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We present a non-parametric method for calibrating jump–diffusion and, more
generally, exponential Lévy models to a finite set of observed option prices.
We show that the usual formulations of the inverse problem via non-linear least
squares are ill-posed and propose a regularization method based on relative
entropy: we reformulate our calibration problem into a problem of finding a
risk-neutral exponential Lévy model that reproduces the observed option prices
and has the smallest possible relative entropy with respect to a chosen prior
model. Our approach allows us to reconcile the idea of calibration by relative
entropy minimization with the notion of risk-neutral valuation in a continuous-
time model. We discuss the numerical implementation of our method using a
gradient-based optimization algorithm and show by simulation tests on various
examples that the entropy penalty resolves the numerical instability of the
calibration problem. Finally, we apply our method to data sets of index options
and discuss the empirical results obtained.

1 Introduction

The inability of diffusion models to explain certain empirical properties of asset
returns and option prices has led to the development, in option pricing theory, of
a variety of models based on Lévy processes (Andersen and Andreasen, 2000;
Eberlein, 2001; Eberlein, Keller and Prause, 1998; Cont, Bouchaud and Potters,
1997; Kou, 2002; Madan, 2001; Madan, Carr and Chang, 1998; Merton, 1976;
Schoutens, 2002). A widely studied class is that of exponential Lévy processes in
which the price of the underlying asset is written as St = exp(rt + Xt), where r is
the discount rate and X is a Lévy process defined by its characteristic triplet
(σ, ν, γ). While the main concern in the literature has been to obtain efficient
analytical and numerical procedures for computing prices of various options, a
preliminary step in using the model is to obtain model parameters – here the
characteristic triplet of the Lévy process – from market data by calibrating the
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model to market prices of (liquid) call options. This amounts to solving the
following inverse problem:

CALIBRATION PROBLEM 1 Given the market prices of call options C*
0(Ti, Ki), i ∈I

at t = 0, construct a Lévy process (Xt)t ≥ 0 such that the discounted asset price
St e

–rt = exp Xt is a martingale and the market call option prices C*
0(Ti, Ki) coin-

cide with the prices of these options computed in the exponential Lévy model
driven by X:

(1)∀i ∈I, C*
0(Ti, Ki) = e–rTiE[(STi

– Ki)
+S0] = e–rTiE[(S0 erTi +XTi – Ki)

+]

The index set I in the most general formulation need not be finite: for example, if
we know market option prices for a given maturity and all strikes (which is, of
course, unrealistic), the index set I will be continuous.

Note that, in order to price exotic options, we need to construct a risk-neutral
process, not only its conditional densities (also called the state–price densities) as
in Ait-Sahalia and Lo (1998).

Problem 1 can be seen as a generalized moment problem for the Lévy process
X, which is typically an ill-posed problem: there may be no solution at all or an
infinite number of solutions, and in the case where we use an additional criterion
to choose one solution from many the dependence on input prices may be dis-
continuous, which results in numerical instabilities in the calibration algorithm.

To circumvent these difficulties we propose a regularization method based on
the minimization of Kullback–Leibler information, or relative entropy, with respect
to a prior model. Our method is based on the idea that, contrary to the diffusion
setting where different volatility structures lead to singular (non-equivalent)
probabilities on the path space (and therefore infinite relative entropy), two
Lévy processes with different Lévy measures can define equivalent probabilities.
It turns out that the relative entropy of exponential Lévy models is a simple
function of their Lévy measures that can be used as a regularization criterion for
solving the inverse problem 1 in stable way. Our approach leads to a non-para-
metric method for calibrating exponential Lévy models to option prices, extend-
ing similar methods previously developed for diffusion models (Samperi, 2002).
However, the use of jump processes enables us to formulate the problem in a way
that makes sense in a continuous-time framework without giving rise to singular-
ities as in the diffusion calibration problem.

The paper is structured as follows. Section 2 defines the model setup and
recalls some useful properties of Lévy processes and relative entropy. Section 3
proposes a well-posed formulation of the calibration problem as that of finding
an exponential Lévy model that reproduces observed option prices and has the
smallest possible relative entropy with respect to a prior jump–diffusion model.
Section 4 discusses the numerical implementation of the calibration method in
the framework of jump–diffusions,1 the main ingredient of which is an explicit
representation for the gradient of the criterion being minimized (Section 4.4).
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1 In this paper we use the term “jump–diffusion” to denote a Lévy process with a finite activity



To assess the performance of our method we first perform numerical experi-
ments on simulated data: calibration is performed on a set of option prices gen-
erated from a given exponential Lévy model. Results are presented in Section 5:
our algorithm enables us to calibrate the option prices with high precision and the
resulting Lévy measure has little sensitivity to the initialization of the minimiza-
tion algorithm. The precision of recovery of the Lévy measure is especially good
for medium- and large-sized jumps, but small jumps are hard to distinguish from
a continuous-diffusion component.

Section 6 presents empirical results obtained by applying our calibration
method to a data set of DAX index options. Our tests reveal a density of jumps
with strong negative skewness. While a small value of the jump intensity appears
to be sufficient to calibrate the observed implied volatility patterns, the shape
of the density of jump sizes evolves across maturities, indicating the need for
departure from time-homogeneity.

2 Model setup

2.1 Lévy processes: definitions

A Lévy process is a stochastic process (Xt)t ≥ 0 with stationary independent incre-
ments, continuous in probability, having sample paths that are right-continuous
with left limits (“cadlag”) and satisfying X0 = 0. The characteristic function of Xt
has the following form, called the Lévy–Khinchin representation:

(2)

where σ ≥ 0, γ ∈� and ν is a positive measure on � verifying 

(3)

We will denote the set of such measures by L(�). If the measure ν(dx) admits a
density with respect to the Lebesgue measure, we will call it the Lévy density of
X and denote it by ν(x).

In general, ν is not a probability measure: ∫ν(dx) need not even be finite. In
the case where λ = ∫ν(dx) < +∞, the Lévy process is said to be of finite activity,
and the measure ν can then be normalized to define a probability measure, µ, on
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of jumps, that is, a linear combination of a Brownian motion and a compound Poisson
jump process.



�, which can be interpreted as the distribution of jump sizes:

(4)

In this case X is called a compound Poisson process and λ, which is the average
number of jumps per unit time, is called the intensity of jumps. For compound
Poisson processes it is not necessary to truncate small jumps and the Lévy–
Khinchin representation reduces to

(5)

where b = γ – ∫1
–1xν(dx). For further details of Lévy processes see Bertoin (1996),

Jacod and Shiryaev (2003) and Sato (1999).
It is now time to say a few words about the filtered probability space

(Ω, F, Ft, �) on which the Lévy processes of interest are defined. Since the
sample paths of (Xt)t ∈[0,T ] are cadlag, this process defines a probability measure
of the space of cadlag functions on [0, T ]. One can therefore choose Ω to be this
space, Ft to be the history of the process between 0 and t completed by null sets
and F = FT.

2.2 Exponential Lévy models

Let (St)t ∈[0,T ] be the price of a financial asset modeled as a stochastic process on
the filtered probability space (Ω, F, Ft, �). Under the hypothesis of absence of
arbitrage there exists a measure equivalent to � under which (e–rt St) is a martin-
gale. We will assume therefore without loss of generality that � is already one
such martingale measure.

We term “exponential Lévy model” a model where the dynamics of St under �
is represented as the exponential of a Lévy process:

(6)St = ert + Xt

Here Xt is a Lévy process with characteristic triplet (σ, ν, γ) and the interest rate,
r, is included for ease of notation. Since the discounted price process e–rt St = eXt

is a martingale, this gives a constraint on the triplet (σ, ν, γ):

(7)

We will assume that this relation holds in the sequel.
Different exponential Lévy models proposed in the financial modeling litera-

ture simply correspond to different parameterizations of the Lévy measure:

ψ γ γ σ ν
σ
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❏ Compound Poisson models: ν is a finite measure.
❏ Merton model (Merton, 1976) – Gaussian jumps:

❏ Superposition of Poisson processes: ν = ∑n

k=1λkδyk
, where δx is a meas-

ure that affects unit mass to point x.
❏ Double exponential model (Kou, 2002): ν(x) = pα1e–α1x1x>0 + (1 – p) ×

α2eα2x1x<0.

❏ Infinite activity models.
❏ Variance gamma (Madan, Carr and Chang, 1998): ν(x) = Ax–1 ×

exp(–η±x).
❏ Tempered stable2 processes (Koponen, 1995; Cont, Bouchaud and

Potters, 1997): ν(x) = A±x– (1+α) exp(–η±x).
❏ Normal inverse gaussian process (Barndorff-Nielsen, 1998).
❏ Hyperbolic and generalized hyperbolic processes (Eberlein, 2001;

Eberlein, Keller and Prause, 1998).
❏ Meixner process (Schoutens, 2002): ν(x) = Ae–ax ⁄ x sinh(x).

Detailed descriptions of many of the above models can be found in Cont and
Tankov (2004a). The price of an option is computed as a discounted conditional
expectation of its terminal payoff under the risk-neutral probability, �. By the
stationarity and independence of increments of Xt, the value of a call option can
be expressed as

C(t, S; T = t + τ, K ) = e–rτE [(ST – K )+St = S ]

= e–rτE [(Serτ + Xτ – K )+] = Ke–rτE (ex+Xτ – 1)+ (8)

where x is the log forward moneyness:

(9)x = ln(S ⁄ K ) + rτ

The rescaled option price, u(τ, x) = erτC(t, S; T = t + τ, K ) ⁄ K, takes an especially
simple form:

(10)u(τ, x) = E [(e x+Xτ – 1)+]

This means that the entire pattern of call option prices for all dates, all values
of the underlying, and all strikes and all maturities, which is a priori a four-

ν
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2 Also called “truncated Lévy flights” in the physics literature (Koponen, 1995; Cont, Bouchaud
and Potters, 1997) or CGMY processes in the finance literature.



parameter object, depends on only two parameters (log forward moneyness and
time-to-maturity) in an exponential Lévy model.

