and thermodynamic limit

In this section, we are interested in the special case of an homogeneous boundary

magnetic field. The previous action (61) reduces to:

S1D =

L/2−1
∑

q=0

[

(1 + Λq+ 1

2

)Hq+ 1

2

H∗
q+ 1

2

+ (1 + Λ−q− 1

2

)H−q− 1

2

H∗
−q− 1

2

+

γ2D
q+ 1

2

H∗
−q− 1

2

H∗
q+ 1

2

− t2γ2D
q+ 1

2

Hq+ 1

2

H−q− 1

2

]

+ u2

L−1∑

q=0

δq+ 1

2

Hq+ 1

2

H−q− 1

2

,

with δq+ 1

2

defined in (43). The successive integrations over the blocks of Grassmann

magnetic fields are easy to perform and we obtain:

Q(h) = Q0

L/2−1
∏

q=0

Zq+ 1

2

(u),

with

Zq+ 1

2

(u) ≡ (1 + Λq+ 1

2

)(1 + Λ−q− 1

2

) + γ2D
q+ 1

2

(u2δq+ 1

2

− t2γ2D
q+ 1

2

). (63)
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We factorize the previous expression, in order to distinguish between the boundary effect

in zero field and the contribution due to the magnetic field:

Q(h) = Q0

L/2−1
∏

q=0

[

(1 + Λq+ 1

2

)(1 + Λ−q− 1

2

)− t2(γ2D
q+ 1

2

)2
]
[

1 +
u2δq+ 1

2

γ2D
q+ 1

2

(1 + Λq+ 1

2

)(1 + Λ−q− 1

2

)− t2(γ2D
q+ 1

2

)2

]

.

The total free energy is therefore written as

F (h) = −LkBT ln cosh(βh)− kBT lnQ0 + Lfb + Lffield, (64)

with fb a corrective free energy that is needed to restore the free boundary conditions

in the direction transverse to the field,

βfb = − 1

L

L/2−1
∑

q=0

ln
[

(1 + Λq+ 1

2

)(1 + Λ−q− 1

2

)− t2(γ2D
q+ 1

2

)2
]

, (65)

and ffield the magnetic contribution to the free energy

βffield = − 1

L

L/2−1
∑

q=0

ln

[

1 +
u2δq+ 1

2

γ2D
q+ 1

2

(1 + Λq+ 1

2

)(1 + Λ−q− 1

2

)− t2(γ2D
q+ 1

2

)2

]

. (66)

This decomposition is in agreement with McCoy and Wu’s results(9; 13). Indeed in the

thermodynamic limit, we can use the following identity (a > b),

1

2π

∫ 2π

0

dθ

a+ b cos θ
=

1
√

(a− b)(a+ b)
,

to obtain
∫ 2π

0

dθp

2π

1

(1 + t2)2 − 2t(1− t2)(cos θp + cos θq+ 1

2

)
=

1
√

R(θq+ 1

2

)
,

with the function R defined by

R(θ) =
[
(1 + t2)2 + 2t(1− t2)(1− cos θ)

] [
(1 + t2)2 − 2t(1− t2)(1 + cos θ)

]
.

Then the following coefficients can be evaluated in this limit:

γ2D
q+ 1

2

=
2it sin θq+ 1

2
√

R(θq+ 1

2

)
, Λq+ 1

2

= −1

2
+

1

2

(1 + t2)(1− 2t cos θq+ 1

2

− t2)
√

R(θq+ 1

2

)
. (67)

Using the previous results and after some algebra, we recover the result of McCoy and

Wu, and the continuous form for the boundary free energy depending on the magnetic

field is

ffield =
1

4π

∫ π

−π

dθ ln

(

1 +
4u2t(1 + cos θ)

(1 + t2)(1− 2t cos θ − t2) +
√

R(θ)

)

. (68)

The expression (66) of the free energy allows the numerical computation of the specific

heat in this case, even for L small. The results are presented on the figure 6.3 for various

magnetic fields.
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Figure 3. Specific heat for various values of homogeneous magnetic field on the

boundary for L=20. The inset in a zoom in the region of the maximum. The vertical

dashed line is the position of critical temperature for 2D Ising model in zero field,

kBTc/J ≃ 2.26.

