Local index of potential operators of monotone type

Satyanad Kichenassamy

To cite this version:

Satyanad Kichenassamy. Local index of potential operators of monotone type. Houston Journal of Mathematics, 1990, 16, pp.139-149. hal-00002657

HAL Id: hal-00002657

https://hal.science/hal-00002657

Submitted on 17 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LOCAL INDEX OF POTENTIAL OPERATORS OF MONOTONE TYPE

Satyanad Kichenassamy

Abstract

We prove the following result: if $f=\varphi^{\prime}$ is the Gateaux derivative of a functional on a reflexive Banach space, and is demicontinuous of class $(S)_{+}$, then it has local index +1 at every isolated zero which is also a local minimum point for φ. An application to the existence of multiple solutions of nonlinear partial differential equations is given.

1. Introduction and statement of results.

1.1 A topological result. We consider in this paper a reflexive Banach space X and an open bounded set $G \subset X$, containing the origin. We may, by Trojanski's theorem, renorm X so that it be locally uniformly convex as well as X^{*} (with the dual norm). Let J be the associated duality map from X to X^{*}. F. E. Browder has constructed in [3] a degree function for maps of class $(S)_{+}$, demicontinuous from $\operatorname{cl}(G)$ to X^{*}, which is normalized by J and reduces to the Leray-Schauder degree when X is a Hilbert space and the map considered is a compact perturbation of the identity (we recall this construction in $\S 2.1$).

Our main result (proved in $\S 2.2$) is the following:
Theorem 1. Assume that $f: c l(G) \rightarrow X^{*}$ satisfies
(i) $f \in(S)_{+}$and is demicontinuous
(ii) f is in G the Gâteaux derivative of $\varphi: G \rightarrow \mathbf{R}$
(iii) If $x \in \operatorname{cl}(G)$ and $x \neq 0$, then $f(x) \neq 0$
(iv) If $x \in G$, then $\varphi(x) \geq \varphi(0)$.

Then,

$$
\operatorname{deg}(f, G, 0)=+1
$$

In case X is a Hilbert space (indentified with X^{*}) and $f=I d+$ compact, we recover results of P. H. Rabinowitz [11], K. Thews [15] and H. Amann [1] ([11] assumes that $\varphi \in C^{2}$ and [15], [1] that $\varphi \in C^{1}(G ; \mathbf{R})$). For the finite dimensional case (Poincaré-Hopf) see also e.g., J. Milnor [10] and E. H. Rothe [12].
1.2 An illustration. We now illustrate Theorem 1 by following multiplicity result: Let us first take $g \in C^{1}(\mathbf{R} ; \mathbf{R})$ be such that
(i) g has m zeros $0<a_{1}<\cdots<a_{m}$,
(ii) ("Area condition") For $k \geq 2$ and $F(s):=\int_{0}^{s} g(t) d t$

$$
\sup \left\{F(s): 0 \leq s \leq a_{k-1}\right\}<F\left(a_{k}\right)
$$

(iii) $g(0)>0$.

Let also Ω be a bounded smooth domain in $\mathbf{R}^{N}(N \geq 1), 1<p<\infty$. We then have:

Theorem 2. If g satisfies (i), (ii) and (iii) then the problem (P):

$$
\begin{aligned}
A u:=-\operatorname{div}\left(\left(1+|\nabla u|^{2}\right)^{(p-2) / 2} \nabla u\right) & =\lambda g(u) & & \text { on } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

has at least $2 m-1$ weak solutions for all λ large enough.
This result contains theorems of K. J. Brown and H. Budin [5], P. Hess [6], J. Smoller and A. Wasserman [14] for semi-linear equations $(p=2)$. The case of radial solutions (in a more general setting including the case $p \neq 2$) has been solved by J. Smoller and the author [7] by O.D.E. methods. Remarks: (1) The very classical "area condition" (ii) is necessary for radial solutions with maximum "close" to each a_{k} to exist (see e.g., [7]).
(2) Note that no growth condition on g is assumed; we may even take $g=0$ far out. The problem is "sublinear."

This theorem will be proved in $\S 3$.

