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THE BLOW-UP PROBLEM FOR EXPONENTIAL
NONLINEARITIES

SATYANAD KICHENASSAMY

School of Mathematics

University of Minnesota

127 Vincent Hall

206 Church Street S. E.

Minneapolis, MN 55455-0487

Abstract. We give a solution of the blow-up problem for equation �u =

eu, with data close to constants, in any number of space dimensions: there

exists a blow-up surface, near which the solution has logarithmic behavior;

its smoothness is estimated in terms of the smoothness of the data. More

precisely, we prove that for any solution of �u = eu with Cauchy data on

t = 1 close to (ln 2,−2) in Hs(Rn) × Hs−1(Rn), s is a large enough integer,

must blow-up on a space like hypersurface defined by an equation t = ψ(x)

with ψ ∈ Hs−146−9[n/2](Rn). Furthermore, the solution has an asymptotic

expansion ln(2/T 2) +
∑

j,k ujk(x)T
j+k(lnT )k, where T = t − ψ(x), valid upto

order s− 151− 10[n/2]. Logarithmic terms are absent if and only if the blow-

up surface has vanishing scalar curvature. The blow-up time can be identified

with the infimum of the function ψ. Although attention is focused on one

equation, the strategy is quite general; it consists in applying the Nash-Moser

IFT to a map from “singularity data” to Cauchy data.
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1. Introduction

The problem of describing the solutions of nonlinear evolution equations

near the time when they become infinite has received intense attention in the
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last few years. For nonlinear hyperbolic equations, this question is particularly

interesting because the simplest examples of such singularities do not occur

on surfaces which are characteristic for the linear part. In fact, these singu-

larities have remained beyond the reach of the standard methods for studying

propagation of singularities. They are also not accessible to the theory of

shock waves, which corresponds (for first-order systems) to the spontaneous

formation of finite discontinuities.

A general scenario which would both describe the formation of such strong

singularities and bring this phenomenon within the reach of microlocal meth-

ods has been proposed and refined in a series of papers which show how to

construct large classes of singular solutions with a prescribed blow-up surface.

The present paper shows that this scenario is the correct one by showing, con-

versely, how to produce the blow-up surface corresponding to a given set of

Cauchy data. In this sense, this approach gives, whenever applicable, a de-

tailed description of the solutions near blow-up singularities. It turns out that

these solutions can be continued in a meaningful way beyond the singularity

surface.

The present paper limits itself to one example, the equation

�u = eu,

which in our earlier papers was the simplest equation for this type of investi-

gation, because it leads to the minimal amount of computation. The method

is however quite robust, and application to other examples such as polyno-

mial nonlinearities will be given elsewhere. We consider solutions defined in

Rn × R, where n ≥ 1, which are close to the reference solution ln(2/t2). As

usual, Hs(Rn) denotes the Sobolev space of order s, with norm

|u|s := ‖(1 + |ξ|2)s/2û‖L2(Rn),

where û denotes the Fourier transform.

The main result may be stated as follows:
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Theorem 1. Assume that u is the solution of the Cauchy problem for �u = eu

with Cauchy data on {t = 1} satisfying

(u(1, x)− ln 2, ut(1, x) + 2) ∈ Hs ×Hs−1, where s > 167 + 10[n/2].

If the data are sufficiently close to (ln 2,−2), there is a function ψ ∈ Hr,

with r = s − 146 − 9[n/2] such that u − ln[2/(t − ψ(x))2] is bounded near

Σ := {t = ψ(x)}. In fact, the difference is in Hr−4 and is defined on both

sides of Σ.

In other words, blow-up occurs along a hypersurface (close to t = 0 in this

case), the regularity of which is estimated in terms of the regularity of the data.

Note also that we are giving the Cauchy data for t = 1 and solving backwards

in time, for convenience. The solution continues beyond the blow-up time for

t ≥ −1/2 at least, as will be clear from the proof.

The rest of the paper is essentially devoted to the proof of Theorem 1.