2.3 Equivalence of measures for Lévy processes

One of the interesting properties of exponential Lévy models is that the class of
martingale measures equivalent to a given exponential Lévy process is quite large.
This remains true even if one restricts attention to the martingale measures under
which the price process remains of exponential Lévy type. The following result
gives a description of the set of Lévy processes equivalent to a given one. Similar
results in a more general setting may be found in Jacod and Shiryaev (2003).

PROPOSITION 1 (Sato (1999), Theorems 33.1 and 33.2) Let (Xt, �) and (Xt, �′) be
two Lévy processes on (Ω, F ) with characteristic triplets (σ, ν, γ) and (σ′, ν′, γ ′).
Then �Ft

and �′Ft
are mutually absolutely continuous for all t if and only if the

following conditions are satisfied:

❏ σ = σ′
❏ The Lévy measures are mutually absolutely continuous with

(11)

where φ(x) is the logarithm of the Radon–Nikodym density of ν′ with respect to
ν: eφ(x) = dν′ ⁄ dν.
❏ If σ = 0, then in addition γ ′ must satisfy

(12)

The Radon–Nikodym derivative is given by

(13)

where (Ut)t ≥ 0 is a Lévy process with characteristic triplet (σU, νU, γU) given by

(14)σU = ση

(15)νU = νφ–1
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and η is chosen so that

Moreover, Ut satisfies EP[eUt] = 1 for all t.

Compound Poisson case A compound Poisson process is a pure jump Lévy
process which has almost surely a finite number of jumps in every interval. This
means that if two Lévy processes satisfy the conditions of mutual absolute conti-
nuity listed in Proposition 1 and one of them is of compound Poisson type, the
other will also be of compound Poisson type since these processes must have the
same almost sure behavior of sample functions. If the jump parts of both Lévy
processes are of compound Poisson type, the conditions of the proposition are
somewhat simplified:

COROLLARY 1 Suppose that the jump part of Xt is of compound Poisson type.
Then �Ft

and �′Ft
are mutually absolutely continuous for all t if and only if the

following conditions are satisfied:

❏ σ = σ′;
❏ the jump part of X ′t is of compound Poisson type and the two jump size distri-

butions are mutually absolutely continuous;
❏ if σ = 0, then we must in addition have b′ = b. 

The Radon–Nikodym derivative is given by

(17)

where Ut is a Lévy process with jump part of compound Poisson type. Its charac-
teristic triplet is given by (14)–(16).

PROOF First of all, the condition (11) is fulfilled automatically as

As can be seen from the form of its characteristic triplet (14)–(16), the Radon–
Nikodym derivative process Ut also has a jump part of compound Poisson type
because
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2.4 Relative entropy for Lévy processes

The notion of relative entropy or Kullback–Leibler distance is often used as a
measure of the closeness of two equivalent probability measures. In this section
we recall its definition and properties and compute the relative entropy of the
measures generated by two risk-neutral exponential Lévy models.

Let � and � be two equivalent probability measures on (Ω, F ). The relative
entropy of � with respect to � is defined as

If we introduce the strictly convex function f (x) = x lnx, we can write the relative
entropy as

It is readily observed that the relative entropy is a convex function of �. Jensen’s
inequality shows that it is always non-negative: ε(��) ≥ 0, with ε(��) = 0
only if d� ⁄ d� = 1 almost surely. The following result shows that, if � and �
correspond to exponential Lévy models, the relative entropy can be expressed in
terms of the corresponding Lévy measures.

PROPOSITION 2 Let � and � be equivalent measures on (Ω, F ) generated by
exponential Lévy models with Lévy triplets (σ, νP, γ P) and (σ, νQ, γ Q) and
suppose that σ > 0. The relative entropy ε(��) is then given by

(18)

If � and � correspond to risk-neutral exponential Lévy models, ie, verify the
condition (7), the relative entropy reduces to:

(19)
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PROOF Consider two exponential Lévy models defined by (6). From the bijectiv-
ity of the exponential it is clear that the filtrations generated by Xt and St coincide.
We can therefore equivalently compute the relative entropy of the log-price
processes (which are Lévy processes). To compute the relative entropy of two
Lévy processes we will use expression (13) for the Radon–Nikodym derivative:

(20)

where (Ut) is a Lévy process with characteristic triplet given by formulae
(14)–(16). Let Φt(z) denote its characteristic function and ψ(z) its characteristic
exponent, that is,

Φt(z) = EP[eizUt] = etψ(z)

Then we can write

From the Lévy–Khinchin formula we know that

We can now compute the relative entropy as follows:

where η is chosen such that
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Since we have assumed σ > 0, we can write

which leads to (18). If � and � are martingale measures, we can express the
drift, γ, using σ and ν:

Substituting the above in (18) yields (19). ��

Observe that, due to time-homogeneity of the processes, the relative entropy (18)
or (19) is a linear function of T: the relative entropy per unit time is finite and
constant. The first term in the relative entropy (18) of the two Lévy processes
penalizes the difference of drifts and the second one penalizes the difference of
Lévy measures.

In the risk-neutral case the relative entropy depends only on the two Lévy
measures νP and νQ. For a given reference measure νP, expression (19) viewed as
a function of νQ defines a positive (possibly infinite) function on the set of Lévy
measures L(�):

H : L(�) → [0, ∞]

νQ → H(νQ) = ε(�(νQ, σ)), �(νP, σ)) (21)

We shall call H the relative entropy function. Its expression is given by (19). It is
a positive convex function of νQ, equal to zero only when νQ ≡ νP.

Compound Poisson case When the jump parts of both Lévy processes are of
compound Poisson type with jump intensities λQ and λP and jump size distribu-
tions µQ and µP, the relative entropy takes the following form in the risk-neutral
case:

(22)
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Example 1
In many parametric models the relative entropy can be explicitly computed. As an
example, let us consider two risk-neutral Merton models with the same volatility
σ and with Lévy measures

The relative entropy of � with respect to � can be easily computed using
formula (19):

(23)

Note that this expression is not a convex function of λQ, δQ and mQ because the
Lévy measure in the Merton model depends on the parameters in a non-linear
way. Nevertheless, expression (23) inherits some nice properties of function (19):
it is always finite and non-negative and is only equal to zero when the parameters
of the two models coincide.

Example 2
In the previous example the probabilities � and � were equivalent for all values
of parameters and the relative entropy ε(��) was always finite. However, the
equivalence of measures is not a sufficient condition for the relative entropy to
be finite. Let νQ be a Lévy measure with exponential tail decay (as, for example,
in Kou’s (2002) double exponential model) and let

νP = exp(– e x2)νQ

Then νP is also a Lévy measure. Its behavior in the neighborhood of zero is
similar to that of νQ but its tails decay much faster. It can be easily seen that the
relative entropy of a process with Lévy measure νQ with respect to a process
with the same volatility and Lévy measure νP is always infinite. This means that
unlike the equivalence of processes, which is not affected by the tails of Lévy
measures, the finiteness of relative entropy imposes some constraints on the tail
behavior of Lévy measures.We will observe this effect again in Section 6 in a
non-parametric setting.
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3 The calibration problem for exponential Lévy models

The calibration problem consists of identifying the Lévy measure ν and the
volatility σ from a set of observations of call option prices. If we knew call option
prices for one maturity and all strikes, we could deduce the volatility and the
Lévy measure in the following way:

❏ Compute the risk-neutral distribution of log price from option prices using the
Breeden–Litzenberger formula

(24)qT (k) = e–k{C ′′(k) – C ′(k)}

where k = lnK is the log strike.
❏ Compute the characteristic function (2) of the stock price by taking the Fourier

transform of qT .
❏ Deduce σ and the Lévy measure from the characteristic function ΦT . First, the

volatility of the Gaussian component σ can be found as follows (see Sato
(1999), p. 40):

(25)

Now, denoting ψ(u) ≡ lnΦT (u) ⁄ T + σ2u2 ⁄ 2, we can prove (see Sato (1999),
equation 8.10) that

(26)

Therefore, the left-hand side of (26) is the Fourier transform of the positive
finite measure 2(1 – sin x ⁄ x) ν(dx). This means that this measure and, conse-
quently, the Lévy measure ν can be uniquely determined from ψ by Fourier
inversion.

Thus, if we knew with absolute precision a set of call option prices for all strikes
and a single maturity, we could deduce all parameters of our model and hence
compute option prices for other maturities. In this case, option price data for any
other maturity can only contradict the information we already have but cannot
give us any further information. However the procedure described above, which
is similar to the Dupire (1994) formula in the case of diffusion models, is not
applicable in practice for at least three different reasons.

First, call prices are only available for a finite number of strikes. This number
may be quite small (between 10 and 40 in the empirical examples given below).
Therefore the derivatives and limits in the formulae (24)–(26) are actually extra-
polations and interpolations of the data and our inverse problem is largely under-
determined.
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Second, if several maturities are present in the options data, the problem (1)
with equality constraints will typically have no solution due to the model speci-
fication error: owing to the homogeneous nature of their increments, Lévy
processes often fail to reproduce the term structure of implied volatilities (see the
discussion of time-inhomogeneity in Section 6).

The third difficulty is due to the presence of observational errors (or simply
bid–ask spreads) in the market data. Taking derivatives of observations as in
equation (24) can amplify these errors, rendering unstable the result of the
computation. Due to all these reasons, one can hope at best for a solution that
approximately verifies the constraints, and it is necessary to reformulate problem
(1) as an approximation problem.

