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We introduce a systematic procedure for reducing nonlinear wave equations to characteristic problems of Fuchsian type. This reduction is combined with an existence theorem to produce solutions blowing up on a prescribed hypersurface. This first part develops the procedure on the example 2u = exp(u); we find necessary and sufficient conditions for the existence of a solution of the form ln(2/φ 2 ) + v, where {φ = 0} is the blow-up surface, and v is analytic. This gives a natural way of continuing solutions after blow-up.

Introduction.

1.1. Results. We prove in this paper that if Σ is given in a neighborhood of (x 0 , t 0 ) ∈ R n ×R by the equation φ(x, t) = 0 where φ is analytic and ∇φ = 0 1 Comm. PDE, 18, (3&4) 431-452 (1993).

then

u tt -∆u = e u (1) 
has a solution of the form

u = ln(2/φ 2 ) + v(x, t), (2) 
where v is holomorphic near (x 0 , t 0 ), if and only if the blow-up surface Σ satisfies:

Σ is space-like

and Σ has zero scalar curvature for the metric induced by the Minkowski metric.

(

) 4 
Such solutions are uniquely determined by the choice of one analytic function on Σ. (Th. 2, section 3).

This result is a consequence of the reduction of (1) to a Fuchsian equation:

   T w T + Aw = T f (T, x, w, D x w) w(0) = w 0 [START_REF] Hörmander | The lifespan of classical solutions of nonlinear hyperbolic problems[END_REF] where w is a vector-valued function related to v, A is a constant matrix, and w 0 satisfies appropriate conditions. (see section 3). An existence theorem for such problems is given in Th. 1 (section 2).

Remark 1. Motivation and previous results on this question are discussed in §1.2.

Remark 2. The solution in the form (2) is defined on both sides of Σ. Further, if φ is given, u -ln(2/φ 2 ) can be defined everywhere from its values on one side of Σ only, by analytic continuation. We therefore have a cogent way of continuing singular solutions beyond their blow-up set. The only arbitrariness lies in the choice of continuation of the singular term; we have chosen the most obvious one, and will discuss it elsewhere.

Remark 3. It is easily checked on examples that the singular set for nonlinear wave equations can be entirely non-characteristic. However, in this particular case, the blow-up surface is characteristic for the Fuchsian equation associated with the equation and the given surface.

Remark 4. The case when the curvature condition ( 4) is not satisfied, as well as more general nonlinearities, will be dealt with in Part II.

1.2. Literature. We list here a number of special cases and weaker versions of the above results that can be found in the literature.

a) Exact Solutions. Liouville [START_REF] Liouville | Sur l'équation aux différences partielles d 2 log λ/du dv ± λ/2a 2 =[END_REF] proved that all analytic solutions of

u xt = e u (6) 
are locally of the form

u = ln 2f (x)g (t) (f (x) + g(t)) 2 , (7) 
where f and g are analytic functions; conversely, [START_REF] Kobayashi | Singular solutions for semilinear hyperbolic equations, I[END_REF] gives a solution of (6) for all choices of f and g, which is valid in the maximal domain in which it makes sense. This formula, on which the results of §1.1 are easily checked, was the initial motivation for the present work. Equation [START_REF] Kobayashi | Singular solutions for semilinear hyperbolic equations, I[END_REF] can also be recovered from the fact that ( 6) is connected to u xt = 0 by a Bäcklund transformation.

Equation ( 6) has received some recent attention in view of possible applications to quantum field theory.

We note the following points, which may not be new:

1. (6) has complete solutions. 2 (It is known that complete solutions that are bounded below, with u x + u t ≥ β > 0 do not exist (J. Keller [START_REF] Keller | On solutions of nonlinear wave equations[END_REF])).

