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BLOW-UP SURFACES

FOR

NONLINEAR WAVE EQUATIONS, II1

Satyanad Kichenassamy and Walter Littman

School of Mathematics

University of Minnesota

Minneapolis, MN 55455-0487

Abstract

In this second part, we prove that the equation 2u = eu has solu-

tions blowing up near a point of any analytic, space-like hypersurface in

Rn, without any additional condition; if (φ(x, t) = 0) is the equation of

the surface, u− ln(2/φ2) is not necessarily analytic, and generally con-

tains logarithmic terms. We then construct singular solutions of general

semilinear equations which blow-up on a non-characteristic surface, pro-

vided that the first term of an expansion of such solutions can be found.

We finally list a few other simple nonlinear evolution equations to which

our methods apply; in particular, formal solutions of soliton equations

given by a number of authors can be shown to be convergent by this

procedure.

1Communications in Partial Differential Equations 18 (11) 1869–1899 (1993)
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1. Introduction.

We proved in part I of this paper that

2u = eu, (1)

where 2 denotes the d’Alembertian in n space dimensions, has a singular

solution of the form

u(x, t) = ln(2/φ2) + v(x, t) (2)

(x ∈ Rn, t ∈ R, (x, t) close to (x0, t0)) where v has a holomorphic extension

to a complex neighborhood of (x0, t0), φ(x, t) = t − ψ(x) with ψ analytic,

and φ(x0, t0) = 0, if and only if the blow-up surface Σ defined by t = ψ(x)

is space-like and has zero scalar curvature for the metric induced on Σ by its

embedding into Minkowski space. The strategy was to show that if we define

w by

w(x, t) = [u− ln(2/φ2)− u0(x)− u1(x)φ(x, t)]/φ(x, t)2, (3)

with a suitable choice of u0 and u1, then w solves an equation of Fuchsian type;

it was then proved that the initial-value problem for this equation, where the

restriction of w to Σ is a prescribed holomorphic function, has a local analytic

solution if and only if Σ is space-like and the curvature condition on Σ is

satisfied; the solution is then unique. This procedure yields infinitely many

solutions blowing up on Σ, depending on the choice of one arbitrary function

on the surface.

We also recall that one consequence of this result is the continuation of the

solutions of (1) of the form (2) beyond their blow-up surface. Indeed, if we

agree on a continuation of the singular part ln(2/φ2), there is no choice for the

continuation of u, since its “regular part” v is analytic.2 It seems convenient

2There are two natural ways of continuing the function ln(2/t2)for t < 0: either by the

same expression, which still makes sense and is real, or by ln 2− 2 ln |t| ± 2kπi, k a non-zero

integer.
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to assume that the equation holds in a generalized sense, which, however, is

not the ordinary weak formulation, which does not apply directly.

In this second part, we obtain the following results:

1. We construct singular solutions for (1) near any blow-up surface which

is merely assumed to be space-like and analytic. The representation (2)

is replaced by

u(x, t) = ln(2/φ2) + v(x, t, φ lnφ), (4)

where v is analytic in all its (n+ 2) arguments (§§2 and 3).

2. We prove in §6 that semi-linear systems for which the leading term of the

expansion of a singular solution can be found, can be reduced to “gen-

eralized Fuchsian equations,” introduced in §4, for which an existence

theorem is given in §5.

3. We also prove in §6 that our procedure applies to any equation of the

form

2u = P (u),

where P is a polynomial, and briefly describe the results for more gen-

eral nonlinearities. We apply the procedure to soliton equations, and

obtain the convergence of the formal solutions generated by the method

of Weiss, Tabor, and Carnevale (WTC), as announced in part I.

The reader is referred to part I and to the references in §6 for the notation

and a discussion of the literature.
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2. Logarithmic expansions.

Sections 2 and 3 are devoted to the proof of the following result.

Theorem 1 Let Σ be an analytic, space-like, hypersurface in Minkowski space.

Fix a point (x0, t0) ∈ Σ. Then (1) has infinitely many solutions, depending on

the choice of one arbitrary holomorphic function on Σ, defined near (x0, t0)

and blowing up precisely on Σ. These solutions have the form

u(x, t) = ln(2/φ2) + v(x, t, φ lnφ),

where v is analytic in all its (n + 2) arguments, and φ = 0 is an equation for

Σ, with ∇φ 6= 0.

We reduce in this section Eq. (1) to the form (8) (see below), for which we

solve the initial-value problem in §3. We may assume φ = t− ψ(x).

Recall from Part I that if we define w by (3) off Σ, and v0, v1 by

v0 = ln(1− |Dψ|2)

and

v1 = − ∆ψ

(1− |Dψ|2)
,

then w solves:

T 2
{
(1− |Dψ|2)wTT −∆′w + 2ψiδi′

i wTi′ + (∆ψ)wT

}
+ T

{
4(1− |Dψ|2)wT + 4ψiδi′

i wi′ + 2w∆ψ −∆v1

}
+ {2(1− |Dψ|2)w + v1∆ψ + 2ψi∂iv1 −∆v0}

− 2

T
∆ψ +

2

T 2
(1− |Dψ|2)

=
2

T 2
ev0

{
1 + T (v1 + Tw) +

1

2
T 2(v1 + Tw)2

+ 1
2
T 3(v1 + Tw)3

∫ 1
0 (1− σ)2 exp[σT (v1 + Tw)] dσ

}

(5)

where T = t− ψ(x) and X i = xi for 1 ≤ i ≤ n.
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In fact, the choice of v0 and v1 above makes the terms in T−1 and T−2 in

(5) vanish, and also causes the two linear terms in w to cancel each other.