3.1 Non-linear least squares

In order to obtain a practical solution to the calibration problem, many authors
have resorted to minimizing the in-sample quadratic pricing error (see, for exam-
ple, Andersen and Andreasen (2000) and Bates (1996a)):

(27)

where C0
*(Ki, Ti) is the market price of a call option observed at t = 0 and

C σ, ν(t = 0, S0, Ti, Ki) is the price of this option computed in an exponential Lévy
model with volatility σ and Lévy measure ν. The optimization problem (27)
is usually solved numerically by a gradient-based method (Andersen and
Andreasen, 2000; Bates, 1996a). While, contrarily to (1), one can always find
some solution, the minimization function is non-convex, so a gradient descent
may not succeed in locating the global minimum. Owing to the non-convex
nature of the minimization function (27), two problems may arise, both of which
reduce the quality of calibration algorithm.

The first issue is an identification problem: given that the number of calibra-
tion constraints (option prices) is finite (and not very large), there may be many
Lévy triplets which reproduce call prices with equal precision. This means that
the error landscape will have flat regions in which the error has a low sensitivity
to variations in model parameters. One may think that in a parametric model with
few parameters one will not encounter this problem since there are (many) more
options than parameters. This is in fact not true, as illustrated by the following
empirical example. Figure 1 represents the magnitude of the quadratic pricing
error for the Merton (1976) model on a data set of DAX index options as a
function of the diffusion coefficient σ and the jump intensity λ, other parameters
remaining fixed. It can be observed that if one increases the diffusion volatility
while simultaneously reducing the jump intensity in a suitable manner, the cali-
bration error changes very little: there is a long “valley” in the error landscape
(highlighted by the dashed white line in Figure 1). A gradient descent method

( , ) arg inf , , , ,
,

, *σ ν ω
σ ν
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will typically succeed in locating the valley but will stop at a more or less random
point in it. At first glance this does not seem to be too much of a problem: since
the algorithm finds the valley’s bottom, the best calibration quality will be
achieved anyway. However, after a small change in option prices, the outcome of
this calibration algorithm may shift a long way along the valley. This means that
if the calibration is performed every day, one may come up with wildly oscillat-
ing parameters of the Lévy process even if the market option prices undergo only
small changes. So, the issue is not so much the precision of the calibration but the
stability of the parameters obtained.

The second problem is even more serious: since the the calibration function
(27) is non-convex, it may have several local minima, and the gradient descent
algorithm may stop in one of these local minima, leading to a much worse cali-
bration quality than that of the true solution. Figure 2 illustrates this effect in the
framework of the variance gamma model (Madan, Carr and Chang, 1998). In this
model the Lévy process (Xt) is a pure jump one and its characteristic exponent is
given by

ψ
κ

σ κ
θκ( ) logu

u
i u= − + −
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FIGURE 1 Sum of squared differences between market prices (DAX options
maturing in 10 weeks) and model prices in Merton model as a function of para-
meters σ and λ, the other parameters being fixed.The dashed white line shows the
“valley” along which the error function changes very little.
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The left graph in Figure 2 shows the behavior of the objective function (27) in a
small region around the global minimum. Since in this model there are only three
parameters, the identification problem is not present, and a nice convex profile
can be observed. However, when we look at the objective function on a larger
scale (κ varies between 1 and 8), the convexity disappears completely and we
observe a ridge (highlighted with a dashed black line) that separates two regions:
if the minimization is initiated in region (A), the algorithm will eventually locate
the minimum, but if we start in region (B), the gradient descent method will lead
us away from the global minimum and the required calibration quality will never
be achieved.

As a result the calibrated Lévy measure is very sensitive not only to the input
prices but also to the numerical starting point in the minimization algorithm.
Figure 3 shows an example of this instability in the non-parametric setting. The
two graphs represent the result of a non-linear least-squares minimization where
the variable is the vector of discretized values of ν on a grid. In both cases the
same option prices are used, the only difference being the starting points of the
optimization routines. In the first case (solid line) a Merton model with intensity
λ = 1 is used, in the second case (dashed line) a Merton model with intensity
λ = 5. As can be seen in Figure 3 (left graph), the results of the minimization are
totally different! However, although the calibrated measures are different, the
prices to which they correspond are almost the same (see Figure 3, right graph),
and the final values of the objective function for the two curves differ very little.
This observation suggests that in the non-parametric setting we are more likely to
find a flat “valley” in the error landscape rather than several distinct locally convex
regions. The role of regularization is therefore to ensure continuous dependence
of the calibrated measure on the data by helping to distinguish between measures
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FIGURE 2 Sum of squared differences between market prices (DAX options maturing in 10
weeks) and model prices in the variance gamma model as a function of σ and κ, the third
parameter being fixed.
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that give the same calibration quality. This comparison between parametric and
non-parametric settings shows that the number of parameters is much less impor-
tant from a numerical point of view than the convexity of the objective function to
be minimized.

3.2 Regularization

The above remarks show that reformulating the calibration problem into a non-
linear least-squares problem does not resolve the uniqueness and stability issues:
the inverse problem remains ill-posed. To obtain a unique solution in a stable
manner we introduce a regularization method (Engl, Hanke and Neubauer, 1996).
One way to enforce uniqueness and stability of the solution is to add to the least-
squares criterion (27) a convex penalization term:

(28)

where the term F, which is a measure of closeness of the model � to a prior
model �0, is chosen such that the problem (28) becomes well-posed. Problem
(28) can be understood as that of finding an exponential Lévy model satisfying
the conditions (1), which is closest in some sense – defined by F – to a prior
exponential Lévy model.
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FIGURE 3 Left: Lévy measures calibrated to DAX option prices, maturity three months, using
non-linear least-squares method. The starting jump measure for both graphs is Gaussian;
the jump intensity λ0 is initialized to one for the solid curve and to five for the dashed one.
ε denotes the value of the objective function when the gradient descent algorithm stops.
Right: implied volatility smiles corresponding to these two measures.
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3.2.1 Choice of the regularization function
Several choices are possible for the penalization term. From the point of view of
the uniqueness and stability of the solution, the criterion used should be convex
with respect to the parameters (here, the Lévy measure). It is this convexity
which was lacking in the non-linear least-squares criterion (27).

Two widely used regularization techniques for ill-posed inverse problems
involve penalization by a quadratic function (also called Tikhonov regulariza-
tion) (Engl, Hanke and Neubauer, 1996) and penalization by relative entropy
with respect to a prior (see Engl, Hanke and Neubauer (1996), Sections 5.3 and
10.6). Tikhonov regularization uses the squared norm of the distance to a prior
parameter as the regularization criterion: it is well suited when the parameters of
interest form a Hilbert space with a natural notion of distance. Since Lévy meas-
ures do not form a Hilbert space and only positive measures are of interest, from
the numerical point of view it would be desirable to find a regularization func-
tion that somehow incorporates this positivity requirement. The relative entropy
(see Section 2.4) or Kullback–Leibler distance, ε(��0), of the the pricing
measure � with respect to some prior model �0 has just this property: from the
definition

it is clear that the relative entropy is only defined if � is absolutely continuous
with respect to �0. Hence, if the prior Lévy measure is positive, the calibrated
Lévy measure must also remain positive. From the numerical point of view this
means that if, during the calibration process, the calibrated Lévy measure
approaches zero, its gradient becomes arbitrarily large and is directed away from
zero. So, one does not need to impose the positivity constraint explicitly.

Another advantage of the relative entropy, this time from a theoretical view-
point, is that it is easily computable both in terms of probability measures on
paths and in terms of the volatility, σ, and calibrated Lévy measure, ν:
ε(��0) = F(σ, ν) = H(ν), where H, given by (21), is a convex function of the
Lévy measure ν, with a unique minimum at ν = ν0. On one hand, this enables one
to use the probabilistic and information-theoretic interpretation of relative
entropy: as explained in Section 2.4, this function plays the role of a pseudo-dis-
tance of the (risk-neutral) measure from the prior, and minimizing it corresponds
to adding the least possible amount of information to the prior in order to
correctly reproduce observed option prices (Engl, Hanke and Neubauer (1996),
Section 5.3). On the other hand, the explicit expression of relative entropy in
terms of the Lévy measure allows the construction of an efficient numerical
method for finding the minimal entropy Lévy process. This process can be seen
as a computable approximation to the minimal entropy martingale measure,
which is a well-studied object in the financial literature (see Section 3.3).
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3.2.2 Choice of the prior measure
The role of the prior probability measure, with respect to which relative entropy
will be calculated, can hardly be overestimated. As shown by Figure 3, the option
prices simply do not contain enough information to reproduce the Lévy measure
in a stable way; new information must be added and this is done by introducing
the prior. This improves the stability of the calibration but also introduces a bias
of the calibrated measure towards the prior model. The calibration procedure
can therefore be seen as a method to correct our initial knowledge of the Lévy
measure (reflected by the prior) so that available option prices are reproduced
correctly. The choice of the prior is thus a very important step in the algorithm.

One possible choice of prior is the exponential Lévy model estimated from
historical data for the underlying. This choice ensures that the calibrated measure
is absolutely continuous with respect to the historical measure, which is required
by the absence of arbitrage in the market. In this case, even though the prior
model is not risk-neutral, the calibrated model will be risk-neutral because of
the martingale condition imposed on the calibrated Lévy process. When the
historical data are not available, or considered unreliable, one can simply take a
parametric model with “reasonable” parameter values, reflecting our views of the
market. This parametric model will then be corrected by the calibration algorithm
to incorporate the market prices of traded options. This choice of the prior
measure will be discussed in more detail in Section 4.2. The third way to choose
the prior is to take the calibrated measure of the day before, thus ensuring maxi-
mum stability of calibrated measures over time.

The calibration problem now takes the following form.

CALIBRATION PROBLEM 2 Given a prior exponential Lévy model �0 with charac-
teristics (σ0, ν0), find a Lévy measure n which minimizes

(29)

where H(ν) is the relative entropy of the risk-neutral measure with respect to the
prior, whose expression is given by (21).

Here the weights ωi are positive and sum to one; they reflect the pricing error
tolerance for the option i. The choice of weights is addressed in more detail in
Section 4.1.