2. There is a complex-valued solution with an isolated branch point, namely

ln 2i (x + it) 2 .
The singularity of this solution does not "propagate." One can think of it as single-valued solution defined on R 2 \ {(0, 0)}, with values in

C/2πZ.
Motivated by various applications to superfluidity and superconductivity, among others, Grunland and Tuszyński [START_REF] Grundland | Symmetry breaking and bifurcating solutions in the classical complex φ 6 theory[END_REF] have obtained a number of exact solutions for equations 2u = F (u), where F is either a polynomial, or sinh u or cosh u, in low dimensions, using symmetry techniques. The singular behavior exhibited by these solutions corresponds to those found by the present methods. b) Expansion Techniques. In their generalization of the Painlevé test, for the integrability of a given system by the Inverse Scattering Transform, Weiss, Tabor and Carnevale (WTC) [START_REF] Weiss | The Painlevé property for partial differential equations[END_REF] have considered solutions of soliton problems in the form

u = k≥0 u k (x, t)φ(x, t) k-ν (8) 
where ν is required to be an integer. The given equation passes the test if such a formal series solves it, without constraint on φ; convergence questions are not addressed. "When the Ansatz [( 8)] is correct, the PDE is said to possess the Painlevé property and is conjectured to be integrable" [START_REF] Weiss | The sine-Gordon equations: Complete and partial integrability[END_REF]. The problem is said to be "conditionally integrable" if only special φ are allowed. Most of the equations known to be integrable by Inverse Scattering are also known to pass the test. In that case, with a little hindsight, one can often relate φ to the eigenvalue problem associated with the equation. A general explanation of the many connections unraveled by this method, and a proof of the validity of the test in all cases, are not known.

valued solutions of the sine-Gordon equation in n dimensions; exp(iu) then possesses an expansion of the form [START_REF] John | Almost global existence of elastic waves of finite amplitude arising from small initial disturbances[END_REF]. The question of the convergence of this expansion is not addressed.

We will come back, in the subsequent parts of this paper, on the appplication of the present technique to the WTC method.

Kobayashi and Nakamura [START_REF] Kobayashi | Singular solutions for semilinear hyperbolic equations, I[END_REF] show that, in a suitable Sobolev space, a solution to hyperbolic equations of the form Lu = R(u, Du), with R rational, L linear, can be found near a prescribed blow-up suface provided that a formal solution (φ+i0) -k/p l≥0 u l (φ+i0) l/p can be uniquely constructed to all orders. Such a series, however, does not exist in general, and the appropriate statement will be considered in subsequent parts of this paper. c) Fuchsian Equations. The existence theorem for nonlinear Fuchsian equations given in this paper follows essentially the argument of Baouendi and Goulaouic [1a,b], and is in the spirit of Ovsjannikov's version of the Cauchy-Kowalewska theorem. The nonlinear result also follows from a little-known paper of Rosenbloom [START_REF] Rosenbloom | Singular partial differential equations[END_REF], who uses a majorant method. d) Blow-up time and blow-up boundary. Although a number of sufficient conditions for the occurrence of blow-up are known, very few results on the mechanism of blow-up are available. Caffarelli and Friedman [START_REF] Caffarelli | The blow-up boundary for nonlinear wave equations[END_REF][START_REF] Caffarelli | Differentiability of the blow-up curve for one-dimensional wave equations[END_REF] show that, for equations modeled on 2u = u p , smooth initial data with appropriate bounds lead to a blow-up set of class C 1 in one space dimension; the result extends, with additional hypotheses, to 2 and 3 space dimensions. Estimates on the time where a singularity first occurs ("blow-up time") are found in Hörmander [START_REF] Hörmander | The lifespan of classical solutions of nonlinear hyperbolic problems[END_REF], John [START_REF] John | Blowup of solutions of nonlinear wave equations in three space dimensions[END_REF] and Lindblad [START_REF] Lindblad | On the lifespan of classical solutions of nonlinear wave equations[END_REF] (see these papers for more references); they consider the Cauchy problem with initial data O(ε) and find the order of the blow-up time as ε → 0.

Fuchsian Equations.

2.1. The problem. We consider the construction of solutions to

(t∂ t + A(x, t))u = tf (t, x, u, D x u), (9) 
where x belongs to an open set in R n and t ∈ R. u is throughout this section a vector-valued function, and A is a square matrix of corresponding size. We often write D for D x .

We show that this problem has one and only one solution holomorphic near x = 0, t = 0, if A and f are holomorphic near (0, 0) and (0, 0, 0, 0) respectively and j + A(x, t) is invertible for every j = 0, 1, 2, . . .

If the last condition is satisfied only for large enough values of j, we show that a solution exists if and only if f and A satisfy finitely many constraints, in which case the solution depends on finitely many arbitrary functions.

