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LOCAL INDEX OF POTENTIAL OPERATORS 
OF MONOTONE TYPE 

SATYANAD KICHENASSAMY 

Abstract. We prove the following result: if f = q•t is the Ghteaux derivative 
of a functional on a reflexive Banach space, and is demicontinuous of class 
(S)+, then it has local index +1 at every isolated zero which is also a local 
minimum point for q•. An application to the existence of multiple solutions 
of nonlinear partial differential equations is given. 

1. INTRODUCTION AND STATEMENT OF RESULTS. 

1.1 A topological result. We consider in this paper a reflexive Banach 
space X and an open bounded set G C X, containing the origin. We may, 
by Trojanski's theorem, renorm X so that it be locally uniformly convex 
as well as X* (with the dual norm). Let J be the associated duality map 
from X to X*. F. E. Browder has constructed in [3] a degree function for 
maps of class (S)+, demicontinuous from el(G) to X*, which is normalized 
by J and reduces to the Leray-Schauder degree when X is a Hilbert space 
and the map considered is a compact perturbation of the identity (we recall 
this construction in õ2.1). 

Our main result (proved in õ2.2) is the following: 

THEOREM 1. Assume that f : cl(G) -• X* satisfies 
(i) f ß (S)+ and is demicontinuous 
(ii) f is in G the GAteaux derivative of ;v : G -• R 
(iii) If x ß cl(G) and x • O, then f(x) y• O 
(iv) If x ß G, then T(x) >_ 7(O). 

Then• 
deg(f, G, 0)= +1. 

In case X is a Hilbert space (indentified with X*) and f = Id+ 
compact, we recover results of P. H. Rabinowitz [11], K. Thews [15] and 
H. Areann [1] ([11] assumes that 7 ß C2 and [15], [1] that 7 ß CI(G;R)) . 
For the finite dimensional case (Poincar&Hopf) see also e.g., J. Milnor [10] 
and E. H. Rothe [12]. 
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1.2 An illustration. We now illustrate Theorem 1 by following multipli- 
city result: Let us first take g • C 1 (R; R) be such that 

(i) g has m zeros 0 < at < -.. • am, 
(ii) ("Area condition") For k >_ 2 and F(s):= f• g(t)dt 

srlp{F($)' 0 _< $ _< ak_ 1} < F(ak) , 

(iii) g(0) > 0. 
Let also Q be a bounded smooth domain in R •v (N _> 1), 1 < p < oc. We 
then have: 

TIfEOREM 2. Iœg satisfies (i), (ii) and (iii) then the problem (P)' 

:= -iv ( + Ivl vu) = )•9(u) on fl 
u = 0 on 0fl 

has at least 2m - 1 weak solutions œor all • large enough. 

This result contains theorems of K. J. Brown and H. Budin [5], P. Hess 
[6], J. Smoller and A. Wasserman [14] for semi-linear equations (p = 2). 
The case of radial solutions (in a more general setting including the case 
p • 2) has been solved by J. Smoller and the artthor [7] by O.D.E. methods. 
REMA}t•:S: (1) The very classical "area condition" (ii) is necessary for ra- 
dial solutions with maximum "close" to each ak to exist (see e.g., [7]). 

(2) Note that no growth condition on g is assumed; we may even take 
g = 0 far out. The problem is "sublinear." 

This theorem will be proved in õ3. 

2. PROOF OF THEOREM 1. 

2.1 Degree of a demicontinuous map of class (S)+. Let G be an open 
bounded subset of a reflexive Banach space X and let f: cl(G) -• X* be 
a mapping. We say that f is demicontinuous if it is continuous from the 
strong topology of X to the weak topology of X* We say that f is of 
class (S)+ and write f • (S)+ whenever for any sequence (xj) in cl(G) 
converging weakly to x in X, and such that 

(1) limsup <f(xj), xj - x) < O, 
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one has xj --, x (strongly). Note that J (duality mapping) is (S)+ and 
demicontinuous. 

We also define for X0 C X finite dimensional, the corresponding 
Galerkin approximation 

(2) fo =i•fio 

where i0 ' X0 -• X is the inclusion, i•) its transpose. J0 is defined in a 
similar way for the duality map J. 

We define the degree of a mapping X0 -• Xg as the Brouwer degree 
normalized by J0. 

