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Abstract

The correlation function of a V − A current with a V + A current is discussed within the
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of the same parameters has also been made.
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I Introduction

We shall be concerned with the correlation function of a left–handed current with a right–handed
current

Lµ(x) = ū(x)γµ 1 − γ5

2
d(x) and Rν(0) = d̄(0)γν 1 + γ5

2
u(0) , (1.1)

in QCD and in the chiral limit where the light quarks are massless. In this limit, the correlation
function in question depends only on one invariant amplitude ΠLR(Q2) of the euclidean momentum
squared Q2 = −q2, with q the momentum flowing through the two–point function (see Fig. 1):

2i

∫

d4xeiq·x〈0|T {Lµ(x) ν(0)} |0〉 =
(

qµqν − q2gµν
)

ΠLR(Q2) . (1.2)

Fig. 1 Feynman diagram representing the ΠLR correlation function in Eq. (1.2) in the large-Nc limit.
The solid lines are light quarks propagating in a gluonic background of large–Nc planar diagrams.

The interest on the function ΠLR(Q2) is twofold: on the one hand, as pointed out in ref. [1], ΠLR(Q2)
in the chiral limit is an order parameter of spontaneous chiral symmetry breaking (SχSB) at all values
of Q2; on the other hand, part of the absorptive part of this function i.e., 1

π
ImΠLR(t) with t = q2 ≥ 0,

is accessible to experiment via hadronic τ–decays and e+e− annihilation into hadrons. Furthermore,
it has also been shown [2, 3, 4, 5, 6] that the same ΠLR(Q2) function governs the underlying dynamics
of the leading contributions to the weak matrix elements of the electroweak Penguin–like operators

Q7 = 6(s̄LγµdL)
∑

q=u,d,s

eq(q̄RγµqR) and Q8 = −12
∑

q=u,d,s

eq(s̄LqR)(q̄RdL) , (1.3)

where eq denote quark electric charges in units of the electric charge and summation over quark color
indices within brackets is understood. These considerations raise the ΠLR(Q2) function to the rank
of an excellent theoretical laboratory to test new ideas on the fundamental subject of SχSB in QCD.

Here, we shall be particularly concerned with the study of ΠLR(Q2) in the limit of a large num-
ber of colors Nc in QCD. Part of our motivation is to understand the discrepancies between various
phenomenological analyses which have recently been made [9, 10, 11, 12, 13, 14, 15] using the experi-
mental data on hadronic τ–decays published by the ALEPH [7] and OPAL [8] collaborations at LEP.
There are conflicting results for the chiral condensates which modulate the asymptotic behaviour of
the ΠLR(Q2) function at large Q2 values, between those obtained in refs. [9, 10, 11, 15] and those
obtained in refs. [12, 13, 14]. We want to compare these results to those obtained in two succes-
sive approximations to the large–Nc limit: the so-called minimal hadronic approximation (MHA) [10]
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consisting of a spectrum of a pion state, a vector state and an axial vector state; and the improved
approximation where an extra higher vector state is added.

In practice, we shall be working with the dimensionless complex function WLR[z] defined as

WLR[z] = −zΠLR(zM2
ρ ) , with Re z =

Q2

M2
ρ

, (1.4)

and use the mass of the lowest massive state, the ρ(770 MeV), to normalize quantities with dimensions.
In large–Nc QCD the function WLR[z] is a meromorphic function and, therefore, in full generality, it
can be approximated by successive partial fractions of the type

WLR[z] = AN

P
∏

i=1

1

(z + ρi)

N
∏

j=1

(z + σj) , with ρ1 = 1 and ρi 6= ρk for i 6= k ; (1.5)

where P (and N) get larger and larger, but finite. On the other hand, in QCD, the operator product
expansion (OPE) of the two currents in Eq. (1.2) fixes the large–Q2 fall off in 1/Q2–powers of the
invariant function ΠLR(Q2) [16] to

lim
Q2→∞

ΠLR(Q2) =

∞
∑

n=1

c2n+4(Q
2, µ2)〈O2n+4(µ

2)〉 1

(Q2)n+2
=

1

2

∞
∑

n=1

〈O2n+4〉
(Q2)n+2

. (1.6)

Matching the leading asymptotic behaviour for large–z in Eq. (1.5) to the one of the OPE in Eq. (1.6),
restricts the number of zeros N and the number of poles P in Eq. (1.5) to obey the constraint

N − P = −2 . (1.7)

In the chiral limit, all the vev’s 〈O2n+4〉 in Eq.(1.6) are order parameters of SχSB. In particular, the
normalization factor AN in Eq. (1.5) is fixed by the residue of the leading term in the OPE,

AN = −1

2

1

(M2
ρ )3

〈O6〉 . (1.8)

The case where N = 0 corresponds to the MHA already mentioned where, besides the Goldstone
pole (the pion), which has been removed by the Q2 factor in the r.h.s. of Eq. (1.4), there are two
poles (since P = 2 in this case): the lowest vector state and an axial–vector state [1].

Strictly speaking, the 〈O2n+4〉 in the r.h.s. of Eq. (1.6) are Q2 dependent, because of the log Q2

dependence of the Wilson coefficients c2n+4(Q
2, µ2) via the pQCD series in αs. This log Q2 dependence

can only be reproduced if P → ∞ (and N → ∞) in Eq. (1.5). In writing the large–Nc approximation
to the WLR[z] function in Eq. (1.5), one is implicitly assuming an effective cancellation between the
extra poles and zeros in the complex z–plane which lye beyond a disc of radius s0 covering all the poles
and zeros retained in that approximation. In the Minkowski axis, this is equivalent to assuming that,
for all practible purposes, there is a cancellation between the V –spectral function and the A–spectral
function for t ≥ s0, an assumption which is consistent with the fact that in pQCD and in the chiral
limit these two spectral functions are identical. The same approximation, in the deep euclidean region,
suggests that when comparing the asymptotic inverse powers of z in Eq. (1.5) to those of the OPE in
Eq. (1.6), the log Q2 dependence of the Wilson coefficients in c2n+4(Q

2, µ2) be frozen at Q2 ∼ s0.

