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Abstract

We study how physical information can be extracted from a background independent quantum

system. We use an extremely simple ‘minimalist’ system that models a finite region of 3d euclidean

quantum spacetime with a single equilateral tetrahedron. We show that the physical informa-

tion can be expressed as a boundary amplitude. We illustrate how the notions of “evolution”

in a boundary proper-time and “vacuum” can be extracted from the background independent

dynamics.

1 Introduction

To understand quantum gravity, we have to learn how to do quantum physics in a background inde-
pendent context. On a background, distance and time separation are described by the independent
variables x and t that coordinatize the background. In a background independent field theory, on the
contrary, distance and time separation must be extracted from the dynamical variables. In a classical
theory we know how to do so: we compare observations with coordinate-independent quantities. In a
quantum theory, we don’t. As a consequence, we still lack a general technique for extracting physical
information and computing, say, particle scattering amplitudes, even when the basic formalism of
a background-independent quantum field theory is defined, as in loop quantum gravity and in the
spinfoam formalism [1, 2, 3].

An idea for solving this problem is to study the quantum propagator of a finite spacetime region,
as a function of the boundary data [1, 4]. The key observation [5] is that in gravity the boundary
data include the gravitational field, hence the geometry of the boundary, hence all relevant relative
distances and time separations. In other words, the boundary formulation realizes very elegantly in
the quantum context the complete identification between spacetime geometry and dynamical fields,
which is Einstein’s great discovery.

Formally, the idea consists in extracting the physical information from a background independent
quantum field theory in terms of the quantity

W [ϕ] =

∫

φ|
Σ
=ϕ

Dφ e−
i

~
S[φ] . (1)

Here φ represents the ensemble of the dynamical fields, S[φ] their diffeomorphism invariant and back-
ground independent action, the integral is over the fields in a finite spacetime region, bounded by a
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compact surface Σ, and ϕ is the value of φ on Σ. W [ϕ] does not depend on (local deformations of)
Σ because of diffeomorphism invariance. The boundary field ϕ can be viewed as expressing initial,
final as well as boundary values of φ and W [ϕ] expresses the corresponding amplitude. This is in the
same sense in which the nonrelativistic Feynman propagator W (x, x′, t) expresses the amplitude for
given initial and final positions [6]. The difference is that while W (x, x′, t) depends on the background
variable t, here there is no distinction between background variables, initial, final or boundary data.
In the context of a finite number of degrees of freedom, a covariant generalization of the Feynman
propagator, viable when there is no distinction between independent (t) and dependend (x) variable,
was illustrated in [7]. In field theory, we can assume that W [ϕ], formally defined in (1), expresses
the amplitude of having a certain set of initial and final fields, as well as boundary fields, measured
by apparatus that are located in spacetime in the manner described by (the geometry of) the surface
Σ, this geometry being determined by ϕ itself. That is, the independent variable is simply hidden in
the boundary values of the field. This picture closely describes what happens in a laboratory exper-
iment, where, say, scattering events are confined in a finite-size spacetime region, around which we
measure incoming and outgoing particles (that is, matter-field variables) as well as distances between
instruments and elapsed time (that is, gravitational-field variables).

We expect that particle scattering amplitudes can be effectively computed from W [ϕ] in quantum
gravity; details will be given elsewhere [8]. The relation between particle states defined in such a
finite context and the usual particle states of quantum field theory, defined on an infinite spacelike
region, will be discussed in [9]. For a theory which is not diffeomorphism invariant, the amplitude
(1) depends also on Σ and, appropriately defined, can be proven [10, 11] to satisfy a generalized
Tomonaga–Schwinger equation [12]. This equation becomes a generalized Wheeler-DeWitt equation
in the background independent context [1].

This boundary picture is pithy and appealing, but its implementation in the full 4d quantum gravity
theory is difficult because of the technical complexity of the theory. It is useful to test and illustrate
it in a simple context. This is what we do in this paper. We consider riemannian general relativity
in three dimensions. Since the theory is topological, the integral (1) is trivial. To further simplify
the context, we triangulate spacetime, reducing the field variables to a finite number [13, 14, 15].
Furthermore, we take a ‘minimalist’ triangulation: a single tetrahedron with four equal edges. In this
way the number of variables we deal with is reduced to a bare minimum. The result is an extremely
simple system, which, nevertheless, is sufficient to realize the conceptual complexity of a background
independent theory of spacetime geometry.

We show that this simple system has in fact a background independent classical and quantum
dynamics. The classical dynamics is governed by the relativistic Hamilton function [1], the quantum
dynamics is governed by the relativistic propagator (1). We compute both these functions explicitly.
The classical dynamics, which is equivalent to the Einstein equations, fixes relations between quantities
that can be measured on the boundary of the tetrahedron. The quantum dynamics gives probability
amplitudes for ensembles of boundary measurements.

The model and its interpretation are well-defined with no need of picking a particular variable as a
time variable. However, we can also identify an elapsed proper “time” T among the boundary variables,
and reinterpret the background independent theory as a theory describing evolution in the observable
time T (observables in the sense of [16], see [1].) We describe the two (equivalent) interpretations of
the model, in the classical as well in the quantum theory. Furthermore, we concretely illustrate the
distinction between the nonperturbative vacuum state and the “Minkowski” vacuum that minimizes
the energy associated with the evolution in T , and we show that the technique suggested in [5] for
computing the Minkowski vacuum state from the nonperturbative vacuum state works in this context.

