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(Received 24 August 2004)

The stability of an evaporating thin liquid film on a solid substrate is investigated within
lubrication theory. The heat flux due to evaporation induces thermal gradients; the gener-
ated Marangoni stresses are accounted for. Assuming the gas phase at rest, the dynamics
of the vapour reduces to diffusion. The boundary condition at the interface couples trans-
fer from the liquid to its vapour and diffusion flux. A non-local lubrication equation is
obtained; this non-local nature comes from the Laplace equation associated with quasi-
static diffusion. The linear stability of a flat film is studied in this general framework. The
subsequent analysis is restricted to moderately thick films for which it is shown that evap-
oration is diffusion limited and that the gas phase is saturated in vapour in the vicinity
of the interface. The stability depends only on two control parameters, the capillary and
Marangoni numbers. The Marangoni effect is destabilising whereas capillarity and evap-
oration are stabilising processes. The results of the linear stability analysis are compared
with the experiments of Poulard et al. (2003) performed in a different geometry. In order
to study the resulting patterns, the amplitude equation is obtained through a systematic
multiple-scale expansion. The evaporation rate is needed and is computed perturbatively
by solving the Laplace problem for the diffusion of vapour. The bifurcation from the flat
state is found to be a supercritical transition. Moreover, it appears that the non-local
nature of the diffusion problem unusually affects the amplitude equation.

1. Introduction

Since the pioneering studies of Thomson (1855), Marangoni (1865) and Bénard (1900),
much attention has been devoted to now called Marangoni instabilities. Thomson and
Marangoni first proposed surface tension gradients as a cause for convection in liquids.
The Marangoni effect consists in the variation of surface tension with temperature or
liquid composition and is the driving force for this class of instabilities. The hexagonal
patterns observed by Bénard (1900) in thin layers heated from below prompted a number
of studies (for reviews, see Davis 1987; Schatz & Neitzel 2001). Recent research in this
field has focused on the correct description of the gas above the fluid layer and of the
deformability of the interface (VanHook et al. 1997; Golovin et al. 1997), or the effect of
local heating (Miladinova et al. 2002; Kalliadasis et al. 2003; Yeo et al. 2003).

Marangoni effect can also be driven by evaporation. Many experimental situations
of interest are reviewed by Berg, Boudart & Acrivos (1966). On the one hand, as the
phase transformation requires latent heat, evaporation generates thermal gradients. For
spreading droplets of slightly volatile liquids, Redon, Brochard-Wyart & Rondelez (1992)
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reported festoon instabilities near the contact line while Kavehpour et al. (2002) mea-
sured height fluctuations over the whole drop. Hegseth, Rashidnia & Chai (1996) observed
vigorous interior flow in evaporating droplets of a volatile liquid. On the other hand, in
the case of mixtures, a difference of the evaporation rate between components changes
the relative concentrations at the interface and so generates surface tension gradients.
Fournier & Cazabat (1992); Vuilleumier, Ego, Neltner & Cazabat (1995); Fanton & Caz-
abat (1998); Hosoi & Bush (2001) studied tears of wine and the associated convection
rolls. Nguyen & Stebe (2002) showed instabilities induced by surfactants. This compo-
sition mechanism may enhance evaporation and is therefore useful in drying techniques
(Marra & Huethorst 1991; O’Brien 1993; Matar & Craster 2001).

A comprehensive theoretical stability analysis of evaporating/condensing films was
done by Burelbach, Bankoff & Davis (1988). They included vapour recoil and thermo-
capillarity, but as in subsequent studies (see Oron et al. 1997; Margerit et al. 2003; Merkt
& Bestehorn 2003), the evaporation and condensation are governed by the departure from
thermodynamic equilibrium at the interface. Within this framework evaporation is intrin-
sically destabilising as can be seen in Prosperetti & Plesset (1984) who did not consider
Marangoni stresses. In the case of very thin films (Elbaum & Lipson 1994) microscopic
forces may be destabilising as shown by Samid-Merzel, Lipson & Tannhauser (1998);
Lyushnin, Golovin & Pismen (2002). It is worth noticing here that all models developed
in these papers are one-sided: they do not account for the gas phase dynamics except
through the boundary condition at the interface.

In contrast, Deegan et al. (1997, 1999) showed that evaporation of pinned water
droplets is limited by diffusion of vapour in air, thus they explained the origin of coffee
stains. Cachile et al. (2002) explained their experiments on freely receding evaporating
droplets within the same framework. They also observed the drops of certain fluids (see
discussion in the last section) to loose their axisymmetry and the contact line to become
wavy (Poulard et al. 2003). These unexplained instabilities are among the motivations
of the present study.

We investigate here the evaporation of fluid layers. In section 2, we build a model
which includes both thermodynamic determined transfer of the molecules across the
interface and diffusion of vapour in the gas phase. This generalises the two class of
models presented above. We describe the liquid film within lubrication theory taking
into account surface tension gradients and loss of mass. In section 3, we perform the full
linear stability analysis of this system. We show that the diffusion limited regime is the
relevant one for moderately thick films to which we restrict subsequently. Then, we find
the amplitude equation describing patterns above the instability onset. Eventually, in
section 4, we compare our results with the experiments of Poulard et al. (2003).

2. The model

We consider the dynamics of a two-dimensional bi-layered liquid-gas system over a
solid substrate (figure 1). The gas phase is a mixture of an inert gas and of the vapour of
the liquid which is volatile. We assume that the gas phase is not saturated by the vapour
so that the liquid evaporates. The typical corresponding experimental situation is that
of a water layer evaporating in air. The latent heat needed for the phase transformation
drives a heat flux to the interface in the liquid. The induced temperature variations may
generate surface tension gradients.

The model derived below is built on the lubrication approximation for the liquid layer,
and accounts for surface tension variations and loss of mass through evaporation. The
gas phase is at rest; its dynamics is reduced to the diffusion of the vapour in the mixture.
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Figure 1. Geometry of the physical system.