II General Properties of ΠLR(Q2) in Large–Nc QCD

The function ΠLR(Q2) is the simplest case of a class of Green’s functions, which we call generalized
two–point functions, and which obey rather remarkable short–distance ⇀↽ long–distance duality prop-
erties. Generalized two–point functions are two–point functions with a finite number of local operator
insertions carrying zero momenta, (no insertions in the case of ΠLR(Q2)). These Green’s functions,
in the large–Nc limit, are meromorphic functions which can be approximated by polynomial ratios

W [z; ρ1, ρ2, · · · ρP ; σ1, σ2 · · ·σN ] = AN

P
∏

i=1

1

(z + ρi)

N
∏

j=1

(z + σj) ; (2.1)
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and they are fully determined by their poles, their zeros and the overall normalization AN . Using this
representation, one can readily see that

W

[

1

z
;

1

ρ1
,

1

ρ2
· · · 1

ρP

;
1

σ1
,

1

σ2
· · · 1

σN

]

= zP−N

∏

ρi
∏

σj

W [z; ρ1, ρ2, · · · ρP ; σ1, σ2 · · ·σN ] , (2.2)

relating the OPE expansion (powers of 1/z) to the chiral expansion (powers of z). In the case of the
WLR[z] correlation function in Eq. (1.4) this is the generalization to an arbitrary number of narrow
states of the simple relation [17]

WLR

[

1

z
;

1

ρ1
,

1

ρ2

]

= z2 ρ1ρ2WLR[z; ρ1, ρ2] , for N = 0 , (2.3)

corresponding to the case of the MHA, where P = 2 and N = 0.
One can easily deduce the following set of properties, useful for phenomenological applications:

1. The WLR[z] function at the origin

WLR[0] = AN

σ1σ2 . . . σN

ρ1ρ2 . . . ρP

for N ≥ 1 and WLR[0] =
A0

ρ1ρ2
for N = 0 (MHA) . (2.4)

Recall that the value of WLR[0] is fixed by lowest order chiral perturbation theory; so, once AN

is known, the sign of WLR[0] fixes the sign of the product of all the zeros 2. We therefore have
that

AN

σ1σ2 . . . σN

ρ1ρ2 . . . ρP

=
F 2

0

M2
V

≡ ρF for N ≥ 1 and
A0

ρ1ρ2
=

F 2
0

M2
V

for N = 0 , (2.5)

with F 2
0 the residue of the Goldstone pole (the pion) contributing to ΠLR(Q2).

In what follows, we shall often use the notation ρ2 ≡ ρA and ρ3 ≡ ρV ′ .

2. The WLR[z] function at infinity: condensates

Starting from equation (1.5) with the constraint N − P = −2 (which means that the two
Weinberg sum rules are automatically satisfied) and decomposing it into partial fractions, we
obtain

WLR[z] = AP−2

P
∏

i=1

1

(z + ρi)

P−2
∏

j=1

(z + σj) =
P
∑

k=1

wk

1

z + ρk

, (2.6)

with

wk = AP−2

P
∏

i6=k=1

1

(ρi − ρk)

P−2
∏

j=1

(σj − ρk) = ρF

P
∏

i=1

ρi

(ρi − ρk + δik)

P−2
∏

j=1

(σj − ρk)

σj

, (2.7)

where δik is the Kronecker symbol. This fixes the residues of the poles, which are physical
couplings, in terms of the poles and zeros. There follows then that:

〈O2n+4〉 = 2(−1)n+1 M2n+4
V

P
∑

k=1

wkρn
k . (2.8)

3. The Linear Constraint

This is a very interesting constraint, which simply follows by expanding Eq. (1.5) to first non–
trivial order in inverse powers of z

N
∑

j=1

σj −
P
∑

i=1

ρi =
1

M2
V

〈O8〉
〈O6〉

. (2.9)

2Notice that, if there are complex zeros, they have to appear in conjugate pairs of each other and therefore give a
positive contribution to the product.
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It relates the difference between the sum of the positions of the zeros and the sum of the positions
of the poles to the ratio of next–to–leading to leading vev’s in the OPE. In other words, once
we know the positions of the poles, the sum of the positions of the zeros, which is always real, is
governed by the next–to–leading order term in the OPE. In the case corresponding to the MHA,
where by definition there are no zeros, this constraint simply becomes:

1 + ρA = − 1

M2
V

〈O8〉
〈O6〉

, (2.10)

implying that, in the MHA 〈O8〉 and 〈O6〉 must have opposite signs. This is indeed what the
phenomenological analyses in refs. [9, 10, 11, 15] find, in contradistinction to the results in
refs. [12, 13, 14] which find the same sign for the first two condensates. In fact, in the case of
the MHA, we can show that this alternance of sign for two consecutive condensates is a generic
property. It follows from the relation

〈O2n+4〉 = 2(−1)n M2n+4
V A0

1 − ρn
A

1 − ρA

= 2(−1)n M2n+4
V ρF

n
∑

k=1

ρk
A , for n ≥ 1 . (2.11)

Except for the (−1)n factor, all the quantities appearing in the r.h.s. are positive; which explains
the alternance in sign with n.

4. The Slope Constraint

The value of the derivative of WLR[z] at z = 0 is controlled by the O(p4) χPT low energy
constant L10 [18]

W ′
LR[0] = 4L10 . (2.12)

The relation to the poles and zeros of the WLR[z]–function in large–Nc QCD is as follows

W ′
LR[0] = ρF





N
∑

j=1

1

σj

−
P
∑

i=1

1

ρi



 , for N ≥ 1 . (2.13)

In the case N = 1 it reduces to the interesting relation

4L10 =
F 2

0

M2
V

[

1

σ
−
(

1 +
1

ρA

+
1

ρV ′

)]

, (2.14)

and in the case N = 0, corresponding to the MHA, to the well–known result [19, 20]

4L10 = − F 2
0

M2
V

(

1 +
1

ρA

)

⇒ L10 = −3

8

F 2
0

M2
V

for ρA = 2 , (2.15)

indicating that in the MHA, the slope of WLR[z] at the origin has the opposite sign to the value
of WLR[0], in agreement with experiment.

5. Dispersion Relations

The function WLR[z] and its corresponding spectral function 1
π
ImΠLR(t) are related to each

other by the dispersion relation

WLR (Re z) = − Q2

M2
ρ

∫ ∞

0

dt
1

t + Q2 − iǫ

1

π
ImΠLR(t) . (2.16)

This is the Hilbert transform of a spectral function, which in our approximation of large–Nc

QCD has the general form

1

π
ImΠLR(t) = −F 2

0 δ(t) +

P
∑

i=1

αiM
2
i δ(t − M2

i ) (2.17)

4



with the sum ordered in increasing values of the masses M2
i . The residues αi are positive for

the vector states and negative for the pion pole (the first term) and the axial states.