As in the first Part, we use the summation convention on repeated indices

one of which is in the upper position and the other in the lower position. Thus,

there is summation in aibi but not in aibi. More generally, all indices are raised

and lowered using the Kronecker delta. We let ψi = ∂iψ, ψij = ∂ijψ . . ., and

ψi = δikψk, ψ
ij = δikδjlψkl . . . In particular,

∑
1≤i≤n(ψi)

2 = ψiψi. We denote

by ∆′ the Laplacian in the X i variables.

Let us set

Y = T lnT,

and

w(T,X) = λ(X) lnT + f(T, Y,X),

where

λ(X) = −2

3
R(x)(1− |Dψ|2)−1,

R is the scalar curvature of Σ, given in terms of ψ in the Appendix of [3], and

f is a new unknown.

We have, since ∂TY = (1 + lnT ),

Tw(T,X) = λY + Tf(T, Y,X),

T∂Tw = λ(X) + TfT + T (1 + lnT )fY

= λ(X) +Nf,

where

N = (T∂T + (T + Y )∂Y ).

Equation (5) for w becomes

(1− |Dψ|2)(N(N + 3)f + 3λ) +

T
[
(∆ψ)(λ+Nf) + 2ψiδi′

i ∂i′(λ+Nf)− Y∆λ− T∆′f
]
+
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+ 4ψiδi′

i ∂i′(λY + Tf) + 2(∆ψ)(λY + Tf)

− T∆v1 + v1∆ψ + 2ψi∂iv1 −∆v0 (6)

= (1− |Dψ|2){(v1 + λY + Tf)2

+ T (v1 + λY + Tf)2
∫ 1

0
(1− σ)2 exp(Tσ(v1 + λY + Tf)) dσ}.

Observe that only Y occurs in this equation, not lnT . We also note that

if we let T = 0, we find, using the calculation of the constant term in Part I,

that one must have

3λ(1− |Dψ|2) + 2R(x) = 0. (7)

This justifies our choice of λ. With this choice, all terms except the first on

the l.h.s. have either T or Y as a factor.

Eq. (6) is readily converted into a first-order system: let

z1 = f ;

z2 = Nf ;

z2+i = T∂i′f (1 ≤ i′ ≤ n),

where ∂i′ = ∂Xi . Thus, z2 = z3 = · · · = 0 for T = Y = 0.

We find

(1− |Dψ|2)(Nz2 + 3z2) = −T{∆ψ(λ+ z2) + 2ψiδi′

i ∂i′z2

− δii′∂i′(z2+i)}+O(T ) +O(Y );

Nz2+i = (T∂T + (T + Y )∂Y )T∂i′f

= T∂i′(Nf) + T∂i′f

= T∂i′(z2 + z1).

This system has the general form

Nz + Az = Th1(T, Y,X, z,DXz) + Y h2(T, Y,X, z,DXz), (8)
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where A is a constant matrix; in our case, A has eigenvalues 3 and 0, with

respective multiplicities 1 and n+ 1.

Remark. The preceding considerations also apply to the problem

2u = a1e
u +

∑
j≥0

a−j(x)e
−ju. (9)

where a1(x) is bounded away from zero. Indeed, ũ := u+ ln(a1) solves then a

similar equation with coefficients ãj given by

ã1 = 1,

ã0 = a0 + 2 ln(a1),

and for j ≥ 1,

ã−j = aj
1a−j.

Performing the reduction of this paragraph with

λ = −2

3

(
R− 1

2
[a0 + 2 ln(a1)]

)
(1− |Dψ|2)−1 (10)

leads again to an equation of the form (8). The analysis applies also if terms

of the form exp {−(j − 1/2)u} with j ≥ 0 are allowed in the nonlinearity, with

minor modifications; this form includes in particular the Mikhailov-Fordy-

Gibbons-Dodd-Bullough equation. More general fractional exponentials could

presumably be handled by the techniques of §§4 and 6, if desired.

3. Solution of system (8).

We prove in this section that (8) has one solution if z(0, 0, X) is prescribed.

The relation between z and f implies that the solution we seek must also

satisfy z2+i = z2 = 0 for T = Y = 0; there is therefore only one arbitrary

scalar function, viz. z1(0, 0, X), in the data.
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This will complete the proof of Theorem 1.

The argument is very similar in spirit to that of Part I, and we refer to it

for references; the details are however somewhat different, as we will see. We

therefore have included a complete proof.

Let us therefore consider the problem (N + A)z = f(T, Y,X, z,Dz)

z(0, 0, X) = z0(X) ∈ Ker(A),
(11)

where D = DX and f ≡ 0 for T = Y = 0. The unknown has m components.

Replacing z by z− z(0, 0, X), we see that, since here Az(0, 0, X) = 0, we may

assume

z(0, 0, X) = 0.

This means that the solution of (11) depends on the choice of one function,

which has been incorporated into the right-hand side. Also, one may, by

introducing new dependent variables, assume, as we will, that f is linear in

Dz.

We define

F [z] := f(T, Y,X, z,Dz).

The argument is in five steps.

Step 1. We first observe that (N + A) z(T, Y ) = k(T, Y );

z(0, 0) = 0,
(12)

where k is analytic, independent of X, and vanishes for T = Y = 0 has a

unique analytic solution, given by

z(T, Y ) = H[k] :=
∫ 1

0
σA−1k(σT, σ(T lnσ + Y )) dσ. (13)

Indeed, let

g(σ) = z(σT, σ(T lnσ + Y ))
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for 0 < σ < 1. We find

d

dσ
(σAg(σ)) = σA−1k(σT, σ(T lnσ + Y )),

and since g(σ) must tend to zero as σ goes to zero, while σA remains bounded,

we have

σAg(σ) =
∫ σ

0
τA−1k(τT, τ(T ln τ + Y )) dτ,

Since k vanishes at the origin, the contribution from k to the integral is O(τ 1−ε)

for any ε > 0, and the integral converges.