The function (29) consists of two parts: the relative entropy function, which
is convex in its argument ν, and the quadratic pricing error, which measures the
precision of calibration. The coefficient α, called the “regularization parameter”,
defines the relative importance of the two terms: it characterizes the trade-off
between prior knowledge of the Lévy measure and the information contained in
option prices.
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3.2.3 Discretized calibration problem
To implement the algorithm numerically without imposing some a priori para-
metric form on the Lévy measure, we discretize the Lévy measure on a grid. This
is done by first localizing the Lévy measure on some bounded interval [– M, M]
and then choosing a partition, π = (– M = x1 < … < xN = M), of this interval.
Define now Lπ as the set of Lévy measures with support in π:

(30)

where δx is a measure that affects unit mass to point x. Taking π to be a finite set
of points, we implicitly assume that the Lévy measure is finite; that is, from now
on we are working in the jump–diffusion framework (recall that in our terminol-
ogy a jump–diffusion is a Lévy process with finite jump activity). Using the rep-
resentation (30) means that we fix in advance the possible jump sizes {xi} of the
Lévy processes and calibrate their intensities. In other words, our non-parametric
Lévy process is a superposition of a (large number of) Poisson processes with
different intensities. The discretized calibration problem now becomes

(31)

In the following we study this discretized problem, show that it is well-posed and
develop a robust numerical method for solving it. The properties of the continuum
version (29) and the convergence of the solutions of the discretized problem (31)
are discussed in the companion paper (Cont and Tankov, 2004b). The following
proposition shows that the use of entropy penalization makes our (discretized)
problem well posed and hence numerically feasible.

PROPOSITION 3 (WELL-POSEDNESS OF THE REGULARIZED PROBLEM AFTER DISCRETI-
ZATION) (i) For any partition, π, of [– M, M], the discretized calibration problem
(29)–(31) admits a solution:

(32)

If in addition the volatility coefficient s is non-zero, then for α large enough the
solution is unique.

(ii) Every solution, νπ, of the regularized problem depends continuously on
the vector of input prices (C*(Ti, Ki), i = 1 … n) and for a suitable choice of α
converges to a minimum-entropy least-squares solution when the error level on
input prices tends to zero.

��PROOF See Appendices B and C.
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If α is large enough, the convexity properties of the entropy function stabilize the
solution of problem (29). When α → 0, we recover the non-linear least-squares
criterion (27). Therefore the correct choice of α is important: it cannot be fixed
in advance but its “optimal” value depends on the data at hand and the level of
error δ (see Section 4.3).

3.3 Relation to previous literature

3.3.1 Relation to minimal entropy martingale measures
The concept of relative entropy has been used in several contexts as a criterion
for selecting pricing measures (Avellaneda, 1998; El Karoui and Rouge, 2000;
Föllmer and Schied, 2002; Goll and Rüschendorf, 2001; Kallsen, 2001; Fritelli,
2000; Miyahara and Fujiwara, 2003). We briefly recall them here in relation to
the present work.

In the absence of calibration constraints, the problem studied above reduces to
that of identifying the equivalent martingale measure with minimal relative
entropy with respect to a prior model. This problem has been widely studied and
it is known that this unique pricing measure, called the minimal entropy martin-
gale measure (MEMM) is related to the problem of portfolio optimization by
maximization of exponential utility (El Karoui and Rouge, 2000; Föllmer and
Schied, 2002; Fritelli, 2000; Miyahara and Fujiwara, 2003): if uβ(X ) is the utility
indifference price for a random terminal payoff X for an investor with utility
function U(x) = exp (– βx), then E�[e–rTX ] corresponds to the limit of uβ(X ) as
β → 0. Although we only consider here the class of measures corresponding to
Lévy processes, if the prior measure is a Lévy process, then the MEMM is
known to define again a Lévy process (Miyahara and Fujiwara, 2003). However,
the notion of MEMM does not take into account the information obtained from
observed option prices.

To take into account the prices of derivative products traded in the market,
Kallsen (2001) introduced the notion of a consistent pricing measure, that is, a
measure that correctly reproduces the market-quoted prices for a given number of
derivative products. He studied the relation of the minimal entropy-consistent
martingale measure (the martingale measure that minimizes the relative entropy
distance to a given prior and respects a given number of market prices) to expo-
nential hedging. He found that this MECMM defines the “least favorable con-
sistent market completion” in the sense that it minimizes the exponential utility
of the optimal trading strategy over all consistent martingale measures (see also
El Karoui and Rouge, 2000). It satisfies

where the min is taken over all consistent equivalent martingale measures, the
max is taken over all FT-measurable random variables, P is the prior/historical
measure and e is the initial capital.
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The minimal entropy measure studied in this article is not equivalent to the
MECMM studied by Kallsen because we impose an additional restriction that the
calibrated measure should stay in the class of measures corresponding to Lévy
processes. It can be shown that the two measures only coincide in the case where
there are no calibration constraints. However, where calibration constraints are
present our measure can be seen as an approximation of the MECMM that stays
in the class of Lévy processes. The usefulness of this approximation is clear:
whereas the MECMM is an abstract notion for which one can at most assert exis-
tence and uniqueness, the one studied here is actually computable (see below)
and can easily be used directly for pricing purposes. Therefore our framework
can be regarded as a computable approximation of Kallsen’s (2001) minimal
entropy-constrained martingale measure.

3.3.2 Relation to the weighted Monte Carlo calibration method
Avellaneda (1998), Avellaneda et al. (2001) and Samperi (2002) and collabora-
tors have proposed a non-parametric method based on relative entropy mini-
mization for calibrating a pricing measure. In Avellaneda (1998) the calibration
problem is formulated as one of finding a pricing measure which minimizes
relative entropy with respect to a prior given calibration constraints:

Calibration problem 3

(33)

where minimization is performed over all (not necessarily “risk-neutral”) proba-
bility measures {Q} equivalent to �0. Problem (33) is still ill-posed because the
equality constraints may be impossible to verify simultaneously due to model
misspecification: a solution may not exist. However, it is not necessary to con-
sider equality constraints like those in (33) since the market option prices are not
exact but always quoted as bid–ask intervals. In a subsequent work, Avellaneda
et al. (2001) consider a regularized version of problem (33) with quadratic penal-
ization of constraints:

(34)

In both cases the state space is discretized and the problem solved by a dual
method: the result is a calibrated (but not necessarily “risk-neutral”) probability
distribution on a finite set of paths generated from the prior Q0.

Although our formulation (29) looks quite similar to (34), there are several
important differences.

First, note that the numerical solution of our problem (29) is done through
discretization of the parameter space, not the state space Ω: the solution of (29)
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corresponds to a well-defined continuous-time process. By contrast, in Avellaneda
et al. (2001) the discretization is applied to the state space: Ω is replaced by a
finite set of sample paths generated by Monte Carlo simulation. Therefore the
weighted Monte Carlo algorithm produces a measure �N on a finite set of paths
ΩN but which cannot be used to reconstruct a continuous-time process. The limit
N → ∞ is very subtle and not easy to describe.

Second, while the minimization in (34) is performed over all probability
measures equivalent to the prior (the optimization variables are the probabilities
themselves), in our case the minimization is performed over equivalent measures
corresponding to jump–diffusion (exponential Lévy) models parameterized by
their Lévy measure, ν. Although restricting the class of models, this approach has
an advantage: it guarantees that we remain in the class of risk-neutral models,
which is not the case in Avellaneda et al. (2001).

Third, while in Avellaneda et al. (2001) the optimization variable is the
(discretized) probability measure Q itself, in our case the optimization variable
is the Lévy measure ν. As a consequence, whereas the weighted Monte Carlo
method yields a set of weights on trajectories, which is then used to price other
options by Monte Carlo, our method yields a local description of the process (ie,
its infinitesimal generator) through knowledge of ν. In particular, to price options
one can use either Monte Carlo methods or solve the associated partial integro-
differential equation, which may be preferable for American or barrier options.

Finally, even when Monte Carlo methods are used to price other options once
the model is calibrated, it should be noted that in the weighted Monte Carlo
method pricing is done using the original sample paths simulated from the prior
model. Our approach has the advantage that we do not depend on the original set
of paths to perform the Monte Carlo. Indeed, the posterior (calibrated) measure
may be quite different from the prior, rendering many of the initial paths useless
for computing expectations under the calibrated measure. Knowing the Lévy
measure ν allows us to generate new paths under � .

4 Numerical implementation

As explained in Section 3, we tackle the ill-posedness of the initial calibration
problem by transforming it into an optimization problem (29). We now describe
a numerical algorithm for solving the discretized version (31) of this optimization
problem. As mentioned above, for the numerical implementation we make the
additional hypothesis that both the prior and the calibrated Lévy process have
finite jump activity – that is, our numerical method allows us to calibrate a jump–
diffusion model to market options data. This restriction is not as important as it
may seem because, as we will see later, a jump–diffusion model allows to cali-
brate option prices with high precision even if they were generated by an infinite
activity model. There are four main steps in the numerical solution:

❏ choice of the weights assigned to each option in the objective function;
❏ choice of the prior measure �0 from the data;
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❏ choice of the regularization parameter α;
❏ solution of the optimization problem for given α and �0;

We shall describe each of these steps in detail below. This sequence of steps can
be repeated a few times to minimize the influence of the choice of the prior.

4.1 The choice of weights in the minimization function

The relative weights, ωi, of option prices in the minimization function should
reflect our confidence in individual data points, which is determined by the
liquidity of a given option. This can be assessed from the bid–ask spreads, but the
bid and ask prices are not always available from option price databases. On the
other hand, it is known that, at least for those options which are not too far from
the money, the bid–ask spread is of the order of tens of basis points (<1%). This
means that, to have errors proportional to the bid–ask spreads, one must mini-
mize the differences of implied volatilities and not those of the option prices.
However, this method involves many computational difficulties (numerical inver-
sion of the Black–Scholes formula at each minimization step). A feasible solution
to this problem is to minimize the squared differences of option prices weighted
by the Black–Scholes “vegas” evaluated at the implied volatilities of the market
option prices:

(35)

Here I( · ) denotes the Black–Scholes implied volatility as a function of the option
price and Ii denotes the market-implied volatilities.