2. Proof of Theorem 1.

2.1 Degree of a demicontinuous map of class $(S)_{+}$. Let G be an open bounded subset of a reflexive Banach space X and let $f: \operatorname{cl}(G) \rightarrow X^{*}$ be a mapping. We say that f is demicontinuous if it is continuous from the strong topology of X to the weak topology of X^{*}. We say that f is of class $(S)_{+}$and write $f \in(S)_{+}$whenever for any sequence $\left(x_{j}\right)$ in $\operatorname{cl}(G)$ converging weakly to x in X, and such that

$$
\begin{equation*}
\lim \sup \left\langle f\left(x_{j}\right), x_{j}-x\right\rangle \leq 0, \tag{1}
\end{equation*}
$$

one has $x_{j} \rightarrow x$ (strongly). Note that J (duality mapping) is $(S)_{+}$and demicontinuous.

We also define for $X_{0} \subset X$ finite dimensional, the corresponding Galerkin approximation

$$
\begin{equation*}
f_{0}=i_{0}^{*} f i_{0} \tag{2}
\end{equation*}
$$

where $i_{0}: X_{0} \rightarrow X$ is the inclusion, i_{0}^{*} its transpose. J_{0} is defined in a similar way for the duality map J.

We define the degree of a mapping $X_{0} \rightarrow X_{0}^{*}$ as the Brouwer degree normalized by J_{0}.

Assume now that $0 \notin f(\partial G), f \in(S)_{+}$and is demicontinuous. One can then show [3] that there exists a finite dimensional X_{f} such that for any finite dimensional $X_{0} \supset X_{f}$
(a) $\operatorname{deg}\left(f_{0}, G \cap X_{0}, 0\right)$ is well defined
(b) It does not depend on X_{0}.

We call the integer thus obtained $\operatorname{deg}(f, G, 0)$. For details and examples see [3], [4].
Remarks: (1) The class of mappings we consider is stable under compact perturbations. Thus if $X=$ Hilbert space, $J=I d$, we obtain indeed an extension of Leray-Schauder degree theory.
(2) In case f is the Gatteaux derivative of φ and X_{0} is large enough, we might try to define $\operatorname{deg}\left(f_{0}, G \cap X_{0}, 0\right)$ in another way, namely by choosing an identification of X_{0} with \mathbf{R}^{n}, and by using Brouwer degree in \mathbf{R}^{n}. That amounts to a normalization by the duality mapping I_{0} for the Euclidean norm on \mathbf{R}^{n} (while J_{0} is the duality map for X_{0} equipped with $\|\cdot\|_{X}$ restricted to X_{0}). Both viewpoints are equivalent because
(a) for every $x \neq 0,\left(J_{0} x, x\right)$ and $\left(I_{0} x, x\right)$ are >0 and by homotopy, for every R,

$$
\operatorname{deg}_{\mathbf{R}^{n}}\left(J_{0}, B_{R}, 0\right)=+1 ;
$$

(b) I_{0} and J_{0} have degree 0 on every set which does not contain 0 in its closure.

This remark justifies our use of customary degree in \mathbf{R}^{n} for Galerkin approximations.
2.2 Proof of Theorem 1. We proceed in 3 lemmas. We write $f=\varphi^{\prime}$, $\varphi(0)=0$, and fix $\epsilon>0$ such that $B_{2 \epsilon} \subset G$.
Lemma 1. There are $\alpha, \alpha^{\prime}, c, c^{\prime}>0$ such that

$$
\begin{equation*}
B_{\alpha} \subset(\varphi<c)_{\epsilon} \subset B_{\alpha^{\prime}} \subset\left(\varphi<c^{\prime}\right)_{\epsilon} \subset B_{\epsilon / 2} \tag{3}
\end{equation*}
$$

where $(\varphi<c)_{\epsilon}$ stands for $B_{\epsilon} \cap(\varphi<c)$ and similarly for c^{\prime}.
Lemma 2. There is a finite dimensional subspace X_{0} of X such that

$$
\begin{equation*}
\operatorname{deg}(f, G, 0)=\operatorname{deg}\left(f_{0}, X_{0} \cap B_{\epsilon}, 0\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{0} \neq 0 \text { on } X_{0} \cap\left[c l\left(B_{\epsilon}\right) \backslash B_{\alpha / 2}\right] . \tag{5}
\end{equation*}
$$