1.1. What is known? For a more thorough discussion of blow-up and more

complete references, see the monographs by Strauss [21], John [12], Hörmander

[9], Alinhac’s notes [3] and Zuily [22]. The last two references discuss very

recent work (up to 1994); see also [16]. These papers also give references on

the complementary issue of global existence.

F. John [10] proved that all solutions of �u = u2 with compactly supported

data in three space dimensions must become singular in finite time. There

are related results for other power nonlinearities and other dimensions which

can be found in [21]. Yet, the solution 6/(t+ 1)2 is free of singularities for all

positive time. Several other results for powers nonlinearities can be found in

[21].

Caffarelli and Friedman [4] showed that under appropriate restrictions on

the data, in 1, 2 or 3 space dimensions, there exists a C1 space-like blow-up

surface on which the solution becomes infinite. Thus, u is finite if and only
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if t < ψ(x). For the solutions considered in this paper, we prove that the

blow-up surface is more regular if the data are.

Several authors (see [9, 11, 12, 21] and their references) focused on the

estimation of the blow-up time, which is the time of the first singularity. This

time is equal to the infimum of the function defining the blow-up surface:

T∗ = inf
x
ψ(x).

Two lines of thought led to precise estimates of the asymptotics of T∗ in the

limit of small data. First, John, (with refinements by Hörmander) proved

that for a class of quasi-linear equations, the blow-up time could be computed

explicitly in the limit of small data (in three dimensions), and that indeed

it becomes infinite when the equation satisfies the null condition. On the

other hand (Lindblad [18]), for the semi-linear equation, �u = u2, if data are

proportional to ε, then T∗ ≈ ε−2; furthermore, one can define a rescaling of

the solution which converges as ε → 0, and solves a limiting equation which

can be written down explicitly. In such a limit of course, the singular set is

rejected at future infinity.

As explained for instance in [9], these methods generalize the argument

leading to the universality of the equation ut + uux = 0 as a model for shock

wave formation. A different light on some of these results was shed by the

work of Alinhac [2], see below. Some results on the classification of possible

singularities are due to Caflisch et al., see [5].

Littman and the author have proved on the other hand, in [13] and [14], that

one can, for all the semi-linear equations considered in these works, construct

solutions with a prescribed analytic blow-up set. This rested on a Cauchy-

Kowalewska theorem for a “generalized Fuchsian system.” This system is

not symmetric, and so it is not immediately clear that there are solutions for

non-analytic blow-up surfaces. However, in [15], a general existence result

for Fuchsian hyperbolic systems in Sobolev spaces was presented, and as an

application, the existence of solutions with prescribed Hs blow-up surfaces was
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obtained for s large. The results in the analytic case had another application:

it proved the convergence of the WTC (or generalized Painlevé) expansions

of the theory of solitons, introduced in 1983 by Weiss, Tabor and Carnevale,

and, since then, extensively studied at the formal level. The structure of these

expansions was further analyzed in [17], with several applications not relevant

to the present paper. As far as blow-up was concerned, these results suggested

that the singularity could be eliminated by introducing a new unknown, which

can be thought of as the “regular part” of the solution. This regular part w

is now finite on the blow-up surface; furthermore, it solves a characteristic

initial-value problem where the blow-up surface is characteristic. The value

w(0) of w on the blow-up surface can be prescribed arbitrarily.

For example, for �u = eu, these singular solutions are such that e−u is

continuous across the blow-up surface. Even more, if the blow-up surface has

vanishing scalar curvature, our solutions are even such that e−u is analytic.

The main technical tool is the analysis of nonlinear Fuchsian PDE. For

references to the extensive literature on Fuchsian equations, we refer to [15].

In this perspective, it is more natural to label the solution by a pair of

“singularity data,” namely the function ψ of which the blow-up surface is the

graph, and the value of the regular part w on the blow-up surface.

The next step in this approach is to show that one can compute singularity

data from Cauchy data.

