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Abstract

We introduce a systematic procedure for reducing nonlinear wave

equations to characteristic problems of Fuchsian type. This reduction

is combined with an existence theorem to produce solutions blowing up

on a prescribed hypersurface. This first part develops the procedure on

the example 2u = exp(u); we find necessary and sufficient conditions

for the existence of a solution of the form ln(2/φ2) + v, where {φ = 0}

is the blow-up surface, and v is analytic. This gives a natural way of

continuing solutions after blow-up.

1. Introduction.

1.1. Results. We prove in this paper that if Σ is given in a neighborhood

of (x0, t0) ∈ Rn×R by the equation φ(x, t) = 0 where φ is analytic and∇φ 6= 0

1Comm. PDE, 18, (3&4) 431–452 (1993).
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then

utt −∆u = eu (1)

has a solution of the form

u = ln(2/φ2) + v(x, t), (2)

where v is holomorphic near (x0, t0), if and only if the blow-up surface Σ

satisfies:

Σ is space-like (3)

and
Σ has zero scalar curvature for the metric

induced by the Minkowski metric.
(4)

Such solutions are uniquely determined by the choice of one analytic func-

tion on Σ. (Th. 2, section 3).

This result is a consequence of the reduction of (1) to a Fuchsian equation:TwT + Aw = Tf(T, x, w,Dxw)

w(0) = w0

(5)

where w is a vector-valued function related to v, A is a constant matrix, and

w0 satisfies appropriate conditions. (see section 3). An existence theorem for

such problems is given in Th. 1 (section 2).

Remark 1. Motivation and previous results on this question are discussed in

§1.2.

Remark 2. The solution in the form (2) is defined on both sides of Σ. Further,

if φ is given, u − ln(2/φ2) can be defined everywhere from its values on one

side of Σ only, by analytic continuation. We therefore have a cogent way of

continuing singular solutions beyond their blow-up set. The only arbitrariness

lies in the choice of continuation of the singular term; we have chosen the most

obvious one, and will discuss it elsewhere.
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Remark 3. It is easily checked on examples that the singular set for nonlinear

wave equations can be entirely non-characteristic. However, in this particular

case, the blow-up surface is characteristic for the Fuchsian equation associated

with the equation and the given surface.

Remark 4. The case when the curvature condition (4) is not satisfied, as well

as more general nonlinearities, will be dealt with in Part II.

1.2. Literature. We list here a number of special cases and weaker

versions of the above results that can be found in the literature.

a) Exact Solutions. Liouville [11] proved that all analytic solutions of

uxt = eu (6)

are locally of the form

u = ln
2f ′(x)g′(t)

(f(x) + g(t))2
, (7)

where f and g are analytic functions; conversely, (7) gives a solution of (6) for

all choices of f and g, which is valid in the maximal domain in which it makes

sense. This formula, on which the results of §1.1 are easily checked, was the

initial motivation for the present work. Equation (7) can also be recovered

from the fact that (6) is connected to uxt = 0 by a Bäcklund transformation.

Equation (6) has received some recent attention in view of possible appli-

cations to quantum field theory.

We note the following points, which may not be new:

1. (6) has complete solutions.2 (It is known that complete solutions that

are bounded below, with ux + ut ≥ β > 0 do not exist (J. Keller [9])).

2That is, solutions which are defined and free of singularities in the whole x-t plane.
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2. There is a complex-valued solution with an isolated branch point, namely

ln
2i

(x+ it)2
.

The singularity of this solution does not “propagate.” One can think

of it as single-valued solution defined on R2 \ {(0, 0)}, with values in

C/2πZ.