7. Boundary two point correlation function and magnetization

In this section, we compute the boundary spin-spin correlation functions along the

boundary line between two different sites (1, k) and (1, l), k < l, in the case where the

magnetic field is uniform. This is the easiest case since we can use simple properties of

the Grassmann magnetic fields. Using (13), we have

〈σ1kσ1l〉 ∝ Tr
σ

[
σ1kσ1le

−βH] , (69)

= Tr
σ

[
L∏

m,n=1

ψ(1)
mnψ

(2)
mn ·

L∏

n=1

σ1kσ1l(1 + uσmn)

]

.

We then write (u 6= 0)

σ1k(1 + uσ1k) = u(1 +
1

u
σ1k), (70)

and introduce local magnetic fields un = u+ (u−1 − u)(δkn + δln) so that

〈σ1kσ1l〉 ∝ u2 Tr
σ

[
L∏

m,n=1

ψ(1)
mnψ

(2)
mn ·

L∏

n=1

(1 + unσmn)

]

.
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We remarks that this expression is the PF of the 2D Ising model in the particular case of

an inhomogeneous boundary magnetic field (13). The integration over the bulk variables

is not affected by this change. The difference appears only in the non local coupling

between the fermionic magnetic fields Hn,
−→

L∏

m=1

eunHn = exp

[
L∑

n=1

unHn +

L−1∑

m=1

L∑

n=m+1

umunHmHn

]

. (71)

Using the expression for un, we obtain
∑

m<n

umunHmHn = u2
∑

m<n

HmHn + (1− u2)(HkLk +HlLl) +
1− u2

u2
HkHl, (72)

Lk =

L∑

n=k

Hn −
k−1∑

n=1

Hn,

and therefore,
−→
L∏

n=1

eunHn =

−→
L∏

n=1

euHn ·
[

1 + (1− u2)(HkLk +HlLl) +
1− u2

u2
HkHl + (1− u2)2)HkLkHlLl

]

.

Then the two point correlation function can be simply expressed with correlation

functions 〈HkHl〉, 〈HkLk〉, and 〈HkLkHlLl〉
〈σ1kσ1l〉 = u2 + u2(1− u2) 〈HkLk +HlLl〉+ (1− u2) 〈HkHl〉

+ u2(1− u2)2 〈HkLkHlLl〉 .
The correlation functions involving a product of four Grassmann fields can be written

in term of products 〈HkHl〉 according to Wick’s theorem:

〈HkLkHlLl〉 = 〈HkLk〉 〈HlLl〉 − 〈HkLl〉 〈HlLk〉 − 〈HkHl〉 〈LkLl〉 . (73)

Using a Fourier transformation, the two field correlation functions are expressed, using

the previous definitions, as

〈HkHl〉 =
2i

L

L/2−1
∑

q=0

〈

Hq+ 1

2

H−q− 1

2

〉

sin
[

θq+ 1

2

(k − l)
]

, (74)

=
2

L

L/2−1
∑

q=0

iγ2D
q+ 1

2

Zq+ 1

2

(u)
sin
[

θq+ 1

2

(k − l)
]

.

Each term on the right hand side of equation (73) can then be evaluated using the

previous result:

〈HkLk〉 〈HlLl〉 =




1

L

L/2−1
∑

q=1

iγ2D
q+ 1

2

Zq+ 1

2

(u)
cot

θq+ 1

2

2





2

, (75)

〈HkLl〉 = − 1

L

L/2−1
∑

q=1

iγ2D
q+ 1

2

Zq+ 1

2

(u)

cos[θq+ 1

2

(k − l + 1/2)]

sin(θq+ 1

2

/2)
,

〈LkLl〉 =
2

L

L/2−1
∑

q=1

iγ2D
q+ 1

2

Zq+ 1

2

(u)

sin[θq+ 1

2

(k − l)]
sin(θq+ 1

2

/2)2
.
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The magnetization can be computed the same way. Using the identity (70) we obtain