For a complete description of the system, the boundary conditions at the interface are
needed and, in particular, the evaporation rate must be specified. Although this analysis
is focused on evaporating films, it applies to the case of condensation as well.

The physical situation of interest is that of volatile liquids such as water and alkanes
evaporating in air. A compilation of the physical parameters is given in table 1. The
governing equations will be obtained within some approximations, which are relevant to
these liquids and will be justified at the end of this section.

We restrict the study to a two dimensional system which coordinates are x along the
substrate and z normal to it (figure 1). The state of the system is determined by the
height h(x, t) of the interface and the molecular concentration ρ(x, z, t) of vapour in the
gas phase (both are functions of space and time). In the following, we write the equations
describing the flow and heat diffusion in the liquid phase, diffusion in the gas phase and
then the boundary conditions at the interface.

2.1. The liquid film

We consider a very thin film so that we work within the long-wavelength approximation
(lubrication theory) where the typical height H is much smaller than the typical hor-
izontal scale and we neglect gravity. The evolution of the thin film is governed by the
following partial differential equation

∂h

∂t
+

∂

∂x

{

h3

3µ

∂

∂x

(

γ
∂2h

∂x2

)

+
h2

2µ

∂γ

∂x

}

= −
J

ρ`
(2.1)

where µ is the viscosity of the fluid and γ = γ(x) is the (local) surface tension. The
last term in the brackets comes from the shear stress due to surface tension gradients.
The right-hand side corresponds to the volume loss through evaporation. ρ` is the liquid
molecular density (number of fluid particles per unit of volume) and J denotes the number
of molecules leaving the liquid to the gas phase per unit of time and surface. Let J0 be
the characteristic evaporation rate. The ratio vev = J0/ρ` is the relevant velocity scale
in the system.

2.2. Surface tension gradient

To close equation (2.1) we first need to compute the surface tension gradient. We assume
that temperature fluctuations ∆T on the interface are much smaller than the temperature
of the substrate Tsubs. This approximation is assessed quantitatively below. Thus, we use
a linear equation of state:

γ(T ) = γ0 − |
dγ

dT
|(T − Tsubs). (2.2)
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where γ0 = γ(Tsubs). Surface tension decreases with temperature for most liquids, hence
the absolute value of dγ

dT = dγ
dT (Tsubs). The temperature field T (x, z) satisfies the standard

convection-diffusion equation in the liquid. In the long-wavelength approximation, it

reduces to ∂2T
∂z2 = 0. Neglecting density, viscosity and thermal diffusivity of the gas the

energy balance at the interface gives the heat flux (Oron et al. 1997)

κ
∂T

∂z
(z = h(x)) = −LvJ

Lv being the vaporisation latent heat per molecule, κ the thermal conductivity of the
liquid. We obtain

T (z = h(x)) = −
LvJ(x)

κ
h(x) + Tsubs (2.3)

where the substrate is assumed isothermal. Equations (2.2-2.3) result in

γ = γ0 +
∣

∣

∣

dγ

dT

∣

∣

∣

Lv
κ
hJ. (2.4)

We now come back to the assumption of small temperature fluctuations. With the help
of (2.3), we obtain: ∆T = LvJ0∆h/κ, ∆h being the height fluctuations. The height fluc-
tuations ∆h are smaller than H. Thus, the reduced temperature ∆T

Tsubs
is bounded by

θ = LvJ0

κ
H

Tsubs
, H being the characteristic thickness of the film. The linear approxima-

tion of (2.2) requires a small θ. To close the system (2.1-2.4) one has to compute the
evaporation rate J .

2.3. The vapour

The gas phase is at rest, so that there is only diffusion of the vapour. We consider the
limit of quasi-static diffusion where the characteristic diffusion time is much smaller than
the characteristic evaporation time H2/D ¿ Hρ`/J0, D being the diffusion coefficient
of the vapour in the gas phase. In terms of the Péclet number Pe = vev

H
D , the latter

condition is Pe ¿ 1. Hence, the vapour concentration ρ(x, z, t) (local number of particles
per unit volume in the gas phase) is a solution of the Laplace’s equation:

∇2ρ = 0 (2.5)

∇2 = ∂2

∂x2 + ∂2

∂z2 being the 2D−Laplacian.
The gas phase is not saturated by the vapour. This condition is enforced by a constant

diffusion rate at infinity

∂ρ

∂z
∼ −

J0
D
, z → +∞. (2.6)

To solve (2.5) a boundary condition at the interface is needed. It is obtained in the next
subsection.

2.4. Evaporation rate

The vapour and the liquid are coupled through the evaporation rate. The kinetic theory
leads to a linear constitutive relation between the molecular flux and the departure from
equilibrium at the interface, known as the Hertz-Knudsen relation (Palmer, 1976).

Jmol = α

√

kBTint
2πM

(ρeqv (Tint)− ρ|int)n (2.7)

whereM is the molecular weight, ρeqv is the molecular density of the gas at the liquid/gas
coexistence, ρ|int = ρ(z = h(x)) is the gas molecular density at the interface, kB is the
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Water Nonane Octane Heptane Hexane
ρ` (kg/m

3) 1000 717 699 682 656
Lv (J/kg) 2.4 106 3.18 105 3.82 105 3.21 105 3.22 105

γ (kg/s2) 7.20 10−2 22.38 10−3 21.77 10−3 20.31 10−3 18.42 10−3

µ (kg/m/s) 8.9 10−4 6.65 10−4 5.08 10−4 3.87 10−4 3.0 10−4

|dρ
eq

dT
| (/m3/K) 2.4 1021 4.6 1020 1.5 1021 5.0 1021 1.65 1022

| dγ
dT
| (kg/s2/K) 1.5 10−4 9.4 10−5 9.53 10−5 9.80 10−5 1.02 10−4

vev (m/s) 0.48 10−6 0.2 10−6 0.6 10−6 2.2 10−6 6.8 10−6

vth (m/s) 148 52 55 58.8 63.3
κ (kg.m/s3/K) 0.60 1.31 10−1 1.28 10−1 1.23 10−1 1.20 10−1