Thus, the system captures the essence of background independent physics in a nutshell.

The classical theory is discussed in Section 2; classical time evolution in Section 3; the quantum
theory in Section 4; quantum time evolution in Section 5. As a preliminary step, we describe below
the geometry of an equilateral tetrahedron.
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Figure 1: The equilateral tetrahedron.

1.1 Elementary geometry of an equilateral tetrahedron

Consider a tetrahedron immersed in euclidean three-dimensional space. Let a be the length of one
of the edges (we call it the “top” edge) and b the length of the opposite (“bottom”) edge, namely
the edge disjoint from the top edge. Assume that the other four (“side”) edges have equal length c.
See Figure 1. We call such a tetrahedron “equilateral”. We call θa, θb, θc, the (respectively “bottom”,
“top” and “side”) dihedral angles at the edges (with length) a, b, c. Elementary geometry gives

sin
θa

2
=

b√
4c2 − a2

, sin
θb

2
=

a√
4c2 − b2

, cos θc =
ab

√

(4c2 − a2)(4c2 − b2)
. (2)

(The last equation can be easily obtained from the scalar product of the normals to two adjacent
triangles, by working in the orthonormal basis determined by the top and bottom edges, and the
tetrahedron axis.) It follows from (2) that

cos θc = sin
θa

2
sin

θb

2
. (3)

For later purpose, we consider also the case in which c ≫ a, b. In this case, we have, to the first
relevant order,

θa =
b

c
, θb =

a

c
, θc =

π

2
− ab

4c2
(4)

and

θc =
π

2
− θaθb

4
. (5)

We consider also the three external angles at the edges

ka(a, b, c) = π − θa(a, b, c), kb(a, b, c) = π − θb(a, b, c), kc(a, b, c) = π − θc(a, b, c). (6)

Notice that they express the discretized extrinsic curvature of the surface of the tetrahedron. This is
why we have denoted them with the letter k, often used for the extrinsic curvature. Using (2) and
(6), the relation between the edge lengths a, b, c and the external angles ka, kb, kc can be written in
the form

a =
√

4c2 − b2 cos
kb

2
,

b =
√

4c2 − a2 cos
ka

2
,

ab = −
√

(4c2 − a2)(4c2 − b2) cos kc ; (7)

while (3) reads

cos kc = − cos
ka

2
cos

kb

2
. (8)
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2 Classical theory

2.1 Regge action

Consider the action of general relativity, in the case of a simply connected finite spacetime region
R. Recall that in the presence of a boundary Σ = ∂R we have to add a boundary term to the
Einstein–Hilbert action, in order to have well defined equations of motion. The full action reads

SGR[g] =

∫

R

dnx
√

det g R+

∫

Σ

dn−1x
√

det q k. (9)

Here g is the metric field, R is the Ricci scalar, n is the number of spacetime dimensions, while q is the
metric, and k the trace of the extrinsic curvature, induced by g on Σ. (For a discussion on different
choices of boundary terms in three-dimensional gravity, see [18]; here we are interested in variations
of the action at fixed value of the boundary metric.)

In general, the Hamilton function of a finite dimensional dynamical system is the value of the action
of a solution of the equations of motion, viewed as a function of the initial and final coordinates; the
general solution of the equations of motion can be obtained from the Hamilton function by simple
derivations [19]. In field theory, the Hamilton function can be defined as the value of the action of a
solution of the equations of motion, integrated on a finite region R, viewed as a function of value of
the field on the boundary Σ (see [1]). In general relativity, the Hamilton function S[q] is the value of
the action (9), computed on the solution gq of the equations of motion determined by the boundary
value q

S[q] = SGR[gq]. (10)

If gq is not unique, S[q] is multivalued. Notice that S[q] is independent from (local deformations of)
Σ, because of diffeomorphism invariance.

Since the bulk action vanishes on a vacuum solution of the equations of motion, the Hamilton
function of general relativity reads

S[q] =

∫

Σ

dn−1x
√

det q k[q]. (11)

where the extrinsic curvature k[q] is a nonlocal function, determined by the Ricci-flat metric gq

bounded by q.
In the following we consider only the three-dimensional riemannian case, where n = 3 and the

signature of g is [+ + +]. In this case, we must add an overall minus sign in (9) and (11), see for
instance the Appendix C of reference [17]. Furthermore, we consider the discretization of the theory
provided by a Regge triangulation [13]. Let i be the index labelling the links of the triangulation and
call li the length of the link i. In three dimensions, the bulk Regge action is

SRegge(li) = −
∑

i

li

(

2π −
∑

t

θi,t(l)

)

, (12)

where θi,t(l) is the dihedral angle of the tetrahedron t at the link i, and the angle in the parenthesis
is therefore the deficit angle at i. The boundary term is

Sboundary(li) = −
∑

boundary i

li

(

π −
∑

t

θi,t(l)

)

. (13)

Notice that the angle in the parenthesis is the angle formed by the boundary, which can be seen as a
discretization of the extrinsic curvature.
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We choose the minimalist triangulation formed by a single tetrahedron, and, furthermore, consider
only the case in which the tetrahedron is equilateral. Then there are no internal links, the Regge action
is the same as the Regge Hamilton function, and is given by