Equation (13) follows by letting σ = 1 in the last equation. One checks di-

rectly, using the Cauchy-Riemann equations, that this does provide an analytic

solution to the problem.

Eq. (11) can therefore be rewritten as the integral equation z = H[F [z]].

We let instead u = F [z], and consider

u = G[u] := F [H[u]], (14)

which will be solved by a fixed point argument. The desired solution will then

be given by z = H[u].

Step 2. We define two norms. Assume f is analytic for X ∈ Cn and

d(X,Ω) < 2s0 and u ∈ Cm with |u| < 2R, for some positive constants s0 and

R, where Ω is a bounded open neighborhood of 0.

For any function u = u(X) we define the s-norm

‖u‖s := sup{|u(X)| : d(x,Ω) < s}. (15)

For any function u = u(T, Y,X), and a a sufficiently small positive number,

to be chosen later, we define the a-norm

|u|a := sup
δ0(T, Y ) < a(s0 − s)

0 ≤ s < s0

{
δ−1
0 ‖u‖s(T, Y )(s0 − s)

√
1− δ0

a(s0 − s)

}
, (16)

9



where δ0 = δ0(T, Y ) := |T |+θ|Y |, and 0 < θ < 1 is fixed. We wrote ‖u‖s(T, Y )

for the s-norm of u(., T, Y ).

We also let δ(σ) = δ0σ(1− θ lnσ). The main properties of δ(σ) are

1. δ(σ) increases strictly from 0 to δ0,

2. δ0(σT, σ(Y + T lnσ)) ≤ δ(σ) if 0 < σ < 1,

3. dδ(σ)/dσ ≥ δ(σ)/(C0σ). One can take C0 = 1− θ.

It follows in particular that if |u|a <∞,

‖u‖s(σT, σ(T lnσ + Y )) ≤ δ(σ)|u|a
s0 − s

(
1− δ(σ)

a(s0 − s)

)−1/2

.

This is how the a-norm comes into the argument.

Step 3. We prove that one can estimate the s-norm of Hu in terms of the

a-norm of u. From the definitions of our various norms, it follows that

‖Hu‖s(T, Y ) ≤ |u|a
s0 − s

∫ 1

0
|σA|δ(σ)

σ

{
1− δ(σ)

a(s0 − s)

}−1/2

dσ (17)

if δ0 < a(s0 − s). We estimate σA by a constant C1. Let us define

ρ =
δ(σ)

a(s0 − s)

so that, by property 3. above,

dσ

dρ
≤ C0

σ

δ(σ)
a(s0 − s).

It follows that

‖Hu‖s(T, Y ) ≤ |u|a
s0 − s

∫ 1

0
C0C1

a(s0 − s) dρ√
1− ρ

= 2C0C1a|u|a,

or

‖Hu‖s(T, Y ) ≤ C2a|u|a. (18)
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Step 4. Next, we observe that, since we have taken f to be linear in the

spatial derivatives, Cauchy’s inequality gives

‖F [u]− F [v]‖s′(T, Y ) ≤ C3δ0(T, Y )

s− s′
‖u− v‖s (19)

for 0 < s′ < s < s0, if ‖u‖s ≤ R and ‖v‖s ≤ R. We should of course also

require s′ < s0 − δ0/a if we wish to use the a-norm.

Step 5. Let us now assume |u|a, |v|a < R/(2C2a). Let G[u] = F [Hu]. We

prove that

|G[u]−G[v]|a ≤ C4a|u− v|a (20)

for some constant C4.

To this end, let σj = j/n, for 0 ≤ j ≤ n, and

wj =
∫ σj

0
σA−1u(σT, σ(T lnσ + Y )) dσ −

∫ 1

σj

σA−1v(σT, σ(T lnσ + Y )) dσ,

and observe that

G[u]−G[v] =
n∑

j=1

F [wj]− F [wj−1]. (21)

One checks, using the argument of Step 3, that ‖wj‖s ≤ R for δ0(T, Y ) <

a(s0 − s), so that F [wj] is indeed defined.

We can now use (19): if sj ∈ (s, s0 − δ0(T, Y )/a) for every j, we find from

Step 4 that

‖F [wj]− F [wj−1]‖s ≤
C3δ0
sj − s

‖wj − wj−1‖sj
.

On the other hand,

‖wj − wj−1‖sj
≤
∫ σj

σj−1

|σA−1| ‖u− v‖sj
(σT, σ(T lnσ + Y )) dσ.

This suggests the choice:

sj = min{s(σ) : σj−1 ≤ σ ≤ σj},

where

s(σ) =
1

2

[
s+ s0 −

δ(σ)

a

]
.
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Observe next that
∑

j sjχ[σj−1,σj) → s(σ) as j tends to infinity, uniformly and

from below on (0, 1), if δ0(T, Y ) < a(s0 − s). Furthermore, if σj−1 ≤ σ ≤ σj,

‖u− v‖sj
(σT, σ(T lnσ + Y )) ≤ ‖u− v‖s(σ)(σT, σ(T lnσ + Y ))

≤ δ(σ)|u− v|a
s0 − s(σ)

(
1− δ(σ)

a(s0 − s(σ))

)−1/2

.

We therefore find, since |σA−1| ≤ C1/σ, letting j →∞,

‖G[u]−G[v]‖s(T, Y )

≤ C3δ0

∫ 1

0

δ(σ)|u− v|a
(s(σ)− s)(s0 − s(σ))

(
1− δ(σ)

a(s0 − s(σ))

)−1/2

C1
dσ

σ
.

Since

s(σ)− s =
s0 − s

2
(1− δ(σ)

a(s0 − s)
)

and

s0 − s(σ) =
s0 − s

2
(1 +

δ(σ)

a(s0 − s)
)

we let again ρ = δ(σ)/[a(s0 − s)]. As σ varies from 0 to 1, ρ varies from 0 to

δ0/[a(s0 − s)] (which is always less than 1); note also that

1− δ(σ)

a(s0 − s(σ))
=

1− ρ

1 + ρ
.