This is what the present paper accomplishes for exponential nonlinearities.

The present approach, although applied to semi-linear equations only, has

parallels for quasi-linear equations, which have been proposed independently

by Alinhac and Caflisch et al. [2, 5]. These papers propose to analyze the

onset of shock waves by introducing uniformizing changes of variables, and

are, when successful, capable of providing a detailed picture of singularity

formation in the quasi-linear case.
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Thus, in these papers as in the present one, the singularity is removed by an

appropriate change of variables leading to a degenerate initial-value problem.

The situation is quite comparable to that of a Puiseux expansion, which is

obtained from a perfectly regular function by inserting a singular change of

variables. We know that Puiseux expansions have been generalized into series

solutions for nonlinear Fuchsian ODEs of first order (Briot-Bouquet), and of

second order and first degree (Painlevé et al.), which gave birth to a large body

of results which is still growing. Formal extensions to PDEs have appeared in

the theory of solitons, prompting a revival of these techniques. We can now

show that these expansion techniques are not limited to ODEs, but actually

provide very precise models for general types of singularity formation.

1.2. Background. The present paper is the fifth of a series [13, 14, 15, 17].

We recall here the results of the previous four parts, mostly as they apply to

the equation �u = eu. The reader is referred to these papers for more general

equations.

This series places itself as a natural continuation and extension to PDE of

well-known work of Briot and Bouquet, Painlevé and his school,..., as recalled

above.

In [13], singular solutions which are analytic except for a blow-up singu-

larity on an analytic spacelike hypersurface with zero scalar curvature were

constructed. For such solutions, e−u is analytic through the blow-up surface.

This argument suffices to prove the convergence of the WTC expansions.

In [14], the curvature condition was removed, at the expense of allowing

logarithmic terms in the expansion of the singular solution near the blow-up

surface.

In [15], the analyticity assumption was replaced by a Sobolev smoothness

condition. One of the difficulties one has to deal with in this case is that the

Fuchsian system used in [14] is not in “symmetric form,” and has to be replaced



8 SATYANAD KICHENASSAMY

by another one obtained by expanding the components of the unknown to dif-

ferent orders before energy estimates can be used. Other technical difficulties

must also be overcome. The correct system is recalled in §3.

In [17], the structure of the singular expansion was studied in more detail,

and was shown to be conveniently studied using a particular representation of

sl(2) related to the invariant theory of binary forms.

The proof of Th. 1 being quite technical, we present an overview first, con-

cluded by a statement of the main result, and then present the five steps of

the proof in order.

2. Overview of the argument

2.1. Motivation. Stated briefly, the argument consists in establishing, via an

inverse function theorem, a correspondence between the Cauchy data and a

pair of “singularity data” which completely describe the blow-up.

More precisely, let us consider a solution of �u = eu which becomes singular

for t = ψ(x). We first label the solution in two ways: first by a pair of Cauchy

data on t = 1; second by a pair of “singularity data” (w(0), ψ). To define the

function w(0) entering in the singularity data, we introduce coordinates (X,T )

by T = t−ψ(x), X i = xi, and define in Eq. (4) below (§2.2) a rescaled function

w(X,T ); we then let w(0) = w(X, 0).

It is usually convenient to use the same letter to denote a function in the

(x, t) or the (X,T ) coordinates. Whenever this may lead to confusion, we

distinguish them by using tildes in the (x, t) coordinates: u(X,T ) = ũ(x, t).

The same convention applies to other functions.

Now u and w can be thought of as the first components of suitable first-order

systems for vector-valued unknowns ~u and ~w respectively. These systems are

discussed in §3. The system for ~u is the usual symmetric-hyperbolic system

associated with �u = eu in the coordinates (X,T ). The system for ~w is a

Fuchsian system, to which the existence theorem of [15] applies. This means
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that given the singularity data (w(0), ψ), we construct a singular solution,

and then read off its Cauchy data (u0, u1). Note that w is, as a function of

(X,T, T lnT ), as smooth as the data permit, even on the blow-up surface.