Motivated by various applications to superfluidity and superconductivity,

among others, Grunland and Tuszyński [4] have obtained a number of exact

solutions for equations 2u = F (u), where F is either a polynomial, or sinhu

or coshu, in low dimensions, using symmetry techniques. The singular be-

havior exhibited by these solutions corresponds to those found by the present

methods.

b) Expansion Techniques. In their generalization of the Painlevé test, for

the integrability of a given system by the Inverse Scattering Transform, Weiss,

Tabor and Carnevale (WTC) [14] have considered solutions of soliton problems

in the form

u =
∑
k≥0

uk(x, t)φ(x, t)k−ν (8)

where ν is required to be an integer. The given equation passes the test if such

a formal series solves it, without constraint on φ; convergence questions are

not addressed. “When the Ansatz [(8)] is correct, the PDE is said to possess

the Painlevé property and is conjectured to be integrable” [13]. The problem

is said to be “conditionally integrable” if only special φ are allowed. Most of

the equations known to be integrable by Inverse Scattering are also known to

pass the test. In that case, with a little hindsight, one can often relate φ to

the eigenvalue problem associated with the equation. A general explanation

of the many connections unraveled by this method, and a proof of the validity

of the test in all cases, are not known.
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Weiss [13] obtained by this procedure the curvature condition for complex-

valued solutions of the sine-Gordon equation in n dimensions; exp(iu) then

possesses an expansion of the form (8). The question of the convergence of

this expansion is not addressed.

We will come back, in the subsequent parts of this paper, on the appplica-

tion of the present technique to the WTC method.

Kobayashi and Nakamura [7] show that, in a suitable Sobolev space, a

solution to hyperbolic equations of the form Lu = R(u,Du), with R rational,

L linear, can be found near a prescribed blow-up suface provided that a formal

solution (φ+i0)−k/p
∑
l≥0 ul(φ+i0)l/p can be uniquely constructed to all orders.

Such a series, however, does not exist in general, and the appropriate statement

will be considered in subsequent parts of this paper.

c) Fuchsian Equations. The existence theorem for nonlinear Fuchsian equa-

tions given in this paper follows essentially the argument of Baouendi and

Goulaouic [1a,b], and is in the spirit of Ovsjannikov’s version of the Cauchy-

Kowalewska theorem. The nonlinear result also follows from a little-known

paper of Rosenbloom [12], who uses a majorant method.

d) Blow-up time and blow-up boundary. Although a number of sufficient

conditions for the occurrence of blow-up are known, very few results on the

mechanism of blow-up are available. Caffarelli and Friedman [2,3] show that,

for equations modeled on 2u = up, smooth initial data with appropriate

bounds lead to a blow-up set of class C1 in one space dimension; the result

extends, with additional hypotheses, to 2 and 3 space dimensions. Estimates

on the time where a singularity first occurs (“blow-up time”) are found in

Hörmander [5], John [6] and Lindblad [10] (see these papers for more refer-

ences); they consider the Cauchy problem with initial data O(ε) and find the

order of the blow-up time as ε→ 0.
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2. Fuchsian Equations.

2.1. The problem. We consider the construction of solutions to

(t∂t + A(x, t))u = tf(t, x, u,Dxu), (9)

where x belongs to an open set in Rn and t ∈ R. u is throughout this section

a vector-valued function, and A is a square matrix of corresponding size. We

often write D for Dx.

We show that this problem has one and only one solution holomorphic near

x = 0, t = 0, if A and f are holomorphic near (0, 0) and (0, 0, 0, 0) respectively

and

j + A(x, t) is invertible for every j = 0, 1, 2, . . .

If the last condition is satisfied only for large enough values of j, we show that

a solution exists if and only if f and A satisfy finitely many constraints, in

which case the solution depends on finitely many arbitrary functions.

Our result is summarized as follows.

Theorem 1. The Fuchsian problem (9) has a holomorphic solution near (0, 0)

if and only if it has a formal solution.

The rest of §2 is organized as follows. After a brief study of formal solutions

of (9) of the form
∑
j≥0 ujt

j in §2.2, we reduce the situation to the case when

all the eigenvalues of A have positive real parts (§2.3). In §2.4, we give an

inverse for t∂t + A and prove simple estimates. We finally define, for the case

when all the eigenvalues of A have positive real parts, an iteration procedure

to find the unique holomorphic solution of (9), and prove its convergence. This

will complete the proof of Theorem 1.