Performing this change of variables, we find, using dσ/dρ ≤ C0σ/ρ,

‖G[u]−G[v]‖s(T, Y )

≤ C1C3δ0

∫ δ0/[a(s0−s)]

0
C0δ(σ)

4|u− v|a
(s0 − s)2

(1− ρ2)−1

√
1 + ρ

1− ρ

a(s0 − s) dρ

δ(σ)

= 4a(s0 − s)−1C0C1C3δ0|u− v|a
∫ δ0/[a(s0−s)]

0
dρ/(1− ρ)3/2

= C4δ0a(s0 − s)−1|u− v|a
(

1− δ0
a(s0 − s)

)−1/2

.

Therefore

|G[u]−G[v]|a ≤ C4a|u− v|a,

QED.
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End of proof. Let us define u0 = 0 and u1 = G[u0]. There is a constant

R0 such that

‖u1‖s0 ≤ R0δ0(T, Y )

if |T |+ θ|Y | = δ0. Assume a is chosen so small that

C4a < 1/2 and R0s0 < R/(4C2a).

This ensures in particular |u1|a ≤ R0s0 < R/(4C2a). The mapping G is now a

contraction in the a-norm on the set {|u|a ≤ R/(2C2a)}. The existence (and

uniqueness) of the desired solution now follow from the contraction mapping

principle.

This ends the proof of Theorem 1.

4. General logarithmic expansions.

The above reduction procedure can be applied in principle to equations

and systems that are much more general than (1); examples are given in §6.

However, in order to treat them, we need a few facts applicable to general

classes of equations. Such results are obtained in the present section.

All functions are analytic in their arguments unless otherwise specified.

We consider a system of the form

tut + Au = tf(t, x, u,Du) (22)

where u and f are vector-valued, with m components, and are analytic near

(t, x, u,Du) = (0, 0, 0, 0). We do not require f to be linear in Du. The

matrix A is constant, which is sufficient for most applications. The case when

P (x)−1AP (x) is constant for a suitable matrix P can of course also be handled,

after redefining the unknown.
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Our result is the following.

Theorem 2 There is an integer l ≥ 0 and a formal solution u of (22) in

increasing powers of t, t ln t, . . . , t(ln t)l, with coefficients analytic in x near

the origin. There are infinitely many such solutions if and only if −p is an

eigenvalue of A for some nonnegative integer p. These solutions depend on

the choice of finitely many arbitrary functions of x.

Remark 1. If we require that no logarithms, or only a specified number of

them, should occur in the solution, the arbitrary functions and the right-hand

side f must satisfy certain conditions. This is precisely how the curvature

condition for (1) arises. It may be appropriate to view such conditions as

smoothness assumptions on the regular part of the solution.

Remark 2. As we show on the examples of §6, one can in practice be

much more specific about the conditions and arbitrary functions involved,

although this is often at the expense of very lengthy calculations. Nevertheless,

this theorem, combined with the arguments of §6, enables one to check the

existence of a formal solution without constructing it. The convergence of such

formal solutions is dealt with in §5.

Remark 3. A very conservative estimate of the number l of logarithms

one needs to introduce is obtained as follows: Let l−1 = 0, l0 = m, and

lj+1 = lj(lj + 1) for j ≥ 0. Then, if all the eigenvalues of A have real parts

≥ −P , with P ∈ N, we may take l = lP−1. Note that one can often take a

much smaller value for l; thus, l = 0 is enough if no nonpositive integer is an

eigenvalue of A. It may even happen that l = 0 be permissible even if such

integers are eigenvalues; this is the case when an analogue of the curvature

condition holds (see Rem. 1).

Proof: After a linear change on the u’s, we may assume that A is in Jordan

form. Let us write tk for t(ln t)k, 0 ≤ k ≤ l, where l will be specified later. Let

14



us seek u as a function of the l+ 1 + n variables (t′, x), where t′ = (t0, . . . , tl).

Equation (22) now becomes

Nu+ Au = t0f(t′, x, u,Du), (23)

where

N = Nl :=
l∑

k=0

(tk + ktk−1)∂/∂tk.

We call equations such as (23) “generalized Fuchsian” since they reduce to

Fuchsian equations for l = 0. Note that we are writing f as a function of t′

even though it involves only t0; this is for later convenience.

Let u0 be an arbitrary function such that Au0 = 0. Let us seek u in the

form

u = u0 + t′.v := u0 + t0v0 + · · ·+ tlvl,

and let us write an equation for v, the solutions of which generate, via the above

formula, solutions of (23). Note that v0, . . . , vl are new dependent variables,

which are not, if l 6= 0, uniquely determined by u; only their values for t′ = 0

are.

We have

(N + A)
l∑

j=0

tjvj

=
l∑

j=0

[tj(N + A)vj + (tj + jtj−1)vj]

=
l∑

j=0

tj{(N + A)vj + vj + (j + 1)vj+1},

where t−1 and vl+1 are taken to be zero.

On the other hand,

t0f(t′, x, u0 + t′.v,D(u0 + t′.v))

= t0(f(0, x, u0, Du0) +
l∑

j=0

tjgj(t
′, x, v,Dv)),
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for suitable functions gj.

This suggests the following system for v, where again vl+1 = 0, and δj0 is

a Kronecker symbol:

(N + A+ 1)vj + (j + 1)vj+1 = δj0f(0, x, u0, Du0) + t0gj(t
′, x, v,Dv). (24)

The left-hand side is the jth component of

(N +B)v,

where B is a block upper triangular matrix with m×m blocks equal to A+ 1

on the diagonal. The eigenvalues of B are therefore just those of A shifted by

one.