S(a, b, c) = −a ka(a, b, c) − b kb(a, b, c) − 4c kc(a, b, c). (14)

The expression for the dihedral angles as functions of the edges length, for a flat interior geometry, is
given in (2) and (6). Inserting these equations into (14) gives the Hamilton function

S(a, b, c) = a

(

2 arcsin
b√

4c2 − a2
− π

)

+ b

(

2 arcsin
a√

4c2 − b2
− π

)

+ 4c

(

arccos
ab√

4c2 − a2
√

4c2 − b2
− π

)

. (15)

2.2 The dynamical model and its physical meaning

The Hamilton function (15) defines a simple relativistic dynamical model. The model has three
variables, a, b and c. These are partial observables in the sense of [16]. That is, they include both the
independent (“time”) and the dependent (dynamical) variables, all treated on equal footing. (This
paper is self contained, but the general formalism and the interpretation of these general relativistic
systems is discussed in detail in [1].)

The equations of motion are obtained following the general algorithm of the relativistic Hamilton–
Jacobi theory [1]: define the momenta

pa(a, b, c) =
∂S(a, b, c)

∂a
, pb(a, b, c) =

∂S(a, b, c)

∂b
, pc(a, b, c) =

∂S(a, b, c)

∂c
, (16)

and equate them to constants

pa(a, b, c) = pa, pb(a, b, c) = pb, pc(a, b, c) = pc. (17)

These equations give the dynamics, namely the solution of the equations of motion. Explicitly, the
calculation of the momenta is simplified by the observation that the action is a homogeneous function
of degree one, hence

S(a, b, c) = a
∂S(a, b, c)

∂a
+ b

∂S(a, b, c)

∂b
+ c

∂S(a, b, c)

∂c
; (18)

this allows us to identify immediately

pa(a, b, c) = −ka(a, b, c), pb(a, b, c) = −kb(a, b, c), pc(a, b, c) = −4 kc(a, b, c). (19)

Inserting the explicit form (2) of the angles, we obtain the evolution equations

a =
√

4c2 − b2 cos
pb

2
,

b =
√

4c2 − a2 cos
pa

2
,

ab = −
√

(4c2 − a2)(4c2 − b2) cos
pc

4
, (20)

which reproduce (7). This result deserves various comments.

(i) We begin with a technical comment. Notice that the variation of the action with respect to
the lengths is completely determined by the variation of the first length factor in (13): the
variation of the length in the argument of the angles has no effect on the action. The fact that
this variation vanishes was already pointed out by Regge [13]. It is the discrete analog of the
well-known fact that in deriving the Einstein equations from the Einstein–Hilbert action we can
ignore the change of the Levi–Civita connection under a variation of the metric.
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(ii) Notice that boundary lengths a, b, c determine the intrinsic geometry of the boundary surface.
Their conjugate momenta pa, pb, pc, are determined by the dihedral angles and are given by
the external angles at the links. That is, they measure the extrinsic curvature of the boundary
surface. This is precisely as in the ADM hamiltonian framework [20], where the momentum
variable conjugate to the metric is the extrinsic curvature. Equation (19) is the discrete analog
of the ADM relation between momenta and extrinsic curvature.

(iii) The evolution equations (20) are not independent, as is always the case in relativistic systems (for
instance, out of the four equations of motion of a relativistic particle, only three are independent).
We can take the first two equations as the independent ones. They express relations between
the lengths and dihedral angles of the tetrahedron.

(iv) How are the evolution equations (20) related to the Einstein equations? They are essentially
equivalent. In three dimensions, the vacuum Einstein equations Rµν = 0, where Rµν is the Ricci
tensor, imply that the Riemann tensor vanishes, namely that spacetime is flat. This implies
that the tetrahedron is immersed in a flat 3d spacetime. But if spacetime is flat, the extrinsic
curvature of the boundary at the edge is exactly equal to π minus the dihedral angle. Hence
these equations express the flatness of spacetime, namely they have the same content as the
Einstein equations Rµν = 0. In other words, we have derived the relation (2) between length
and angles assuming a flat 3d space: viceversa, the fact that these relations are satisfied implies
that, in the approximation captured by the triangulation, 3d space is flat, namely the Einstein
equations hold.

(v) The physical interpretation of the model is as follows. We assume that we can measure the three
lengths a, b and c and the three external angles ka, kb and kc (these are six partial observables
in the sense of [16]). These are all local observations that can be made on the boundary surface.
They refer to the intrinsic as well as the extrinsic geometry of the surface itself. The classical
theory establishes relations between these measurable quantities. These relations are the physical
content of the theory and are given by the equations (20). They are equivalent to the statement
that spacetime is flat (to the given approximation).

(vi) The fact that the equations of motion are not independent is reflected in a relation between the
momenta. The relation is of course the one given by equation (8), that is

H(pa, pb, pc) = cos
pc

4
+ cos

pa

2
cos

pb

2
= 0. (21)

From this we can directly read out the Hamilton–Jacobi equation satisfied by S(a, b, c).

cos
1

4

∂S

∂c
+ cos

1

2

∂S

∂a
cos

1

2

∂S

∂b
= 0. (22)

The function H(pa, pb, pc) given in (21) is the relativistic hamiltonian [1], or hamiltonian con-
straint, of the system.