4.2 Determination of the prior

As mentioned in Section 3.2, the prior reflects the user’s view of the model. It is
one of the most important ingredients of the method and the only one that cannot
be determined completely automatically. The user should therefore specify a
Lévy measure ν0 and a diffusion coefficient σ0. For example, these could be the
result of the statistical estimation of a jump–diffusion model for the time series of
asset returns. Alternatively, the prior can simply correspond to a model that seems
“reasonable” to the user. Typically, however, the user may not have such detailed
views and it is important to have a procedure to generate a reference measure �0
automatically from options data. To do this we use an auxiliary jump–diffusion
model (eg, Merton model) described by the volatility parameter σ0 and a few
other variables (denoted by θ) that parameterize the Lévy measure: ν0 = ν0(θ).
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This model is then calibrated to data using the standard least-squares procedure
(29):

(36)

It is generally not a good idea to recalibrate this parametric model every day
because in this case the prior will completely lose its stabilizing role. On the
contrary, one should try to find typical parameter values for a particular market
(eg, averages over a long period) and fix them once and for all. Since the objec-
tive function (36) is not convex, a simple gradient procedure may not give the
global minimum. However, the solution (σ0, ν0) will be corrected at later stages
and should only be viewed as a way of regularizing the optimization problem
(29), so the minimization procedure at this stage need not be very precise.

To assess the influence of the prior on the results of calibration we carried out
two series of numerical tests. In the first series the Lévy measure was calibrated
twice to the same set of option prices using prior models that were different but
closely similar. Namely, in test A we used a Merton model with diffusion vola-
tility σ = 0.2, zero mean jump size, a jump standard deviation of 0.1 and a jump
intensity λ = 3, whereas in test B all the parameters except the jump intensity had
the same values and the intensity was equal to 2. The results of the tests are
shown in Figure 4. The solid curves correspond to calibrated measures and the
dotted ones depict the prior measures. Notice that there is very little difference
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FIGURE 4 Sensitivity of implied Lévy densities to perturbations of prior model
parameters. Solid curves represent calibrated Lévy densities and dotted curves
depict the priors.
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between the calibrated measures, which means that the result of calibration is
robust to minor variations of the parameters of the prior measure as long as its
qualitative shape remains the same.

In the second series of tests we again calibrated the Lévy measure twice to the
same set of option prices, this time taking two radically different priors. In test A
we used a Merton model with diffusion volatility σ = 0.2, zero mean jump size, a
jump standard deviation of 0.1 and jump intensity λ = 2, whereas in test B we
took a uniform Lévy measure on the interval [–1, 0.5] with intensity λ = 2. The
calibrated measures (solid lines in Figure 5) are still similar but exhibit many
more differences than in the first series of tests. Not only do they differ in the
middle, but the behavior of tails of the calibrated Lévy measure with uniform
prior is also more erratic than when the Merton model was used as the prior.

Comparison of Figures 4 and 5 shows that the exact values of the parameters
of the prior model are not very important but that it is crucial to find the right
shape of the prior.

4.3 Determination of the regularization parameter

As remarked above, the regularization parameter α determines the trade-off
between the accuracy of calibration and the numerical stability of the results with
respect to the input option prices. It is therefore plausible that the right value of α
should depend on the data at hand and should not be determined a priori.

One way to achieve this trade-off is by using the Morozov discrepancy princi-
ple (Morozov, 1966). First, we need to estimate the “intrinsic error”, �0, present
in the data, that is, the lower bound on the possible or desirable quadratic
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FIGURE 5 Sensitivity of implied Lévy measures to qualitative change of the prior
model. Solid curves represent calibrated measures and dotted curves depict the priors.
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calibration error. Here we distinguish two cases, depending on the data that are
available as input:

❏ If bid prices and ask prices are available for each calibration constraint, the
a priori error level can be computed as:

(37)

❏ If confidence intervals/bid–ask intervals are not available, the a priori error
level �0 must be estimated from the data themselves. In this case a possible
solution is to substitute the “market error” with the “model error”. First, we
minimize the quadratic pricing error (27). The value of the calibration function
at the minimum �0 ≡ �α=0 can be interpreted as a measure of “model error”:
if �0 = 0, it means that perfect calibration is achieved by the model; but, typi-
cally, due to the specification error or errors in the data, �0 > 0. It can be seen
as the “distance” of market prices from model prices, ie, it gives an a priori
level of quadratic pricing error that one cannot really hope to improve on
while keeping to the same class of models. Note that here we only need to find
the minimum value of (27) and not to locate its minimum, so a rough estimate
is sufficient and the presence of “flat” directions is not a problem.

Now let (σ, να) be the solution of (31) for a given regularization parameter α > 0.
Then the a posteriori quadratic pricing error is given by �(σ, να), which one
would expect to be a bit larger than �0 since, by adding the entropy term, we have
sacrificed some precision for a gain in stability. The Morozov discrepancy prin-
ciple consists in authorizing a loss of precision that is of the same order as the
model error by choosing α such that

(38)�0 � �(σ, να)

In practice we fix some δ > 1, δ � 1 (for example, δ = 1.1 ) and numerically solve

(39)δ�0 = �(σ, να)

The left-hand side is a differentiable function of α , so the solution can be
obtained with few iterations – for example, by Newton’s (or a bisection) method.

4.4 Computation of the gradient

In order to minimize the function (31) using a BFGS gradient descent method,3

the essential step is the computation of the gradient of the calibration function
with respect to the discretized values of the Lévy measure. The discretization grid
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for the Lévy measure ν is of the form (xi, i = 1 … N), where xi = x0 + i∆x. The
grid must be uniform for the FFT algorithm to be used for option pricing.

If we were to compute the gradient numerically, the complexity would
increase by a factor equal to the number of grid points. A crucial point of our
method is that we are able to compute the gradient of the option prices with only
a twofold increase of complexity compared to computing prices alone. Due to
this optimization, the execution time of the program reduces on average from
several hours to about a minute on a standard PC.

Below, to simplify the formulae, all computations are carried out in the
continuous case (we compute the variational derivative). In the discretized case
the idea is the same, but the Fréchet derivative is replaced by the usual gradient
and the formulae become more cumbersome.

To emphasize the dependence of all quantities on the Lévy measure, it will
appear explicitly as an argument in square brackets below. The main step is to
compute the variational derivative of the option price, DCT (K )[ν]. Since the
intrinsic value of the option does not depend on the Lévy measure, computing the
derivative of the option price is equivalent to computing the derivative of the time
value, zT (k)[ν], defined by formula (A5) of Appendix A. The function which
maps the Lévy measure ν into the time value zT (k)[ν] is a superposition of the
Lévy–Khinchin formula (2) and equation (A9) of Appendix A. Let us take an
admissible test function h and compute the directional derivative of zT (k)[ν] in
the direction h. By definition

Under sufficient integrability conditions on the stock price process we can now
combine (2) and (A9) and find that

By interchanging the two integrals we can compute, again under sufficient inte-
grability conditions, the Fréchet derivative, DzT , of the time value:

(40)

By rearranging terms and separating integrals we have
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(41)

Here the first two terms may be expressed in terms of the option price function,
the third term does not depend on the Lévy measure and can be computed ana-
lytically, and the last is a product of a simple function of x and some auxiliary
function that does not depend on x (and therefore has to be computed only once
for each gradient evaluation). Finally, we obtain

(42)

Fortunately, this expression may be represented in terms of the option price and
one auxiliary function. Since we are using a fast Fourier transform (FFT) to com-
pute option prices for the whole price sheet, we already know these prices for the
whole range of strikes. As the auxiliary function will also be computed using the
FFT algorithm, the computational time will only increase by a factor of two.

4.5 The algorithm

Here is the final numerical algorithm as implemented in the examples below.
1. Calibrate an auxiliary jump–diffusion model (Merton model) to obtain an

estimate of volatility, σ0, and a candidate for the prior Lévy measure, ν0.
2. Estimate the “noise level” �0 from option prices as explained in Section 4.3:

(43)

3. Use a posteriori method described in Section 4.3 to compute an optimal
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regularization parameter, α*, that achieves a trade-off between precision and
stability:

(44)

with delta slightly greater than 1. The optimal α* is found by running the
gradient descent method (BFGS) several times with low precision.

4. Minimize J(ν) with α* by gradient-based method (BFGS) with high precision
using either a user-specified prior or result of 1) as prior.

5 Numerical tests

To verify the accuracy and numerical stability of our algorithm, we first tested it
on simulated data sets of option prices generated using a known jump–diffusion
model. This allowed us to explore the magnitude of finite sample effects and to
assess the importance of the two different stages of the calibration procedure
described in Section 4.

5.1 A compound Poisson example: the Kou model

In the first series of tests, option prices were generated using Kou’s (2002)
jump–diffusion model with a diffusion element σ0 = 10% and a Lévy density
given by

(45)ν(x) = λ [1x>0 pα1e– α1x + (1 – p)α2 e– α2x1x<0]

In the tests we took an asymmetric density, with the left tail heavier than the right
(α1 = 1 ⁄ 0.07 and α2 = 1 ⁄ 0.13). The intensity was taken to be λ = 1, and the last
constant, p, was chosen such that the density was continuous at x = 0. The option
prices were computed using the Fourier transform method described in the
appendix. The maturity of the options was five weeks, and we used 21 equidistant
strikes ranging from 6 to 14 (the spot being at 10). To capture tail behavior it is
important to have strikes quite far in- and out-of-the-money. Merton’s jump–
diffusion model was used as the prior.