Dair (m2/s) 1.9 10−5 3 10−6 3 10−6 3 10−6 3 10−6

Table 1. Values of physical parameters for different fluids at 1 atm and T = 25◦C (Lide
1995). vev is estimated from the experiments on evaporating drops Poulard et al. (2003) using
the formula vev = j0/R where j0 is the evaporation parameter and R is the drop radius. The
diffusion coefficient in air Dair is roughly estimated using kinetic theory. Assuming perfect gas

behaviour, we have | dρ
eq

dT
| = ρeq

T
which is evaluated using the vapour pressure at saturation

under 1 atm (Lide 1995).

Boltzmann constant, α is the accommodation coefficient (close to unity) and n is the

outward normal to the interface. We note vth = α
√

kBTint

2πM which is a typical kinetic

velocity.
In the gas phase, the vapour molecular flux, related to the departure from uniform

vapour density is given by:

J = −D∇ρ|int. (2.8)

Due to the continuity of the normal evaporative flux, we have

−D(n ·∇)ρ|int = vth(ρ
eq(Tint)− ρ|int). (2.9)

Following the same procedure as in section 2.2, that is: assuming θ ¿ 1, writing a linear
temperature dependant equation of state and using (2.3), one obtains for the equilibrium
molecular density at the interface:

ρeq(T ) = ρeq(Tsubs) +
∣

∣

∣

dρeq
dT

∣

∣

∣

Lv
κ
hJ.

Thus, the boundary condition at the interface (2.9) may be rewritten:

−D

(

1− vth

∣

∣

∣

dρeq
dT

∣

∣

∣

Lv
κ
h

)

(n ·∇)ρ|int = vth(ρ
eq(Tsubs)− ρ|int). (2.10)

This is a mixed boundary condition which generalises previous studies (see discussion in
last section).

2.5. Governing equations. Non dimensional parameters

For the rescaling of the equations, we choose the typical thickness H of the liquid layer,
the characteristic evaporation time H/vev = Hρ`/J0, the molecular flux far from the
substrate J0 and the J0H/D as units, respectively, of length, time, molecular evaporation
rate and molecular density of vapour in the gas phase. We make the substitutions h →
Hh̃, x → Hx̃, z → Hz̃, J → ρ`vevJ̃ , ρ → ρeq(Tsubs) + J0Hρ̃/D in equations (2.1-2.4)
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Number Definition Signification Water Nonane Octane Heptane Hexane

Ca (×108) µvev
γ

viscous stresses
capillary stresses 0.6 0.6 1.4 4.2 11

Ma (×106) H Lvvevρ`

κγ
| dγ
dT
| Marangoni stresses

capillary stresses 0.7 0.3 1.1 3.8 13

Pe (×109) vev
H
D

evaporation time
diffusion time 4.9 2.0 6.1 22 69

Pek vth
H
D

kinetic time
diffusion time 1.5 3.5 3.7 3.9 4.2

χ (×102) vth|
dρeq

dT
|LvH

κ
density fluctuations 1.8 0.3 1.1 2.9 9.1

θ (×106) ρ`vev
Lv
κ

H
Tsubs

temperature fluctuations 1.3 0.4 1.1 4.0 12

Table 2. Typical values for the non-dimentionnal parameters.

and (2.5-2.6-2.10). The lubrication equation becomes

∂h̃

∂t̃
+ Ca−1

∂

∂x̃

{

h̃3

3

∂

∂x̃

(

(1 +Ma h̃J̃)
∂2h̃

∂x̃2

)

+Ma
h̃2

2

∂(h̃J̃)

∂x̃

}

= −J̃ (2.11)

where we have eliminated the surface tension and introduced Ca = µvev
γ0

and Ma =

Hvevρ`
Lv

κ
1
γ0
| dγdT | respectively the capillary and the Marangoni numbers. The Laplace

problem reads

∇̃
2
ρ̃ =

∂2ρ̃

∂x̃2
+
∂2ρ̃

∂z̃2
= 0 (2.12)

with the two boundary conditions

(χh̃− 1)(n · ∇̃)ρ̃|int = Pekρ̃|int and lim
z̃→+∞

∂ρ̃

∂z̃
= −1. (2.13)

where Pek = vthH
D is a kinetic Péclet number and χ = Hvth

Lv

κ |
dρeq

dT | is called the thermal
expansion number.

The evaporation rate is given by

J̃ = −(n · ∇̃)ρ̃|int (2.14)

which is the non dimensional version of (2.8).

The evaluation of the relevant dimensionless parameters for water and different alka-
nes (table 2) shows that the limit Pe → 0, θ → 0 is reasonable. The smallness of the
Péclet number Pe ensures that the time needed to build up the concentration profile
above the film is much smaller than the characteristic time for the motion of the inter-
face, so that stationary diffusion is a good approximation. The smallness of the reduced
temperature θ allows a linear approximation for the surface tension and the gas density
at the interface. The relevant physics is therefore contained in the values of the capillary,
the Marangoni, the kinetic Péclet and the thermal expansion numbers (Ca,Ma,Pek, χ).
Other mechanisms, such as vapour recoil, are neglected. This is not a limitation for slow
evaporation.