(vii) Finally, in the limit in which c≫ a, b, the action is given simply by

S(a, b, c) =
ab

c
− (a+ b+ 2c)π, (23)

and the evolution equations (20) become

a = c (pb + π), b = c (pa + π), ab = −c2 (pc + 2π). (24)
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3 Time evolution

In the description given so far, no reference to evolution in a preferred time variable was considered.
We now introduce it here. We decide to regard the direction of the axis of the equilateral tetrahedron
as a temporal direction. In particular, we decide to interpret b as an initial variable and a as a final
variable (b for before and a for after). The length c of the side links can then be regarded as a
(proper!) length measured in the temporal direction, namely as the physical time elapsed from the
measurement of a to the measurement of b. Indeed, had we considered a spacetime with signature
[+ +−], and assuming we had oriented the tetrahedron axis in a timelike direction, c would precisely

be the physical time measured by a real clock on the boundary of the spatial region considered, the
worldline of the clock running along one of the side edges.

To emphasize this interpretation of the variable c, in this section we change its name, renaming
c as T . The Hamilton function reads then S(a, b, T ) and can now be interpreted as the Hamilton
function that determines the evolution in T of a variable a. The variable b is interpreted as measured
at time T = 0 and the variable a at time T ; therefore b can be viewed as an integration constant for
the evolution of a in T . (Notice that b is not necessarily the same variable as a, namely T = 0 does
not imply a = b).

For comparison, recall that the Hamilton function of a free particle moving from a position b to a
position a in a time T is

Sfree particle(a, b, T ) =
m(a− b)2

2T
(25)

which completely describes the free particle dynamics: equations (17) give in fact

pa(a, b, T ) =
∂S(a, b, T )

∂a
= m

a− b

T
= pa, (26)

pb(a, b, T ) =
∂S(a, b, b)

∂a
= m

b− a

T
= pb, (27)

pc(a, b, T ) =
∂S(a, b, T )

∂T
= −m(a− b)2

2T 2
= pT , (28)

which can be readily recognized as the evolution equation for coordinate and momentum

a(T ) = a0 + V T, pa(T ) = mV, (29)

where a0 = b and V = −pb/m, and the relation between energy (E ≡ −pT ) and momentum

E = H(pb) =
p2

b

2m
, (30)

which defines the hamiltonian function H(pb).
Returning to our system, the hamiltonian that evolves the system in the time T , which we can

call “proper-time hamiltonian”, can obtained from the energy

E = −pT = −∂S(a, b, T )

∂T
= 4 π − 4 arccos

ab
√

(4T 2 − a2)(4T 2 − b2)
(31)

by using the equations of motion to express the initial position b as a function of the position a and
momentum pa. This gives

H(a, pa, T ) = 4 π − 4 arccos

(

a cos(pa/2)
√

4T 2 − (4T 2 − a2) cos2(pa/2)

)

(32)

Notice that the angle θc can vary between 0 and π/2, and therefore so does the arccos. Therefore the
energy can vary between 2π and 4π. The fact that the domain of the energy is bounded has important
consequences. For instance, we should expect time to become discrete in the quantum theory.
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a

b

T

Figure 2: For large T , at constant b and θb, we have θa → 0 and a ∼ T .

In this way, the relativistic background independent system can be reinterpreted as an evolution
system, where the “proper time” on the boundary of the region of interest is taken as the independent
time variable. The Hamilton equation generated by the hamiltonian for a(T ) and pa(T ) are:

da(T )

dT
=
∂H

∂pa
=

4aT

4T 2 sin2(pa/2) + a2 cos2(pa/2)
,

dpa(T )

dT
= −∂H

∂a
= − 4T sin(pa)

4T 2 sin2(pa/2) + a2 cos(pa/2)
. (33)

The solution of these equations is

a(T ) =
√

4T 2 − b2 cos
pb

2
,

pa(T ) = −2 arccos
b

√

4T 2 sin2(pb/2) + b2 cos2(pb/2)
, (34)

where b and pb are integration constants. These solutions are immediately recognized as the equations
(7). Therefore the dynamics generated by the hamiltonian is the same as the general relativistic
dynamics defined in a-temporal terms in the previous section.

It is interesting to consider the long time evolution of the system. In the large T limit we have the
behavior

a(T ) → const T, pa(T ) → const

T
− π, (35)

which is precisely (4), identifying the two integration constants with the initial data θa and a. There-
fore pa(T ) tends to −π as T increases. It is easy to understand this behavior geometrically. See Figure
2: at fixed values of the bottom length b and bottom angle θb = π + pb, as the side length T grows,
we have that the top angle θa = π + pa → 0 and a grows proportionally to T .

The energy is not constant (there is no reason for the energy to be constant) and tends to

E(T ) → 2π (36)

which is its minimal value. This result can also be obtained by considering the hamiltonian for large
T . Starting from (23), we obtain

H = −∂S(a, b, T )

∂T
=
ab

T 2
+ 2π =

a(π − pa)

T
+ 2π. (37)
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a
b

c

Figure 3: The flat tetrahedron: the bottom and top edges touch.

The equations of motion

da(T )

dT
=
∂H

∂pa
=
a

T
,

dpa(T )

dT
= −∂H

∂a
= −π + pa

T
, (38)

are solved by (35) and yield (36).