We write K(w(0), ψ) = (u0, u1).

We wish now to invert this process, constructing singularity data from

Cauchy data. It will follow from Eq. (4) that blow-up takes place precisely on

t = ψ(x), and, using the Taylor expansion of w, the existence of the first few

terms of an asymptotic expansion of the solution near the blow-up surface will

follow.

We achieve this for data close to the reference solution u(x, t) = ln(2/t2),

which means that Cauchy data on t = 1 are close to (ln 2,−2), and that the

singularity data are close to (0, 0). Other nearly-constant data can be handled

in a similar fashion.

This set-up suggests the use of an implicit function theorem. We use the

Nash-Moser theorem, in a form recalled in §8.

The main point is the proof of the invertibility of the linearization of the

map K from singularity data to Cauchy data. The inverse of this linearization

is computed by comparing two expansions of a solution to the linearization of

(1)

Remark: A key point which makes this proof possible is that despite what

one might surmise at first, u and the solution of the linearized equation both

blow-up exactly on the same surface. The only difference is that the linearized

solution is more singular than u.

2.2. Basic definitions. We define here the function w and the map K. The

mapping properties of the latter are discussed in §§3 and 4. We also introduce

notation for the linearizations of the various maps used in the proof. Note that

we consistently use capital letters for the arguments of differentials: U and W

solve the linearized u and w equations, while (W (0),Ψ) represents a generic
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tangent vector to the space of singularity data, and (U0, U1) are linearized

Cauchy data.

Throughout the paper, ψ ∈ Hr(Rn), and ‖ψ‖∞ < 1/4. All Sobolev indices

will be rounded off to their integer part, for simplicity, and will be assumed

large enough. The specific bounds given in Th. 1 will be obtained in §8.

Since we need to deal with two sets of coordinates, (x, t) and (X,T ), we

will use tildes to distinguish the expressions of a given function in one or the

other set of coordinates; thus, u(X,T ) = ũ(x, t). However, the tilde may be

omitted whenever the meaning is clear from the context. Note that ũ(x, t) =

u(x, t− ψ(x)).

2.2.1. Singularity data. If ũ(x, t) solves

�ũ = eũ, (1)

and if T = t− ψ(x), X i = xi, we have

γuTT −∆u+ 2ψi∂iuT + (∆ψ)uT = eu, (2)

where γ = 1− |Dψ|2. Note that ∂t = ∂T and ∇x = ∇X − (∇ψ)∂T .

We now let R denote the scalar curvature of the hypersurface t = ψ(x), so

that (see the appendix of [13] for the detailed calculation1)

R = [ψilψil − (∆ψ)2]/γ + 2
{
(ψρψiρ)(ψσψ

iσ)− ψρψσψρσ∆ψ
}
/γ2. (3)

We define the new unknown w by

u = ln
2

T 2
+ v(0) + v(1)T +R1T

2 lnT + T 2w(X,T ). (4)

where

v(0) = ln γ, v(1) = −γ−1∆ψ, R1 = −2R/(3γ).

1Indices are raised and lowered using the Kronecker δ; subscripts denote derivatives; the

summation convention applies.
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We also define g = G(ψ,w) := u− ln(2/t2). In that case, w solves the Fuchsian

equation

γ(T∂T )(T∂T + 3)w

+ T
[
(∆ψ)(R1 + (T∂T )w) + 2ψiδi′

i ∂i′(R1 + (T∂T )w)

−T lnT∆R1 − T∆w]

(5) + 4ψiδi′

i ∂i′(R1T lnT + Tw) + 2(∆ψ)(R1T lnT + Tw)− T∆v(1)

= (1− |Dψ|2)
{
(v(1) +R1T lnT + Tw)2 − [v(1)]2

+ T (v(1) +R1T lnT + Tw)3∫ 1

0
(1− σ)2 exp(Tσ(v(1) +R1T lnT + Tw)) dσ

}
.