Sometimes it is also convenient to consider the Laplace transform (Borel transform) of the
spectral function

MLR(σ) =
1

M2
ρ

∫ ∞

0

dte−tσ 1

π
ImΠLR(t) . (2.18)

The two types of transforms are related by the fact that

1

t + Q2
=

∫ ∞

0

dσe−tσe−Q2σ ; (2.19)

therefore,

WLR(z) = −zM2
ρ

∫ ∞

0

dσe−σM2
ρ zMLR(σ) . (2.20)

In practice, one is often interested in observables which are moments of WLR(Q2)

O(m) =

∫ ∞

0

dz zm WLR(z) = − 1
(

M2
ρ

)1+m

∫ ∞

0

dσ

σ2+m
MLR(σ) ; m = 0, 1, 2, · · · , (2.21)

showing that we can view the observables O(m), either as moments of WLR(z), or as inverse
moments of MLR(σ).

Some interesting properties of the Laplace Transform follow.

• The Laplace transform MLR[σ] obeys the differential equation

{

aP

dP

dσP
+ aP−1

dP−1

dσP−1
+ · · · + a1

d

dσ
+ a0

}

MLR[σ] = 0 , (2.22)

with aP , aP−1, ... a0 the coefficients of the polynomial

P
∏

i=1

(z + ρi) = aP zP + aP−1z
P−1 + · · · + a0 ; (2.23)

i.e.,

aP = 1 , aP−1 =

P
∑

i=1

ρi , · · · a0 =

P
∏

i=1

ρi . (2.24)

• The polynomial
∏P

i=1(z+ρi) is a stable polynomial, because all its roots are in the negative
real axis (the Minkowski axis).

• The most general solution of the differential equation in (2.22) is of the form

− F 2
0

M2
ρ

+ α1ρ1e
−ρ1σ + α2ρ2e

−ρ2σ + · · · + αP ρP e−ρP σ , (2.25)

with the αi constants fixed by the successive boundary conditions obtained e.g., from the
knowledge of the derivatives of the function MLR[σ] at the origin.This leads to the system
of equations first discussed in ref. [1]:























− F 2
0

M2
ρ
+ α1ρ1 + α2ρ2 + · · ·+ αP ρP = MLR[0] ,

α1ρ
2
1 + α2ρ

2
2 + · · ·+ αP ρ2

P = dMLR[0]
d(σM2

ρ ) ,

· · ·
α1ρ

P+1
1 + α2ρ

P+1
2 + · · ·+ αP ρP+1

P = dPMLR[0]
d(σM2

ρ )P .

(2.26)
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The discriminant of this system of equations in the αi is the Vandermonde determinant









1 1 · · · 1
ρ1 ρ2 · · · ρP

· · ·
ρP
1 ρP

2 · · · ρP
P









.

On the other hand the successive values of MLR[0], dMLR[0]
dσ

, · · · and dPMLR[0]
(dσ)P are fixed

by the OPE of the function WLR[z]. In our case MLR[0] = 0; dMLR[0]
dσ

= 0 and the first
two equations in (2.26) are nothing but the well–known 1st and 2nd Weinberg sum rules.

• The positive moments of the Laplace transform, with the Goldstone singularity removed,
correspond to coefficients of the chiral expansion

∫ ∞

0

dσσNMLR(σ) = Γ(N + 1)

∫ ∞

0

dt
1

tN+1

1

π
ImΠ̃LR(t) , for N ≥ 0 , (2.27)

where
1

π
ImΠ̃LR(t) =

1

π
ImΠLR(t) + F 2

0 δ(t) . (2.28)

6. Reconstruction of the Spectral Function

It is useful to give the coefficients αi of equation (2.17) in terms of the poles ρi and zeros σj .

Inserting (2.17) into (2.16) we find

WLR[z] = ρF −
P
∑

k=1

αkρk +

P
∑

k=1

αkρ2
k

1

z + ρk

. (2.29)

By comparing (2.6) and (2.29), we then have























ρF −
P
∑

k=1

αkρk = 0,,

αkρ2
k = wk , with

∑P
k=1 wk = 0 ,

(2.30)

where the two sum equations above are just the first and second Weinberg sum rules.

Using a more conventional notation in terms of axial to vacuum and vector to vacuum couplings:
αA = −f2

A and αV = f2
V , we conclude from equations (2.30) and (2.7) that

f2
V M2

V =
F 2

0

ρV

P
∏

i=1

ρi

(ρi − ρV + δiV )

P−2
∏

j=1

(σj − ρV )

σj

(2.31)

f2
AM2

A = −F 2
0

ρA

P
∏

i=1

ρi

(ρi − ρA + δiA)

P−2
∏

j=1

(σj − ρA)

σj

. (2.32)

7. The Smoothness Assumption

As already stated, the MHA corresponds to the case where N = 0. In this approximation,
the function W [z], or its equivalent M(σ), is a monotonous function of the euclidean variable:
0 ≤ Q2 ≤ ∞ or, equivalently, ∞ ≥ σ ≥ 0. Introducing an improved approximation with more
poles necessarily brings in non–trivial zeros. Can the zeros change dramatically the smoothness

6



of the MHA? So far, all the calculations made in the literature in the MHA are based on the
working assumption that the smoothness, beyond the MHA, persists; in other words, one is
assuming an underlying hypothesis of smoothness of large–Nc QCD which, in full generality,
has not been proved from first principles. What follows in the next sections is a test of this
assumption, albeit in a very particular case.

We can only suggest a possible scenario on how this smoothness assumption may be a generic
property of large–Nc QCD. It is quite clear that in the case where the spectral function is
positive, the fact that M(σ) is then logarithmically convex [22] provides the required smoothness
property; however, in most cases (like the left–right correlation function we are considering here)
this property of positivity does not hold.

In fact, in the case of the left–right correlation function, Witten has proved [21], under rather
general assumptions, that ΠLR(Q2) ≥ 0 for 0 ≤ Q2 ≤ ∞. This follows from the positivity of the
measure in the gluonic path integral and Schwartz type inequalities of the fermion propagators,
Witten’s proof, however, is not in general applicable to other generalized two–point functions.