We now claim that there is a vector ṽ(x) such that

(Bṽ)j = δj0ϕ(x) := δj0f(0, x, u0, Du0),

provided that l is not smaller than the size of the largest Jordan block of A+1

for the eigenvalue 0 (thus, if A + 1 is invertible, we may take l = 0). Indeed,

note first that we may decompose ϕ according to the invariant subspaces of

A and thereby assume that A consists of a single Jordan block. In that case,

either A + 1 is invertible, and we may take ṽ0 = (A + 1)−1ϕ, and ṽj = 0 for

j ≥ 1, or (A+ 1)l = 0 and we may take ṽ0 = 0, ṽ1 = ϕ, and

jṽj = −(A+ 1)ṽj−1

for j ≥ 2. The (l+1)st component of the equation for ṽ reduces to the identity

(A+ 1)lṽl = 0. This proves our claim.

We may now replace v by v − ṽ to obtain a system of the form (23), but

with more dependent variables, and where A has been replaced by B. We

may now repeat the procedure, which may require a larger value of l. But

at any rate, since the eigenvalues of A are increased by one at each step, we
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know that after finitely many steps, we will obtain an equation where A has

all its eigenvalues in the right complex half-plane, and no further increase of l

is necessary from then on.

If we truncate this series after K operations, we obtain a polynomial in t′

of degree K; when inserted in (23), it makes all terms of degree K vanish, by

construction.

We have therefore achieved a solution of the desired form. Theorem 2 is

thus proved.

The estimate of l in Remark 3 follows, since the worst case is that in which

l equals the size of A; the number lj is an upper bound on the size of the

matrix A one obtains after j operations.

Remark. One might have presented these results in a less deductive fash-

ion as follows: starting with the original equation (22), insert u = u0 + tv(x, t).

One then finds a Fuchsian equation for v which has, in general, no power series

formal solution. It is, however, always satisfied at lowest order by a combina-

tion of logarithms. But these are not bounded near 0. Therefore one should

back up one step and let u = u(t, t ln t, . . .). One is then naturally led to

Eq. (23). In general terms, each obstruction in the formal process is removed

by the introduction of a new independent variable, while higher order terms in

the formal expansion are computed by introducing new dependent variables.

The next section proves the existence of a convergent series solution of the

above form. The last section is devoted to examples.

5. Generalized Fuchsian Equations.

We consider equations of the form

Nu+ Au = f(t′, x, u,Du), (25)
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where N = Nl =
∑l

k=0(tk + ktk−1)∂/∂tk, A is constant, and f is analytic near

(0,0,0,0) without constant term in t′. Recall that t′ = (t0, . . . , tl). Again, all

functions are analytic in their arguments unless otherwise specified.

We prove the following result.

Theorem 3 If A has no eigenvalue with negative real part, (25) has near the

origin exactly one analytic solution which vanishes for t′ = 0.

Remark 1. This proves the convergence of the expansions of the previous

section, since we saw that one could always reduce the problem to a system in

which A has eigenvalues with positive real parts. Note also that the result of

§3 is a special case of this theorem.

Remark 2. Instead of requiring A to be constant, one may ask that

P (x)−1AP (x) be constant, for a suitable matrix P , since the latter case reduces

to the former by a redefinition of u. It is likely that N may be replaced by a

more general first-order operator, with similar proofs, but the present set-up

is sufficient for the applications of §6.

Remark 3. The equations we consider are related to equations with sev-

eral Fuchsian variables for which some existence results are available (see [1],

[4] and more references therein); however the result we need does not seem to

follow from the existing literature.

Proof: The proof parallels that of §3 and we therefore only indicate the

differences.

We write

N =
∑
j

mijtj∂i

for suitable coefficients mij forming a matrix M . One must then replace H[k]

by ∫ 1

0
σA−1k(σM t′) dσ,
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and use δ0(t0, . . . , tl) =
∑l

k=0 θ
k|tk|, where θ ∈ (0, 1/l) is fixed. We then use

for δ(σ) the quantity δ0σ(1− θ lnσ)l.

We need to check the three properties of δ in Step 2, §3.

The first follows from the assumption 0 < θ < 1/l.

The second is checked as follows: Since t′(σ) := σM t′ solves σ dt′/dσ = Mt′,

t′(1) = t′, we find

(σM t′)k =
k∑

j=0

tj

(
k

j

)
σ(lnσ)k−j.

We then compute

δ0(σ
M t′) =

∑
k

θk|tk(σ)| ≤ σ
∑

0≤j≤k≤l

tjθ
k

(
k

j

)
| lnσ|k−j

= σ
∑

0≤j≤k≤l

θj|tj|
(
k

j

)
(−θ lnσ)k−j

= σ
∑

0≤j≤k≤l

(−θ lnσ)j

(
k

j

)
θk−j|tk−j|

≤ σ
l∑

j=0

(−θ lnσ)j

(
l

j

)∑
k≥j

θk−j|tk−j|

≤ σδ0(t
′)

l∑
j=0

(−θ lnσ)j

(
l

j

)
= σδ0(t

′)(1− θ lnσ)l,

QED.

The third property follows from

δ′(σ)

δ(σ)
≥ 1− lθ

σ
.

The rest of the proof proceeds verbatim. We obtain existence on domains

of the form

{δ(t′) < a(s0 − s); d(x,Ω) < s}.
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6. Examples.

This section is devoted to applications of the results of §§4 and 5.

We first give, in §6.1, a rather general criterion to check the existence of

singular solutions of the type considered here, for semilinear systems. Roughly

speaking, any semilinear equation, irrespective of its type, has solutions blow-

ing up near any open and bounded portion of any surface such that the first

term of an appropriate formal solution exists. Two applications are then

treated in some detail (§§6.2 and 6.3).