Lemma 3. $\operatorname{deg}\left(f_{0}, X_{0} \cap\left(\varphi<c^{\prime}\right)_{\epsilon}, 0\right)=+1$.
This will end the proof. Indeed, by (5), f_{0} has no zero on $\operatorname{cl}\left(X_{0} \cap\right.$ $\left.\left(B_{\epsilon} \backslash\left(\varphi<c^{\prime}\right)_{\epsilon}\right)\right)$ and therefore

$$
\begin{aligned}
\operatorname{deg}(f, G, 0) & =\operatorname{deg}\left(f_{0}, X_{0} \cap B_{\epsilon}, 0\right) \\
& =\operatorname{deg}\left(f_{0}, X_{0} \cap\left(\varphi<c^{\prime}\right)_{\epsilon}, 0\right) \\
& =+1
\end{aligned}
$$

It remains to prove the lemmas.
Proof of Lemma 1: For $0<a<\epsilon$ let

$$
m_{a}=\inf \{\varphi(x): a \leq\|x\| \leq \epsilon\}
$$

We claim that $m_{a}>0$. Indeed $m_{a} \geq 0$ and if $m_{a}=0$, there is a sequence $\left(x_{n}\right)$ in $c l\left(B_{\epsilon}\right) \backslash B_{a}$ such that

$$
\begin{equation*}
\varphi\left(x_{n}\right) \leq n^{-2} . \tag{6}
\end{equation*}
$$

By a result due to Ekeland, as $c l\left(B_{2 \epsilon}\right)$ is a complete metric space, one can find another sequence (y_{n}) such that for each n

$$
\begin{gather*}
\left\|x_{n}-y_{n}\right\| \leq \frac{1}{n} ; \quad\left\|y_{n}\right\| \leq 2 \epsilon \tag{7}\\
\varphi\left(y_{n}\right) \leq \varphi\left(x_{n}\right) \tag{8}\\
\text { For } y \neq y_{n} \text { and }\|y\| \leq 2 \epsilon, \varphi(y)>\varphi\left(y_{n}\right)-\frac{\left\|y-y_{n}\right\|}{n} \tag{9}
\end{gather*}
$$

These properties ensure that for $n^{-1}<a / 2$,

$$
\begin{gather*}
\left\|y_{n}\right\| \geq \frac{a}{2} \tag{10}\\
\left\|f\left(y_{n}\right)\right\| \leq \frac{1}{n} \tag{11}
\end{gather*}
$$

(Indeed (9) implies that for every $z \in X$, for t small, as $t \rightarrow 0$ one has

$$
\left.\varphi\left(y_{n}+t z\right)-\varphi\left(y_{n}\right)+\frac{\|t z\|}{n}=t\left[\left(f\left(y_{n}\right), z\right)+\frac{\|z\|}{n}\right]+o(t) \geq 0 .\right)
$$

Now $\left\|y_{n}\right\| \leq 2 \epsilon$. Therefore one may (after extraction of a subsequence) assume that

$$
\exists y \in X ; \quad y_{n} \rightharpoonup y \text { and } f\left(y_{n}\right) \rightarrow 0 .
$$

f being $(S)_{+}$, this implies that $y_{n} \rightarrow y$, and $f(y)=0$. Now $y \neq 0$ because of (10). This is a contradiction.

We have proved that $m_{a}>0$. Now take $c^{\prime}<m_{\epsilon / 2}$ and (as $\left(\varphi<c^{\prime}\right)$ is a neighborhood of 0$) \alpha^{\prime}$ such that $B_{\alpha^{\prime}} \subset\left(\varphi<c^{\prime}\right) \cap B_{\epsilon} \subset B_{\epsilon / 2}$. Repeat the operation: take $c<m_{\alpha^{\prime} / 2}$ and $B_{\alpha} \subset(\varphi<c)_{\alpha^{\prime} / 2}$. (1) follows.
Proof of Lemma 2: As f has no zeros on $G \backslash B_{\epsilon}$ we may restrict our attention to $\operatorname{deg}\left(f, B_{\epsilon}, 0\right)$. We know that (4) holds for $X_{0} \supset X_{f}$. Let $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ be the set of all finite dimensional subspaces of X containing X_{f}. If (5) were false the following sets would be nonempty for every λ :

$$
V_{\lambda}=\left\{x \in c l\left(B_{\epsilon}\right) \backslash B_{\alpha / 2}:(f(x), x)=0 \text { and } v \in X_{\lambda}\right\}
$$