After generating sets of call option prices from Kou’s model, the algorithm
described in Section 4 was applied to these prices. Figure 6 compares the non-
parametric reconstruction of the Lévy density to the true Lévy density, which, in
this case, is known to be of the form (45). As seen in Figure 7, the accuracy of
calibration at the level of option prices and/or implied volatilities is satisfying
with only 21 options. Comparing the jump size densities obtained with the true
value, we observe that we have successfully retrieved the main features of the
true density with our non-parametric approach. The only region in which we
observe a detectable error is near zero: very small jumps have a small impact
on option prices. In fact, the gradient of our calibration criterion (computed in
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Section 4.4) vanishes at zero, which means that the algorithm does not modify
the Lévy density in this region: the intensity of small jumps cannot be retrieved
accurately. The redundancy of small jumps and the diffusion component is well
known in the context of statistical estimation on time series (Beckers, 1981;
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FIGURE 7 Calibrated vs. simulated (true) implied volatilities corresponding to
Figure 6 for the Kou (2002) model.
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FIGURE 6 Lévy measure calibrated to option prices simulated from Kou’s (2002) jump–
diffusion model with σ0 = 10%. Left: σ calibrated in a separate step (σ = 10.5%). Right: σ fixed
at 9.5% < σ0.
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Mancini, 2001). Here we retrieve another version of this redundancy in a context
of calibration to a cross-sectional data set of options.

Comparison of the left and right graphs in Figure 6 further illustrates the
redundancy of small jumps and diffusion: the two graphs were calibrated to the
same prices and only differ in the diffusion coefficients. Comparing the two
graphs shows that the algorithm compensates for the error in the diffusion coef-
ficient by adding jumps to the Lévy density such that, overall, the accuracy of
calibration is maintained (the standard deviation is 0.2%).

The stability of the algorithm with respect to initial conditions can be exam-
ined by perturbing the starting point of the optimization routine and examining
the effect on the output. As illustrated in Figure 8, the entropy penalty removes
the sensitivity observed in the non-linear least-squares algorithm (see Figure 3
and Section 3.1). The only minor difference between the two calibrated measures
is observed in the neighborhood of zero, ie, the region which, as remarked above,
has little influence on option prices.

5.2 Variance gamma model

In a second series of tests we examined how our method performs when applied
to option prices generated by an infinite activity process such as the variance
gamma model. We assume that the user, ignoring the fact that the data-generating
process has infinite activity, chooses a (misspecified) prior which has a finite
jump intensity (eg, the Merton model).
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FIGURE 8 Lévy densities calibrated to option prices generated from the Kou model
using two different initial measures with intensities λ = 1 and λ = 2.
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Option prices for 30 strike values were generated using the variance gamma
model (Madan, Carr and Chang, 1998) with no diffusion component (σ0 = 0) and
the calibration algorithm was applied using as prior a Merton jump–diffusion
model. Figure 9 shows that even though the prior is misspecified, the result repro-
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FIGURE 9 Implied volatility smile for variance gamma model with σ0 = 0 compared
with smile generated from the calibrated Lévy measure. Calibration yields σ = 7.5%.
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FIGURE 10 Lévy measure calibrated to variance gamma option prices with σ = 0 using a
compound Poisson prior with σ = 10% (left) and σ = 7.5% (right). Increasing the diffusion
coefficient reduces the intensity of small jumps in the calibrated measure.
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duces the implied volatilities with good precision (the error is less than 0.5% in
implied volatility units). The calibrated value of the diffusion coefficient of σ is
7.5%, while near zero the Lévy density has been truncated to a finite value
(Figure 10, left): the algorithm has substituted a non-zero diffusion part for the
small jumps which are the origin of infinite activity. Figure 10 further compares
the Lévy measures obtained when σ is fixed to two different values: we observe
that a smaller value of the volatility parameter leads to a greater intensity of small
jumps.

Here we observe once again the redundancy of volatility and small jumps, this
time in an infinite activity context. More precisely, this example shows that call
option prices generated from an infinite activity exponential Lévy model can be
reproduced with arbitrary precision using a compound Poisson model with finite
jump intensity. This leads us to conclude that, for a finite (but realistic) number of
observations, infinite activity models such as variance gamma are hard to distin-
guish from finite activity compound Poisson models on the basis of option prices.

6 Empirical results

To illustrate our calibration method we have applied it to a data set consisting of
a daily series of prices and implied volatilities for options on the DAX (German
index) from 1999 to 2001. A detailed description of data formats and filtering
procedures can be found in Cont and da Fonseca (2002). Some of the results
obtained with this data set are described below.

6.1 Empirical properties of implied Lévy densities

Figure 11 illustrates the typical shape of a risk-neutral Lévy density obtained
from our data set: it is peaked at zero and highly skewed towards negative values.
The effect of including the entropy penalty can be assessed by comparing the
results obtained when changing the initialization in the algorithm. Figure 12
compares the Lévy measures obtained with different initializers: in this case the
jump intensity of the initial Lévy measure (a Merton model) was shifted from
λ = 1 to λ = 5. Compared to the high sensitivity observed in the non-linear least-
squares algorithm (Figure 3), we observe that adding the entropic penalty term
has stabilized our algorithm.

The logarithmic scale in Figure 12 allows the tails to be seen more clearly.
Recall that the prior density is gaussian, which shows up as a symmetric parabola
on log scales. By contrast, it is readily observed that the Lévy measures obtained
are far from symmetric: the distribution of jump sizes is highly skewed towards
negative values. Figure 16 shows the same result across calendar time, showing
that this asymmetry persists across time. This effect also depends on the maturity
of the options in question: for longer maturities (see Figure 17) the support of the
Lévy measure extends further to the left.

The area under the curves shown here is to be interpreted as the (risk-neutral)
jump intensity. While the shape of the curve does vary slightly across calendar

Non-parametric calibration of jump–diffusion option pricing models

Volume 7/Number 3, Spring 2004 www.thejournalofcomputationalfinance.com

33



Rama Cont and Peter Tankov

www.thejournalofcomputationalfinance.com Journal of Computational Finance

34

FIGURE 11 Lévy density implied from DAX option prices with maturity of three
months.
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FIGURE 12 Lévy density implied by DAX option prices with maturity of three
months.
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time, the intensity stays surprisingly stable: its numerical value is empirically
found to be λ � 1, which means around one jump a year. Of course, note that this
is the risk-neutral intensity: jump intensities are not invariant under equivalent
change of measures. Moreover, this illustrates that a small intensity of jumps, λ,
can be sufficient to explain the shape of the implied volatility skew for small
maturities. Therefore, the motivation of infinite activity processes does not seem
clear to us, at least from the viewpoint of option pricing.

6.2 Testing time-homogeneity

While the literature on jump processes in finance has focused on time-homoge-
neous (Lévy) models, practitioners have tended to use time-dependent jump or
volatility parameters. Despite the fact that several empirical studies have shown
that Lévy processes reproduce the implied volatility smile for a single maturity
quite well (Carr et al., 2002; Madan, Carr and Chang, 1998), when it comes to
calibrating several maturities at the same time the calibration by Lévy processes
becomes much less precise. The reason is that, due to the stationary nature of
their increments, Lévy processes have a rigid term structure of cumulants. In par-
ticular, the skewness of a Lévy process is proportional to the inverse square root
of time and the excess kurtosis is inversely proportional to time. A number of
empirical studies have compared the term structure of skewness and kurtosis
implied in market option prices to the skewness and kurtosis of Lévy processes.
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FIGURE 13 Lévy measures implied from DAX options on the same calendar date
for three different maturities.
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FIGURE 14 Calibration quality for different maturities: market-implied volatilities for
DAX options against model implied volatilities. Each maturity has been calibrated
separately.
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FIGURE 15 Lévy measures implied from DAX options (logarithmic scale).
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FIGURE 16 Results of calibration at different dates for shortest-maturity DAX
index options.
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FIGURE 17 Results of calibration at different dates for second shortest maturity
DAX index options.
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Based on an empirical study of the kurtosis implied by US dollar/Deutschmark
exchange rate options, Bates (1996b) concluded that “while implicit excess
kurtosis does tend to increase as option maturity shrinks, … the magnitude of
maturity effects is not as large as predicted [by a Lévy model]”. In the field of
stock index options, Madan and Konikov (2002) have reported even more
surprising results: both implied skewness and kurtosis actually decrease as the
length of the holding period becomes smaller. Whereas these analyses rely on
implied moments and cumulants, here we can investigate the evolution of the
entire implied Lévy measure with maturity in a non-parametric way by separately
calibrating the Lévy measure to various option maturities. Figure 13 shows Lévy
measures obtained by running the algorithm separately for options of different
maturity. The null hypothesis of time-homogeneity would imply that all the
curves are the same, which is apparently not the case here. However, computing
the areas under the curves yields similar jump intensities across maturities: this
result can be interpreted by saying that the risk-neutral jump intensity is relatively
stable through time while the shape of the (normalized) jump size density can
actually change. Of course, this is a more complicated form of time-dependence
than simply having a time-dependent intensity.

These results can be further used to investigate what form of time-dependence
is appropriate to introduce so as to capture the empirically observed term struc-
ture of implied volatilities. This line of thought naturally leads to the domain
of additive processes, that is, processes with independent but not necessarily
stationary increments (Cont and Tankov, 2004a).

7 Conclusion

We have proposed a non-parametric method for identifying, in a numerically
stable fashion, a risk-neutral exponential Lévy model consistent with market
prices of options and equivalent to a prior model. We have also presented a stable
computational implementation and tested its performance on simulated and
empirical data. Theoretically our method can be seen as a computable approxi-
mation to the notions of minimal-entropy martingale measures made consistent
with observed market prices of options. Computationally, it is a stable alternative
to current least-squares calibration methods for exponential Lévy models. The
jump part is retrieved in a non-parametric fashion: we do not assume shape
restrictions on the Lévy measure. Our approach allows us to reconcile the idea of
calibration by relative entropy minimization (Avellaneda, 1998) with the notion
of risk-neutral valuation, enabling us to use relative entropy as a model selection
criterion without preliminary discretization of the state space.