Assume now that 0 • f(OG), f 6 (S)+ and is demicontinuous. One 
can then show [3] that there exists a finite dimensional Xf such that for 
any finite dimensional Xo D Xf 

(a) deg(fo, G (q Xo, 0) is well defined 
(b) It does not depend on Xo. 

We call the integer thus obtained deg(f, G, 0). For details and exam- 
ples see [3], [4]. 
RrM^l•:S: (1) The class of mappings we consider is stable under compact 
perturbations. Thus if X = Hilbert space, J = Id, we obtain indeed an 
extension of Leray-Schauder degree theory. 

(2) In case f is the Ghteaux derivative of p and Xo is large enough, 
we might try to define deg(fo, GCqXo, 0) in another way, namely by choosing 
an identification of Xo with R '•, and by using Brouwer degree in R '•. That 
amounts to a normalization by the duality mapping Io for the Euclidean 
norm on R n (while Jo is the duality map for Xo equipped with II-II/ 
restricted to Xo). Both viewpoints are equivalent because 

(a) for every x • 0, (Jox, x) and (Iox, x) are > 0 and by ho- 
motopy, for every R, 

degp... (Jo, Ba, O) = +1; 

(b) Io and Jo have degree 0 on every set which does not contain 
0 in its closure. 

This remark justifies our use of customary degree in R'* for Galerkin 
approximations. 
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2.2 Proof of Theorem 1. We proceed in 3 lemmas. We write f = T•, 
•(0) = 0, and fix e > 0 such that B2• C G. 

LEMMA 1. There are o•, o/, c, c • • 0 such that 

(•) • c (• < c)• c •, c (• < •')• c 

where (•2 < c)• stands for B• n (•2 < c) and similarly for c'. 

LEMMA 2. There is a finite dimensional subspace Xo of X such that 

deg(f, G, 0) -- deg(f0, X0 Ci B•, 0) (4) 

and 

(5) fo • 0 on Xo Ci [cl(B•)•B•/2] . 

LEMM^ 3. deg(f0,X0 Cl (• < ct)•,0) -- +1. 

This will end the proof. Indeed, by (5), f0 has no zero on cl(Xo Cl 
(B•(½, < c')•)) and therefore 

deg(f,G, 0) = deg (f0, X0 • B•,0) 
= deg (f0, X0 • (½ < ct)•, O) 
=+1. I 

It remains to prove the le•as. 
PROOF OF LEMM• 1' For 0 < a < e let 

m• = inf {•(x) ß a • I xll • •}. 

We claim that m• > 0. Indeed m• ) 0 and ifm• = 0, there is a 
sequence (x•)in cl(B•)XB• such that 

(6) •(x•) • n -2. 

By a result due to Ekeland, • cl(B2e) is a complete metric space, one 
c• find another sequence (y•) such that for each n 

(7) 

(8) 

(9) 

1 
x•-y• _<-; y• _<2e 

•(y•) _< •(x•) 

For y • y.and lyll _< 2•, •(y) > •(y•) 
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These properties ensure that for n -1 < a/2, 

(10) [[Yn[I > a_ 
-2 

(11) [ f(Yn) _< 1. 

(Indeed (9) implies that for every z • X, for t small, as t -• 0 one has 

99(Ynq-tZ)--99(Yn)q - --! (f(yn),Z)q-II +O(t) > 0.) 

Now Ilynll 2•. Therefore one may (after extraction of a subsequence) 
assume that 

qyeX; y•-•yandf(yn)•0. 

f being (S)+, this implies that y,• • y, and f(y) = 0. Now y • 0 because 
of (10). This is a contradiction. 

We have proved that ma > 0. Now take c' < m•/2 and (as (• < c') is 
a neighborhood of 0) a' such that Bo, C (• < c') 91B• C B•/2. Repeat the 
operation: take c < too,/2 and Bo C (• < c)o,/2. (1) follows. 
PROOF OF LEMMA 9.: As f has no zeros on G\B• we may restrict our 
attention to deg(f,B•,0). We know that (4) holds for X0 D Xf. Let 
{Xx}x½^ be the set of all finite dimensional subspaces of X containing Xf. 
If (5) were false the following sets would be nonempty for every A: 

Vx = {x • cl(B•)•Bo/2 '(f(x),x) = 0 and v • Xx) 

(indeed zeros of the Galerkin approximation of f in Xx belong to Vx). 
Vx being bounded, its weak closure is weakly compact. The sets wk- 

cl(Vx) enjoy the finite intersection property. Therefore there is an x in 

wk - cl(lZ,). 