The singularity data are ψ(X) and w(0)(X) := w(X, 0). Solving (5) and

substituting into (4), we see that they determine u uniquely.

2.2.2. Definition of K. We define the operator K, from Cauchy to singularity

data, and the spaces on which it acts. It will be understood that the operators

of this paper are only defined in a neighborhood of the origin in their respective

spaces; recall that ‖ψ‖L∞ < 1/4. The proof that the mappings K, S, G, Z

and E introduced below do map into the indicated Sobolev spaces is given in

§§3 to 6.

Let us first define an operator S which gives us the solution u on 1/4 ≤

T ≤ 2. It is obtained by composition of the operator mapping (w(0), ψ) to the

solution of Eq. (5) with initial condition w(0) for T = 0, with the operator G

defined by (4), followed by substraction of the reference solution ln(2/T 2):

S : Hr−3 ×Hr → Hr−6−n/2((1/4, 2)× Rn)

(w(0), ψ) 7→ G(ψ,w).

Its detailed construction and regularity properties are studied in §§3 and 4,

where restrictions on r can be found.
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Let

Z : (ψ, g) 7→ g̃.

Z expresses the conversion from the coodinates (X,T ) to the coordinates (x, t).

We then compose Z ◦ S with the evaluation of the Cauchy data of ũ on

t = 1:

E : Hs((1/2, 3/2)× Rn) → Hs−1/2(Rn)×Hs−3/2(Rn) (6)

g̃ 7→ (g̃(., 1), g̃t(., 1)) = (ũ(., 1)− ln 2, ũt(., 1) + 2).

Note that E is independent of ψ. By construction, K(w(0), ψ) + (ln 2,−2)

represents Cauchy data on t = 1, for a solution which is close to the reference

solution ln(2/t2).

Finally, we let

K = E ◦ Z ◦ S : Hr−3 ×Hr → Hr−9−n/2 ×Hr−10−n/2. (7)

The goal is to invert K.

3. Step 1: Construction of S

To define S, we begin by recasting equation (2) in the form of a Fuchsian

system, for which we set-up an initial-value problem. The first component of

the unknown in this Fuchsian system is the unknown w in (5). In view of the

complexity of (5), it is not advisable to start from (5) directly. We find in this

way solutions ũ of �ũ = eũ which are continuous in T with values in some

Sobolev space.

3.1. Three systems. We define three vector-valued functions ~u, ~v and ~w,

the components of which are defined in terms of u and ψ. In particular, the

first component of ~u is the function u of §2, while the first component of ~w

coincides with the function w defined by (4).

Each of these functions solves a first-order system. Furthermore, ~v can be

computed from ~w, and ~u from ~w.
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The algebra having been detailed in [14] and [15], only the final formulae

are given here.

The system for ~u is simply the symmetric-hyperbolic system associated with

Eq. (2).

3.1.1. System for ~u. Let

~u := (u, u0, ui)

where i runs from 1 to n. The following system implies (1) if the ui are, for

T = 0, the components of the spatial gradient of u:

(Q∂T − Ai∂i)~u = ϕ(X,T, u) :=


u0

eu − (∆ψ)u0

0

 ;

here Q is diagonal, and the Ai are symmetric, both (n + 2) × (n + 2). They

are defined by

Q(x) =


1

γ

In

 ,

and Ai has only three non-zero entries, namely

(Ai)2,2 = −2ψi; (Ai)2,i+2 = (Ai)i+2,2 = 1.

3.1.2. Fuchsian system for ~v. We substract from ~u a few terms from its ex-

pansion, and obtain a Fuchsian equation:

Define ~v by 
u = ln(2/T 2) + v(0) + v(1)T + vT 2

u0 = −(2/T ) + v(1) + v0T

ui = v
(0)
i + viT,

(8)

where ~v = (v, v0, vi) is a new unknown, and

exp(v(0)) = γ; v(1)γ + ∆ψ = 0; v
(0)
i = ∂iv

(0),
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which is consistent with the notation of the introduction. The system for ~u

now becomes

Q[T∂T + A]~v = ϕ̃(X) + TAi∂i~v + TF (X,~v) (9)

where

ϕ̃ =


0

−2R(X)

∂iv
(1)

 ; F =


0

b0

0

 ,

R is defined in (3), and

A =


2 −1

−2 1

In

 .