The closed system to be studied consists in the lubrication equation (2.11) coupled
with a Laplace problem (2.12-2.13). This unusual coupling comes from evaporation which
relates the film mass loss to the gradient of the vapour concentration. This induces non-
locality in the lubrication equation as the mass loss is a function of the whole shape
of the interface. To simplify notations, we drop from now on the tildes for the rescaled
variables.
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3. Stability of the flat interface

Equations (2.11-2.12) have as solution for the film thickness h(x, t) = 1 − t and
ρ(x, z, t) = −z + C − (1 − χ/Pek)t with C = (1 + Pek − χ)/Pek. As this base state is
non stationary, linearisation of the equations gives a non autonomous partial differential
equation, so that standard linear stability (modal) analysis should not apply. For sim-
plicity, we assume from now on that the base state is h(x, t) = 1 and ρ(x, z, t) = −z+C,
which amounts to adding a volume source vev in the right-hand side of equation (2.1),
as this source compensates exactly for the loss of mass at infinity. This also amounts to
assuming that evaporation is sufficiently slow so that the thickness of the layer remains
approximately constant during the growth of unstable modes.

3.1. Full linear stability analysis

We study the stability of the flat state by seeking solutions of equations (2.11-2.14) in
the form:

h = 1 + δh, ρ = C − z + δρ, J = 1 + δJ.

After linearisation, those equations admit Fourier-mode solutions of wavenumber k and
growth rate Ω: δh = A eΩt eikx+c.c ( c.c stands for the complex conjugate of the preceding
term); we now compute the corresponding δρ and δJ . The boundary condition (2.13) at
the interface gives at linear order δρ|z=1 = Pek−χ

|k|(χ−1)+Pek
δh. Using ∂

∂z δρ|z=+∞ = 0, the

Laplace equation is readily solved to give

δρ =
Pek − χ

|k|(χ− 1) + Pek
δh e−|k|(z−1) + c.c.

From (2.14) we get the perturbed evaporation rate δJ = − ∂
∂z δρ|z=1. Plugging in (2.11)

and dropping non-linear contributions gives the dispersion relation:

Ω(k) = −
1

3Ca
k4 +

Ma

2Ca

(

1 + |k|
Pek − χ

|k|(χ− 1) + Pek

)

k2 − |k|
Pek − χ

|k|(χ− 1) + Pek
. (3.1)

Ω(k) is growth rate of the wavenumber k; if Ω(k) > 0, then the perturbation grows and
the corresponding mode is unstable. Evaporation can either stabilise or destabilise large
wavelengths depending on the values of Pek and χ whereas capillarity stabilises short
wavelengths; Marangoni effect drives the instability.

3.2. Diffusion limited regime: linear stability analysis

In the situation of interest (water or alkanes evaporating in air, table 2), the thermal
expansion number χ is always small while the kinetic Péclet number Pek is of order
one. So we consider the limit χ, |k| ¿ min{1,Pek} which we refer to as diffusion limited

regime (the terminology is clarified below). The boundary conditions (2.13) for Laplace
problem (2.12) become

ρ̃|int = 0 and lim
z̃→+∞

∂ρ̃

∂z̃
= −1. (3.2)

It appears that the gas is saturated in vapour immediately above the interface (in
dimensional quantities, ρ|int = ρeq(Tsubs)) and that evaporation is limited by diffusion.
This Laplace problem has an electrostatic equivalent: the one of finding the electric
potential (ρ) with an imposed electric field (J0) at infinity and a fixed constant potential
on a deformed plane. The sharp edge effect implies a larger evaporation rate at crests
which tends to restore the flat state. So evaporation is a stabilising mechanism in the
diffusion limited regime.
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Figure 2. Growth rate Ω of the mode of wave number k (dimensionless quantities) for three
typical value of the Marangoni number Ma. We have chosen here a capillary number Ca = 10−6.

In this regime the dispersion relation (3.1) becomes

Ω(k) = −
1

3Ca
k4 +

Ma

2Ca
k2 − |k|. (3.3)

The last term shows again that evaporation is stabilising in this regime. The relevant
control parameters are the capillary and Marangoni numbers. Suppose that Ca is fixed;
when Marangoni number Ma is small, there is no unstable mode. The first unstable
wave number kc (marginally stable mode) appears when the Marangoni number reaches
a critical value Mac such that Ω(k = kc) = 0 and d

dkΩ(k = kc) = 0 (figure 2). Solving
this system, we obtain







Mac ' 181/3Ca2/3

k2c '
Mac

2

(3.4)

for the critical parameters at the threshold.
The relevance of these results to the experiments is examined in the last section.

3.3. Diffusion limited regime: weakly non-linear analysis

The preceding linear stability analysis shows that the system may become unstable, it
gives the most unstable wavelength and the instability threshold. However, predicting
the nature of the transition or observed the patterns require a more refined treatment.
For instance, if the transition is discontinuous, the pattern might be very different from
the linearly most unstable mode. This is why we perform a weakly nonlinear analysis
close to the critical point. It is restricted to the diffusion limited regime (equations 2.11
and 2.12-3.2).

In this analysis, nonlinear contributions to the evaporation rate are needed; they are
computed in appendix A:

J [h] = 1− ∂
∂xH[h] +

{

1
2

(

∂h
∂x

)2
+ ∂2h

∂x2 h+ ∂
∂xH

(

h ∂
∂xH[h]

)

}

+
{

1
2

(

∂h
∂x

)2
H
[

∂h
∂x

]

− 1
2
∂2

∂x2

(

h2 ∂
∂xH[h]

)

− 2h∂h∂xH
[

∂2h
∂x2

]

− ∂
∂xH

(

h ∂
∂xH

(

h ∂
∂xH[h]

))

− 1
2
∂
∂xH

[

h2 ∂
2h
∂x2

]

}

+O(h4).

(3.5)

where H is the Hilbert transform (appendix B). Each successive correction to the base
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state is an integro-differential transform of the interface profile h; this comes from the
non-local nature of the Laplace problem. We have included only useful orders.