Our result is summarized as follows.

Theorem 1. The Fuchsian problem (9) has a holomorphic solution near (0, 0)

if and only if it has a formal solution.

The rest of §2 is organized as follows. After a brief study of formal solutions of ( 9) of the form j≥0 u j t j in §2.2, we reduce the situation to the case when all the eigenvalues of A have positive real parts ( §2.3). In §2.4, we give an inverse for t∂ t + A and prove simple estimates. We finally define, for the case when all the eigenvalues of A have positive real parts, an iteration procedure to find the unique holomorphic solution of (9), and prove its convergence. This will complete the proof of Theorem 1.

Structure of formal solutions.

We consider formal series u = j≥0 u j (x)t j which solve [START_REF] Keller | On solutions of nonlinear wave equations[END_REF]. The functions u j are holomorphic in x. For any such expression r, we denote by {r} j the coefficient of t j in the expansion of r in increasing powers of t. Insertion of the series into (9) readily gives Au 0 = 0 and, for j ≥ 1, taking A = A(x) as we may (see §2.3), we find

(j + A)u j = {f (x, t, u, D x u)} j-1 .
The r.h.s. is computed using the expansion of f ; it depends only on u 0 , . . . , u j-1 .

In particular,

{f (x, t, v, D x v)} j-1 = {f (x, t, u, D x u)} j-1 if (u -v) = O(t j ).
The above equation for u j can be solved uniquely if and only if (j + A) is invertible. If it is not, u 0 , . . . , u j-1 must satisfy conditions, and u j involves arbitrary functions of x. These functions may, in turn, be constrained by other equations arising from the calculation of some u k , k > j.

We may summarize these facts as follows.

Lemma. The existence of a formal solution of (9) in increasing powers of t can be ascertained in a finite number of operations, and the formal solution involves a finite number of arbitrary functions if it exists. The coefficient u j is uniquely determined from u 0 , . . . , u j-1 if (j + A) is invertible.

We assume in the rest of §2 that a formal solution U has been constructed, and proceed to prove its convergence. It may happen that no holomorphic solution exists, as in the case of equation

(t∂ t -1)u = t.

Preliminary reduction.

We prove here that one may assume

1. A = A(x),
2. All the eigenvalues of A have real parts greater than 0.

The first property is clear: (A -A(x, 0)) can be divided by t, and can therefore be lumped into the right-hand side of (9).

As for the second one, let us define v by

u = U 0 (x) + U 1 (x)t + • • • + U m (x)t m + v(x, t)t m ,
where U 0 , . . . , U m are coefficients of the given formal solution, v is assumed to be holomorphic, and u is the putative holomorphic solution.

Let us write the equation satisfied by v. We find, using the fact that A is now independent of t,

mt m v + t m (t∂ t + A(x))v + m j=0 (j + A)U j t j -tf = 0.
But from §2.2, we know that (j +A)U j is the coefficient of t j-1 in the expansion of f (x, t, U, DU ), which coincides with {f (x, t, u, Du)} j-1 , for j ≤ m, since u formally agrees with the formal solution upto order m -1 inclusive. Therefore,

m j=0 (j + A)U j t j -tf (x, t, u, Du) = t m+1 F (x, t, v, Dv),
where F is analytic in x, t, v, Dv. The function v therefore satisfies an equation of the same type as u, with A replaced by A + m. Taking m large enough proves the claim.

We assume that A is independent of t and that all the eigenvalues of A have real parts greater than 0 in what follows. Also, by introducing the components of Du as additional dependent variables, one may in a standard fashion assume f is linear in Du.

2.4. Inverse of t∂ t + A. We consider the equation

(t∂ t + A)u = tg(t)
where A is independent of t. It has one solution holomorphic in t if the eigenvalues of A have real parts greater than 0, namely

u = Hg := 1 0 tσ A g(σt) dσ, (10) 
with σ A = exp(A ln σ). u is holomorphic in t if g is. If g depends analytically on x as well, so does u. For t ≤ 1 (and every fixed x), we have, for some

C 1 > 0, |u(t)| + |Au| + |t∂ t u| + |∂ t (tu)| ≤ C 1 sup [0,t] |g(s)|. (11) 
and

|(t∂ t + 1)Hg| ≤ C 1 sup [0,t] |g(s)|. (12) 
2.5. Iteration. We assume |t| ≤ 1 throughout. We define a sequence of analytic functions {v j (x, t)} j≥0 by v 0 = 0 and

v j+1 = f (t, x, Hv j , DHv j ) := F [t, Hv j ] (13) 
for j ≥ 0. D is short for D x . Recall that f is now linear in Du.