This matrix has eigenvalues 0, 3 and 1, with multiplicities 1, 1, n. Its null-space

is generated by (1, 2, 0, . . . , 0)T . The function b0 is given by

b0(X,T,~v) = −v0∆ψ + γ(2v(1)v + Tv2) + γh(T, v(1) + Tv),

where h(T, z) = z3
∫ 1
0 (1−σ)2 exp[σTz] dσ. Since we are only interested in small

~v, we will truncate the nonlinear part of b0, namely γ[h(T, v(1) + Tv) + Tv2],

so that it is smooth, identically zero for |v| > 2, and given by this expression

for |v| < 1.

Remark: The principal part of (9) is equal to the principal part of the

equation for ~u multiplied by T .

3.1.3. Fuchsian system for ~w. Since ~v is not free from logarithmic terms unless

R = 0, we now view it as obtained from a function of the variables X, t0 and t1

after the substitution t0 = T ; t1 = T lnT . It will also be necessary to further

substract a few more terms from ~v, leading to the introduction of a third

unknown ~w, normalized eventually in such a way that its value for t0 = t1 = 0

be zero.
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Let t0 = T , t1 = T lnT and introduce a third unknown ~w = (w,w0, wi) by

the formulae
u = ln(2/t20) + v(0) + v(1)t0 +R1t0t1 + w(t0, t1, X)t20

u0 = −(2/t0) + v(1) + (t0 + 2t1)R1 + w0t0

ui = v
(0)
i + v

(1)
i t0 + wit0, (10)

where

R1 = −2R

3γ
.

In other words, we are defining ~w by
v = w + R1t1/t0

v0 = w0 + R1(1 + 2t1/t0)

vi = wi + v
(1)
i

This definition of w is consistent with (4).

Remark: Note that w0 should not be confused with w(0), which is the

initial value of w.

Equation (9) now takes the form

Q(N + A)~w = t0A
i∂i ~w + t0g0(X, t0, t1, ~w) + t1g1(X, t0, t1, ~w), (11)

where Q, A, Ai are as before,

N = t0∂/∂t0 + (t0 + t1)∂/∂t1,

and

g0 =



0

−(w0 +R1)∆ψ + ∆v(1) −∑
i 2ψi∂iR1

+ γ[h(v(1) + t0w + t1R1) + (2v(1) + t0w + t1R1)w]

∂iR1


and

g1 =


0

γ(2v(1) + t0w + t1R1)R1 − 2R1∆ψ − 4
∑

i ψi∂iR1

−2v
(1)
i

 .
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Note that since the kernel of A is one-dimensional, the solutions of (11) are

determined entirely by one function, namely the value of the first component

of ~w for t0 = t1 = 0. We let

~w(0) = w(t0 = t1 = 0),

and replace ~w by ~w− ~w(0). This doesn’t change the form of the equation, but

reduces us to the case of a Fuchsian system with vanishing initial values.

By abuse of notation, we will sometimes write t for (t0, t1), the meaning

being clear from the context.

Remark: Since the equations for ~w include those deduced from u0 = ∂Tu

and ∂Tui = ∂iu0 (which implies in particular that ∂T (∂iu − ui) = 0), we see

that if ~w solves (11), the function ~w(T, T lnT,X) satisfies

w0 = 2w + T∂Tw,

and

∂T [wiT − T 2∂iw − (T 2 lnT )∂iR1] = 0.

It follows that we have in fact

wi = T∂iw + (T lnT )∂iR1.

This shows that w determines precisely one solution of (11), which has the

property that the ui are the components of the gradient of u, so that this

construction does produce solutions of �u = eu. This is noteworthy since not

all solutions of the equation for ~u correspond to solutions of (1).