We use a multi-scale expansion which is valid when the spatial Fourier spectrum of
h(x, t) is concentrated around kc (e.g Manneville 1990). We look for an equation of
evolution for the slowly varying function A(X,T ) such that h(x, t) = A(X,T ) exp(ikcx)+
c.c. Formally, we use ε as an expansion parameter. We assume that h is a function of both
the fast scales x, t and the slow scales X = εx, T = ε2t. This choice for the slow scales
is the natural one given that Ω(k) is maximum at kc. We consider the neighbourhood of
the marginal stability and we rescale the control parameter as

Ω(kc) = ε2ω(kc).

From the chain rule for differentiation we must make the replacements

∂x → ∂x + ε∂X , ∂t → ∂t + ε2∂T .

We also assume that h can be expanded as

h(x, t) = εh1(x, t) + ε2h2(x, t) + · · ·

The procedure to obtain the amplitude equation (equation for A(X,T )) is quite stan-
dard and is detailed in appendix C. However the present case has the peculiarity that
the expansion must be pursued up to order 6 as h1 is found to vanish. This is due to
the coupling between the evaporation rate and the k = 0 eigenmodes of the linearised
evolution operator.

Taking the rescalings X → X/kc and T → T/kc, neglecting terms of order k2c and
higher which is consistent with lubrication theory, the amplitude equation reads

∂A

∂T
=σA+

3

2

∂2A

∂X2
− 2i

∂3A

∂X3
−

1

2

∂4A

∂X4
−

45

8
|A|2A

+
3

2
kcA

{

H

∫∫
({

σ −
∂

∂T

}

H+
∂

∂X

)

|A|2 + 2i

∫

H

[

A
∂A

∂X

]

− 4iH[|A|2]

}

(3.6)

the control parameter being

σ = 2
Ca − Cac

Cac
+

3

2

Ma −Mac

Mac
. (3.7)

As far as we are aware of, this non-local kind of amplitude equation has not been derived
before. The non-local terms are important for large amplitude patterns or for finite size
systems.

The solution A = 0 of the amplitude equation becomes unstable when σ > 0 (which
is consistent with the linear stability). When σ > 0, there are stationary solutions of
the form A(X,T ) = A0 exp(iQX) with σ = 45/8 |A0|

2 + 3/2Q2 + 2Q3 + 1/2Q4. They
correspond to a stationary pattern with thickness fluctuation h(x, t) = A0 exp{i(kc +
Q)x}, which is modulated around the critical wavenumber kc. Thus, as the prefactor
of |A|2A is negative, the transition from the flat state (A = 0) to a state with height
fluctuations is a supercritical (continuous) pitchfork bifurcation.

4. Discussion

4.1. Comparison with experiments on evaporating droplets

We turn now to the experimental relevance of our analysis. Despite the number of the-
oretical studies on evaporating thin films, very few experiments have been conducted.
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Ca Ma Mac(Ca) Mac/Ma

Water 5.90 10−9 6.66 10−7 8.59 10−6 12.9
Nonane 5.94 10−9 2.89 10−7 8.60 10−6 30
Octane 1.4 10−8 1.10 10−6 1.52 10−5 13.8
Heptane 4.19 10−8 3.76, 10−6 3.16 10−5 8.4
Hexane 1.11 10−7 1.33 10−5 6.05 10−5 4.55

Table 3. Values of the control parameters (Ca,Ma) for different volatile fluids and
comparison with the instability threshold.

Redon et al. (1992), Kavehpour et al. (2002) and Poulard et al. (2003) observed instabili-
ties in the shape of evaporating droplets. In the first set of experiments (Kavehpour et al.
2002; Redon et al. 1992), the spreading of drops of silicon oils was studied. As silicon
oils have a very low volatility, evaporation rate is small and the shear stress associated
with the spreading is important. In the second set of experiments (Poulard et al. 2003)
evaporation sets the velocity scales. This is why we focus on this latter set.

Poulard et al. (2003) studied receding evaporating drops of water and alkanes on
smooth substrates. The data in tables 1 and 2 corresponds to this experimental situation.
For water, heptane and hexane the drop looses its axisymmetry and develops a regular
wavy pattern near the contact line. No instabilities are observed neither with octane nor
nonane. To compare with the theory, computation of the control parameters (Ca,Ma)
requires the choice of a thickness lengthscale; we retain the typical thickness of the
instable region, h ∼ 200 nm. We estimate the typical evaporation rate in this zone using
J(r) = J0/

√

1− (r/R)2 (Deegan et al. 1999), R is the drop radius and r is the distance
to the drop axis. In the experiments, the radius R is of order 0.5 mm and the size of
the unstable zone is R − r ∼ 5 µm According to table 3 droplets of all fluids are stable.
However, the geometry of a droplet is different from that of a constant thickness film
analysed in this paper so we cannot conclude directly on the stability. We should only
compare the relative values of the ratio Mac/Ma between different fluids. This ratio is of
order one meaning that the distance to the threshold is small. Moreover, the fluids can
be sorted from the less stable to the most stable as: hexane, heptane, water, octane and
nonane. This compares well with the experiments: festoon patterns have been observed
with hexane, heptane and water and none with octane and nonane. Equation (3.4) gives
as wavelengths λHeptane ' 320 µm and λWater ' 600 µm which are an order of magnitude
higher than the experimental λHeptane ' 50 µm and λWater ' 30 µm. Firmer conclusions
would require further experimental or theoretical studies.

4.2. Transfer rate limited versus diffusion limited evaporation

We obtained (2.9) as a boundary condition prescribed at the interface combining both
the transfer rate across the interface and the diffusion of the vapour in the gas phase.
This boundary condition might be simplified in two distinct limits according to the value
of the kinetic Péclet number Pek. These two limits have been used separately in the
literature; however, it has been overlooked that they fall within a general framework.