〈σ1k〉 = u+ u(1− u2) 〈HkLk〉 . (76)

The connected correlation function is then

〈σ1kσ1l〉 − 〈σ1k〉 〈σ1l〉 = (1− u2) 〈HkHl〉 − u2(1− u2)2 (〈HkLl〉 〈HlLk〉+ 〈HkHl〉 〈LkLl〉) .
These correlation functions, and particularly 〈HkHl〉, can be extended for the study of

more complex configurations of the boundary magnetic field. Without field (u = 0), the

correlation function between two spins σ1k and σ1l are simply the correlation function

between the two Grassmannian fields Hk and Hl and is given by equation (74). We can

extract from this the dependence of the magnetization per spin m in the thermodynamic

limit near the critical point Tc. Indeed, it is usual to define m2 as the limit of the two

point correlation function for large separation r = |k − l|:
lim

|k−l|→∞
〈σ1kσ1l〉 = m2. (77)

To obtain the main contribution from (74) near Tc in the thermodynamic limit, we use

the expressions (67) to compute Zq+ 1

2

(0) in (74) and then make an expansion around

tc in the low temperature limit (t > tc) of the different quantities. We first write the

correlation function as an integral

〈σ1kσ1l〉 =
2t

π

∫ π

0

dθ
sin(θ)

√

R(θ)

S(θ)
sin(θr), (78)

S(θ) =
1

4

[√

R(θ) + (1 + t2)(1− 2t cos θ − t2)
]2

+ 4t4 sin2 θ,

and expand R and S for ∆t = t − tc and θ small, which is the region where the main

contribution of the integral comes from. For R, we find the following expansion:
√

R(θ) = ∆t(1 + t2c)(1 + tc +
√

2)

[

1 +
tc(1− t2c)

2(1 + tc +
√

2)
θ̃2 + . . .

]

,

= ∆t(R0 +R2θ̃
2 + . . .)

where we defined θ̃∆t = θ, R0 = (1 + t2c)(1 + tc +
√

2) and R2 = tc(1− t4c)/2. For S, we

obtain:

S(θ) = ∆t2
(

S0 + S2θ̃
2 + . . .

)

,

where S0 and S2 are numerical coefficients evaluated at tc: S0 = 16(3− 2
√

2) ≃ 2.745,

S2 = 4t4c ≃ .118. After some algebra, we obtain the following behaviour near tc of the

two point correlation function:

〈σ1kσ1l〉 ≃
2t∆t

π

∫ ∞

0

dx
xR0

S0(r∆t)2 + S2x2
sin x. (79)

For r∆t small enough, the integral is a constant πR0/2S2, and m is then proportional

to
√

∆t, which gives the mean field exponent β = 1/2 for the boundary magnetization.

With the presence of a small boundary magnetic field, at Tc, we use equation (76) to

compute directly the magnetization:

〈σ1k〉 ≃ u 〈HkLk〉 =
ut

π

∫ π

0

dθ
(1 + cos θ)

√

R(θ)

S(θ) + 2tu2(1 + cos θ)
√

R(θ)
. (80)
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The quantities R and S are easily evaluated at tc:

R(θ) = 16C0(1− cos θ)(3− cos θ),

S(θ) = 8C0(1− cos θ)
[

3− cos θ +
√

2(1− cos θ)(3− cos θ)
]

,

with C0 = 17 − 12
√

2. When u is small, the main contribution in (80) is when the

denominator is small, or when θ is close to zero. In this case we have
√

R(θ) ≃ 4
√
C0θ

and S(θ) ≃ 8C0θ
2. Replacing these values in (80) we obtain in the limit where u≪ 1:

〈σ1k〉 ≃
ut

π

∫ π

0

dθ
1√

C0θ + 2tu2
≃ − 2t

π
√
C0

u log u. (81)

These results agree with McCoy and Wu’s paper (14) and we can extend the method

to the case of an inhomogeneous boundary magnetic field, as we will see in the next

section.