Notice that the convergence of the “velocity” to the attraction point pa → −π and the energy to
its minimal value, resembles a dissipative system, such as a point particle under a constant force in a
fluid.

3.1 Phase space and extremal configurations

Viewed as a dynamical system evolving in T , our system has a phase space coordinatized by a ∈ [0,∞[
and pa ∈ [0,−π]. The maximum value of the energy (32) on this phase space is Emin = 4π, which is
attained along the boundary pa = 0 of Γ. These are states with vanishing external angle at the top
edge. They are configuration in which the tetrahedron is “flattened”: its volume is zero, and the upper
and bottom edges touch. The value of a is arbitrary. See Figure 3. Notice that these configurations
evolve into one another. In fact, if pa = 0, (34) gives

a(T ) =
√

4T 2 − b2,

pa(T ) = 0. (39)

Therefore these states grow in T remaining flattened and with the the energy remaining constant in
T at the value E = 4π.

In all the other states, the energy changes with time. As T grows a generic state evolves towards
a state of the form

a = 2T cos
pb

2
,

pa = −π, (40)

with the energy converging to the value E = 2π. These states minimize the energy and form the
boundary pa = −π of Γ. We call these states “Minkowski vacuum states”, since they minimize the
energy. Notice that their definition depends on the choice of the time variables made.

Therefore the 2d phase space has two notable subsets: the line pa = 0 forms an independent sector
evolving into itself, given by the energy-maximizing states; while the line pa = −π is an attractor
for the rest of the phase space, and is formed by the energy-minimizing states that we have called
“Minkowski” states. See Figure 4

Notice that the variable T is bounded by |T | > b/2 from (34), therefore we cannot continue the
solution for arbitrarily small T . It is natural to introduce the time variable

t =
√

T 2 − b2/4, for T > b/2 (41)

which geometrically represents the height of the triangular face of the tetrahedron with base b, and
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a

a

a

a

b

b

b
c

c

c

pa

-π

0
0

Figure 4: The phase space of the system with some typical configurations. The “Minkowski” states
are the ones along the pa = −π boundary.

which arrives at zero. The evolution equations read then

a(T ) = 2t cos
pb

2
,

pa(T ) = −2 arccos
b

√

4t2 sin2(pb/2) + b2
. (42)

Notice that the equations of motions can be extended also for negative t and negative a and pa. It
is natural to interpret this as an evolution in which the tetrahedron crosses the point a = 0, pa = 0 in
which it has zero volume, and grows “on the other side”, overturned as a glove. See Figure 5. If we
consider this extension, we can take the phase space to be given by a ∈ R and pa ∈ [−π, π]. In the
following, we will not consider this extension.

a

a

b

c

0

0

t

<

>

Figure 5: The extension to negative a and negative t.
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Figure 6: The tetrahedrons T (continuous lines) and T ∗ (pointed lines).

4 Quantum theory

4.1 Kinematics

We begin by constructing the boundary Hilbert space K, on which the operators representing the
boundary (partial) observables are defined. Consider the triad formalism for three-dimensional eu-
clidean general relativity. The variables are a the triad ei

µ(x), µ = 1, 2, 3, i = 1, 2, 3 and its SO(3)

spin connection Ai
µ(x). The canonical boundary variables can be taken to be SO(3) connection

Ai
a(x) a = 1, 2 and the inverse densitized triad Ea

i (x) induced on the boundary surface. Let us then
discretize spacetime in terms of a single tetrahedron T .

Call fp, p = 1, 2, 3, 4, the faces of the tetrahedron, epq the oriented edge separating the face p from
the face q (say oriented rightward in going from p to q). To define the discrete dynamical variables,
consider the dual tetrahedron T ∗ defined by vertices vp in the face fp of T . The edges epq of T ∗

connect the vertex p to the vertex q; they are dual, and cut the corresponding edges epq of T . We
can discretize the boundary field Ai

a(x) by replacing it with six group elements Upq associated to the
six edges epq, interpreted as the parallel transport matrix of the connection along epq. As usual in
quantum gravity, we take Upq ∈ SU(2) (the classical theory is determined by the algebra, not the
group). We write Upq = U−1

qp . Gauge transformations act on the vertices vp; they are determined by
four group elements Vp and the group elements Upq transform as

Upq → VpUpqV
−1
q . (43)

The quantum theory can be defined starting from the Hilbert space K of the Haar-square-integrable
functions ψ(Upq) of the six dynamical variables Upq that are gauge-invariant under the transformations
(43), namely

ψ(Upq) = ψ(VpUpqV
−1
q ). (44)

These gauge transformations depend on four group elements, therefore K = L2[(SU(2))6/(SU(2))4]
where the action of (SU(2))4 on (SU(2))6 is the one given in (43). We use the notation U = (Upq)
for the 6-tuplet of group elements, and thus write states as ψ(U). Similarly, we indicate an 6-tuplet
of spins as j = (jpq). As well known (see for instance [1]), a basis in K is given by the spin-network
states

ψj(U) = 〈U|j〉 (45)