In the first limit, Pek ¿ 1 (e.g. very thin films), the evaporation process is limited
by the transfer of molecules across the interface. The diffusion of the vapour can be
ignored and the classical Hertz-Knudsen (2.7) relation gives the evaporation rate. It is
worth noticing here that transfer-limited evaporation might be destabilising if the thermal
expansion number χ is large enough: schematically, if the free surface undergoes a small
shape perturbation, liquid portions that are closer to (resp. more far from) the substrate
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evaporate faster (resp. slower) and the disturbance is amplified. The so-called one-sided
models for evaporating layers (Prosperetti & Plesset 1984; Burelbach et al. 1988; Samid-
Merzel et al. 1998; Lyushnin et al. 2002; Margerit et al. 2003; Merkt & Bestehorn 2003)
correspond to this limit as they do not consider the dynamics of the gas phase and so
discard vapour diffusion.

In the second limit, Pek À 1 (e.g. moderately thick films), the evaporation process
is limited by the diffusion of the vapour in the gas phase. The gas phase is saturated
in vapour immediately above the interface and the evaporation flux is given by the
Fick relation (2.8). The electrostatic analogue of the Laplace problem for the vapour
density, valid if χ is small enough, and the sharp edge effect show that the evaporation
rate is larger at bumps hence diffusion limited evaporation is stabilising. The study
of evaporating droplets (Deegan et al. (1999), Cachile, Benichou, Poulard & Cazabat
(2002)) fall within these approximations.

4.3. Main results

In this paper, we constructed a two-sided model for evaporating thin liquid films. In
order to predict quantitatively the evaporation rate, we have considered the competition
between transfer rate across the interface and diffusion of the vapour in the gas phase.
For moderately thick fluid layers, we have shown that the relevant regime is the diffusion
limited one. In this context, the system describing the evolution of the height profile h
couples the lubrication of the substrate by the thin film to the diffusion of its vapour
in the gas phase. The results of the linear stability analysis that we have carried are
not too far from Poulard et al. (2003) experiments on evaporating droplets. To push
the comparison further, it would be interesting to perform experiments on extended flat
films. Moreover, the diffusion equation confers a non-local aspect to the dynamics of
the film which is found to persist in the amplitude equation (C 13) established within a
weakly nonlinear study. This property was unexpected and contrasts with Friedrichs &
Engel (2003) results on the Rosensweig instability of magnetic fluids; it originates from
the presence of uniform profiles in the null-space of the linearised evolution operator (see
appendix C).

This work suggests investigation of more complicated situations such as when both
transfer rate and diffusion of the vapour are important (i.e. when Pek has a finite value),
in the non-linear regime. As analytical extensions to the present study seem difficult,
numerical computations of the complete two-sided model would allow the investigation of
effects such as the non-stationary of the base state, finite extension of the system or three
dimensional patterns. Consequences of the non-local terms should also be interesting to
further study.

Appendix A. The evaporative flux. Electrostatic analogy.

This appendix is devoted to the perturbative treatment of the Laplace problem










∇2ρ = 0 (z > h(x))

ρ(x, h(x)) = 0
∂ρ
∂z (x, z = +∞) = −1

where h = h(x) is a given regular (bounded and differentiable) function. Precisely, the
point is to compute −(n ·∇)ρ|z=h(x)+ .
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A.1. Vortex sheet formalism

Using electrostatic terminology, the problem is to find the electric field J immedi-
ately above a deformed charged plane. Introducing a superficial charge distribution
ρ = σ(x)δ(z − h(x)) (δ(z − a) is a Dirac mass concentrated at the point z = a), one
can write the integral representation:

J(x, z) =

∫

σ(x′)
(x− x′)ex + (z − h(x′))ez
(x− x′)2 + (z − h(x′))2

d`(x′) (z 6= h(x)) (A 1)

d` =
√

1 + (dhdx )
2 dx being the arc-length element.

At the interface, two boundary conditions are prescribed. To begin with, according to
Gauss theorem, the field has a normal discontinuity

(J+ − J−) · n = 2πσ
d`

dx
(A 2)

where J+ (resp. J−) stands for the field just above (resp. below) the interface z =
h(x). Moreover, the tangential component has to vanish in order to fulfil the condition
ρ(x, h(x)) = 0:

J+ · t = J− · t = 0 (A3)

Now, setting z = h(x) in (A 1), one has to take the Cauchy principal value (denoted as
PV) of the integral in order to get a well defined expression. This regularised integral is
equal to the half-sum of J+ and J− so that the conditions (A 2-A 3) may be rewritten
as:

J+ = πσ

√

1 +

(

dh

dx

)2

+
1/4

√

1 +
(

dh
dx

)2
PV

∫

σ(x′)

x− x′
−dh

dx (x) + φ(x, x′)

1 + φ(x, x′)2
d`(x′) (A 4)

and

PV

∫

σ(x′)

x− x′
1 + dh

dx (x)φ(x, x
′)

1 + φ(x, x′)2
d`(x′) = 0 (A 5)

with φ(x, x′) = h(x)−h(x′)
x−x′

and J+ = J+ · n = ‖J+‖.

A.2. Perturbative treatment

The general relation (A 5) implicitly gives the superficial charge σ as a function of h. Since
the inversion is not possible analytically, we assume that the deflection from the flat plane
h is weak; we introduce a small parameter η such as h is replaced by ηh (a possible choice
is to set η = supx |h(x)|) and write a perturbative expansion σ = σ(0)+ησ(1)+η2σ(2)+. . ..
The η = 0 contribution corresponds to the plane interface for which the field is uniform;
the boundary condition J(x, z = +∞) = J (0)ez readily gives σ(0) = J (0)/π. Solving
(A 5) up to O(η4), we find

σ[h] =
J (0)

π

(

1 + η2
{

1

2

(

dh

dx

)2

+ h
d2h

dx2
+

d

dx
H

[

h
d

dx
H[h]

]}

+O(η4)

)

(A 6)

where H is the Hilbert transform (see Appendix B).