2.2. Structure of formal solutions. We consider formal series u =∑
j≥0 uj(x)tj which solve (9). The functions uj are holomorphic in x. For any
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such expression r, we denote by {r}j the coefficient of tj in the expansion of r

in increasing powers of t. Insertion of the series into (9) readily gives Au0 = 0

and, for j ≥ 1, taking A = A(x) as we may (see §2.3), we find

(j + A)uj = {f(x, t, u,Dxu)}j−1.

The r.h.s. is computed using the expansion of f ; it depends only on u0, . . . , uj−1.

In particular,

{f(x, t, v,Dxv)}j−1 = {f(x, t, u,Dxu)}j−1

if (u − v) = O(tj). The above equation for uj can be solved uniquely if and

only if (j + A) is invertible. If it is not, u0, . . . , uj−1 must satisfy conditions,

and uj involves arbitrary functions of x. These functions may, in turn, be

constrained by other equations arising from the calculation of some uk, k > j.

We may summarize these facts as follows.

Lemma. The existence of a formal solution of (9) in increasing powers of t

can be ascertained in a finite number of operations, and the formal solution

involves a finite number of arbitrary functions if it exists. The coefficient uj is

uniquely determined from u0, . . . , uj−1 if (j + A) is invertible.

We assume in the rest of §2 that a formal solution U has been constructed,

and proceed to prove its convergence. It may happen that no holomorphic

solution exists, as in the case of equation

(t∂t − 1)u = t.

2.3. Preliminary reduction. We prove here that one may assume

1. A = A(x),

2. All the eigenvalues of A have real parts greater than 0.
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The first property is clear: (A − A(x, 0)) can be divided by t, and can

therefore be lumped into the right-hand side of (9).

As for the second one, let us define v by

u = U0(x) + U1(x)t+ · · ·+ Um(x)tm + v(x, t)tm,

where U0, . . . , Um are coefficients of the given formal solution, v is assumed to

be holomorphic, and u is the putative holomorphic solution.

Let us write the equation satisfied by v. We find, using the fact that A is

now independent of t,

mtmv + tm(t∂t + A(x))v +
m∑
j=0

(j + A)Ujt
j − tf = 0.

But from §2.2, we know that (j+A)Uj is the coefficient of tj−1 in the expansion

of f(x, t, U,DU), which coincides with

{f(x, t, u,Du)}j−1,

for j ≤ m, since u formally agrees with the formal solution upto order m− 1

inclusive. Therefore,

m∑
j=0

(j + A)Ujt
j − tf(x, t, u,Du) = tm+1F (x, t, v,Dv),

where F is analytic in x, t, v,Dv. The function v therefore satisfies an equation

of the same type as u, with A replaced by A + m. Taking m large enough

proves the claim.

We assume that A is independent of t and that all the eigenvalues of A have

real parts greater than 0 in what follows. Also, by introducing the components

of Du as additional dependent variables, one may in a standard fashion assume

f is linear in Du.

2.4. Inverse of t∂t + A. We consider the equation

(t∂t + A)u = tg(t)
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where A is independent of t. It has one solution holomorphic in t if the

eigenvalues of A have real parts greater than 0, namely

u = Hg :=
∫ 1

0
tσAg(σt) dσ, (10)

with σA = exp(A lnσ). u is holomorphic in t if g is. If g depends analytically

on x as well, so does u. For t ≤ 1 (and every fixed x), we have, for some

C1 > 0,

|u(t)|+ |Au|+ |t∂tu|+ |∂t(tu)| ≤ C1 sup
[0,t]

|g(s)|. (11)

and

|(t∂t + 1)Hg| ≤ C1 sup
[0,t]

|g(s)|. (12)

2.5. Iteration. We assume |t| ≤ 1 throughout. We define a sequence of

analytic functions {vj(x, t)}j≥0 by v0 = 0 and

vj+1 = f(t, x,Hvj, DHvj) := F [t,Hvj] (13)

for j ≥ 0. D is short for Dx. Recall that f is now linear in Du.