Our method can complement the existing literature on parametric exponential
Lévy models in option pricing in various ways. For many parametric models the
relative entropy can be explicitly computed (see example 1 in Section 2.4). Since
in parametric models the Lévy measure is typically a non-linear function of
model parameters, the relative entropy will no longer be convex but may still be
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a well-behaved function with one global minimum, locally convex around this
minimum. Therefore, relative entropy calibration of parametric models is still
possible, but in this setting one should also consider other regularizing functions.
On the other hand, using a non-parametric calibration is not necessarily incom-
patible with using a parametric model for pricing. Our method can be used as a
specification test for choosing the correct parametric class of exponential Lévy
models. Our computational approach for estimating risk-neutral jump processes
from options data can potentially be applied to other models where jump
processes have to be deduced from observation of contingent claims: credit risk
models are typically such examples. Separate calibration of the jump density to
various option maturities can be used to investigate time-inhomogeneity in a non-
parametric way. Finally, our approach can be extended to other inverse problems
in which an unknown jump process has to be identified, such as calibration prob-
lems for stochastic volatility models with jumps (Barndorff-Nielsen, Mikosch and
Resnick, 2001; Bates, 1996a). We intend to pursue these issues in future research.

Appendix A Option pricing by Fourier transform

We recall here the expression, due to Carr and Madan (1998) of option prices in
terms of the characteristic function of the Lévy process. Due to the special struc-
ture of the characteristic function in these models, it is convenient to express
option prices in terms of the characteristic function. In particular, for a European
call option with log strike k,

(A1)CT (k) = e–rTEQ[(esT – ek)+]

where sT is the terminal log price with density qT (s). The characteristic function
of this density is defined by

(A2)

On the other hand, as remarked above, the characteristic function of the log price
is given by the Lévy–Khinchin formula (here we limit ourselves to the compound
Poisson case):
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In some important cases this characteristic function is known analytically; other-
wise one can discretize the Lévy measure and use (in the compound Poisson
case) the fast Fourier transform to compute the characteristic function.

Following Carr and Madan (1998), we use Fourier transform methods to eval-
uate the expression (A1) for a given Lévy measure. To do so we observe that
although the call price as a function of log strike is not square integrable, the time
value of the option, that is, the function

(A5)zT (k) = E [(esT – ek)+] – (1 – ek–rT )+

equal to the price of the option (call or put), which is for given k out-of-the-
money (forward), may be square integrable. Here we have assumed without loss
of generality that s0 = 0. Let ζT(v) denote the Fourier transform of the time value:

(A6)

It can be expressed in terms of the characteristic function of the log-price in the
following way. First, we note that since the discounted price process is a martin-
gale, we can write

Next, we compute ζ(v) by interchanging integrals:

A sufficient condition allowing us to justify the interchange of integrals is that the
stock prices have a moment of order 1 + α for some positive alpha or

(A7)

We can write for the inner integral

(A8)e e d e e ifk s

s

rT

rT sk rT s− ≤ − ≥∫ ,       

∃ > < ∞+

− ∞

∞

∫α α0 1:    ( ) ( )q s sT
se d

ζT
rT ivk

T
s k

k s k rT

rT
t

ivk k s

s

rT

v k s q s

q s s k

( ) ( )( )

( ) ( )

= − −( )

= −

−

− ∞

∞

≤ ≤
− ∞

∞

−

− ∞

∞

∫ ∫

∫ ∫

e d d e e e

e d e e e d

1 1

z k q s sT
rT

T
s k

k s k rT( ) ( ) ( )= − −( )−
≤ ≤

− ∞

∞

∫e d e e 1 1

ζT
ivk

Tv z k k( ) ( )=
− ∞

∞

∫ e d

Rama Cont and Peter Tankov

www.thejournalofcomputationalfinance.com Journal of Computational Finance

40



and

We see that under the condition (A7) both expressions, when multiplied by qT(s),
are integrable with respect to s and we can apply Fubini’s theorem to justify the
interchange. The inner integral is computed in a straightforward fashion, and
after computing the outer integral for some terms and re-expressing it in terms of
the characteristic function of the log stock price, we obtain

(A9)

The martingale condition guarantees that the numerator is equal to zero for v = 0.
Under the condition (A7), we see that the numerator becomes an analytic func-
tion and the fraction has a finite limit for v → 0. The option prices can now be
found by inverting the Fourier transform:

(A10)

Appendix B Existence of a solution for the discretized problem

In this section we present a proof of Proposition 3. First, we will establish the
continuity of J on Lπ. Then we will establish a lower bound for H(ν) which will
enable us to show that the minimum of J(ν) is reached on a bounded subset of
Lπ. Finally, we will show that for α large enough this minimum is unique.

B1 Continuity of the relative entropy function in the discretized case

Consider the function (19) for a Lévy measure which belongs to the class (30).
In this case, all integrals become finite sums and the relative entropy takes the
following form:

(B1)

where we denote νi ≡ ν(xi) The first term is continuous because it is a continuous
function (square) of a finite sum of continuous (linear) functions of νi. To treat
the second term, consider the one-dimensional function f (x) = x ln(x ⁄ x0) + x0 – x.
It is continuous for x ≥ 0 if we take by definition f (0) = x0 (in fact, it is even uni-
formly continuous on this set). Thus, the second term is continuous for νi ≥ 0, ∀i.

H
T

x T
x

xx
i

P
i

i

N

i
i

P
i

P
i i

i

N

i( ) ( ) ( ) ln
( )

( )ν
σ

ν ν ν
ν

ν
ν ν= − −( )








+ + −






= =

∑ ∑
2

1
2

1

2

1

e

z k v vT
ivk

T( ) ( )=
− ∞

∞

∫
1

2π
ζe d

ζ
φ

T

rT
T

ivrT

v
v i

iv iv
( )

( )

( )
=

− −
+

−e e

1

e e d e ifk s

rT

s

s
s rTk s rT rT s− ≤ − <∫ >( ) ,       1

Non-parametric calibration of jump–diffusion option pricing models

Volume 7/Number 3, Spring 2004 www.thejournalofcomputationalfinance.com

41



B2 Continuity of the pricing error

To establish the continuity of the pricing error function, it is sufficient to prove
that one option price is a continuous function of the Lévy measure or, equiva-
lently, to prove that the time value zT(k, ν) defined by equation (A5) is continuous
for all k. Let ν1 and ν2 be two Lévy measures in Lπ and take ε > 0. We will prove
that there exists δ > 0 such that if maxiν1

i – ν2
i  < δ, then zT(k, ν1) – zT(k, ν2)

< ε. From equations (A10) and (A9),

for all k. Equations (A3) and (A4) entail that φν(v – i) ≤ erT for all ν and for all
v ∈� . Hence, one can find A such that

Recalling that φν(u) = exp Tψν(v) and using once again the upper bound for the
modulus of φ along with the mean value theorem, we find

Since all the integrals in the last term are integrals of bounded functions over
bounded domains, one can choose δ > 0 such that if maxiν1

i – ν2
i  < δ, then the

last term is smaller than ε ⁄ 2 and hence zT(k, ν1) – zT(k, ν2) is smaller than ε.
This proves the continuity of the pricing function uniformly on k.

B3 Lower bound for regularized function

Using the following trivial inequality
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we obtain the following bound for the function J(ν):

(B2)

The regularized function is thus bounded below by the L1 norm of ν minus some
constant.

B4 Existence of solution for the regularized problem

To prove that the regularized problem has a solution, consider a compact C ⊂ Lπ
defined by

(B3)

Since J is continuous,

However, using the bound (B2) for all ν ∈Lπ
∖
C, we find J(ν) ≥ J(νP) + 1

> J(ν*). Hence, ν* is the solution of the regularized problem.

B5 Uniqueness of the solution for large �

Making the additional hypothesis that σ > 0, we will now show that for any
compact K there exists an α0 such that for any α ≥ α0, J(ν) is convex on K. Since
the size of compact C in (B3) decreases when α grows, this entails uniqueness of
the solution for α > α0.

Consider the regularized function J(ν) = αH(ν) + �(ν), where �(ν) denotes the
sum of squared pricing errors. From equation (B1),

Suppose that we can prove that the second derivative of �(ν) can be represented
as follows:
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convex on K. Indeed, for every vector ∆ν and for every ν ∈K,

It remains therefore to prove the representation (B4). Without loss of generality
we can consider that there is only one option; hence, �(ν) = (C(ν) – C0)2.
Furthermore,

The first term in this expression is a positive definite matrix and we must prove
the boundedness of the right term. Since the price of an option is always bounded
by the current stock price, it is sufficient to check the boundedness of
∂2C(ν)�∂νj ∂νk or, equivalently, of ∂2z(ν)�∂νj ∂νk (here we omit the variable k,
which is now irrelevant). From formula (A10),

Thus, for z(ν) to be bounded ζv(ν) must be integrable as a function of v
uniformly on ν. By formula (A9) this is equivalent to uniform integrability of

(B5)
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Hence

Since

both ∂ψ(v – i)�∂νj and (1 ⁄ v)(∂ψ (v – i)�∂νj) are bounded above by polynomials
in v, independent on ν. Formula (B6) entails that φT(v – i) ≤ er–1 ⁄2σ2v2. Therefore,
the integral of (B5) is bounded by a number which does not depend on ν and the
proof is completed.

Appendix C Properties of regularized solutions

We present here some properties of the solutions of our regularized problem in
the discretized case (ie, the Lévy measure is concentrated on a discrete grid).
This case is of most interest from the point of view of numerical implementation.
We shall denote by H the relative entropy function defined in (21):
H(ν) = ε(�(σν), �(σν0)). Define δ > 0 as the observational error on the data
C*: C* – C≤ δ, where C* is the vector of observed option prices and C is a
vector of arbitrage-free (“true”) prices.