(indeed zeros of the Galerkin approximation of f in X_{λ} belong to V_{λ}).
V_{λ} being bounded, its weak closure is weakly compact. The sets $w k-$ $c l\left(V_{\lambda}\right)$ enjoy the finite intersection property. Therefore there is an x in

$$
\bigcap_{\lambda \in \Lambda} w k-c l\left(V_{\lambda}\right) .
$$

Now let $w \in X$. We wish to prove that $(f(x), w)=0$. For that purpose take X_{λ} containing both x and w. Now (Eberlein-Šmulian) we may find a sequence $x_{j} \rightarrow x$ with x_{j} belonging to X_{λ}. We have

$$
\begin{equation*}
\left(f\left(x_{j}\right), x_{j}-x\right)=0 \quad\left(f\left(x_{j}\right), w\right)=0 \tag{13}
\end{equation*}
$$

for all j. As $f \in(S)_{+}, x_{j} \rightarrow x$ and as f is demicontinuous, (11) gives

$$
\begin{equation*}
(f(x), w)=0 . \tag{14}
\end{equation*}
$$

This holds for every $w: f(x)=0$. On the other hand $\left\|x_{j}\right\| \rightarrow\|x\|$, so that

$$
\begin{equation*}
\frac{\alpha}{2} \leq\|x\| \leq \epsilon \tag{15}
\end{equation*}
$$

But f has no zero on $\operatorname{cl}\left(B_{\epsilon}\right) \backslash B_{\alpha / 2}$. (5) is therefore true.
Proof of Lemma 3: We recall that i_{0} is the inclusion $X_{0} \rightarrow X$. Let $\varphi_{0}=\varphi i_{0}$. Notice that φ_{0} is of class C^{1} on X_{0}.

We are now dealing with maps defined on X_{0}. Identify X_{0} with \mathbf{R}^{n}. One may clearly find, as in Lemma $1, \alpha, \alpha^{\prime}, c, c^{\prime}, \theta>0$ such that

$$
\begin{align*}
B_{\alpha} \subset\left(\varphi_{0}<c-\theta\right) ; & \left(\varphi_{0}<c+\theta\right) \subset B_{\alpha^{\prime}} \tag{16}\\
B_{\alpha^{\prime}} \subset\left(\varphi_{0}<c^{\prime}-\theta\right) ; & \left(\varphi_{0}<c^{\prime}+\theta\right) \subset B_{\epsilon / 2} . \tag{17}
\end{align*}
$$

Let us approximate φ_{0} in C^{1} norm by a Morse function ψ in $B_{3 \epsilon / 2}$ (generic situation). If $\left\|\varphi_{0}-\psi\right\|_{c^{1}}<\theta$ then, by (16) - (17), ψ satisfies (3). As $\|f(x)\|$ is bounded below for $\alpha / 2 \leq\|x\| \leq \epsilon$ we may assume that all critical points of ψ are of norm $<\alpha$. Now the gradient flow η defined on $\left(\psi<c^{\prime}\right)_{\epsilon}$ by

$$
\begin{aligned}
\eta(0, x) & =x \\
\frac{d \eta(t, x)}{d t} & =-\psi^{\prime}(\eta(t, x))
\end{aligned}
$$

deforms $\left(\psi<c^{\prime}\right)_{\epsilon}$ into $(\psi<c)$ is some finite time T. But this deformation stays within B_{ϵ} because ψ decreases along trajectories and there is no continuous curve from $\left(\psi<c^{\prime}\right)_{\epsilon}$ to $\{\|x\| \geq \epsilon\}$ (because of (3)). As $(\psi<c) \subset B_{\alpha}$, the map ζ defined by

$$
\begin{gathered}
\zeta(t, x)=\eta(t, x) \quad \text { for } 0 \leq t \leq T \\
\zeta(t, x)=\frac{(2 T-t) \eta(T, x)}{T} \quad \text { for } T \leq t \leq 2 T
\end{gathered}
$$

is a deformation of $\left(\psi<c^{\prime}\right)_{\epsilon}$ to a point. By the Poincaré-Hopf theorem, Lemma 3 follows.