We use the following two norms. The first is defined on functions of x:

‖u‖s := sup{|u(x)| : x ∈ Cn, d(x,Ω) < s} (14)

where Ω is a small ball about 0 in Rn so that f is holomorphic for d(x,Ω) < 2s0

and |u| < 2R. The second is on functions of x and t:

|u|a := sup
0<s<s0,|t|<a(s0−s)

{‖u(., t)‖s(s0 − s)[1−
|t|

a(s0 − s)
]1/2}. (15)

We prove that G defined by

G[u] := F [t,Hu] (16)

is a contraction on a set of the form {|u|2a < ρ/a} for a sufficiently small. It

will follow that (i)‖Hvj‖s < R for all j and for |t| < a(s0 − s), making the
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iteration possible, (ii) the iteration converges and provides the desired solution.

The procedure being very similar to that of [1b], we merely outline the steps.

The basic estimate is the following.

Lemma. There is an a0 > 0 such that if a < a0 and j ≥ 1, then all the vj are

well-defined for |t| < a(s0 − s) and

|vj+1 − vj|a ≤
1

2
|vj − vj−1|a. (17)

Proof. It suffices to consider t ≥ 0. The letter C denotes various constants

independent of s, j and a. Writing F [t, u] = a(t, v)Dv + b(t, v), we find, using

Cauchy’s inequality, that if ‖u‖s(t) < R and ‖v‖s(t) < R, the for 0 < s′ < s,

‖F [t, u]− F [t, v]‖s′ ≤ ‖a(t, u)− a(t, v)‖s′‖Du‖s′ + ‖b(t, u)− b(t, v)‖s′

+ ‖a(t, v)‖s′‖Du−Dv‖s′ (18)

≤ C‖u− v‖s/(s− s′). (19)

Next, one finds, by inspection, that if t < a(s0 − s), then

‖Hu(t)‖s ≤
∫ 1

0
‖u(τ)‖sdτ ≤ Ka|u|a (20)

for some K > 0.

Furthermore, for

|u|a < R/(2Ka) and |v|2a < R/(4Ka), (21)

we have, for t < a(s0 − s),

‖G[u]−G[v]‖s ≤ C
∫ t

0

‖u(τ)− v(τ)‖s(τ)
s(τ)− s

dτ (22)

where

s(τ) = (s+ s0 − τ/a)/2

(see [1b, Lemma 3], where we may take ε = 1). Substituting this value of s(τ)

and estimating ‖u(τ)− v(τ)‖s(τ) in terms of |u− v|a, we find

|G(u)−G(v)|a ≤ Ca|u− v|a. (23)
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Since G(0) is a known analytic function, we also have for any b,

|G(u)|b ≤ Cb|u|b + C. (24)

Therefore, the set {|u|2a < R/(4Ka)} is mapped into itself by G, and G defines

on this set a contraction in the norm | |a, provided a is taken sufficiently small.

The sequence {vj} therefore converges for this norm to a function analytic for

t < a(s0 − s). Applying H to this limit gives the solution to the Fuchsian

equation under consideration.

This ends the proof of Theorem 1.

Remark 5. Theorem 1 contains the Cauchy-Kowalewska Theorem as a special

case: for instance, if u =
∑
j≥0 ujt

j solves a first-order system of Cauchy-

Kowalewska type, t−1(u − u0) solves a Fuchsian equation and we recover the

fact that the solution contains one arbitrary function.

11



3. Reduction to a Fuchsian Problem.

We prove in this section that the search for solutions of (1) of the form (2)

is equivalent to a Fuchsian problem of the type studied in the previous section.