We use the following two norms. The first is defined on functions of x:

u s := sup{|u(x)| : x ∈ C n , d(x, Ω) < s} ( 14 
)
where Ω is a small ball about 0 in R n so that f is holomorphic for d(x, Ω) < 2s 0 and |u| < 2R. The second is on functions of x and t:

|u| a := sup 0<s<s 0 ,|t|<a(s 0 -s) { u(., t) s (s 0 -s)[1 - |t| a(s 0 -s) ] 1/2 }. ( 15 
)
We prove that G defined by

G[u] := F [t, Hu] (16) 
is a contraction on a set of the form {|u| 2a < ρ/a} for a sufficiently small. It will follow that (i) Hv j s < R for all j and for |t| < a(s 0 -s), making the iteration possible, (ii) the iteration converges and provides the desired solution.

The procedure being very similar to that of [1b], we merely outline the steps.

The basic estimate is the following.

Lemma. There is an a 0 > 0 such that if a < a 0 and j ≥ 1, then all the v j are well-defined for |t| < a(s 0 -s) and

|v j+1 -v j | a ≤ 1 2 |v j -v j-1 | a . (17) 
Proof. It suffices to consider t ≥ 0. The letter C denotes various constants independent of s, j and a. Writing F [t, u] = a(t, v)Dv + b(t, v), we find, using Cauchy's inequality, that if u s (t) < R and v s (t) < R, the for 0 < s < s,

F [t, u] -F [t, v] s ≤ a(t, u) -a(t, v) s Du s + b(t, u) -b(t, v) s + a(t, v) s Du -Dv s (18) ≤ C u -v s /(s -s ). (19) 
Next, one finds, by inspection, that if t < a(s 0 -s), then

Hu(t) s ≤ 1 0 u(τ ) s dτ ≤ Ka|u| a (20) 
for some K > 0.

Furthermore, for |u| a < R/(2Ka) and |v| 2a < R/(4Ka),

we have, for t < a(s 0 -s),

G[u] -G[v] s ≤ C t 0 u(τ ) -v(τ ) s(τ ) s(τ ) -s dτ (22) 
where

s(τ ) = (s + s 0 -τ /a)/2
(see [1b, Lemma 3], where we may take ε = 1). Substituting this value of s(τ ) and estimating u(τ ) -v(τ ) s(τ ) in terms of |u -v| a , we find

|G(u) -G(v)| a ≤ Ca|u -v| a . ( 23 
) |G(u)| b ≤ Cb|u| b + C. (24) 
Therefore, the set {|u| 2a < R/(4Ka)} is mapped into itself by G, and G defines on this set a contraction in the norm | | a , provided a is taken sufficiently small.

The sequence {v j } therefore converges for this norm to a function analytic for t < a(s 0 -s). Applying H to this limit gives the solution to the Fuchsian equation under consideration.

This ends the proof of Theorem 1.

Remark 5. Theorem 1 contains the Cauchy-Kowalewska Theorem as a special case: for instance, if u = j≥0 u j t j solves a first-order system of Cauchy-Kowalewska type, t -1 (u -u 0 ) solves a Fuchsian equation and we recover the fact that the solution contains one arbitrary function.

3. Reduction to a Fuchsian Problem.

We prove in this section that the search for solutions of (1) of the form ( 2)

is equivalent to a Fuchsian problem of the type studied in the previous section.

The existence of a formal solution is equivalent to the conditions ( 3) and ( 4), and if they are satisfied, a solution exists for each choice of a holomorphic function on Σ. 3To see this, we will first take φ as new time variable, and show one can assume that φ = t -ψ(x). Apart from convenience in the calculation, this assumption has the effect of associating to every singular solution a unique expansion of the form (2).