= Rj12
io (U12)R

j13
jp (U13)R

j14
kq (U14)R

j23
lr (U23)R

j24
ms(U24)R

j34
nt (U34) v

ijk volm vprn vqst,

where the Rj
kl are the matrix elements of the SU(2) representation j and vikl are the normalized

invariant tensors. The index structure of equation (45) is determined by the geometry of the tetrahe-
dron. The function ψj(U) is the spin-network function for a spin network having T ∗ as graph. (See
[1] for details.)
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The left invariant vector field on each group can be identified as the operator associated to the
triad field integrated along the edges of T . The integral of the SU(2)-norm of these gives the length
of the edge; therefore the Casimir operators Cpq of the (pq)-th group

Cpq |j〉 = jpq(jpq + 1) |j〉 (46)

can then be naturally identified as the operator giving the length square of the edge epq [21]. The tensor
structure of the algebra of the SU(2) representations implements the triangular relations satisfied by
the length. The spectrum of the length of the edges epq is therefore given by

lpq =
√

jpq(jpq + 1). (47)

The fact that the lengths have discrete spectrum is an immediate consequence of their conjugate
variables being angles, and thus vary on a compact domain. Following [1], we can interpret the
spectral properties of the partial observables as physical predictions of the quantum model.

4.2 Dynamics

The quantum dynamics is completely captured by the propagator [6]. In a general relativistic theory,
the propagator is formally expressed as the function of the boundary variables given by (1). Recall,
however, that in general the propagator is not a function of classical boundary variables; the reason is
that the boundary quantities may fail to have continuous spectrum. If they have discrete spectrum,
the propagator depends on the quantum numbers that label the discrete eigenvectors of the boundary
quantities, and not on the corresponding continuous classical variables [1]. In our case, the propagator
can be written in the basis (45), where it will be a function W (jpq).

To find this function, recall that the classical dynamics requires three-dimensional space to be flat.
This means that any parallel transport along a three-dimensional closed path must be trivial. Consider
the four “elementary” closed paths γp on T ∗, where γ4 is defined by the sequence of edges e12e23e31,
that circle the vertex opposite to the face f4, and so on. The flatness requirement is expressed by the
parallel transport around each of these paths being trivial

U12U23U31 = 1, (48)

and similarly for the other three. Therefore we can write the 3d flatness requirement (the Einstein
equations) in the form

(UpqUqrUrp − 1) = 0 (49)

where p 6= q 6= r. We then write the main dynamical equation of the quantum theory in the form

(UpqUqrUrp − 1) ψ0(U) = 0, (50)

which can be interpreted as a Wheeler-D toeWitt equation. Its general solution is

ψ0(U) = f(U)
∏

pqr

δ(UpqUqrUrp), (51)

where the delta function is the one on the group (for the Haar measure) and f(U) is an arbitrary
gauge invariant function. This equation defines the physical states ψ0 that solve the dynamics of the
theory. To express these states in the j basis, we simply project them on the basis states (45)

ψ0(j) =

∫

dU ψ̄j(U) f(U)
∏

pqr

δ(UpqUqrUrp). (52)
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It is easy to see that by gauge invariance, we can gauge fix all Upq to unity in the integral, giving

ψ0(j) =

∫

dU ψ̄j(U) f(U)
∏

pq

δ(Upq)

= c ψj(1)

= c δioδjpδkqδlrδmsδnt v
ijk volm vprn vqst. (53)

The constant c = f(1) can be absorbed in the normalization. The last line is the definition of the
Wigner 6-j symbol, usually written as

ψ0(j) =

(

j12 j13 j14
j34 j24 j23

)

≡ 〈j|0〉. (54)

Thus, we conclude that there is a single state |0〉 (up to normalization) in K that solves the dynamics,
and that this state is proportional to the Wigner 6-j symbol.

The physical amplitude of an arbitrary kinematical state ψ ∈ H is determined by its projection
on the state that solve the dynamical equation, namely by its projection on the state |0〉

A(ψ) = 〈0|ψ〉. (55)

The state |0〉 is called the “non-perturbative” vacuum state [1]. It expresses the dynamics of the theory.
In other words, the physical amplitude for having the boundary configuration jpq is the Wigner 6-j
symbol. Namely the propagator of the theory is Wigner 6-j symbol

W (j) ≡ 〈j|0〉 =

(

j12 j13 j14
j34 j24 j23

)

. (56)

Now, this is precisely the result obtained by Ponzano and Regge on the basis of a physical ansatz
on the discretization of the lengths, and a discretization of the Einstein-Hilbert action [22] ! (In our
minimalist model, the functional integral (1) is trivial because there are no bulk degrees of freedom.
Its result is therefore proportional to the exponential of the action. Ponzano and Regge found that the
Wigner 6-j symbol (56) can in fact be viewed as a discretization of (the real part) of the exponential of
the action.) The result is also equivalent (up to a phase) to the specialization to a single tetrahedron
of the boundary amplitude computed in [14] and in [18]. In the present case, the discretization of the
length is not introduced as an ansatz, but it is a standard quantum-mechanical consequence of the
conjugate variable being an angle.