Now let w e X. We wish to prove that (f(x),w) = 0. For that 
purpose take Xx containing both x and w. Now (Eberlein-•mulian) we 
may find a sequence xj --• x with xj belonging to Xx. We have 

(13) (f(xj),xj-x)--O (f(xj),w)=O 
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for all j. As f e ($)+, xj -• x and as f is demicontinuous, (11) gives 

(14) (f(x),w)=O. 

This holds for every w' f(x) = 0. On the other hand xjl [ -• IIx ,so 
that 

(15) • _< llxll _< e. 
But f has no zero on cl(B•)kB,•/a. (5) is therefore true. 
P•toor OF LEMMA 3: We recall that io is the inclusion Xo -• X. Let 
•o = •?io. Notice that •o is of class C • on Xo. 

We are now dealing with maps defined on Xo. Identify Xo with R n. 
One may clearly find, as in Lemma 1, cr, cr',c,c',O > 0 such that 

(x6) B• c (•o < c-0); (•o < c + 0)c B•,, 

(17) B•, c (•o < c'-0); (•o < 

Let us approximate c?o in C • norm by a Morse function • in B3•/2 
(generic situation). If [[c?o - •[[c' < 0 then, by (16) -- (17), • satisfies (3). 
As [If(x)[[ is boun&d bdo• fo• •/• < I1•11 < • • may assume that all 
critical points of • are of norm < a. Now the gradient flow r/defined on 
(•b < c')• by 

v(o, x) = 

drl( t, z) = -½' (rl(t, x)) dt 

deforms (•p < c')• into (•p < c) is some finite time T. But this deforma- 
tion stays within B• because •b decreases along trajectories and there is 
no continuous curve from (•b < c')• to {11•11 > d (because of (3)). As 
(8 < c) C B,, the map • defined by 

((t, x) = r/(t, x) forO_<t<T 

•(t,x)= (2T-t)rl(T,x) forT<t<2T 
r - - 

is a deformation of (•b < c')½ to a point. By the Poincar&Hopf theorem, 
Lemma 3 follows. 
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3. PROOF OF THEOREM 2. 

The problem is to find 2m - 1 critical points of 

(18) •(A,u) = jf• [ .(l+lVu[2)p/2- AF(u)] dx P 

defined on W01'P(FI). This functional is Ghteaux differentiable and its gra- 
dient is demicontinuous of class ($)+ by classical arguments of the theory 
of monotone operators. 

We assume that all solutions are isolated -- otherwise there is nothing 
to prove. We first obtain m variational solutions Ul,'-' , u,• which minimize 
truncated functions 99•,... ,99,•. The point is then to find m- 1 more 
solutions, which is achieved thanks to Theorem 1. 

We proceed in 3 steps: 

STEP 1: m variational solutions: Let, for every k _> 1, gk = g on [0, ak], 
extended so that it be C O , > 0 on ]-oo0], _< 0 on [a& +0•[; we may 
assume that g& and g&+l differ only in [a&, ak+l]. Let also 

f0 F&(s) := g&(t)dt. 

We minimize 

(19) •&(A,u) = f• [ (1+ P 

The minimum is attained at some u& (•k is w.l.s.c. coercive). We 
show that this function is a solution of (P): 

LEMMA 4. All critical points u of • satisfy u < a& and are positive solu- 
tions of (P). 

PROOF' (For p = 2 see [2] and [6].) It suffices to show u < ak. We have 
u _< a& by the maximum principle. Moreover by standard regularity results, 
u is bounded in C 1 [9] and therefore we may assume that (P) reads: 

A'u = - div (p(Iwla)w) = 
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with p bounded. Now as gk(ak) = 0 if/• is large enough, u --• gk(u) + I•u is 
increasing and 

(A' + •)(ak - •) > 0, 

and the strong maximum principle (which follows from Harnack's inequality 
[ 9]) shows that u < a• everywhere. 

We now show that the u•'s are distinct. 