A property of smoothness would follow if one could guarantee that the positions of the zeros
of the generalized Green’s functions are all in the negative half–plane Re z ≤ 0 (i.e. the half–
plane which includes the Minkowski axis). This would be the case if the polynomial of zeros
∏N

j=1(z + σj), like the polynomial of poles
∏P

i=1(z + ρi), was also a stable polynomial 3.

III ΠLR in the case of a π − V − A − V ′ Spectrum

It is claimed by some of the authors of refs. [12, 13, 14] that the reason why their phenomenological
analysis of the chiral condensates give the same sign for 〈O6〉 and 〈O8〉 is due to the fact that the
hadronic τ–decay spectrum is sensitive to the presence of the ρ′, while the MHA ignores all higher
states beyond the first axial state. Partly motivated by this claim 4, we want to analyze here the case,
beyond the MHA, where an extra vector state V ′, and therefore one zero σ, are also included. Let us
collect the relevant equations corresponding to this case.

1. The Correlation Function

With a spectrum of a pion pole, and V , A, and V ′ states, the relevant correlation function is

− Q2

M2
V

ΠLR(Q2) =⇒ WLR[z] = A1
z + σ

(z + 1)(z + ρA)(z + ρV ′)
, (3.1)

where

A1
σ

ρAρV ′

=
F 2

0

M2
V

≡ ρF and 〈O6〉 =
−2

σ
F 2

0 M2
AM2

V ′ = −M6
V

2

σ
ρF ρAρV ′ . (3.2)

Because of the positivity of WLR[z] for Re z ≥ 0, the position of the zero has to be in the
Minkowski axis and, therefore, σ > 0.

2. The Linear Constraint

Equation (2.9) now reduces to the simple relation

σ − (1 + ρA + ρV ′) =
1

M2
V

〈O8〉
〈O6〉

. (3.3)

3In the mathematical literature this goes under the name of the Routh–Hurwitz theorem. See e.g. ref. [23]. We

have recently been able to prove that the successive polynomials
∏N

j=1
(z + σj) for N = 1, 2, · · · up to an arbitrary, but

finite N , are indeed stable polynomials. The proof, however, lies outside the context of this paper and will be published
elsewhere.

4Notice, however, that there are other phenomenological analyses which using the same τ–data find opposite signs
for 〈O6〉 and 〈O8〉 [9, 11, 15]
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This is one of the key equations of our discussion, which already provides a semiquantitative
argument in favor of the opposite sign option for the condensates 〈O6〉 and 〈O8〉 . The equation
states that for 〈O8〉 to have the same sign as 〈O6〉, the position of the zero has to be far beyond
the largest V ′–pole:

σ > 1 + ρA + ρV ′ . (3.4)

Fixing the position of the poles at the values of the observed spectrum (and ignoring errors for
the purpose of the discussion), one has

MV = 0.776 GeV , MA = 1.230 GeV (ρA = 2.5) , MV ′ = 1.465 GeV (ρV ′ = 3.6) ; (3.5)

which means that for the equal sign requirement option to be satisfied one must have σ > 7.2.
In GeV units this corresponds to a mass of 2.1 GeV. Now, as already stated at the end of section
I, in writing a large–Nc ansatz for the WLR[z] function, one is implicitly assuming an effective
cancellation between the extra poles and zeros in the complex z–plane which lye beyond a disc
of radius s0 covering all the poles and zeros retained in that approximation. The result σ > 7.2
implies that the radius in question has to be

√
s0 > 2.1 GeV. A priori that seems a good thing

because the OPE–matching is now applied at Q2 ≥ s0; i.e. in a more asymptotic region than
in the case of the MHA ansatz; however, it also implies that there are no further poles in the
region between MV ′ ≃ 1.5 and the effective mass Mσ ≃ 2.1 GeV corresponding to the zero at
σ ≃ 7.2. This, however, is in contradiction with the observed a1–like state at MA′ ≃ 1.64 GeV
and ρ–like states at MV ′′ ≃ 1.72 GeV and MV ′′′ ≃ 1.9 GeV below Mσ ≃ 2.1 GeV. Alternatively,
if one excludes those three states A′, V ′′ and V ′′′ as all the phenomenological analyses using

τ–data do in fact, then the position of the zero σ should be σ <∼
M2

A′

M2
V

≈ 4.5, implying according

to eq. (3.4), that 〈O8〉 and 〈O6〉 must have opposite signs, in contradiction with the claims of
refs. [12, 13, 14].

3. The Slope Constraint

This is the relation between L10 and the position of the poles and the zero

4L10 = ρF

[

1

σ
−
(

1 +
1

ρA

+
1

ρV ′

)]

, (3.6)

which was already discussed in the previous section. Since L10 is relatively well–known phe-
nomenologically it gives a constraint between ρF , ρA, ρV ′ and σ.

4. The Electromagnetic π+ − π0 Mass Difference

Recall that

m2
π+ |em =

3

4

α

π

1

F 2
0

∫ ∞

0

dQ2
[

−Q2ΠLR(Q2)
]

. (3.7)

In the MHA with a V –A spectrum,

m2
π+

∣

∣

(MHA)

em
=

3

4

α

π
M2

V ρA

1

ρA − 1
log ρA . (3.8)

In the case of a V–A–V’ spectrum we find

m2
π+

∣

∣

(V–A–V’)

em
=

3

4

α

π
M2

V ρA

ρV ′

σ

(ρV ′ − 1)(ρA − σ) log ρV ′

ρA
+ (ρV ′ − ρA)(σ − 1) log ρV ′

(ρV ′ − 1)(ρA − 1)(ρV ′ − ρA)
, (3.9)

which, for σ = ρV ′ , reduces to the MHA expression. Since the ∆m = mπ+ −mπ0 mass difference
is dominated by its electromagnetic contribution, we can use its experimental value as a further
constraint on ρA, ρV ′ and σ.
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5. Reconstruction of the Spectral Function

In full generality, as shown in the previous section, one can reconstruct the spectral function
from the knowledge of the zeros and poles and the normalization AN . In our case, using (2.31)
and (2.32), this results in

1

π
ImΠLR(t) =

1

π
ImΠV (t) − 1

π
ImΠA(t) , (3.10)

with

1

π
ImΠA(t) = F 2

0 δ(t) + F 2
0

ρV ′

σ

σ − ρA

(ρA − 1)(ρV ′ − ρA)
δ(t−M2

A) +
Nc

16π2

2

3
θ(t− s0)(1 + · · · ) , (3.11)

and

1

π
ImΠV (t)=F 2

0

ρA

σ

{

ρV ′(σ − 1)

(ρA − 1)(ρV ′ − 1)
δ(t−M2

V ) +
σ − ρV ′

(ρV ′ − 1)(ρV ′ − ρA)
δ(t−M2

V ′)

}

+
Nc

16π2

2

3
θ(t − s0)(1 + · · · ) , (3.12)

where the dots in these equations stand for pQCD αs–corrections. Notice that these spectral
functions, by construction, satisfy the 1st and 2nd Weinberg sum rules. For σ = ρV ′ they reduce
to the spectral functions of the MHA case.