4.3 Quantum equilateral tetrahedron

So far, we have considered an arbitrary quantum tetrahedron. We now specialize the formalism to
the case of an equilateral tetrahedron. The simplest way to do so is to restrict our attention to the
states where four of the six edge lengths are equal. More precisely, we put

ja ≡ j13,

jb ≡ j24,

jc ≡ j12 = j23 = j34 = j41 (57)

and we consider only the states

|ja, jb, jc〉 = |jc, ja, jc, jc, jb, jc〉. (58)
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Accordingly, we we restrict the states ψ(Upq) to the subset of (SU(2))6 determined by U12 = U23 =
U34 = U41. We write

Ua ≡ U13,

Ub ≡ U24,

Uc ≡ U12 = U23 = U34 = U41. (59)

The gauge transformations that preserve the resulting subspace are the ones for which

V1 = V3 ≡ Va,

V2 = V4 ≡ Vb, (60)

under which the states ψ(Ua, Ub, Uc) transform as

ψ(Ua, Ub, Uc) → ψ(VaUaV
−1
a , VbUbV

−1
b , VaUcV

−1
b ). (61)

Using these gauge transformations, we can transform Ua, Ub, Uc to three rotation around three orthog-
onal axis, of three angles ka, kb, kc. The interpretation of these angles is simple. Since spacetime is flat,
we can choose the gauge in which the internal space is directly identified with flat spacetime. Then
the rotation along the edge epq of T ∗ can be identified as the physical rotations that one undergoes in
crossing the edge epq of T . These are precisely the external angles that were denoted ka, kb, kc in the
previous section. For an SU(2) matrix, Tr(U) = 2 cos(φ/2), where φ is the rotation angle. Therefore
we can consider the operator

Ta ≡ Tr(Ua) = 2 cos(ka/2) = 2 cos(pa/2), (62)

which is now gauge invariant. The action of this operators is easily obtained from SU(2) representation
theory:

Ta |ja, jb, jc〉 = |ja + 1/2, jb, jc〉 + |ja − 1/2, jb, jc〉, (63)

and similarly for the other edges. In the next section we will show that the commutator between this
operator and the length reproduces the classical Poisson brackets.

In summary, the boundary Hilbert state K is spanned by the states |ja, jb, jc〉. The boundary
observables a, b, c, pa, pb, pc that measure the length of the edges of the tetrahedron and the external
angles are represented by Casimir and trace operators, and the dynamics is given by the propagator

W (ja, jb, jc) =

(

ja jc jc
jb jc jc

)

, (64)

which expresses the probability amplitude of measuring the lengths determined by ja, jb, jc. This
concludes the definition of the quantum theory. The predictions of the theory are given by the
quantization of the lengths and by the relative probability amplitude (64).

5 Time evolution in the quantum theory

So far, we have viewed our system as a general relativistic system, in which predictions are expressed
in terms of (probabilistic) relations between boundary partial observables, or probability amplitudes
for boundary configurations. We now reinterpret the system as a system evolving in a time variable, as
we did in the classical case. Thus, we see, say b and pb as initial variables, a and pa as final variables,
and jc at a time parameter. We must identify the Hilbert space of the system at fixed time.

Let us focus on the final state. This is described by the operators Ca and Ta that act on the
variable Ua. The boundary Hilbert state K, spanned by the states |ja, jb, jc〉, can be decomposed as (a
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subspace, because of the Clebsch–Gordan relations of) the tensor product of three spaces Ka,Kb,Kc

spanned by states |ja〉, |jb〉, |jc〉 respectively. Let us focus on Ka, which can be interpreted as the state
space at fixed time.

Ka can be simply expressed as the space of the class functions ψ(Ua), that is, the functions
satisfying

ψ(Ua) = ψ(VaUaV
−1
a ). (65)

The basis |ja〉 is defined by the characters

〈Ua|ja〉 = χja
(Ua) =

sin((ja + 1/2)Ua)

sin(Ua/2)
. (66)

The Casimir and trace operators act as

Ca|ja〉 = ja(ja + 1)|ja〉 (67)

Ta|ja〉 = |ja + 1/2〉+ |ja − 1/2〉, (68)

where the second relation is easily derived from the properties of the characters. It is convenient to
define also the operator

Sa|ja〉 = i(|ja + 1/2〉 − |ja − 1/2〉). (69)

that satisfies T 2
a + S2

a = 4, and is therefore a function of Ta

Sa =
√

4 − T 2
a . (70)

Since we have identified Ta with 2 cos(pa/2), it follows that we must identify Sa with 2 sin(pa/2). The
classical Poisson brackets

{a, pa} = 1 (71)

gives, for Ta = 2 cos(pa/2),

{a, Ta} = sin(pa/2) = 1/2
√

4 − T 2
a (72)

Consider the operator Ja defined by Ca = Ja(Ja + 1) and acting as

Ja |ja〉 = ja |ja〉. (73)

A straightforward calculation gives

[Ja, Ta] = i/2Sa = i/2
√

4 − T 2
a . (74)

Therefore we see that the operators Ja and Ta define a linear representation of the classical Poisson
algebra defined by the observables a and 2 cos(pa/2). We have then two options. The first is to identify
the classical quantity a with the operator Ja. The second is to identify a with the square root of the
Casimir. Both choices give the correct classical limit, since they become the same in the limit of large
quantum numbers. The first gives a quantum theory in which the length is quantized in half-integers
ja; the second gives a quantum theory in which the length is quantized as

√

ja(ja + 1). We identify
the second choice with the quantization defined in the previous section.

A discrete time evolution is determined by the propagator (64), seen as a propagator from the
state |jb〉 to the state |ja〉 in a (discrete) time jc.