We summarize the results in the following theorem:

Theorem 2. There are symmetric matrices Q and Aj, and a constant matrix

A as well as a function f such that if t = (t0, t1), and ~w solves

Q(N + A)~w = t0A
j∂j ~w + t · f(t,X, ~w), (12)

with w ≡ 0 for t0 = t1 = 0, then the first component w of ~w generates, via

(4), a singular solution u of (1) which blows up for T = 0.
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Furthermore, if ψ ∈ Hr(Rn), we have Q and Aj in Hr−1
loc , while f maps

Hr−1 to Hr−4 smoothly if r > n/2 + 4, and is smooth in t.

3.2. Solving Fuchsian systems. We now need to solve the equation for w.

We recall below a general set-up for this purpose, which will also enable us to

solve the linearization of (21).

We will denote by (u, v) both the Euclidean scalar product on Rn+2 and the

associated L2 scalar product.

Assumptions on Q, A, Aj and f which enable one to solve the initial-value

problem are as follows:

(H1) A is constant, while multiplication by Q, Q−1 and Aj are bounded

operators in Hs; all the eigenvalues of A have nonnegative real parts.

(H2) f(t0, t1, u) is a C∞ function in u and t and defines a map from R2×Hs

to Hs; furthermore, f ≡ 0 if ‖u‖L∞ or |t| is large enough.

(H3) There is a positive-definite matrix-valued function V , which commutes

with Q and Aj, and such that (u, V QAu) ≥ 0, and (u, V Qu) is equiv-

alent to the L2 norm. In addition, V Aj = Aj, and multiplication by V

is a bounded operator in Hs.

Here, we may take V = diag (2γ, 1, In) to satisfy (H3). The other assumptions

are readily checked if s > n/2.

The following existence theorem is a simple consequence of the results in

[15], where a much more general result (tailored to more general blow-up

problems) can be found. The statement on the domain of existence is proved

in the following section.

Theorem 3. Assume that the coefficients and nonlinearity satisfy the assump-

tions (H1)–(H3). For s > n/2 + 1, (12) has exactly one solution (X,T ) 7→

~w(T, T lnT,X), continuous in T , with values in Hs, which vanishes for T = 0.

The solution is defined for |T | ≤ 2 if ψ and w(0) are small enough.
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In particular, ~w is therefore defined for |t−1| ≤ 1/2 at least, since ‖ψ‖L∞ <

1/2.

4. Step 2: Smoothness of S

There are three issues that must be settled about S: On which spaces does

it act in such a way that u is defined upto t = 1? Does it produce functions of

high Sobolev regularity in both space and time variables? Is it a C2 mapping

on these spaces?

For the first question, we note that the nonlinearities g1 and g2 satisfy, if

s ≤ r − 4,

|gi|s ≤ C|ψ|r(1 + |w|s + |w0|s) + C|t| |w|s.

It follows that the time of existence in T can be made arbitrarily large if ψ

and w(0) are small enough, by the energy estimates of [15]. Let us therefore

assume that the solutions are all defined for |T | < 2 throughout the rest of the

paper.

For the second question, we must consider the smoothness of the time deriva-

tives of the solution. We are only interested in what happens near t = 0, so we

do not need information on the T -derivatives of w near T = 0, although they

could be investigated as in [15]. More simply, we note that the Fuchsian sys-

tem for ~w(t0, t1), can be viewed as a system for ~w(T, T lnT ), by replacing N by

t∂T and t0 amd t1 in terms of T ; it therefore contains information on (T∂T )w,

By applying T∂T repeatedly, we see that for any k such that s− k > n/2, the

derivative (T∂T )kw belongs to Hs−k. This will ensure that for 1/4 < |T | < 2,

and therefore for 1/2 ≤ t ≤ 3/2, w belongs to Hs−n/2−1 in space and time.