8. An example of inhomogeneous boundary magnetic field

The existence of a 1D action allows us to solve more general configurations of the

boundary magnetic field. In this section, we illustrate that considering the simplest

case of a non uniform field at the boundary: Between sites (1, 1) and (1, l) we impose a

field h, and between sites (1, l + 1) and (1, L) a field −h (configuration noted Cb). The

previous solution in the presence of a uniform boundary magnetic field (configuration

Ca) has be presented in different publications (see for example (17), (18) and (19)) but

to our knowledge the present configuration has not been yet exactly studied. Using our

method, it appears that the evaluation of the PF Q(h; l) is a simple extension of the

previous calculation.

Indeed, the product (73) depending on the field can be simply expressed as

exp

(
∑

m<n

umunHmHn

)

= exp

(

u2
∑

m<n

HmHn − 2u2
l∑

m=1

Hm

L∑

n=l+1

Hn

)

.

Then we have

Q(h; l) = Q0Tr

[

eS1D

(

1− 2u2
l∑

m=1

L∑

n=l+1

HmHn

)]

,

= Q(h)

(

1− 2u2

l∑

m=1

L∑

n=l+1

〈HmHn〉S1D

)

,

since the other terms from the exponential expansion all include the square of linear

Grassmann sums and are therefore zero.

Using the Fourier transformation (74), we obtain :

Q(h; l)

Q(h)
= 1 +

4u2

L

L/2−1
∑

q=0

iγ2D
q+ 1

2

Zq+ 1

2

(u)

sin θq+ 1

2

l

1− cos θq+ 1

2

. (82)

The free energy difference between the 2 field configurations Cb and Ca is positive and

is equal to
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− βfint = ln



1 + 4u2 1

L

L/2−1
∑

q=0

iγ2D
q+ 1

2

Zq+ 1

2

(u)

sin θq+ 1

2

l

1− cos θq+ 1

2



 . (83)

This term is added to the total free energy (64) and for l = L/2, sin(θq+ 1

2

l) is simply

equal to (−1)q. If the transverse direction has an infinite size, we can use the expressions

(67) to obtain

− βfint = ln



1− 8u2 1

L

L/2−1
∑

q=0

(−1)q cot(θq+ 1

2

/2)
√

R(θq+ 1

2

)Zq+ 1

2

(u)



 , (84)

or more explicitly

− βfint = ln



1− 16tu2

L

L/2−1
∑

q=0

(−1)q cot(θq+ 1

2

/2)

(1 + t2)(1− 2t cos θq+ 1

2

− t2) + 4tu2(1 + cos θq+ 1

2

) +
√

R(θq+ 1

2

)



 .

In the 1D Ising model, for a system of L spins with periodic boundary conditions and

with a field configuration Cb identical to the 2D boundary line with l = L/2, a similar

result can be obtained, either by the matrix transfer method or with the grassmannian

solution of the section 5. In the first case, we obtain

− βf 1D
int = ln

(

(1− t)2 +
8tu2[4t(1− u2)]L/2

(1 + t−
√

(1− t)2 + 4tu2)L + (1 + t−
√

(1− t)2 + 4tu2)L

)

− ln[(1− t)2 + 4tu2] (85)

and in the thermodynamic limit this leads to

− βf 1D
int = ln

[
(1− t2)2

(1− t)2 + 4tu2

]

. (86)

With the Grassmannian fields, we obtain a different expression but rigorously identical

to equation (85):

− βf 1D
int = ln



1− 8tu2

L

L/2−1
∑

q=0

(−1)q cot(θq+ 1

2

/2)

1 + t2 − 2t cos(θq+ 1

2

) + 4tu2 cos(θq+ 1

2

/2)2



 . (87)

In the thermodynamic limit and at zero temperature, f 1D
int is equal to 4J for any non

zero value h, which is the energy difference between the 2 ground states of Cb and Ca,

all spins following the magnetic field direction in both cases. In the 2D case however,

if we suppose that the size is infinite in the transverse direction, for small values of the

magnetic field the boundary spins point all in the same direction (imposed by the bulk

spins, up for example) below a critical value of the field hc = J(1 + 4/L) and for the Cb

configuration. Indeed the interaction between boundary spins and the ones in the bulk

are strong enough that a small field −h is not sufficient to reverse these spins. In this

case fint = hL and is therefore extensive contrary to the 1D case. Above hc, the field −h
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is strong enough to reverse half of the spins that were up and therefore fint = hcL due

to the frustrated couplings with the neighboring spins in the bulk. Figure 4 represents

the free energy fint/L as a function of the boundary magnetic field for different values

of the temperature. L = 20 and hc = 1.2J . There is a change of the curve slope at

h = hc and low temperature curves suggest the previous reversal picture.