The remaining step is simply to plug (A 6) into (A 4). Without having to compute
further terms for σ(x), we can express the evaporative flux expansion up to O(h4).
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Setting η = 1, we find

J [h] = 1−
d

dx
H[h] +

{

1

2

(

dh

dx

)2

+
d2h

dx2
h+

d

dx
H

(

h
d

dx
H[h]

)

}

+

{

1

2

(

dh

dx

)2

H

[

dh

dx

]

−
1

2

d2

dx2

(

h2
d

dx
H[h]

)

− 2h
dh

dx
H

[

d2h

dx2

]

−
d

dx
H

(

h
d

dx
H

(

h
d

dx
H[h]

))

−
1

2

d

dx
H

[

h2
d2h

dx2

]

}

+O(h4).

that is, the formula (3.5).

Appendix B. Hilbert transform

B.1. Definition and basic properties

Given a bounded function f(x), we define the Hilbert transform with the usual conven-
tions:

H[f ](x) =
1

π
lim
ε→0+

∫

|x−x′|>ε

dx′
f(x′)

x′ − x

where we have taken the Cauchy principal value (symmetric limit) at x. Useful properties
are commutation with (linear) differential operators and the inversion relation H−1 =
−H. With this definition, the Hilbert transform is not defined for constant functions.
However, one can remove the divergence at infinity by taking the principal values both
at x and at infinity; the result is then H[Cst] = 0. (Note that the inversion formula is
not valid for constants.)

B.2. Hilbert transform and slow space varying amplitude

In the weakly non-linear analysis, we have to compute quantities of the formH[A(εx) eikx],
with 0 < ε¿ 1. We want here to show that, up to a very good precision (for ε sufficiently
small), we have the relation

H[A(εx) eikx] = A(εx)H[ eikx] (k 6= 0) (B 1)

which means that the action of the Hilbert transform on a slowly modulated Fourier
mode does not introduce, except if k = 0, non-localities (see Friedrichs & Engel 2003).
In the next appendix, we make a substantial use of this property.

The result is obvious in the case ε = 0. Since Aε(x) = A(εx) varies significantly only if
x has a variation of order 1/ε, the Fourier transform Âε of Aε must be negligible outside
of (−ε, ε).

Let’s first assume that the support of Âε (that is, the domain where it has non zero
values) is included in (−ε, ε). Then, usingH[ eikx] = i sgn(k) eikx (sgn(k) = ±1 if ±k > 0),
we have

H[Aε(x) e
ikx] = i eikx

∫ ε

−ε

dk′ Âε(k
′) sgn(k′ + k) eik

′x.

Thus, (B 1) is proofed if we suppose |k| > ε, that is, if ε is small enough.
If Âε = 0 does not vanish outside of (−ε, ε), one can show that, under the same

hypothesis on k, to the first order in ε, the error on (B 1) is of the order of
∫∞

1/ε
|Â(k)|dk.
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Appendix C. Weakly non linear analysis

Here we detail the weakly non linear analysis leading to the amplitude equation (3.6).
We consider the neighbourhood of the stability limit, so that we rescale the control
parameter according to

Ω(kc) = ε2ω(kc). (C 1)

Plugging (3.5) into the lubrication equation (2.11), we obtain a closed integro-differential
equation for the height profile h. We assume that h is a function of x,X, t, T (fast and
slow scales) and admits the expansion h = εh(1) + ε2h(2) + · · · . The derivatives are
substituted according to

∂x → ∂x + ε∂X , ∂t → ∂t + ε2∂T . (C 2)

It is convenient to separate the evolution operator into its linear contributions L and
non-linear ones N . In particular, applying transformations (C 2) leads to the expansion
L = Lc + εL(1) + ε2L(2) + ε3L(3) + ε4L(4) with

Lc =
1

3Ca
∂4x +

Ma

2Ca
(∂2x − ∂

3
xH)− ∂xH,

L(1) =

{

4

3Ca
∂3x +

Ma

2Ca
(2∂x − 3∂2xH)−H

}

∂X ,

L(2) =

{

2

Ca
∂2x +

Ma

2Ca
(1− 3∂xH)

}

∂2X − ω(kc) + ∂T ,

L(3) =

{

4

3Ca
∂x −

Ma

2Ca
H

}

∂3X ,

L(4) =
1

3Ca
∂4X .

Note that the null-space of Lc contains slow space varying height profiles (i.e. functions
of X). We now proceed to the solution order by order.

Order ε1:
We have simply:

Lch
(1) = 0. (C 3)

Using (B 1), the solution is

h(1) = (A11(X,T ) e
ikcx + c.c) +A10(X,T )

kc being the critical wavenumber given by the linear stability analysis.

Order ε2:
The equation has the form

Lch
(2) = −L(1)h(1) −N (2)(h(1)) (C 4)

The non-linear term contains a k = 0 mode. As the right-hand side of (C 4) must be
orthogonal to the null space of Lc, it implies h(1) = 0. Thus, Lch

(2) = 0, hence h(2) =
(A21(X,T ) e

ikcx + c.c) +A20(X,T ).

Order ε3:
N (3) = 0 as h(1) = 0:

Lch
(3) = −L(1)h(2). (C 5)
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Again, right-hand side of (C 5) has to be orthogonal to the null space of Lc, so we have
A20 = 0. Hence, h(3) = (A31(X,T ) e

ikcx + c.c) +A30(X,T ).
Order ε4:

Lch
(4) = −L(2)h(2) − L(1)h(3) −N (4)(h(2)). (C 6)

The non linear term is:

N (4)(h(2)) = (f4A
2
21 e

2ikcx + c.c)− k2cA21A21

with (A21 is the complex conjugate of A21)

f4(kc) =
Ma

Ca

(

−2k2c +
1

3
k4c +

4

3
k5c − 4k3c

)

+
2k4c
Ca

+
1

2
k2c .