Let us show that such a choice is licit. Let us substitute ln(2/φ 2 ) + v(x, t)

for u into (1), and multiply the result by φ 2 . A short calculation reveals that if we let φ tend to zero in the result, we are left with the equation

n i=1 φ 2 x i -φ 2 t = -exp(v) ( 25 
)
on Σ. This proves 1. Σ is space-like, 2. φ t = 0 on Σ.

Σ therefore has locally an equation t = ψ(x), and it is easily verified that φ/(t -ψ(x)) is analytic and non-zero. We may thus replace φ by t -ψ(x) at the expense of changing v.

We assume from now on that φ(x, t) = t -ψ(x).

3.1. Change of variables. Let x 0 = t and introduce new variables X 0 , . . . , X n by

X 0 = T := φ(x, t), X i = x i (i = 1, . . . , n). ( 26 
)
The derivatives transform according to

∂ a = L a a ∂ a , (27) 
where the summation convention is used,

∂ a = ∂/∂x a , ∂ a = ∂/∂X a ,
and a, a run from 0 to n, while i, i and all other Latin or Greek indices run from 1 to n. Clearly,

L 0 0 = φ t , L 0 i = φ x i = φ i , L i 0 = 0 and L i i = δ i i ,
where δ is the Kronecker symbol. Therefore, ( 1) becomes

e u = [(φ t ∂ T ) 2 - i (δ i i ∂ i + φ i ∂ T ) 2 ]u. ( 28 
)
Remark 6. We use throughout the summation convention on repeated indices one of which is in the upper position and the other in the lower position.

Thus, there is summation in a i b i but not in a i b i . More generally, all indices are raised and lowered using the Kronecker delta. We let

ψ i = ∂ i ψ, ψ ij = ∂ ij ψ . . .,
and ψ i = δ ik ψ k , ψ ij = δ ik δ jl ψ kl . . . In particular, 1≤i≤n (ψ i ) 2 = ψ i ψ i . This convention enables us to keep track of terms in lengthy calculations such as that of §A.3.

Expansion.

We seek a solution in the form

ln 2 φ 2 + v(X, T ), where v = k≥0 v k (X)T k .
Let us write

u = ln(2/φ 2 ) + v 0 (X) + v 1 (X)T + w(X, T )T 2 .
Substitution into (28) leads to the following equation

T 2 ((1 -|Dψ| 2 )∂ 2 T + 2ψ i δ i i ∂ i T -∆ + (∆ψ)∂ T )w + T (4ψ i δ i i ∂ i w + 2(∆ψ)w) + (1 -|Dψ| 2 )(2w + 4T w T ) + {2ψ i δ i i ∂ i v 1 -T ∆ v 1 + v 1 ∆ψ} -∆ v 0 -2 T ∆ψ = 2 T 2 {e v 0 (1 + T v 1 + T 2 (w + v 2 1 /2) + T 3 g(X, T, w)) -(1 -|Dψ| 2 )}. ( 29 
)
In this equation, ∆ (resp. ∆ ) stands for the Laplacian in the x i (resp. X i ) variables, and subscripts stand for derivatives. |Dψ| 2 stands for i ψ 2 i . We have used the fact that for every i,

(δ i i ∂ i + φ i ∂ T )ψ i = ∂ ii ψ.
Note that ∆ and ∆ have the same effect on functions of X alone. The function g is holomorphic in its arguments, and involves v 0 and v 1 as well.

3.3. The curvature condition. Identifying like powers of T will enable us in this section to 1. Compute v 0 and v 1 .

2. Derive a condition on φ, and show that w(X, 0) can be chosen arbitrarily.

Once this has been done, one can recursively compute all the coefficients in the expansion of w in powers of T . We will not go through this here, since we will show directly the existence of w using the result of §2.

The coefficient of T -2 in (29) gives:

v 0 = ln(1 -|Dψ| 2 ). ( 30 
)
The coefficient of T -1 gives:

v 1 = -∆ψ/(1 -|Dψ| 2 ). (31) 
The coefficient of T 0 does not contain w and its vanishing implies a constraint on the blow-up surface. After some calculation, the condition reduces to

(1 -|Dψ| 2 )[(∆ψ) 2 -ψ ij ψ ij ] -2ψ ij ψ j [ψ ik ψ k -ψ i ∆ψ] = 0. (32) 
For n = 1, this is an identity.