6. Radiative Widths

For a meson V in the lowest octet of vector states, the width of the electronic decay V → e+e−

is given by the expression

ΓV →e+e− =
4πα2

3
f2

V MV . (3.13)

For an axial–vector A, the width of the decay A → πγ, in the chiral limit, is given by [19]

ΓA→πγ =
α

24
f2

A

M2
A

F 2
0

MA . (3.14)

The relation between these decay rates and ρA, ρV ′ and σ is as follows:

f2
V M2

V = F 2
0

ρAρV ′

σ

σ − 1

(ρA − 1)(ρV ′ − 1)
, (3.15)

f2
AM2

A = F 2
0

ρV ′

σ

σ − ρA

(ρA − 1)(ρV ′ − ρA)
, (3.16)

f2
V ′M2

V ′ = F 2
0

ρA

σ

σ − ρV ′

(ρV ′ − 1)(ρV ′ − ρA)
. (3.17)

7. The Electromagnetic Pion form Factor

In Large–Nc QCD, the electromagnetic form factor of the pion has a particularly simple expres-
sion

F (t) = 1 +
∑

V

FV GV

F 2
0

t

M2
V − t

, (3.18)

where FV = fV MV and GV = gV MV are standard couplings of the large–Nc effective Lagrangian
of narrow states [19]. Requiring that the form factor falls as an inverse power of Q2 = −t in the
deep euclidean, one gets the constraint:

∑

V

fV gV M2
V = F 2

0 . (3.19)
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On the other hand the slope at the origin of the pion electromagnetic form factor determines
the L9 coupling [18] as follows:

L9 =
1

2

∑

V

fV gV . (3.20)

The two constraints (3.19) and (3.20), when restricted to a π, V , A, V ′ spectrum, become:

fV gV + fV ′gV ′ρV ′ = ρF , (3.21)

fV gV + fV ′gV ′ = 2L9 . (3.22)

In the chiral limit, the coupling gV is related to the ρ → ππ width as follows

Γρ→ππ = g2
V

M5
ρ

48πF 4
0

. (3.23)

The V ′–width, however, (and hence the coupling gV ′) is poorly known. We can eliminate gV ′

between the two equations (3.21) and (3.22), which results in a useful constraint between L9,
ρA, ρV ′ , σ and gV (which can be fixed from ρ → ππ).

8. Matrix Elements of the Q7 and Q8 Operators

The four quark operators in question are the ones in eq. (1.3). We are interested in the evaluation
of the matrix elements of these operators between an incoming K–state and an outgoing 2π–
state.

Evaluation of 〈O1〉 As discussed in ref. [6], the 〈(ππ)I=2|Q7|K0〉 matrix element, to lowest
order in χPT is related to the vev

〈O1〉 ≡ 〈0|(s̄LγµdL)(d̄RγµsR)|0〉 , (3.24)

as follows

M7 ≡ 〈(ππ)I=2|Q7|K0〉 = − 4

F 3
0

〈O1〉 . (3.25)

On the other hand, in ref. [6], it was also shown that

〈O1〉 =
1

6

(

−3igµν

∫

d4q

(2π)4
Πµν

LR(q)

)

MS

, (3.26)

where the integral has to be evaluated using the same MS–renormalization prescription as
used for the evaluation of the corresponding Wilson coefficient of Q7. One then finds that
in large–Nc QCD [6]

〈O1〉 = − 3

32π2

[

∑

A

f2
AM6

A log
Λ2

M2
A

−
∑

V

f2
V M6

V log
Λ2

M2
V

]

, (3.27)

where Λ2 = µ2 exp(1/3 + κ) with κ depending on the renormalization scheme: κ = −1/2
in NDR and κ = +3/2 in HV. For a π–V –A–V ′ spectrum this can be written as a function
of ρA, ρV ′ and σ in the following way

〈O1〉 =
3M6

V

32π2
ρF

ρV ′

σ

[

ρA

σ − 1

(ρA − 1)(ρV ′ − 1)
log

Λ2

M2
V

+ρAρV ′

σ − ρV ′

(ρV ′ − 1)(ρV ′ − ρA)
log

Λ2

M2
V ρV ′

−ρ2
A

σ − ρA

(ρA − 1)(ρV ′ − ρA)
log

Λ2

M2
V ρA

]

. (3.28)
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For ρV ′ = σ this expression reduces to the MHA discussed in ref. [6].

Evaluation of 〈O2〉 This is a vev which appears in the short–distance behaviour of the ΠLR(Q2)
function; more precisely

lim
Q2→∞

(

−Q2ΠLR(Q2)
)

× Q4 = 4π2 αs

π

(

4〈O2〉 +
2

Nc

〈O1〉
)

+ O
(αs

π

)

. (3.29)

It is related to the evaluation of matrix elements of the Q8 operator as follows

M8 ≡ 〈(ππ)I=2|Q8|K0〉 =
8

F 3
0

〈O2〉 . (3.30)

As discussed in ref. [6], to a good approximation and including next–to–leading αs–corrections
we have

〈O2(µ)〉 ≃ 1

16παs(µ)

(

∑

A

f2
AM6

A −
∑

V

f2
V M6

V

)

×
[

1 −
(

25/8 (NDR )
21/8 (HV )

)

αs(µ)

π

]

; (3.31)

and in the case of a π–V –A–V ′ spectrum

〈O2(µ)〉 =
M6

V

16παs(µ)
ρF

ρV ′

σ

{

ρ2
A

σ − ρA

(ρA − 1)(ρV ′ − ρA)

−ρA

σ − 1

(ρA − 1)(ρV ′ − 1)
− ρAρV ′

σ − ρV ′

(ρV ′ − 1)(ρV ′ − ρA)

}

×
[

1 −
(

25/8 (NDR )
21/8 (HV )

)

αs(µ)

π

]

, (3.32)

Again, in the limit where ρV ′ = σ this expression reduces to the corresponding MHA
expression discussed in ref. [6].