3. Proof of Theorem 2.

The problem is to find $2 m-1$ critical points of

$$
\begin{equation*}
\varphi(\lambda, u)=\int_{\Omega}\left[\frac{\left(1+|\nabla u|^{2}\right)^{p / 2}}{p}-\lambda F(u)\right] d x \tag{18}
\end{equation*}
$$

defined on $W_{0}^{1, p}(\Omega)$. This functional is Gâteaux differentiable and its gradient is demicontinuous of class $(S)_{+}$by classical arguments of the theory of monotone operators.

We assume that all solutions are isolated - otherwise there is nothing to prove. We first obtain m variational solutions u_{1}, \cdots, u_{m} which minimize truncated functions $\varphi_{1}, \cdots, \varphi_{m}$. The point is then to find $m-1$ more solutions, which is achieved thanks to Theorem 1.

We proceed in 3 steps:
STEP 1: m variational solutions: Let, for every $k \geq 1, g_{k}=g$ on $\left[0, a_{k}\right]$, extended so that it be $C^{0}, \geq 0$ on $\left.]-\infty 0\right], \leq 0$ on $\left[a_{k}+\infty[\right.$; we may assume that g_{k} and g_{k+1} differ only in $\left[a_{k}, a_{k+1}\right]$. Let also

$$
F_{k}(s):=\int_{0}^{s} g_{k}(t) d t
$$

We minimize

$$
\begin{equation*}
\varphi_{k}(\lambda, u)=\int_{\Omega}\left[\frac{\left(1+|\nabla u|^{2}\right)^{p / 2}}{p}-\lambda F_{k}(u)\right] d x \tag{19}
\end{equation*}
$$

The minimum is attained at some u_{k} (φ_{k} is w.l.s.c. coercive). We show that this function is a solution of (P) :

Lemma 4. All critical points u of φ_{k} satisfy $u<a_{k}$ and are positive solutions of (P).

Proof: (For $p=2$ see [2] and [6].) It suffices to show $u<a_{k}$. We have $u \leq a_{k}$ by the maximum principle. Moreover by standard regularity results, u is bounded in $C^{1}[9]$ and therefore we may assume that (P) reads:

$$
A^{\prime} u=-\operatorname{div}\left(\rho\left(|\nabla u|^{2}\right) \nabla u\right)=g_{k}(u)
$$

with ρ bounded. Now as $g_{k}\left(a_{k}\right)=0$ if μ is large enough, $u \rightarrow g_{k}(u)+\mu u$ is increasing and

$$
\left(A^{\prime}+\mu\right)\left(a_{k}-u\right) \geq 0,
$$

and the strong maximum principle (which follows from Harnack's inequality [9]) shows that $u<a_{k}$ everywhere.

We now show that the u_{k} 's are distinct.
Lemma 5. For $k<m$ and λ large enough,

$$
\varphi_{k+1}\left(\lambda, u_{k+1}\right)<\varphi_{k}\left(\lambda, u_{k}\right) .
$$

Proof: We exhibit u such that $0 \leq u \leq a_{k+1}$ and

$$
\text { if } 0 \leq v \leq a_{k} \text { then } \varphi(\lambda, u)<\varphi(\lambda, v) .
$$

Let $\delta>0, \Omega_{\delta}=\{x: d(x, \partial \Omega)<\delta\}$, so that $\left|\Omega_{\delta}\right| \rightarrow 0$, and $w_{\delta} \in$ $C_{0}^{\infty}(\Omega)$ such that $0 \leq w_{\delta} \leq a_{k}$ and $w_{\delta}=a_{k}$ for $x \in \Omega \backslash \Omega_{\delta}$ (e.g., regularize $\left.a_{k} \chi_{(d(x, \partial \Omega) \geq \delta / 2) \cap \Omega)}\right)$.