We consider, in §6.2, the case of

2u = P (u),

where P is a polynomial. The assumption on the existence of the first term

of a (non-zero) formal solution translates into the condition that the putative

blow-up surface be space-like, if degP is odd and the leading term of P has

a positive coefficient (resp. time-like if this coefficient is negative), or that it

be merely non-characteristic if degP is even. We also write out the condition

for the absence of logarithmic terms in the case P (u) = 6u2, which has been

extensively studied from other perspectives in the literature. Further remarks

on related equations are also included.

We then turn in §6.3 to the justification of a number of formal expan-

sions for other semilinear equations which are to be found in the literature,

in particular those obtained in connection with the Painlevé test and its gen-

eralization, the “WTC method” which we described in [3]; those expansions

correspond to solutions where logarithmic terms are absent: logarithmic terms

were sometimes suspected, but were generally not studied in any detail since

their appearance was interpreted as indicating that the equation under con-

sideration was not integrable. For very special equations, conditions for the
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disappearance of logarithmic terms have been found. Our results prove in

addition that

1. Formal singular solutions can always be found to all orders (generally

without logarithmic terms, due to the special form of the equations).

2. They converge and define solutions which are meromorphic, or exhibit

branching, near the singularity surface. Note that when no logarithms

are present, the convergence of these expansions actually follows from

Theorem 1 in Part I [3].

Section 6.4 explains the consequences of these results for the problem of

continuation of singular solutions after blow-up.

Since calculations generally become quite complicated in specific examples,

the following remarks may be helpful in the practical application of the general

results:

1. The early reduction of a single equation to a first-order system may make

the formal calculations more cumbersome, an example being the case of

§6.2. In particular, a careful choice of an associated first-order system

helps find the minimal number of logarithms that are needed.

2. In an equation of the form ∂m
t u = r.h.s., it is useful to introduce (t∂t)

ju

instead of ∂j
tu as new unknowns, since the former blow-up at the same

rate as u.

3. If a formal solution is already known, one can substract off its first few

terms, and divide by an appropriate power of T ; this generally helps

ensure that A has no negative eigenvalues.

6.1. Semilinear systems. Let us consider a semilinear system, in m

unknowns, of the form

ut =
n∑

j=1

ajDju+ b(u), (26)
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where aj = aj(x, t) =
∑

k≥0 a
j
k(x)t

k. We also assume b to be independent of x.

Some x, t dependence could be allowed, but would make the results slightly

more cumbersome to state; we did not strive for maximum generality.

We find conditions on (26) which ensure the existence of a singular solution

which blows up for t = ψ(x), like a rational power of (t− ψ).

Our assumptions are

1. There are integers p and q, with q > 0, such that τ p+qb(τ−pξ) is analytic

in τ ∈ C and ξ ∈ Cm, near τ = 0, ξ = 0. We write

τ p+qb(τ−pξ) = c(τ, ξ) :=
∑
j≥0

cj(ξ)τ
j.

2. There is an analytic function v0(x) such that

−pv0 = qQ(x)−1c0(v0),

where Q(x) = (1+
∑

j a
j
0Djψ) is the characteristic matrix corresponding

to the blow-up surface. We therefore require the singular surface to be

non-characteristic.

3. There is a matrix-valued function P (x) such that P−1Q−1c′0(v0)P is con-

stant.

The result is

Theorem 4 If the above conditions are satisfied, (26) has a solution such that

u(x, t)(t − ψ(x))p/q is an analytic function of the l + 1 + n variables x, τ =

(t− ψ(x))1/q, τ ln τ, . . . , τ(ln τ)l, for a suitable integer l, and which reduces to

v0(x) for τ = 0.

Remark 1. The solution is generally not unique, and the discussion in

§4 on the form and degree of arbitrariness of the solution apply here; those

remarks are therefore not repeated.
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Remark 2. The assumptions are verified on a remarkably large number of

equations and systems of practical interest. They have the following meaning:

The first gives the rate of blow-up; it requires that singular solutions where

the derivatives and the nonlinear terms blow-up in the same way are possible.

The second and the third give the first term of the expansion of the putative

solution. In many examples, aj
0 = 0 for every j, and v0 is constant, so that the

third condition is actually vacuous (i.e., satisfied with P = 1).

Remark 3. The case p = 0, q = 1 leads in fact to the solution of the

Cauchy problem, v0 being simply the initial value of u. In that case, c0 ≡

0. Thus, singular as well as regular solutions are encompassed by a single

procedure.

Proof: We reduce the problem to a generalized Fuchsian equation to which

the results of §§4 and 5 apply.

Let us first take t−ψ(x) as new time variable, still called t for convenience.

We find

(1 + a0(Dψ))ut = a(Du) + b(u) + (a0 − a)(Dψ)ut,

where a(Du) =
∑

j a
jDju, and a0(Du) =

∑
j a

j
0Dju. Multiply by t, and let

t = τ q, so that t∂t = (1/q)τ∂τ . Let also u = vτ−p. We find, using the first

assumption,

Q(τvτ − pv)/q = τ qa(Dv) + c(τ, v) + (a0 − a)(Dψ)(τvτ − pv)/q.

Let v = v0 + τw. We obtain, since

Q(Q− (a0 − a)(Dψ))−1 = (1 +O(τ q)),

the following equation for w, where ϕ0 denotes a function of x alone (≡ 0 if

q > 1):
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Q(τ∂τ − p)(τw)/q − pQv0/q

= τ q(1 +O(τ q))[a(Dv0) + τa(Dw)]

+ c0(v0) + τ(c′0(v0)w + c1(v0) + ϕ0) + τ 2g1(τ, x, w).

The two constant terms cancel, thanks to the second assumption.