9. Duality Constraint

This can be formulated as the requirement that in the chiral limit, there is no 1/Q2–term in the
OPE of the Adler function defined as

A(Q2) =

∫ ∞

0

dt
Q2

(Q2 + t)2
1

π
ImΠV (t) . (3.33)

The Adler function is not an order parameter of SχSB and, therefore, it has contributions from
the perturbative continuum. Then, in the case of two explicit V and V ′ states plus a continuum
spectrum, the requirement in question reads as follows

2f2
V M2

V + 2f2
V ′M2

V ′ =
Nc

16π2

4

3
s0

(

1 +
3

8

Ncαs(s0)

π
+ · · ·

)

. (3.34)

Using the 1st Weinberg sum rule, this can be written as a simple constraint between ρF , ρA,
ρV ′ , σ and the onset of the continuum s0 which, obviously, has to start beyond the ρV ′–pole;
i.e., s0 > M2

ρρV ′ :

ρF

(

1 +
ρV ′

σ

σ − ρA

(ρA − 1)(ρV ′ − ρA)

)

=
Nc

16π2

2

3

s0

M2
V

(

1 +
3

8

Ncαs(s0)

π
+ · · ·

)

. (3.35)
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IV Numerical Analyses and Conclusions

1. The case of a π − V − A spectrum (MHA)

(a) Fixing the free parameters ρF and ρA.

Confronting the MHA approximation to the experimental values of the observables introduced
in the previous section will allow us to test its consistency and adjust the two free parameters
ρF and ρA of this approximation. We use as input the following set of experimental data

δmπ = 4.5936± 0.0005 MeV , ref. [24] (4.1)

L10 = (−5.13 ± 0.19)× 10−3 , ref. [9] (4.2)

Γρ→e+e− = (6.77 ± 0.32)× 10−3 MeV , ref. [24] (4.3)

Γa→πγ = (640 ± 246)× 10−3 MeV , ref. [24] (4.4)

L9 = (6.9 ± 0.7)× 10−3 , ref. [25] (4.5)

Mρ = (775.9 ± 0.5) MeV ; ref. [24] (4.6)

and make the reasonable assumption that these observables follow gaussian probability density
functions (p.d.f.). In fact, some of these observables, when expressed in terms of the MHA
parameters depend not only on ρF and ρA but also on (mπ+ + mπ0) and/or MV . Therefore, it
is more appropriate for our purposes to use in our fit procedure the dimensionless quantities:

mπ+ + mπ0

M2
ρ

δmπ =
3

4

α

π

ρA log(ρA)

ρA − 1
, (4.7)

L10 = −1

4
ρF

(

1 +
1

ρA

)

, (4.8)

1

Mρ

Γρ→e+e− =
4πα2

3

ρA

ρA − 1
, (4.9)

1

Mρ

Γa→πγ =
α

24

√
ρA

ρA − 1
, (4.10)

L9 =
1

2
ρF . (4.11)

This, however, has the drawback that the three ratios (4.7), (4.9) and (4.10) may no longer have
simple gaussian p.d.f. In order to check this, we have computed their p.d.f. 5 and found that
for each of them, there is practically no numerical difference between the calculated p.d.f. and
the gaussian one. This justifies the use of the standard χ2 statistical regression method to fit
our parameters ρF and ρA with the result

ρF = (12.36 ± 0.35)× 10−3 and ρA = 1.464± 0.004 , (4.12)

with a χ2
min = 1.21 for 3 degrees of freedom (dof). The covariance matrix is given by

cov (ρF , ρA) =

(

1.21 1.36
1.36 162

)

× 10−7 . (4.13)

The quoted statistical errors of ρA and ρF have been obtained by evaluating the 1σ standard
deviation via the solutions of: ∆χ2(ρi)

.
= minj,j 6=i

(

χ2(ρi, ρj) − χ2
min.

)

= 1.

We deduce from these results two conclusions: first that the MHA framework is statistically
relevant and second that the fitted free parameters have small statistical errors. Moreover, they
obey a multivariate gaussian p.d.f.. For MV = (775.9±0.5) MeV, we find F0 = (86.3±1.2) MeV

5We do this following the example given in ref. [26].
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and MA = (938.7 ± 1.4) MeV, where the errors are only the statistical errors of the fit. The
corresponding perturbative threshold s0 defined by Eq. (3.35) is

√
s0 ≈ 1.3 GeV.

(b) Predictions of the MHA

Using Eq. (2.11), we have evaluated the first few condensates of lowest dimension. The quoted
numbers are given in Table 1 below in the entry MHA (the second line). They have been
obtained using a Monte-Carlo simulation which takes into account the statistical correlation
between the two parameters. The second error is an estimate of the systematic theoretical error
which we have made in the following way:

i) We give a systematic error to the parameter ρF of O(Γρ/Mρ). Notice that this is the parameter
which modulates the large–Nc counting in all our theoretical expressions (both for the MHA
and the MHA + V’).

ii) We enlarge the experimental error of Mρ, which is the quantity modulating the dimensions
of the calculated observables, by a factor of twenty i.e.,

Mρ → Mρ = (776 ± 10) MeV . (4.14)

iii) As already mentioned in the text, the MHA + V’ framework reduces to the MHA one for
σ = ρV ′ . This suggests a way of introducing an extra systematic error to the MHA results
versus the MHA plus an extra pole (R) results, by fixing the a priori ignorance one has on the
relative position of an extra pole versus an extra zero within reasonable limits. We propose to
quantify this error as follows

σ = ρR ± ρR − ρA

2
, (4.15)

using the experimental values for ρA and ρR, (ρA = 2.5 and ρR = 3.6). Notice that this covers
the possibility that the extra pole is of the V –type (σ > ρR) or of the A–type (σ < ρR).

The three sources of systematic errors are then added in quadrature.

For the purposes of comparison we also show in the same Table 1 the results of the other
determinations of the chiral condensates; in particular the values quoted by Cirigliano et al. in
ref. [5] 6. Notice that these authors also find an alternance of signs, but opposite to our MHA
prediction, except for the lowest dimension condensate.

Using Eqs. (3.25) and (3.30) we can also evaluate the matrix elements of Q7 and Q8 operators.
The results are given in the line MHA of Table 2 below. Again, the first error is statistical, the
second error is our estimate of the theoretical systematic error in the way described above.