We have by (ii)

$$
F\left(a_{k+1}\right)-\max _{0 \leq s \leq a_{k}} F(s)=\tau>0
$$

so that if $0 \leq v \leq a_{k}$,

$$
\begin{aligned}
\int_{\Omega} F\left(w_{\delta}\right) d x & \geq \int_{\Omega \backslash \Omega_{\delta}}(F(v)+\tau) d x-\int_{\Omega_{\delta}} \max _{\left.0, a_{k+1}\right]}|F| d x \\
& \geq \int_{\Omega} F(v) d x+\tau|\Omega|-2 \max _{\left[0, a_{k+1}\right]}|F|\left|\Omega_{\delta}\right| \\
& \geq \int_{\Omega} F(v) d x+\tau|\Omega| / 2
\end{aligned}
$$

for δ small enough. Let $u=w_{\delta}$. Then

$$
\varphi(\lambda, u)-\varphi(\lambda, v) \leq \int_{\Omega}\left[\frac{\left(1+|\nabla u|^{2}\right)^{p / 2}}{p}-\frac{\lambda \tau}{2}\right] d x<0
$$

for λ large enough. Lemma 5 is proved.
Step 2: Degree evaluation: Consider $f_{k}=\varphi_{k}^{\prime}$. Let $S_{k}=\left\{u \in W_{0}^{1, p}(\Omega)\right.$: $\left.f_{k}(u)=0\right\}$.

Lemma 6. Let $1 \leq k \leq m$.
(i) For any R large enough,

$$
\operatorname{deg}\left(f, B_{R}(0), 0\right)=+1
$$

(ii) For $k \geq 2$, there is an $\epsilon_{k}>0$ such that if $0<\epsilon \leq \epsilon_{k}$,

$$
\operatorname{deg}\left(f_{k}, S_{k-1}+B_{\epsilon}, 0\right)=+1
$$

(iii) For $k \geq 1$,

$$
\operatorname{deg}\left(f_{k}, S_{k}+B_{\epsilon}, 0\right)=+1
$$

Proof: The theory of $\S 2$ applies.
First note that $S_{k}+B_{\epsilon}$ is open and bounded because if $v \in S_{k}$, then $A v$ and $\|v\|$ are bounded. We omit in (i) the dependence of φ and f on λ.
(i) We have for $v \in X=W_{0}^{1, p}(\Omega)$

$$
(A v, v) \geq\|v\|^{p}
$$

Therefore if J is the normalizing duality map and if we define A_{t} by

$$
A_{t} v=t f(v)+(1-t) J(v)
$$

we have for $\|v\|=R$

$$
\left(A_{t} v, v\right) \geq t R^{p}-C R+(1-t) R^{2}>0
$$

for R large enough. This proves (by homotopy invariance) that

$$
\operatorname{deg}\left(f, B_{R}, 0\right)=\operatorname{deg}\left(A_{t}, B_{R}, 0\right)=\operatorname{deg}\left(J, B_{R}, 0\right)=+1
$$

(ii) (a) We consider the following homotopy: let for $v \in X$ and $0 \leq$ $t \leq 1$

$$
A_{t}^{\prime} v:=t f_{k-1}(v)+(1-t) f_{k}(v)
$$

Let $v \in S_{k-1}+B_{\epsilon}$. We claim that if ϵ is small enough then $\operatorname{deg}\left(A_{t}^{\prime}, S_{k-1}+B_{\epsilon}, 0\right)$ is defined for all t. Indeed if this were false

$$
\forall n, \exists v_{n} \in X, \exists t_{n} \in[0,1]
$$

such that

$$
0<d\left(v_{n}, S_{k-1}\right)<\frac{1}{n}
$$

and

$$
t_{n} f_{k-1}\left(v_{n}\right)+\left(1-t_{n}\right) f_{k}\left(v_{n}\right)=0
$$

Now $A_{t}^{\prime} v_{n}=\lambda h\left(v_{n}\right)$ with $h \equiv 0$ outside $\left[a_{k-1}, a_{k}\right]$. We have, by the maximum H principle, $v_{n} \leq a_{k}$, and v_{n} must take values $>a_{k-1}$ (because $\left.v_{n} \notin S_{k-1}\right)$. Thus there is an x_{n} such that

$$
a_{k-1}<v_{n}\left(x_{n}\right) \leq a_{k}
$$

and (modulo a subsequence),

$$
\begin{aligned}
v_{n} & \rightarrow v \in S_{k-1} \\
v_{n} & \rightarrow v \text { uniformly (by regularity [9]) } \\
x_{n} & \rightarrow x \in \operatorname{cl}(\Omega) .
\end{aligned}
$$