The existence of a formal solution is equivalent to the conditions (3) and (4),

and if they are satisfied, a solution exists for each choice of a holomorphic

function on Σ.3

To see this, we will first take φ as new time variable, and show one can

assume that φ = t − ψ(x). Apart from convenience in the calculation, this

assumption has the effect of associating to every singular solution a unique

expansion of the form (2).

Let us show that such a choice is licit. Let us substitute ln(2/φ2) + v(x, t)

for u into (1), and multiply the result by φ2. A short calculation reveals that

if we let φ tend to zero in the result, we are left with the equation
n∑
i=1

φ2
xi − φ2

t = − exp(v) (25)

on Σ. This proves

1. Σ is space-like,

2. φt 6= 0 on Σ.

Σ therefore has locally an equation t = ψ(x), and it is easily verified that

φ/(t− ψ(x)) is analytic and non-zero. We may thus replace φ by t− ψ(x) at

the expense of changing v.

We assume from now on that φ(x, t) = t− ψ(x).

3.1. Change of variables. Let x0 = t and introduce new variables

X0, . . . , Xn by

X0 = T := φ(x, t), X i = xi (i = 1, . . . , n). (26)

3Some of the formulae in this section are somewhat lengthy to derive, and the necessary

details have been grouped in the Appendix, for the convenience of the reader.
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The derivatives transform according to

∂a = La
′

a ∂a′ , (27)

where the summation convention is used,

∂a = ∂/∂xa, ∂a′ = ∂/∂Xa′ ,

and a, a′ run from 0 to n, while i, i′ and all other Latin or Greek indices run

from 1 to n. Clearly, L0′
0 = φt, L

0′
i = φxi = φi, L

i′
0 = 0 and Li

′
i = δi

′
i , where δ

is the Kronecker symbol. Therefore, (1) becomes

eu = [(φt∂T )2 −
∑
i

(δi
′

i ∂i′ + φi∂T )2]u. (28)

Remark 6. We use throughout the summation convention on repeated

indices one of which is in the upper position and the other in the lower position.

Thus, there is summation in aibi but not in aibi. More generally, all indices are

raised and lowered using the Kronecker delta. We let ψi = ∂iψ, ψij = ∂ijψ . . .,

and ψi = δikψk, ψ
ij = δikδjlψkl . . . In particular,

∑
1≤i≤n(ψi)

2 = ψiψi. This

convention enables us to keep track of terms in lengthy calculations such as

that of §A.3.

3.2. Expansion. We seek a solution in the form

ln
2

φ2
+ v(X,T ),

where v =
∑
k≥0 vk(X)T k.

Let us write

u = ln(2/φ2) + v0(X) + v1(X)T + w(X,T )T 2.

Substitution into (28) leads to the following equation

{
T 2((1− |Dψ|2)∂2T + 2ψiδi

′
i ∂i′T −∆′ + (∆ψ)∂T )w
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+ T (4ψiδi
′
i ∂i′w + 2(∆ψ)w) + (1− |Dψ|2)(2w + 4TwT )

}
+ {2ψiδi′i ∂i′v1 − T∆′v1 + v1∆ψ} −∆′v0 − 2

T
∆ψ

=
2

T 2
{ev0(1 + Tv1 + T 2(w + v21/2) + T 3g(X,T,w))− (1− |Dψ|2)}. (29)

In this equation, ∆ (resp. ∆′) stands for the Laplacian in the xi (resp. X i′)

variables, and subscripts stand for derivatives. |Dψ|2 stands for
∑
i ψ

2
i . We

have used the fact that for every i,

(δi
′

i ∂i′ + φi∂T )ψi = ∂iiψ.

Note that ∆ and ∆′ have the same effect on functions of X alone. The function

g is holomorphic in its arguments, and involves v0 and v1 as well.

3.3. The curvature condition. Identifying like powers of T will enable

us in this section to

1. Compute v0 and v1.

2. Derive a condition on φ, and show that w(X, 0) can be chosen arbitrarily.

Once this has been done, one can recursively compute all the coefficients

in the expansion of w in powers of T . We will not go through this here, since

we will show directly the existence of w using the result of §2.