The results in Table 1 and Table 2, corresponding to the MHA, are perfectly consistent with those
previously obtained in refs. [10] and [27] using a different treatment of the input parameters.

2. The case of a π − V − A − V ′ spectrum (MHA+V’)

(a) Fixing the free parameters

Adding a vector resonance V ′ in the spectrum extends the number of free parameters from two
to four: ρF , ρA, ρV ′ and σ. Furthermore, Eq. (4.11) becomes now a function of gV as explained
in Section III.7. The way we treat this is by considering the observable7:

1

Mρ

Γρ→ππ =
1

48π

1

ρ2
F

σ (ρF − 2L9ρV ′)
2
(ρA − 1)(ρV ′ − 1)

(1 − ρV ′)2ρF ρAρV ′(σ − 1)
, (4.16)

as a function of L9 which has an error itself, and is added as an extra parameter in our fit. The
number of d.o.f. does not change since L9 is also taken as an observable. We also impose a
criterion of rejection through the ordering:

ρA < ρV ′ < σ < ρ0
.
=

s0

M2
V

. (4.17)

6See the original reference for a discussion of the two sources of errors.
7The decay width of ρ → ππ is Γρ→ππ = (150.4 ± 1.3)MeV [24].

13



Table 1: Numerical Results for the Chiral Condensates

〈O6〉 〈O8〉 〈O10〉 〈O12〉 〈O14〉 〈O16〉
×103 GeV6 ×103 GeV8 ×103 GeV10 ×103 GeV12 ×103 GeV14 ×103 GeV16

MHA + V’ −7.90 ± 0.20 +11.69± 0.32 −13.12± 0.43 +13.21± 0.62 −12.54± 0.93 +11.45± 1.50
±1.62 ±2.53 ±3.01 ±3.24 ±3.29 ±3.21

MHA −7.89 ± 0.23 +11.71± 0.34 −13.18± 0.41 +13.33± 0.42 −12.78± 0.43 +11.89± 0.40
±2.01 ±3.08 ±3.61 ±3.83 ±3.86 ±3.78

ALEPH −7.7 ± 0.8 +11 ± 1
OPAL −6.0 ± 0.6 +7.5 ± 1.3

Davier et al. [9] −6.4 ± 1.6 +8.7 ± 2.4
Ioffe et al.[11] −6.8 ± 2.1 +7 ± 4
Zyablyuk [15] −7.1 ± 1.5 +7.8 ± 3.0 −4.5 ± 3.4

Bijnens et al. [12] −3.2 ± 2.0 −12.4 ± 9.0
Cirigliano et al. −4.5 ± 0.83 −5.7 ± 3.72 +48.2 ± 10.2 −160 ± 26 +426± 62 −1030± 140

ALEPH[13] ±0.18 ±0.64 ±2 ±5 ±14 ±30
Cirigliano et al. −5.06 ± 0.89 −3.12± 3.82 +38.7 ± 10.6 −132 ± 27 +354± 66 −850 ± 150

OPAL[13] ±0.12 ±0.45 ±1 ±3 ±6 ±20
Rojo et al.[14] −4 ± 2 −12+7

−11 78 ± 24 −260 ± 80

The first and second inequalities reflect the knowledge that the new state has a higher mass than
the axial, that it is a V –like pole and, therefore, its residue contributes positively to the WLR(z)–
function; the third inequality follows from the requirement that the perturbative threshold s0

defined in Eq. (3.35) already lies beyond the radius where the analytic structure of the poles
and zeros retained satisfies the leading OPE constraint.

A similar statistical analysis to the one in the previous subsection with a χ2 regression leads to
the following results:

ρF = (12.36 ± 0.03)× 10−3 , (4.18)

ρA = 1.466 ± 0.003 , (4.19)

ρV ′ = 2.63 ± 0.01 , (4.20)

σ = 2.64 ± 0.01 . (4.21)

The results in Eqs. (4.18) to (4.21) correspond to a value: L9 = (6.44 ± 0.02) × 10−3, with a
χ2

min = 0.60 for 1 dof. The errors, which are only the statistical errors of the fit, were calculated
using the same “reduced-χ2” procedure as before. We find that the parameters ρF and ρA

are statistically stable when compared to those found in the MHA case. We also find that
ρV ′ ≈ σ, which is consistent with the fact that the MHA approximation seems to have already
the bulk of the full large–Nc information. In other words, adding an extra V’–pole appears to
be compensated, at a very good approximation, by the position of the nearby zero.

In order to make numerical predictions for the chiral condensates and the matrix elements M7

and M8 we need to know the shape of each ”reduced-χ2” so as to implement a Monte-Carlo
simulation. Concerning ρF and L9 we find parabolic shapes, i.e. gaussian behaviours. In the
other cases the structure of the ”reduced-χ2” are slightly more complicated but since, as already
seen in the MHA case, the resulting statistical errors remain very small as compared to the
systematic errors of the theoretical framework, we have finally assumed that all our parameters
are gaussian and uncorrelated. For MV = (775.9±0.5) MeV, we now find F0 = (86.1±1.1) MeV,
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Table 2: Numerical Results for the Q7 and Q8 Matrix Elements

M7 (NDR) M7 (HV) M8 (NDR) M8 (HV)
MHA + V’ 0.12 ± 0.00 ± 0.01 0.59 ± 0.01 ± 0.06 2.00 ± 0.03 ± 0.20 2.15 ± 0.03 ± 0.22

MHA 0.12 ± 0.00 ± 0.02 0.59 ± 0.01 ± 0.11 1.99 ± 0.03 ± 0.36 2.15 ± 0.03 ± 0.39

Donoghue et al. [28] 0.16 ± 0.1 0.49 ± 0.07 2.22 ± 0.67 2.46 ± 0.70
Bijnens et al. [12] 0.24 ± 0.03 0.37 ± 0.08 1.2 ± 0.8 1.3 ± 0.6

Cirigliano et al. [29] 0.22 ± 0.05 1.50 ± 0.27
Narison [30] 0.21 ± 0.05 1.4 ± 0.35

RBC [31] 0.27 ± 0.03 1.1 ± 0.2
CP-PACS et al. [32] 0.24 ± 0.03 1.0 ± 0.2

Donini et al. [34] 0.11 ± 0.04 0.18 ± 0.06 0.51 ± 0.10 0.62 ± 0.12
Bhattacharia et al. [35] 0.32 ± 0.06 1.2 ± 0.2

SPQCDR [33] 0.24 ± 0.02 1.05 ± 0.10

MA = (939.4±1.1) MeV and MV ′ = (1258.2±2.5) MeV, where the errors are only the statistical
errors of the fit, and a perturbative threshold in the V –channel (or A–channel) starting, again,
at

√
s0 ≈ 1.3 GeV.