So, introducing α =
(

− 2
Ca
k2c +

Ma

2Ca
(1 + 3kc)

)

, we have from (C6)

−∂XH[A30] = k2c |A21|
2, (C 7)

−ω(kc)A21 + α∂2XA21 + ∂TA21 = 0. (C 8)

The solution to (C 6) is

h4 = (A42(X,T ) e
2ikcx + c.c) + (A41(X,T ) e

ikcx + c.c) +A40(X,T )

with A42 =
f4(kc)
Ω(2kc)

A2
21.

Order ε5:

Lch
(5) = −L(3)h(2) − L(2)h(3) − L(1)h(4) −N (5)(h(2), h(3)). (C 9)

It is convenient to decompose the non-linear term:

N (5)(h(2)) = (N52 e
2ikcx + c.c) + (N51 e

ikcx + c.c) +N50,

where

N52 = f5A31A21 + ig5∂XA
2
21

N51 = h5A30A21

N50 = −k
2
cA21A31 − ikcA21∂XA21 − kcH

[

A21∂XA21

]

+ c.c

and with

f5(kc) =
Ma

Ca

(

−8k3c +
2

3
k4c − 4k2c +

8

3
k5c

)

+
4k4c
Ca

+ k2c

g5(kc) =
Ma

Ca

(

2kc −
10

3
k4c + 6k2c −

2

3
k3c

)

−
4k3c
Ca
−
kc
2

h5(kc) =
Ma

Ca

(

−
3

2
k3c − k

2
c +

1

3
k4c

)

+
k4c
Ca

.

Imposing again that the restriction of the right-hand side of (C 9) to the null space of Lc
has to vanish and using (C 7), we get

iβ∂3XA21 +
{

α∂2X − ω(kc) + ∂T
}

A31 + h5A21

∫

H[|A21|
2] = 0 (C 10)

and

∂XH[A40] = (−ω(kc) + ∂T )A30 +
Ma

2Ca
∂2XA30 +N50. (C 11)

with β = 4
3Ca

kc −
Ma

2Ca
.
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The solution at this order is

h5 = (A52(X,T ) e
2ikcx + c.c) + (A51(X,T ) e

ikcx + c.c) +A50(X,T )

with A52 =
1

Ω(2kc)
(N52 + iΩ′(2kc)∂XA42).

Even if (C 10) is non-linear in A21, it does not give the nature of the bifurcation. This
is why we carry on computations to next order.

Order ε6:

Lch
(6) = −L(4)h(2) − L(3)h(3) − L(2)h(4) − L(1)h(5) −N (6)(h(2), h(3), h(4)). (C 12)

We only need the part of N (6) of wavenumber kc:

N61 = f6A21A42 + g6A21∂XHA30 + ih6A21∂XA30

+j6(A21A40 +A31A30) + `6|A21|
2A21 + im6A30∂XA21

with

f6(kc) =
Ma

Ca

(

−k2c + 2k5c −
9
2k

3
c +

5
3k

4
c

)

+
7k4

c

Ca

g6(kc) =
Ma

Ca

(

1
2k

3
c +

1
2k

2
c −

1
3k

4
c

)

− kc

h6(kc) =
Ma

Ca

(

− 2
3k

3
c + 2k2c + 2kc

)

− k3
c

Ca

j6(kc) =
Ma

Ca

(

1
3k

4
c −

3
2k

3
c − k

2
c

)

+
k4
c

Ca
= h5(kc)

`6(kc) =
Ma

Ca

(

19
4 k

5
c −

1
2k

2
c +

5
4k

4
c −

5
2k

3
c −

1
6k

6
c

)

− 7k3
c

2 +
k4
c

Ca

m6(kc) =
Ma

Ca

(

9
2k

2
c −

4
3k

3
c + 2kc

)

− 4k3
c

Ca

After solving equations (C 7-C 11) for A30 and A40, we use the solvability condition that
the right-hand side of (C 12) is orthogonal to the null space of Lc and we obtain an
equation for A41. Introducing

A = εA11 + ε2A21 + ε3A31 + ε4A41 + · · · ,

the last equation for A41 can be re-summed with equations (C 8-C 10) for A21 and A31.
Using the inverse transformations of (C 1-C 2), we finally obtain the amplitude equation
for A(X,T ):

(−Ω(kc) + α∂2X + ∂T )A+ iβ∂3XA+
1

3Ca
∂4XA+ ξ|A|2A

+ikc(h6kc − j6)H[|A|
2]A+ im6k

2
c (∂XA)

∫

H[|A|2]

+j6

{

k2cA

∫∫

(−Ω(kc) + ∂T + ∂XH)|A|
2 + 2ikcA

∫

H
[

A∂XA
]

}

= 0.

with

ξ(kc) = `6 +
1

Ω(2kc)
f6f22 − k

2
cg6 +

(

k2c
Ma

2Ca
− 2kc

)

j6.

Taking the limit of small kc with the help of the rescaling ∂X → kc∂X and ∂T → kc∂T
leads to
(

∂

∂T
− σ −

3

2

∂2

∂X2

)

A+ 2i
∂3A

∂X3
+

1

2

∂4A

∂X4
+

45

8
|A|2A+ i6kcH[|A|

2]A +

−
3

2
kc

{

A

∫∫
(

∂

∂T
− σ +

∂

∂X
H

)

|A|2 + 2iA

∫

H

[

A
∂A

∂X

]}

+O(k2c ) = 0,

(C 13)
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hence the simplification (3.6). Note that (C 13) is valid only if A(X,T ) vanishes at X =
±∞, so that Hilbert transforms H are well defined. In contrast with standard weakly
non-linear analysis, this equation is non-local.
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