Figure 5 represents the contribution fint/L as a function of temperature for various

values of the magnetic fields. For h > hc the curves saturate at zero temperature to the

value fint/L = hc as expected.

0 0.5 1 1.5 2 2.5 3
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0.5

0.75

1

1.25

T=3.0J/kB

T=2.5J/k B

T=2.0J/k B

T=1.5J/kB

T=1.0J/kB

T=0.8J/kB

T=0.7J/kB

f i
n
t/
L

h/J

Figure 4. Boundary free energy fint/L as function of h for L = 20, hc = 1.2, for

various values of the temperature. Notice the transition at h = hc corresponding to

the reversing of half the boundary spins.

To check the low temperature behavior of fint, we can perform an expansion of

equation (84) for h ≪ 1 and T ≪ 1. In this case, we assume that t ≃ 1 and

u ≃ 1− 2 exp(−2h/kBT ). We obtain

− βfint ≃ ln



1− 4u2 1

L

L/2−1
∑

q=0

(−1)q cot(θq+ 1

2

/2)

(1 + u2)− (1− u2) cos θq+ 1

2



 . (88)

The sum inside the logarithm can be computed using equations (85) and (87), with

t = 1. We obtain

− βfint = ln

(
2(1− u2)L/2

(1− u)L + (1 + u)L

)

≃ −βhL (89)
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Figure 5. Boundary free energy fint/L for L = 20, hc = 1.2, as a function of

tanh(J/kBT ) for various values of the magnetic field h/J .

These results allow us also to study quite precisely the effect of an inhomogeneous

magnetic field on the spins inside the bulk for a finite transverse size system or a fixed

ratio between the sizes of the two directions (square or rectangular system). In this

case, the previous domain wall that appears for h > hc due to the reversal of half of the

boundary spins can propagate or jump inside the bulk for sufficiently high temperature

in order to lower the free energy. This may cause the total magnetization to cancel if

this wall separates two regions of equal number of opposite spins. An exhaustive study

will be published in a forthcoming paper.

9. Conclusion

In this article we have presented an application of the Plechko’s method to the 2D Ising

model in the case of a inhomogeneous boundary magnetic field. We show that this model

can be mapped onto a 1D model with a Gaussian Grassmannian action similar to the

case of the 1D Ising in a magnetic field. Results have been obtained for the homogeneous

case, in order to validate our results with the ones obtained by McCoy and Wu(13), and

an extension is made to a special inhomogeneous case where a magnetic interface is

imposed. This case is a generalization of the homogeneous case, and an expression

of the boundary partition function in term of a 1D action is given. Contrary to the

1D case, the interface free energy appears to be extensive, proportional to the system
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size L. A simple argument gives a zero temperature critical field hc to be the field

above which a domain wall appears on the boundary and may eventually propagate

inside the bulk at higher temperature. This generalization of Plechko’s method for

the Ising model with non uniform boundary magnetic field appears to be simple and

straigthforward. Further developpements are possible. In particular, the expression for

the bulk-boundary correlation functions can be computed. It appears however that this

method is not efficient in the case of the 2D Ising model with homogeneous magnetic

field in the bulk, or for the 3D Ising model since operations using mirrors symmetries

seem not to be sufficient to write a Grassmannian quadratic action. The mapping of the

boundary region onto a 1D action could be used to obtain some results in other cases,

for example it can be a starting point for studying the properties of random magnetic

fields on the boundary. For the 2D Ising case, random fields on the boundary are found

to be marginal (20) and computations may be made based on the 1D action (61) using

possibly random matrix theory.
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