Now $a_{k-1} \leq v(x)<a_{k}$ by Lemma 5. This is a contradiction. Therefore

$$
\operatorname{deg}\left(f_{k}, S_{k-1}+B_{\epsilon}, 0\right)=\operatorname{deg}\left(f_{k-1}, S_{k-1}+B_{\epsilon}, 0\right)
$$

We are thus reduced to the proof of (iii).
(iii) By excision,

$$
\operatorname{deg}\left(f_{k}, S_{k}+B_{\epsilon}, 0\right)=\operatorname{deg}\left(f_{k}, B_{R}, 0\right)
$$

for R large enough. By (i), this quantity equals +1 .
The Lemma is proved.
STEP 3: Non variational solutions: Let $k \geq 2 . u_{k}$ is by assumption isolated. Assume that $S_{k}=S_{k-1} \cup\left\{u_{k}\right\}$. For ϵ small enough (so that $B_{\epsilon}\left(u_{k}\right) \cap\left(S_{k-1}+\right.$ $\left.B_{\epsilon}\right)=\emptyset$) and R large enough, by the additivity property of the degree and Theorem 1 on $B_{\epsilon}\left(u_{k}\right)$

$$
\begin{aligned}
& \operatorname{deg}\left(f_{k}, B_{R} \backslash\left[\left(S_{k-1}+\operatorname{cl}\left(B_{\epsilon}\right)\right) \cup\left(\left\{u_{k}\right\}+\operatorname{cl}\left(B_{\epsilon}\right)\right)\right], 0\right) \\
& \quad=\operatorname{deg}\left(f_{k}, B_{R}, 0\right)-\operatorname{deg}\left(f_{k}, S_{k-1}+B_{\epsilon}, 0\right)-\operatorname{deg}\left(f_{k},\left\{u_{k}\right\}+B_{\epsilon}, 0\right) \\
& \quad=-1
\end{aligned}
$$

It follows that $S k \neq S_{k-1} \cup\left\{u_{k}\right\}$.
The theorem is proved.
Acknowledgements: The author thanks A. Ambrosetti, H. Brezis and P. H. Rabinowitz for helpful discussions.

References

1. H. Amann, A note on degree theory for gradient mappings, Proc. Amer. Math. Soc. 85 (1982), 591-595.
2. A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), 411-422.
3. F. E. Browder, Degree of mapping for nonlinear mappings of monotone type, Proc. Natl. Acad. Sci. 80 (1983), 1771-1773.
4. \qquad Existence theorems for nonlinear partial differential equations, Proc. Symp. Pure Math. 16 (1970).
5. K. J. Brown and H. Budin, On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal. 10 (1979), 875-883.
6. P. Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. P. D. E. 6 (1981), 951-961.
7. S. Kichenassamy and J. Smoller, Solutions positives des equations quasilinéaires elliptiques, C. R. Acad. Sci. Paris 300 Sér. 1 (1983), 589-591.
8. \qquad Radial solutions of quasilinear equations, submitted.
9. O. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear elliptic equations," Acad. Press, 1968.
10. J. Milnor, "Topology from the Differentiable Viewpoint," Univ. of Virginia Press, Virginia, 1965.
11. P. H. Rabinowitz, A note on topological degree for potential operators, J. Math. Anal. Appl. 51 (1975), 483-492.
12. E. H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr. 4 (1950/51), 12-27.
13. J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. See also Acta Math. 113(1965), 219-240.
14. J. Smoller and A. Wasserman, An existence theorem for positive solutions of semilinear equations, Arch. Rat. Mech. Anal. (to appear).
15. K. Thews, A reductions method for some nonlinear Dirichlet problems, Nonlinear Anal. 3 (1979), 795-813.

Ecole Normale Supérieure
75230 Paris Cedex 05 France
Received September 26, 1986
Present Address:
Courant Institute of Math. Sci., N. 40
251 Mercer St.
New York, NY 10012