This equation has the form

[τ∂τ − p+ 1− qQ−1c′0(v0)]w = ϕ(x) + τG(τ, x, w,Dw),

where ϕ(x) depends on x alone. Now let w = Pz and multiply each component

of the system by P−1. Using the third assumption, we obtain a system of the

form studied in §§4 and 5 (see especially (24)). By introducing logarithms as

in Theorem 2, ϕ(x) can be absorbed into w. The theorem therefore follows

from Theorems 2 and 3.

The proof is complete.

6.2. Nonlinear hyperbolic equations. For simplicity we restrict our-

selves to one example, and briefly comment on more general ones. Our first

example is

2u =
2(m+ 1)

(m− 1)2
um +

m−1∑
j=−∞

aj(x, t)u
j, (27)

where m is an integer greater than or equal to 2. Fix a hypersurface Σ with

equation t = ψ(x). Σ is assumed to be space-like ism is odd, non-characteristic

otherwise. The functions ψ and aj are analytic.

Theorem 5 Equation (27) has singular solutions which, near the origin, blow

up precisely on Σ. These solutions involve one arbitrary function, and satisfy

(t−ψ)2/(m−1)u = (1−|Dψ|2)1/(m−1) on Σ. They are given by convergent series

in x, τ and τ ln τ , where τ = (t− ψ)1/(m−1).

As usual, the logarithmic terms are absent whenever ψ satisfies an ap-

propriate condition. This equation may be non-trivial, even in one space

dimension.
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Remark 1. If m is even, Σ may be allowed to be time-like. This is because

u = τ−2(u0(x) + τ ′.u1(x) + · · ·), with τ ′ = (τ, τ ln τ), (28)

where um−1
0 is equal to (1 − |Dψ|2); only for odd m does this force Σ to

be space-like. It is conceivable, however, that blow-up surfaces generated by

smooth data on a space-like initial hypersurface cannot be time-like anywhere.

Observe also that if m = 2, branching does not occur in the solution.

Remark 2. The constant in front of um in (27) has been chosen only for

convenience in explicit calculations. One can change it by scaling independent

variables.

Proof: This result is, like Theorem 1, obtained by reduction to a generalized

Fuchsian equation. The algebra being very similar to that of Part I and §2,

we give below only the main steps of the proof. One could try to reduce the

equation to a system and mimic the procedure of §6.1, but the calculations

are a little simpler if we argue as follows:

Let us first write the r.h.s. as

2(m+ 1)

(m− 1)2
um + f(x, t− ψ(x), u)/(m− 1)2,

where

τ 2m−2f(x, τm−1, v/τ 2) = b(x, τ, v)

is analytic in (τ, v).

Introduce, as in §2, the new time variable T = t−ψ(x), while X i = xi; we

still write x for X, for convenience. This change of variables produces

(1− |Dψ|2)uTT −∆u+ 2Dψ.DuT + (∆ψ)uT = r.h.s.

Next, multiply by T 2, and replace T by τm−1, so that T∂T becomes (m−

1)−1τ∂τ . We get

(1− |Dψ|2)(τ∂τ )(τ∂τ −m+ 1)u− 2(m+ 1)τ 2m−2um
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= τ 2m−2f(x, τm−1, u) + (m− 1)2τ 2m−2∆u

− (m− 1)(2τm−1Dψ.D(τuτ ) + (∆ψ)τmuτ ).

Finally, let u = τ−2v(τ, x). We find an equation of the form

(1− |Dψ|2)(τ∂τ − 2)(τ∂τ −m− 1)v − 2(m+ 1)vm

= τ 2b(x, τ, v) + (m− 1)2τ 2m−2∆v

− (m− 1)(2τm−1Dψ.D(τvτ − 2v) + (∆ψ)τm−1(τvτ − 2v))

= τg(x, τ, v, τvτ , Dτvτ ) + (m− 1)2τ 2m−2∆v,

because m− 1 ≥ 1.

This suggests seeking v in increasing powers of τ . In fact, one can easily

check that upon inserting v = v0 + τv1 + . . . , one can compute v0, . . . , v2m+1,

but not the next term. In particular, vm−1
0 = (1 − |Dψ|2). This suggests the

substitution

v =
2m+1∑
j=0

vj(x)τ
j + τ 2m+2w(x, τ).

A careful inspection of the equation shows that the equation for w has the

form

(1− |Dψ|2)(τ∂τ )(τ∂τ + 3m+ 1)w

= ϕ(x) + h(x, τ, τw, τ 2wτ , τD(τwτ )) + (m− 1)2τ 2m−2∆w,

where h vanishes when τ = 0.

This suggests

w =
ϕ ln τ

(3m+ 1)(1− |Dψ|2)
+ z,

where z = z(x, τ, τ ln τ). If we let u0 = z, u1 = τ∂τz and u2+i = τ∂iz, and

η = τ ln τ , the uk being considered as functions of x, τ, η, we find a generalized

Fuchsian equation to which the result of §5 (or §3) applies.

This proves Theorem 5.
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Remark: A brutal application of §6.1 is not only more lengthy here: it

makes it more difficult to realize that there is in fact only one logarithm in the

solution.

We include below the condition required in order that the logarithmic terms

be absent, for the case m = 2, aj ≡ 0. If T = t−ψ, and u = (v0+Tv1+· · ·)/T 2,

the condition reads

3(2ψi∂i + ∆ψ − 4v1)v5 = ∆v4 + (v2
3 + 2v2v4), (29)

with

10v0v1 = −4ψi∂iv0 − 2v0∆ψ

12v0v2 = −∆v0 − v1∆ψ − 2ψi∂iv1 − 6v2
1

12v0v3 = −∆v1 − 12v1v2

10v0v4 = −∆v2 − v3∆ψ + 2ψi∂iv3 − 6(2v1v3 − v2
2)

6v0v5 = −∆v3 + 2v4∆ψ − 4ψi∂iv4 − 12(v1v4 + v2v3).