Recall that in the classical theory the long time evolution drives the system to the “Minkowski”
configurations where pa = −π. Let us study the quantum evolution for long times. For jc → ∞ we
have [13]

W (ja, jb, jc) =

(

ja jc jc
jb jc jc

)

→ (−1)−(ja+jb+2jc)

2jc
. (75)

15



This can be written as

W (ja, jb, T ) →T→∞
(−1)−(ja+jb+2T )

2T
=
e−2π(iT )

2T
e−ijbπ e−ijaπ =

e−iE0T

2T
ψ0(ja)ψ0(jb). (76)

That is, for large T evolution projects on the (generalized) state

ψ0(ja) ≡ 〈ja|0M 〉 = e−ijaπ. (77)

It is easy to see that this is the generalized eigenstate of pa with eigenvalue −π (since pa itself is not
an operator in the theory, by this we mean, of course, a generalized eigenstate of Ta = 2 cos(pa/2)
with eigenvalue 2 cos(−π/2) = 0):

2 cos(pa/2)ψ0(ja) = Tae
−ijaπ = e−i(ja+1/2)π + e−i(ja−1/2)π

= e−ijaπ(e+iπ/2 + e−iπ/2) = 2 cos(−π/2)ψ0(ja). (78)

Therefore we have shown that the quantum dynamics converges to the classical dynamics on long
times. It is appropriate to call |0M 〉 the “Minkowski” quantum state, since it minimizes the energy.

We have shown that the nonperturbative vacuum state |0〉 in K become a projector on |0M 〉 in the
T → ∞ limit. We can therefore write the suggestive expression

lim
jc→∞

|0〉 = |0M 〉〈0M |. (79)

The bra/ket mismatch is only apparent: the l.h.s is a ket in K, while the r.h.s. is an element of the
tensor product between Ka and its dual, which can be identified with a subspace of K under

|ja〉〈jb| ↔ |ja, jb, jc〉. (80)

See [5] and [1] for details. Equation (79) is the expression proposed in [5] for computing the Minkowski
vacuum state for spinfoam transition amplitudes. We see that in the present case this equation is
correct. Notice, however, that in this euclidean context the limit is taken for real times.

Alternatively, we can study the continuous time evolution determined by quantizing the classical
hamiltonian (32). Notice that (32) can be easily written in terms of the operators that we have defined

H(a, pa, T ) = 4π − 4 arccos

(

√

Ca
1

√

4T 2 − (4T 2 − Ca) (Ta/2)2
(Ta/2)

)

. (81)

Choosing this ordering (where the inverse and the arccos are defined by spectral decomposition) we
have immediately that the eigenstate of the pa with eigenvalues −π is an eigenstates of the hamiltonian,
with energy 2π, in accord with the corresponding classical result. The precise relation between the
discrete time evolution defined by the propagator W (ja, jb, jc) and the continuum time evolution
defined by the Hamiltonian will be studied elsewhere.

6 Conclusion

The model we have considered is obviously extremely simple, and we cannot derive general conclusions
from its analysis. However, we think that the structure illustrated by this model does illustrate how a
general covariant quantum field theory can be interpreted. Observables can be defined on a closed finite
boundary. The classical dynamics can be expressed as a set of relations between these observables.
In the model considered here, these are given in (20). The quantum theory can be defined in terms
of a boundary Hilbert space K, on which operators representing boundary observables are defined.
The boundary observables are partial observables: they represent quantities whose measurements can
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be operationally defined in principle, but whose value cannot be predicted from the knowledge of the
state, in general [16]. The spectral properties of these boundary operators are physical kinematical
predictions of the theory. Dynamical predictions do not refer to values of partial observables, but
rather to relations between these values. The quantum dynamics is captured by the nonperturbative
vacuum state |0〉, or, equivalently, by the propagator (64), which is the expression of |0〉 on a basis
that diagonalizes boundary observables: W (ja, jb, jc) = 〈ja, jb, jc|0〉. This state assigns a probability
amplitude to any ensemble of boundary measurements.

A temporal interpretation of the model is not necessary, but it is possible [23]. By interpreting the
“side” length c as a time variable, the propagator W (ja, jb, jc) can be interpreted as the transition
probability amplitude from the initial state |jb〉 to the final state |ja〉 in a discrete time jc. The energy
that drives this evolution has minimum value on a state (that we have denote the “Minkowski” state)
that can be obtained from the propagator: the propagator becomes proportional to a projector on
this state in the large time limit.

The reader might wonder if this structure is tied to the fact that the theory we have considered
here is topological. We do not think that this is the case. The fact that the theory is topological is
only at the origin of the great simplicity that we have found in computing all features of the model
explicitly. In particular, we have found no need of computing the functional integral (1) explicitly.

The model has some notable specific features. For instance, energy is bounded from below as well
as a from above. This fact was first noticed in 3d quantum gravity by ‘t Hooft [24]. The consequence
is that the proper time T itself is quantized, as in loop quantum cosmology [25].

We think that this simple model illustrates how quantum field theory can be defined and con-
sistently interpreted in the absence of a background spacetime. In particular, the formalism and its
interpretation are well-defined without the need of selecting a time variable. The relation with an
approximate notion of time evolution is also illustrated by this model. The application of these ideas
to full quantum general relativity in four dimensions is of course nontrivial, but this simple example
indicates rather clearly a direction for defining observables and obtaining predictions in the general
context.

———
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