For n = 2, it reduces to the equation ψ 11 ψ 22 -ψ 2 12 = 0, There is a simple geometric meaning to relation (32): Σ is endowed with a Riemannian metric from the ambient Minkowski space (with metric |dx| 2dt 2 ); using the x's as coordinates on Σ, we can find (see §A.3) the induced metric tensor,

g ij = δ ij -ψ i ψ j , the corrsponding Christoffel symbols, Γ k ij = - ψ k ψ ij 1 -|Dψ| 2 ,
and the curvature tensor,

R ijk l = (ψ jk ψ i l -ψ ik ψ j l )/(1 -|Dψ| 2 ) + (ψ jk ψ mi -ψ ik ψ mj )ψ m ψ l /(1 -|Dψ| 2 ) 2 . (33) 
It follows that the l.h.s. of (32) equals -(1 -|Dψ| 2 ) 2 R, where R = g ik R ijk j is the scalar curvature.

This proves the curvature condition on the blow-up surface.

3.4. Fuchsian equation for w. If the curvature condition holds, there is no formal obstruction to the existence of a formal series for w.

After some reduction, w turns out to solve an equation of the form

{(1 -|Dψ| 2 )T ∂ T (T ∂ T + 3) -T 2 ∆ }w = T g 1 (X, T, w) + T h i (X, T, w)∂ i w + T 2 h 0 (X, T, w)w T . (34) 
Recall that

∂ i = ∂/∂X i . Let z =      w T ∂ T w T ∂ X w      .
Eq. (34) then reads

T ∂ T z 1 = z 2 ; T ∂ T z 2 + 3z 2 = T g 1 (X, T, z 1 ) + T h i (X, T, z 1 )∂ i z 1 + T h 0 (X, T, z 1 )z 2 + T δ ii ∂ i z 2+i /(1 -|Dψ| 2 ); T ∂ T z 2+i = T (∂ i z 1 + ∂ i z 2 ),
which has the form studied in §2 where A is the (n + 2) × (n + 2) matrix

            0 -1 0 • • • 0 0 3 0 • • • 0 0 0 0 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 0            
.

Its eigenvalues are 0 and 3. The kernel of A is n+1-dimensional. However, the only relevant case is the one in which the last n + 1 components of z vanish for T = 0. Therefore, only one arbitrary function which, in our case, is w(X, 0), is allowed in the formal solution. Conversely, any solution of this system satisfies

z 2 = T ∂ T z 1 ,
and

T ∂ T (z 2+i -T ∂ i z 1 ) = 0
and therefore, any solution with z k = 0 initially for k ≥ 1 gives rise to a solution of (34). We have proved: We have proved the result described in §1.1.

Appendix.

We give in this section some of the calculations that were omitted in the text.

A.1. Change of variables.

If X 0 = T = φ(x, t), ∂ t = φ t ∂ T , ∂ i = δ i i ∂ i + φ i ∂ T , and 
2u = (φ t ∂ T ) 2 - i (δ i i ∂ i + φ i ∂ T ) 2 u, so that, if u = ln(2/φ 2 ) + v, e u = (2/T 2 )e v and 2(ln(2/T 2 ) + v) = 2v + φ t ∂ T (-2φ t /T ) - i ∂ i ( -2φ i T ) = 2v - 2 T φ t ∂ T φ t - i (δ i i ∂ i φ i + φ i ∂ T φ i ) + 2 T 2 {φ 2 t - i φ 2 i }.
Since v and φ are holomorphic, we find

e v = φ 2 t - i φ 2 i + O(φ),
which gives Eq. ( 25). This allows us to let φ = t -ψ(x), as explained in §3.1.

A.2. Expansion. Let us define w off Σ by

u = ln( 2 φ 2 ) + v 0 (X) + v 1 (X)T + w(X, T )T 2 .
We find

e u = 2e v 0 T 2 1 + (v 1 T + wT 2 ) + 1 2 (v 1 T + wT 2 ) 2 + + T 3 2 (v 1 + T w) 3 1 0 (1 -σ) 2 exp[σT (v 1 + T w)] dσ ; 2 = ∂ 2 T - i (δ i i ∂ i -ψ i ∂ T ) 2 ; 2(ln 2 T 2 ) = 2 T 2 - i ∂ i ( 2ψ i T ) = 2 T 2 (1 -|Dψ| 2 ) - 2 T ∆ψ.
Note that this calculation used the relation ∂ i T = -ψ i .