The solution of (29) is in general not unique due to non-convexity of the
pricing function. It depends continuously on the data in the following sense.

PROPOSITION 4 Let α > 0 and let {Ck} and {νk} be sequences where Ck → C*

and νk is the solution of problem (29) with C* replaced by Ck. Then there exists
a convergent subsequence of {νk} and the limit of every convergent subsequence
is a solution of (29).

REMARK If the solution of (29) is unique, this is just the definition of continuity.

PROOF To simplify the notation we write F(ν) for a set of model prices and
F(ν) – C*2 for the sum of squared differences of model prices corresponding
to Lévy measure ν and market prices C*. Let {Ck} be a sequence of data sets
converging to C* and {νk} be the corresponding sequence of solutions:

By construction we have
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Hence the sequences νk and F(νk) are bounded. Since we work in a finite-
dimensional space, we can find a convergent subsequence νm → ν* of {νk}.
Now let {νm} be any convergent subsequence. Using the continuity of the pricing
function, we have F(νm) → F(ν*). This, together with (C1) and the continuity of
the relative entropy function implies

Hence, we have proven that ν* is a minimizer of F(ν) – C*2 + αH(ν). ��

Let M be the set of discretized Lévy measures ν which solve the least-squares
calibration problem (27). Assume that

(C2)∃ν ∈M, ε(�(σ, ν)�0) < ∞

Then a minimum-entropy least-squares solution is defined as a solution of

(C3)

The next proposition describes how the solutions of (29) converge towards mini-
mum-entropy least-squares solutions as the error level δ decreases.

PROPOSITION 5 Suppose that the calibration problem with data C* admits a
minimum-entropy least-squares solution C*. Let

and let α(δ) be such that α(δ) → 0 and δ ⁄ α(δ) → 0 as δ → 0. Then every
sequence {νδk

α(δk)
} where δk → 0 and νδk

α(δk)
is a solution of problem (29) with data

C*
δ has a convergent subsequence. The limit of every convergent subsequence is a

a minimum-entropy least-squares solution. If the minimum-entropy least-squares
solution ν* is unique, then

where ν* is the solution of (C3).

PROOF Let the sequences {νδk
α(δk)

} and δk be as above and ν* be a minimum
entropy least-squares solution. Then by definition of νδk
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we have
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Using the fact that for every r > 0 and for every x, y ∈�,

(1 – r)x2 + (1 – 1 ⁄ r)y2 ≤ (x + y)2 ≤ (1 + r)x2 + (1 + 1 ⁄ r)y2

we obtain that

F(νδk
α(δk)

) – C*2(1 – r) + α(δk)H(νδk
α(δk)

)

≤ F(ν*) – C*2(1 + r) + 2δk
2�r + α(δk)H(ν*) (C4)

which implies that for all r ∈(0,1),

α(δk)H(νδk
α(δk)

) ≤ 2rF(ν*) – C*2 + 2δk
2�r + α(δk)H(ν*)

Taking r = δk yields

H(νδk
α(δk)

) ≤ 2δk �α(δk) (1 + F(ν*) – C*2) + H(ν*)

and therefore

lim sup
k→∞

H(νδk
α(δk)

) ≤ H(ν*) (C5)

Hence, H(νδk
α(δk)

) is bounded and therefore {νδk
α(δk)

}k≥1 has a convergent subse-
quence. Let {νδm

α(δm)}m≥1 be any such subsequence, converging to a measure ν.
Substituting r = δk in (C4) and making k tend to ∞ yields that

lim sup
k→∞

F(νδk
α(δk)

) – C* = F(ν*) – C*

This, together with (C5) and the continuity of the calibration function implies
that ν is a minimum-entropy least-squares solution. The last assertion of the
proposition follows from the fact that in this case every subsequence of νδk

α(δk)
has

a further subsequence converging towards ν*. ��

REFERENCES

Ait-Sahalia, Y., and Lo, A. (1998). Nonparametric estimation of state–price densities implicit
in financial asset prices. Journal of Finance 53, 499–547.

Andersen, L., and Andreasen, J. (2000). Jump diffusion models: volatility smile fitting and
numerical methods for pricing. Review of Derivatives Research 4, 231–62.

Avellaneda, M. (1998). Minimum entropy calibration of asset pricing models. International
Journal of Theoretical and Applied Finance 1, 447–72.

Avellaneda, M., Buff, R., Friedman, C., Grandchamp, N., Kruk, L., and Newman, J. (2001).
Weighted Monte Carlo: a new technique for calibrating asset-pricing models. International
Journal of Theoretical and Applied Finance 4, 91–119.

Non-parametric calibration of jump–diffusion option pricing models

Volume 7/Number 3, Spring 2004 www.thejournalofcomputationalfinance.com

47



Barndorff-Nielsen. O. E. (1998). Processes of normal inverse Gaussian type. Finance and
Stochastics, 41–68.

Barndorff-Nielsen, O. E., Mikosch, T., and Resnick, S. (eds) (2001). Lévy processes – theory
and applications. Birkhauser, Boston.

Bates, D. S. (1996a). Jumps and stochastic volatility: the exchange rate processes implicit in
Deutschmark options. Review of Financial Studies 9, 69–107.

Bates, D. S. (1996b). Testing option pricing models. In Statistical methods in finance, vol. 14
of Handbook of Statististics, pp. 567–611. North-Holland, Amsterdam.

Beckers, S. (1981). A note on estimating parameters of a jump–diffusion process of stock
returns. Journal of Financial and Quantitative Analysis 16, 127–40.

Bertoin, J. (1996). Lévy Processes. Cambridge University Press.

Byrd, R., Lu, P., and Nocedal, J. (1995). A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific and Statistical Computing 16, 1190–208.

Carr, P., Geman, H., Madan, D. B., and Yor, M. (2002). The fine structure of asset returns: an
empirical investigation. Journal of Business 75, 305–32.

Carr, P., and Madan, D. (1998). Option valuation using the fast Fourier transform. Journal of
Computational Finance 2, 61–73.

Cont, R., Bouchaud, J.-P., and Potters, M. (1997). Scaling in financial data: stable laws and
beyond. In B. Dubrulle, F. Graner and D. Sornette (eds), Scale invariance and beyond.
Springer, Berlin.

Cont, R., and da Fonseca, J. (2002). Dynamics of implied volatility surfaces. Quantitative
Finance 2, 45–60.

Cont, R., and Tankov, P. (2004a). Financial modelling with jump processes. Chapman &
Hall/CRC Press.

Cont, R. and Tankov, P. (2004b). Identifying exponential Lévy models from option prices using
relative entropy. Working paper, CMAP.

Dupire, B. (1994). Pricing with a smile. Risk 7, 18–20.

Eberlein, E. (2001). Applications of generalized hyperbolic Lévy motion to finance. In O. E.
Barndorff-Nielsen, T. Mikosch and S. Resnick (eds), Lévy processes – theory and applica-
tions, pp. 319–36. Boston: Birkhauser.

Eberlein, E., Keller, U., and Prause, K. (1998). New insights into smile, mispricing and value
at risk: the hyperbolic model. Journal of Business 71, 371–405.

El Karoui, N., and Rouge, R. (2000). Pricing via utility maximization and entropy.
Mathematical Finance 10, 259–76.

Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regularization of inverse problems. Vol. 375
of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht.

Föllmer, H., and Schied, A. (2002). Stochastic finance. Berlin: De Gruyter.

Frittelli, M. (2000). The minimal entropy martingale measure and the valuation problem in
incomplete markets. Mathematical Finance 10, 39–52.

Goll, T., and Rüschendorf, L. (2001). Minimax and minimal distance martingale measures and
their relationship to portfolio optimization. Finance and Stochastics 5, 557–81.

Rama Cont and Peter Tankov

www.thejournalofcomputationalfinance.com Journal of Computational Finance

48



Jacod, J., and Shiryaev, A. N. (2003). Limit theorems for stochastic processes, 2nd edition.
Springer, Berlin.

Kallsen, J. (2001). Utility-based derivative pricing. In Mathematical Finance – Bachelier
Congress 2000, Springer, Berlin.

Koponen, I. (1995). Analytic approach to the problem of convergence of truncated Lévy fiights
towards the Gaussian stochastic process. Physical Review E 52, 1197–99.

Kou, S. G. (2002). A jump diffusion model for option pricing. Management Science 48,
1086–101.

Madan, D. (2001). Financial modeling with discontinuous price processes. In O. E. Barndorff-
Nielsen, T. Mikosch and S. Resnick (eds), Lévy processes – theory and applications.
Birkhauser, Boston.

Madan, D., and Konikov, M. (2002). Option pricing using variance gamma Markov chains.
Review of Derivatives Research 5, 81–115.

Madan, D. B., Carr, P., and Chang, E. C. (1998). The variance gamma process and option
pricing. European Finance Review 2, 79–105.

Mancini, C. (2001). Disentangling the jumps from the diffusion in a geometric jumping
Brownian motion. Giornale dell ’Istituto Italiano degli Attuari LXIV, 19–47.

Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. Journal of
Financial Economics 3, 125–44.

Miyahara, Y., and Fujiwara, T. (2003). The minimal entropy martingale measures for geomet-
ric Lévy processes. Finance and Stochastics 7, 509–31.

Morozov, V. (1966). On the solution of functional equations by the method of regularization.
Soviet Mathematics Doklady 7, 414–17.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes
in C: the art of scientific computing. Cambridge University Press.

Samperi, D. (2002). Calibrating a diffusion pricing model with uncertain volatility: regulariza-
tion and stability. Mathematical Finance 12, 71–87.

Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge University
Press.

Schoutens, W. (2002). Meixner processes: theory and applications in finance. EURANDOM
report 004.

Non-parametric calibration of jump–diffusion option pricing models

Volume 7/Number 3, Spring 2004 www.thejournalofcomputationalfinance.com

49