One checks that any linear ψ satisfies this condition.

If this condition holds, v6 is arbitrary and (t − ψ(x))2u(x, t) is analytic

across Σ.

Despite its complexity, the case m = 2 is actually the simplest among poly-

nomial nonlinearities. If m > 2, the condition for the absence of logarithms is

found only after 2m+ 1 terms have been computed.

Remark. The above results extend with minor modifications to

∆u = P (u).

Replacing t by it in the hyperbolic results is permissible, since we are through-

out dealing with holomorphic solutions; the condition that ψ be real when x

is was imposed only in order to make the interpretation of the final results

simpler.
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6.3. The Painlevé test. We consider evolution equations of the form

ut = f(u,Dxu, . . . , D
k
xu) (30)

in one or two space dimensions. Weiss, Tabor and Carnevale (WTC) [6] have

shown that for a number of equations integrable by Inverse Scattering, (the

first terms of) an expansion of the form

∑
k≥0

ukφ(x, t)k+ν (31)

which formally solves the equation, can be found without any condition on

φ other than the non-vanishing of φx;
3 ν is generally a negative integer. As

pointed out in [3], these authors have focused on terminating series of this

form which, in addition to providing closed form solutions, can often be related

to the eigenvalue problem of which the evolution equation represents an iso-

spectral deformation.

It follows from the results of §§4 and 5 that (i) such series can, as one may

expect, be computed to all orders, and (ii) they converge in the vicinity of the

set where φ vanishes. The special form of the equations enables one to avoid

logarithmic terms. This means that the existence theorem of the first part is

actually sufficient to prove the convergence of these series.

We list a few of the simplest examples, without aiming at completeness;

we indicate briefly for the first example the associated Fuchsian equation, and

how our general results apply here:

The Korteweg-de Vries equation (suitably scaled)

ut + uux − uxxx = 0

has ν = −2, and u4 and u6 are arbitrary.

3This means that the singular surface defined by φ = 0 is non-characteristic.
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Let uj = (x∂x)
ju for j = 0, 1, 2. We then find

x∂xu0 = u1;

x∂xu1 = u2;

x∂xu2 = 3u2 − 2u1 + x3u0t + x2u0u1.

Assume the singularity surface is given by x = ψ(t). Take x − ψ(t) as new

space variable, still denoted by x for convenience, so that we should replace

u0t by u0t − ψ′(t)u0x = u0t − ψ′u1/x. Now, if the uj’s behave like xν , we find

that both sides of the equation balance each other at leading order if ν = −2.

This suggests the substitution uj = vjx
−2. We find for v the system

(x∂x − 2)v0 = v1;

(x∂x − 2)v1 = v2;

(x∂x − 2)v2 = 3v2 − 2v1 + v0v1 − ψ′x2v1 + x3v0t.

Following the idea of §6.1, we find that for x = 0, we must take either v =

(12,−24, 48) or v = 0. We of course consider only the former. Since the

function called v0 in §6.1 is here constant, Theorem 4 applies. It is however not

difficult to reprove it in this special case: setting v0 = 12+xw0, v1 = −24+xw1,

v2 = 48 + xw2, we obtain

(x∂x − 1)w0 = w1;

(x∂x − 1)w1 = w2;

(x∂x − 4)w2 = 10w1 − 24w0 + xw0w1 − ψ′x2w1 + 24xψ′ + x3w0t.

If we now perform the reduction of §4, it turns out that one may take l = 0

(no logarithms); Theorem 3 now guarantees the convergence of the expansion.

Two other examples, among many others, are

1. The modified Korteweg-de Vries equation

ut − 3u2ux + 2σ2uxxx = 0,

for which ν = −1, and u3 and u4 are arbitrary.
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2. The Kadomtsev-Petviashvili equation

(ut + uux + δuxxx)x + uyy = 0,

for which ν = −2, and u4, u5 and u6 are now arbitrary.

A few equations that are not known to be integrable by Inverse Scattering

have been tested by this “generalized Painlevé test;” it is in particular known

(Olver and McLeod [5], Clarkson, McLeod, Olver and Ramani [2]) that up to

scaling, the only equations

utt − uxx = f(u)

for which all such singular solutions are free of branching or essential singu-

larities in the whole complex plane are linear combinations of e±u and e±2u.

Indeed, even the equation for traveling wave solutions has otherwise movable

critical points. One can further rule out all the equations that are not known

to be integrable by Inverse Scattering since the other equations in this class

do not have WTC expansions that are free from logarithms [2].

As we have shown above, any equation with

f(u) = eu + g(e−u)e−u

possesses singular solutions such that eu is meromorphic near the blow-up

surface, and no logarithmic terms appear, since we are in one space dimension;

this does not preclude the existence of more complicated singularities far from

the blow-up set under consideration.

6.4. Continuation. Just as in the case of Eq. (1), the present results

imply that all solutions constructed can be continued beyond their blow-up

set, possibly after the introduction of a uniformizing variable. In general,

branching cannot be avoided. It is due either to the presence of a fractional

power of (t − ψ(x)) in the leading term, or to the appearance of logarithmic
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terms further down in the expansion. One branch might be preferable to

another in a specific application; thus, one can wish to choose a real branch.

One may also wish to use different determinations on the two sides of the

singularity surface.

The possibility of continuation is quite unavoidable, since the solution in-

volves an analytic function which is at once defined on both sides of the singular

set.

In some special cases, branching may be avoided, and even the above am-

biguity disappears. Thus, in the case of

2u = 6u2,

one finds that the solution is, when logarithmic terms are absent, actually

meromorphic, and the continuation is uniquely determined. Similarly, for (1),

we observe that eu does not exhibit any branching.
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