The coefficient of T−2 in (29) gives:

v0 = ln(1− |Dψ|2). (30)

The coefficient of T−1 gives:

v1 = −∆ψ/(1− |Dψ|2). (31)

The coefficient of T 0 does not contain w and its vanishing implies a con-

straint on the blow-up surface. After some calculation, the condition reduces

to

(1− |Dψ|2)[(∆ψ)2 − ψijψij]− 2ψijψj[ψikψ
k − ψi∆ψ] = 0. (32)
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For n = 1, this is an identity.

For n = 2, it reduces to the equation ψ11ψ22 − ψ2
12 = 0,

There is a simple geometric meaning to relation (32): Σ is endowed with

a Riemannian metric from the ambient Minkowski space (with metric |dx|2 −

dt2); using the x’s as coordinates on Σ, we can find (see §A.3) the induced

metric tensor,

gij = δij − ψiψj,

the corrsponding Christoffel symbols,

Γkij = − ψkψij
1− |Dψ|2

,

and the curvature tensor,

Rijk
l = (ψjkψi

l − ψikψj l)/(1− |Dψ|2)

+ (ψjkψmi − ψikψmj)ψmψl/(1− |Dψ|2)2. (33)

It follows that the l.h.s. of (32) equals −(1− |Dψ|2)2R, where R = gikRijk
j is

the scalar curvature.

This proves the curvature condition on the blow-up surface.

3.4. Fuchsian equation for w. If the curvature condition holds, there

is no formal obstruction to the existence of a formal series for w.

After some reduction, w turns out to solve an equation of the form

{(1− |Dψ|2)T∂T (T∂T + 3)− T 2∆′}w =

Tg1(X,T,w) + Thi
′
(X,T,w)∂i′w + T 2h0(X,T,w)wT . (34)

Recall that ∂i′ = ∂/∂X i′ .

Let

z =


w

T∂Tw

T∂Xw

 .
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Eq. (34) then reads

T∂T z1 = z2;

T∂T z2 + 3z2 = Tg1(X,T, z1) + Thi
′
(X,T, z1)∂i′z1 + Th0(X,T, z1)z2

+ Tδii
′
∂i′z2+i/(1− |Dψ|2);

T∂T z2+i = T (∂i′z1 + ∂i′z2),

which has the form studied in §2 where A is the (n+ 2)× (n+ 2) matrix

0 −1 0 · · · 0

0 3 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


.

Its eigenvalues are 0 and 3. The kernel of A is n+1-dimensional. However, the

only relevant case is the one in which the last n+1 components of z vanish for

T = 0. Therefore, only one arbitrary function which, in our case, is w(X, 0), is

allowed in the formal solution. Conversely, any solution of this system satisfies

z2 = T∂T z1,

and

T∂T (z2+i − T∂i′z1) = 0

and therefore, any solution with zk = 0 initially for k ≥ 1 gives rise to a

solution of (34). We have proved:

Theorem 2. Equation (1) has a solution of the form (2) if and only if Σ is

space-like with zero cuvature for the induced metric. The solution is uniquely

determined by one holomorphic function on Σ.

We have proved the result described in §1.1.
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Appendix.

We give in this section some of the calculations that were omitted in the

text.

A.1. Change of variables. If X0 = T = φ(x, t),

∂t = φt∂T , ∂i = δi
′

i ∂i′ + φi∂T ,

and

2u =

(
(φt∂T )2 −

∑
i

(δi
′

i ∂i′ + φi∂T )2
)
u,

so that, if u = ln(2/φ2) + v, eu = (2/T 2)ev and

2(ln(2/T 2) + v) = 2v + φt∂T (−2φt/T )−
∑
i

∂i(
−2φi
T

)

= 2v − 2

T

{
φt∂Tφt −

∑
i

(δi
′

i ∂i′φi + φi∂Tφi)

}
+

2

T 2
{φ2

t −
∑
i

φ2
i }.