LEMMA 5. For k < m and X large enough, 

•k+l (/•, •/k+l) < •k (/•,•/k) ß 

P}tooF: We exhibit u such that 0 < u < a•+• and 

if 0 <_ v _< a• then •(,X, u) < •(,X, v). 

Let 5 > 0, • = {x' d(x, 0•) < 5}, so that I•1 -• 0, and wa E 
C•(fl) such that 0 _< wa _< ak and wa = a• for x E fl•fla (e.g., regularize 
a k X ( d( x ,Ofl ) _> ,• / 2 )nfl ) ) . 

We have by (ii) 

F ((Zk+l)- max F(s) = r > 0 
0<s<a• 

so that if 0 •_ v < a•, 

• F(w,)dx >_/•\• 
> f• F(v)dx 
> f• F(v)dx 

for 5 small enough. Let u = w,. Then 

(F(v) + r) dx - f• max F dx • [O,a•+•l 

+'r •l- 2 max FIlial 
[O,a•+•] 

+ rl•/2 

•(x,•)-v(x,•)< f• [(•+ wl•)"• x•] dx<0 - p 2 

for X large enough. Lemma 5 is proved. 

STEP 2' Degree evaluation: Consider fk = •[. Let Sk = {u ½ W01'P(•) ß 
f•(u) =0}. 
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LEMMA 6. Let 1 < k • m. 

(iii) 

(i) For any R large enough, 

deg(f, BR(0), 0) = 4-1 

(ii) For k _> 2, there is an ek > 0 such that if 0 < e _< 

deg(f•, $•_1 4- Be,O)- 4-1 

Fork_> 1, 

deg(fk, Sk + Be, 0) = +1. 
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PROOF: The theory of õ2 applies. 
First note that •%: + Be is open and bounded because if v ß S•, then 

Av and Ivl[ are bounded. We omit in (i) the dependence of •9 and f on •. 
(i) We have for v ß X = lvol'P(f•) 

(Av, v) • •l •. 

Therefore if J is the normalizing duality map and if we define At by 

n,v = tf(v) + (1 - t)J(v) 

wehavefor v[ =R 

(Atv, v) • t• p - C• + (1-t)• 2 • 0 

for R large enough. This proves (by homotopy invariance) that 

d%(f, •, 0)= d%(&, •,0) = d%(•, •, 0) = +•. 

(ii) (a) We consider the following homotopy: let for v e X and 0 • 
t<l 

A•tv '= tfk-l(V) + (1 - t)fk(v ). 

Let v • S•--1 + Be. We claim that if e is small enough then 
deg(A•, S•-i + B•, 0) is defined for all t. Indeed if this were false 

Vn, Jv•eX, 
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such that 

and 

1 
0 < d(vn, Sk-1) < - 

n 

t,•fk-l(V,•) + (1 - t,•)fk(v,•) = O. 

Now A•v, = ,•h(v,) with h -- 0 outside [Clk_l,Clk]. We have, by the 
maximum H principle, v,• < a•, and v, must take values > a•-i (because 
v, • S•-i). Thus there is an x, such that 

< 5 

and (modulo a subsequence), 

U n • V • Sk-1 

v. • v uniformly (by regularity [9]) 
x. x e 

Now ak_x • v(x) < ak by Lemma 5. This is a contradiction. There- 
fore 

deg(fk, Sk_l + Be,0) = deg(fk_l, Sk_l + Be,0). 

We are thus reduced to the proof of (iii). 
(iii) By excision, 

deg(f•, Sk + Be,0)= deg(fk, Ba,0) 

for R large enough. By (i), this quantity equals +1. 
The Lemma is proved. 

STEP 3: Non variational solutions: Let k • 2. uk is by •sumption isolated. 
Assume that S• = Sk_lU{Uk}. For e small enough (so that. Be(uk)•(Sk-l+ 
B•) = 0) and R large enough, by the additivity property of the degree and 
Theorem 1 on B•(u• ) 

deg(f•,B•[(S•_l +cl(B•)) U ({u•} + •t(B½))], 0) 
= deg (f•, B•, 0) - deg (f•, S•-1 + Be, 0) - deg (f•, {u• } + B•, 0) 

It follows that Sk • S•-1 U {u•}. I 
The theorem is proved. 
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