We next find, since

∂ i g = ∂ i g if g = g(X), so that ∆g = ∆ g, 2v 0 (X) = -∆v 0 , 2(v 1 (X)T ) = - i (δ i i ∂ i -ψ i ∂ T )[(∂ i v 1 )T -ψ i v 1 ] = -(∆v 1 )T + v 1 ∆ψ + 2ψ i ∂ i v 1 . 2(wT 2 ) = T 2 w T T + 4T w T + 2w - i ∂ ii w.
Now, for fixed i, ∂ ii can be expressed as follows (we write ∂ i for δ i i ∂ i for convenience):

(∂ i -ψ i ∂ T ) 2 = (∂ i -ψ i ∂ T )∂ i -∂ i (ψ i ∂ T ) = (∂ i -ψ i ∂ T )∂ i -(∆ψ)∂ T -ψ i ∂ iT = ∂ 2 i -ψ i ∂ T i -(∆ψ)∂ T -ψ i (∂ i -ψ i ∂ T )∂ T = ∂ 2 i -2ψ i ∂ T i + |Dψ| 2 ∂ 2 T -(∆ψ)∂ T .
Therefore,

2 = (1 -|Dψ| 2 )∂ 2 T -∂ 2 i + 2ψ i ∂ T i + (∆ψ)∂ T , (35) 
and

2(wT 2 ) = (1 -|Dψ| 2 )(T 2 w T T + 4T w T + 2w) (36) + T 2 (-∆ + 2ψ i ∂ T i + (∆ψ)∂ T )w + T [2(∆ψ)w + 4ψ i ∂ i w]. (37) 
Putting these together, we can write down the equation satisfied by w:

T 2 {(1 -|Dψ| 2 )w T T -∆ w + 2ψ i w T i + (∆ψ)w T } + T 4(1 -|Dψ| 2 )w T + 4ψ i δ i i ∂ i w + 2w∆ψ -∆v 1 + {2(1 -|Dψ| 2 )w + v 1 ∆ψ + 2ψ i ∂ i v 1 -∆v 0 } - 2 T ∆ψ + 2 T 2 (1 -|Dψ| 2 ) = 2 T 2 e v 0 1 + T (v 1 + T w) + 1 2 T 2 (v 1 + T w) 2 + 1 2 T 3 (v 1 + T w) 3 1 0 (1 -σ) 2 exp[σT (v 1 + T w)] dσ . (38) 
This is Eq. (29) with

g(X, T, w) = 1 2 (2v 1 w + T w 2 ) + 1 2 T 3 (v 1 + T w) 3 1 0 (1 -σ) 2 exp[σT (v 1 + T w)] dσ.
A.3. Curvature condition. Equations ( 30) and (31) now follow immediately. We compute here the coefficient α(X) of T 0 in the expansion of the difference between the l.h.s. and the r.h.s. of (38); we will prove that

α(X) = 2R, ( 39 
)
where R is the scalar curvature of Σ.

Inspection of (38) gives

α(X) = v 1 ∆ψ -∆v 0 + 2ψ i ∂ i v 1 -(1 -|Dψ| 2 )v 2 1 .
This expression is proportional to the l.h.s. of (32). Indeed, using (30) and

(31) for v 0 and v 1 in (31), we find, writing

ψ i ψ i for |Dψ| 2 , that 4 α = -2(∆ψ) 2 /(1 -ψ i ψ i ) + ∂ j 2ψ jk ψ k (1 -ψ i ψ i ) -2ψ j ∂ j [∆ψ/(1 -ψ i ψ i )]
= (1 -ψ i ψ i ) -2 4ψ jk ψ k ψ ji ψ i -4ψ j ψ ij ψ i (∆ψ)

(1 -ψ i ψ i ) -1 -2ψ j ψ k jk + 2ψ jk j ψ k + 2ψ jk ψ jk -2∆ψ = 4(1 -ψ i ψ i ) -2 [ψ jk ψ k (ψ jl ψ l -ψ j ∆ψ)]

-2(1 -ψ i ψ i ) -1 [(∆ψ) 2 -ψ jk ψ jk ].
This justifies Eq. (32).