Since v and φ are holomorphic, we find

ev = φ2
t −

∑
i

φ2
i +O(φ),

which gives Eq. (25). This allows us to let φ = t− ψ(x), as explained in §3.1.

A.2. Expansion. Let us define w off Σ by

u = ln(
2

φ2
) + v0(X) + v1(X)T + w(X,T )T 2.

We find

eu =
2ev0

T 2

{
1 + (v1T + wT 2) +

1

2
(v1T + wT 2)2 +

+
T 3

2
(v1 + Tw)3

∫ 1

0
(1− σ)2 exp[σT (v1 + Tw)] dσ

}
;

2 = ∂2T −
∑
i

(δi
′

i ∂i′ − ψi∂T )2;

2(ln
2

T 2
) =

2

T 2
−
∑
i

∂i(
2ψi
T

)

=
2

T 2
(1− |Dψ|2)− 2

T
∆ψ.
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Note that this calculation used the relation ∂iT = −ψi.

We next find, since ∂ig = ∂i′g if g = g(X), so that ∆g = ∆′g,

2v0(X) = −∆v0,

2(v1(X)T ) = −
∑
i

(δi
′

i ∂i′ − ψi∂T )[(∂iv1)T − ψiv1]

= −(∆v1)T + v1∆ψ + 2ψi∂iv1.

2(wT 2) = T 2wTT + 4TwT + 2w −
∑
i

∂iiw.

Now, for fixed i, ∂ii can be expressed as follows (we write ∂i′ for δi
′
i ∂i′ for

convenience):

(∂i′ − ψi∂T )2 = (∂i′ − ψi∂T )∂i′ − ∂i(ψi∂T )

= (∂i′ − ψi∂T )∂i′ − (∆ψ)∂T − ψi∂iT

= ∂2i′ − ψi∂T i′ − (∆ψ)∂T − ψi(∂i′ − ψi∂T )∂T

= ∂2i′ − 2ψi∂T i′ + |Dψ|2∂2T − (∆ψ)∂T .

Therefore,

2 = (1− |Dψ|2)∂2T − ∂2i′ + 2ψi∂T i′ + (∆ψ)∂T , (35)

and

2(wT 2) = (1− |Dψ|2)(T 2wTT + 4TwT + 2w) (36)

+ T 2(−∆′ + 2ψi∂T i′ + (∆ψ)∂T )w + T [2(∆ψ)w + 4ψi∂i′w]. (37)

Putting these together, we can write down the equation satisfied by w:

T 2 {(1− |Dψ|2)wTT −∆′w + 2ψiwT i′ + (∆ψ)wT}

+ T
{

4(1− |Dψ|2)wT + 4ψiδi
′
i ∂i′w + 2w∆ψ −∆v1

}
+ {2(1− |Dψ|2)w + v1∆ψ + 2ψi∂iv1 −∆v0}

− 2

T
∆ψ +

2

T 2
(1− |Dψ|2)

=
2

T 2
ev0

{
1 + T (v1 + Tw) + 1

2
T 2(v1 + Tw)2

+ 1
2
T 3(v1 + Tw)3

∫ 1
0 (1− σ)2 exp[σT (v1 + Tw)] dσ

}
.

(38)
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This is Eq. (29) with

g(X,T,w) =
1

2
(2v1w+Tw2)+

1

2
T 3(v1 +Tw)3

∫ 1

0
(1−σ)2 exp[σT (v1 +Tw)] dσ.

A.3. Curvature condition. Equations (30) and (31) now follow imme-

diately. We compute here the coefficient α(X) of T 0 in the expansion of the

difference between the l.h.s. and the r.h.s. of (38); we will prove that

α(X) = 2R, (39)

where R is the scalar curvature of Σ.

Inspection of (38) gives

α(X) = v1∆ψ −∆v0 + 2ψi∂iv1 − (1− |Dψ|2)v21.