(b) Predictions of the MHA+V’

The restriction of (2.8) to the P = 3 case (MHA+V’) reads

〈O2n+4〉 = 2(−1)n+1 M2n+4
V ρF

3
∑

k=1

(

1 − ρk

σ

)

3
∏

i=1

ρi

(ρi − ρk + δik)
ρn

k , (4.22)

where ρ1 = 1, ρ2 = ρA and ρ3 = ρV ′ . The resulting values of the chiral condensates are given in
the first line MHA + V’ in Table 1. The matrix elements of Q7 and Q8 are now obtained using
Eqs. (3.25), (3.28) and (3.30),(3.32) and the corresponding results are given in the first line MHA
+ V’ of Table 2. The systematic errors of the MHA + V’ predictions have been estimated using
the prescriptions i) and ii) already described earlier for the MHA predictions. Within errors,
the two set of predictions from MHA and from MHA + V’ are perfectly consistent with each
other.

The shape of the function WLR[z] in Eq. (3.1) with the parameters fixed at the central values
resulting from the fit in Eqs. (4.18) to (4.21) is shown in Figs. 2a, 2b and 2c. Figure 2a shows
the shape of the function WLR[z] in the euclidean region (z ≥ 0). Figures 2b and 2c show the
shape of ReWLR[z] (the thick solid red lines) in the Minkowski region for −2 ≤ z ≤ 0 in Fig. 2b
and in the region of the V ′ in Fig. 2c. Notice the different scales of the three figures. The
delta functions contributing to ImWLR[z] are also shown (the thin vertical blue lines V and A
in Fig. 2b, and the thin vertical blue line V ′ in Fig. 2c.)

3. Comparison with other Determinations

The authors of refs. [12] and [13] give results for quite a few observables. This offers the
possibility of making a comparative study with our predictions. The way we do that is by
asking the following question: “what are the values of ρF , ρA, ρV ′ and σ which, using the
large–Nc parameterization MHA +V’ given in the text, can fit the predictions of these authors?”

Concerning the work of Bijnens et al. [12], we have used their predictions (with their errors) for
〈O6〉, 〈O8〉, M7, M8 and the perturbative threshold (which in the case of Aleph they take at
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Fig. 2a The predicted shape of the function WLR[z] in Eq. (3.1) in the euclidean.

Fig. 2b The predicted shape of the function WLR[z] in Eq. (3.1) in the Minkowski region −2 ≤ z ≤ 0.
The vertical lines are the delta functions contributing to the imaginary part, the continuous solid lines,
are the shape of ReWLR[z] in that region.

s0 = 2.53+0.13
−0.12 GeV) as input data. Using this input, and imposing the constraint ρA < ρV ′ <

σ < s0 it is possible to find a fit with a χ2
min. = 11.9/(3 dof) and the central values:

ρF = 0.011,, ρA = 1.69 , ρV ′ = 2.08 , σ = 4.10 , (4.23)

with
F0 = 81.2 MeV and ρ0 =

s0

M2
ρ

= 4.34 . (4.24)

The problem with this fit, which reflects the rather bad χ2
min., is that σ < 1 + ρA + ρV ′ in

contradiction with the equal sign value for O6 and O8 which these authors find.

It is possible, however, to find a reasonable fit, using as input the predictions of Bijnens et
al. [12], if one leaves free the position of σ. We have found a solution with a χ2

min. = 1.2/(3 dof)
and parameter values:
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Fig. 2c The predicted shape of the function WLR[z] in the V ′ region.

ρF = 0.0147+0.0010
−0.0008 (4.25)

ρA = 3.4+1.8
−1.5 (4.26)

ρV ′ = 3.7+1.0
−1.2 (4.27)

σ = 15.55+5.75
−3.25 (4.28)

F0 = 86.9+5.3
−5.5 MeV (4.29)

ρ0
.
=

ρF

F 2
0

s0 = 5.18 , (4.30)

where the errors are only the statistical errors of the fit. The problem of this fit, however, is
that the position of the zero is far beyond the onset of the pQCD threshold (σ ≫ ρ0) and many
states, which have not been included in the analysis, can fill this gap.

Concerning the work of Cirigliano et al. [13], we have used their values for the condensates
from O6 to O16, with their errors, as well as their predictions of M7 and M8, with their errors
as well, as input values. Like in our previous analysis, we have first imposed the constraint
ρA < ρV ′ < ρsup.

0 and σ < ρsup.
0 for s0 = {1.95, 2.15, · · · , 3.15}GeV2. We have found a solution

with, however, a very bad χ2
min. = 134.5/(4 dof). The central values of the resulting parameters

are
ρF = 0.010 , ρA = 1.60 , ρV ′ = 1.78 , σ = 3.48 , (4.31)

with
F0 = 93.7 MeV and ρ0 = 3.59 . (4.32)

Again, we find that this solution satisfies the relation σ < 1 + ρA + ρV ′ in contradiction with
the equal sign value for O6 and O8 which the authors find.

If we relax the constraint on σ < ρ0 it is then possible to find a “better fit” with a χ2
min. =

3.26/(4 dof) and central values for the parameters:

ρF = 0.009 , ρA = 1.02 , ρV ′ = 2.03 , σ = 5.40 , (4.33)

with
F0 = 92.39 MeV and ρ0 =

s0

M2
ρ

= 3.47 . (4.34)

The problem with this fit, however, is twofold. On the one hand the position of the axial state
is too near to the first vector state (ρA = 1.02) and also the fact that there is still a large gap
between the onset of the pQCD continuum (ρ0 = 3.47) and the position of the zero (σ = 5.40).

17



We conclude from these analyses that the results of Bijnens et al. [12], as well as the results
of Cirigliano et al. [13], if interpreted within the framework of large–Nc QCD, show internal
inconsistencies. As recently discussed by Donoghue [36], this could very well be the reflect of
unphysical extrapolations in the hadronic spectral function which (implicitly or explicitly) have
been made in the phenomenological analyses reported in refs. [12, 13, 14].
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