Let us now relate this quantity to the scalar curvature.

The induced metric on Σ is

g ij = δ ij -ψ i ψ j .
The Christoffel symbols are

Γ k ij = (1/2)g km {∂ i g jm + ∂ j g im -∂ m g ij } = (1/2) δ km + ψ k ψ m /(1 -|Dψ| 2 ) {-∂ i (ψ j ψ m ) -∂ j (ψ i ψ m ) + ∂ m (ψ i ψ j )} = (1/2) δ km + ψ k ψ m /(1 -|Dψ| 2 ) {-2ψ m ψ ij } = -ψ k ψ ij + ψ k ψ ij ψ m ψ m /(1 -|Dψ| 2 ) = -ψ k ψ ij /(1 -|Dψ| 2 ).
It follows that for any covariant field ω j ,

∇ i ω j = ∂ i ω j + ψ k ω k ψ ij /(1 -|Dψ| 2 ).
We compute the curvature tensor from the relation

(∇ i ∇ j ω k -∇ j ∇ i ω k ) = R ijk l ω l .
First,

∇ i ∇ j ω k = = ∂ i (∇ j ω k ) -Γ l ij ∇ l ω k -Γ l ik ∇ j ω l = ∂ i ∂ j ω k + ψ jk ψ h ω h /(1 -ψ m ψ m ) + [∂ l ω k + ψ lk ψ h ω h /(1 -ψ m ψ m )]ψ l ψ ij /(1 -ψ m ψ m ) +[∂ j ω l + ψ jl ψ h ω h /(1 -ψ m ψ m )]ψ l ψ ik /(1 -ψ m ψ m ).
Since we know that all the derivatives of ω must cancel in the final result, we have, letting M = 1 -ψ m ψ m , R ijk l ω l = ∂ i (ψ jk ψ l /M )ω l -∂ j (ψ ik ψ l /M )ω l + ψ l ψ ik ψ jl ψ ρ ω ρ /M 2 -ψ l ψ jk ψ il ψ ρ ω ρ /M 2 , and therefore,

R ijk l = ∂ i [ψ jk ψ l /M ] -∂ j [ψ ik ψ l /M ] + (ψ ik ψ jρ ψ ρ ψ l -ψ jk ψ ρ ψ iρ ψ l )/M 2 .
The derivatives of M give rise to -2 times the last two terms. The net result is R ijk l = [ψ jk ψ i l -ψ ik ψ j l ]/M + [ψ jk ψ ρ ψ iρ ψ l -ψ ik ψ jρ ψ ρ ψ l ]/M 2 .

Therefore,

R ik = [ψ i l ψ lk -ψ ik ∆ψ]/M + [(ψ lk ψ l )(ψ ρi ψ ρ ) -ψ ik ψ lρ ψ ρ ψ l ]/M 2 .
Finally,

R = R ik (δ ik + ψ i ψ k /M ) = [ψ il ψ il -(∆ψ) 2 ]/M + [(ψ lk ψ l )(ψ kl ψ k ) -ψ i ψ k ψ ik ∆ψ]/M 2 + [(ψ li ψ l )(ψ ρi ψ ρ ) -(∆ψ)ψ lρ ψ l ψ ρ ]/M 2 + (ψ lk ψ l ψ k )(ψ iρ ψ i ψ ρ ) -(ψ ik ψ i ψ k )(ψ lρ ψ l ψ ρ ) /M 3 = [ψ il ψ il -(∆ψ) 2 ]/M + 2 (ψ ρ ψ iρ )(ψ σ ψ iσ ) -ψ ρ ψ σ ψ ρσ ∆ψ /M 2 .
The relation α = 2R follows.

Theorem 2 .

 2 Equation (1) has a solution of the form (2) if and only if Σ is space-like with zero cuvature for the induced metric. The solution is uniquely determined by one holomorphic function on Σ.

That is, solutions which are defined and free of singularities in the whole x-t plane.

Some of the formulae in this section are somewhat lengthy to derive, and the necessary details have been grouped in the Appendix, for the convenience of the reader.

Recall that the summation convention is used throughout, and indices are raised and lowered using the Kronecker δ.
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