This expression is proportional to the l.h.s. of (32). Indeed, using (30) and

(31) for v0 and v1 in (31), we find, writing ψiψ
i for |Dψ|2, that4

α = −2(∆ψ)2/(1− ψiψi) + ∂j

[
2ψjkψk

(1− ψiψi)

]
− 2ψj∂j [∆ψ/(1− ψiψi)]

= (1− ψiψi)−2
{

4ψjkψkψjiψ
i − 4ψjψijψ

i(∆ψ)
}

(1− ψiψi)−1
{
−2ψjψkjk + 2ψjkjψk + 2ψjkψjk − 2∆ψ

}
= 4(1− ψiψi)−2[ψjkψk(ψjlψl − ψj∆ψ)]

− 2(1− ψiψi)−1[(∆ψ)2 − ψjkψjk].

This justifies Eq. (32).

Let us now relate this quantity to the scalar curvature.

The induced metric on Σ is

gij = δij − ψiψj.

The Christoffel symbols are

4Recall that the summation convention is used throughout, and indices are raised and

lowered using the Kronecker δ.

19



Γkij = (1/2)gkm{∂igjm + ∂jgim − ∂mgij}

= (1/2)
(
δkm + ψkψm/(1− |Dψ|2)

)
{−∂i(ψjψm)− ∂j(ψiψm) + ∂m(ψiψj)}

= (1/2)
(
δkm + ψkψm/(1− |Dψ|2)

)
{−2ψmψij}

= −
{
ψkψij + ψkψijψ

mψm/(1− |Dψ|2)
}

= −ψkψij/(1− |Dψ|2).

It follows that for any covariant field ωj,

∇iωj = ∂iωj + ψkωkψij/(1− |Dψ|2).

We compute the curvature tensor from the relation

(∇i∇jωk −∇j∇iωk) = Rijk
lωl.

First,

∇i∇jωk =

= ∂i(∇jωk)− Γlij∇lωk − Γlik∇jωl

= ∂i
{
∂jωk + ψjkψ

hωh/(1− ψmψm)
}

+ [∂lωk + ψlkψ
hωh/(1− ψmψm)]ψlψij/(1− ψmψm)

+[∂jωl + ψjlψ
hωh/(1− ψmψm)]ψlψik/(1− ψmψm).

Since we know that all the derivatives of ω must cancel in the final result,

we have, letting M = 1− ψmψm,

Rijk
lωl = ∂i(ψjkψ

l/M)ωl − ∂j(ψikψl/M)ωl

+ ψlψikψjlψ
ρωρ/M

2 − ψlψjkψilψρωρ/M2,

and therefore,

Rijk
l = ∂i[ψjkψ

l/M ]− ∂j[ψikψl/M ] + (ψikψjρψ
ρψl − ψjkψρψiρψl)/M2.
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The derivatives of M give rise to −2 times the last two terms. The net

result is

Rijk
l = [ψjkψi

l − ψikψj l]/M + [ψjkψ
ρψiρψ

l − ψikψjρψρψl]/M2.

Therefore,

Rik = [ψi
lψlk − ψik∆ψ]/M + [(ψlkψ

l)(ψρiψ
ρ)− ψikψlρψρψl]/M2.

Finally,

R = Rik(δ
ik + ψiψk/M)

= [ψilψil − (∆ψ)2]/M + [(ψlkψ
l)(ψklψ

k)− ψiψkψik∆ψ]/M2

+ [(ψliψ
l)(ψρiψρ)− (∆ψ)ψlρψ

lψρ]/M2

+
{

(ψlkψ
lψk)(ψiρψ

iψρ)− (ψikψ
iψk)(ψlρψ

lψρ)
}
/M3

= [ψilψil − (∆ψ)2]/M + 2
{

(ψρψiρ)(ψσψ
iσ)− ψρψσψρσ∆ψ

}
/M2.

The relation α = 2R follows.
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