For the third question, we need to study the first two derivatives of w with re-

spect to w(0) and ψ. Since the mapping G defined by (4) is manifestly smooth,

the real question is the smoothness of ~w. We will bound its differentials upto

third order, thereby ensuring that it is twice continuously differentiable.
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Two observations are helpful here: First, if an operator P between Banach

spaces is such that for any u and h the function P (u+ εh) is C1 as a function

of ε, and its derivative is uniformly bounded by C‖h‖ uniformly in u, it follows

that P is continuous and Fréchet differentiable at u. This argument can be

transposed immediately to obtain a criterion for P to be C1, C2, . . . We are

therefore led to the consideration of S(w(0) + εW (0), ψ + εΨ). The second ob-

servation is that we may take ε as an additional space variable in our Fuchsian

equations, and consider instead the function

ϕ(ε)S(w(0) + εW (0), ψ + εΨ),

where ϕ is a smooth cutoff function equal to 1 near ε = 0. It is immediate

that the correspondong Fuchsian system has a solution ~w of class Hr−n/2−5

in (X,T, ε). In particular, if r > n + 7, say, it will be a function of class

C1 in ε, and we may differentiate the equation with respect to ε. We have

therefore proved that the Gâteaux differential of S may be computed by formal

differentiation of the equation.

Now, the linearization of the Fuchsian system for w, is another Fuchsian

system, with coefficients of the same degree of regularity. Since it is a linear

system, we are guaranteed that the solution exists upto T = 2. Similarly,

the second variation is computed by linearizing once more. Since ~w(ε) −

~w(ε = 0) can be expressed using Taylor’s formula, we obtain a bound on the

first differential of S. We then repeat the argument for the second and third

differential. The final result is that if the solution is in Hq, the differential

of S is defined with values in Hq−1, and so on, because each linearization of

the equation leads to a Fuchsian equation where the time derivative of the

previously computed differentials occur, leading to a loss of one derivative for

each linearization. If we allow for a loss of 3 derivatives, we see that we can

achieve S of class C2. (In the presence of further local smoothing properties,

the regularity of the differential may perhaps be improved.)
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To summarize, w ∈ Hs−4 for fixed T , but is in Hr−6−n/2((1/4, 2) × Rn). It

is however of class C2 with values in Hr−9−n/2((1/4, 2)× Rn).

5. Step 3: Smoothness of Z and definition of K

K is obtained from the solution u given by S by (i) changing variables from

(X,T ) to (x, t); (ii) restricting ũ and ũt to t = 0. We study the domain and

smoothness of the first operation, namely Z. We let s = r − 9 − n/2, which

we assume to be greater than n/2.

Theorem 4. Z maps Hr(Rn) ×Hs(Rn × (1/4, 2)) to Hs(Rn × (−1/2, 1/2)).

It is of class C2 with values in Hs−2(Rn × (−1/2, 1/2)).

Proof: We need to estimate the space-time regularity of ũ(x, t) = u(x, t −

ψ(x)). The idea is as usual (see e.g. [8] for a review of this type of argument) to

differentiate and estimate the products of derivatives of ψ using the Gagliardo-

Nirenberg inequalities. Since there is an asymmetry between the x and t

variables here, we provide the details in a form convenient for the rest of the

argument.

Let us therefore find bounds on the derivatives of ũ. We first note that for

any function f ,

∫ ∫
1/2≤t≤3/2

|f(x, t− ψ(x))|2 dx dt ≤
∫ ∫

1/4≤T≤2
|f(X,T )|2 dX dT,

since ‖ψ‖∞ ≤ 1/4.

We therefore find

‖∂k
t u(x, t− ψ(x))‖L2(1/2<t<3/2) ≤ ‖ũ(X,T )‖Hs(1/4<T<2)

for k ≤ s. It therefore suffices to estimate pure x derivatives of ũ, and then

apply the above argument to estimate mixed space-time derivatives.

Now, for any integer s, a generic derivative in x of order s has the form

Ds
x[u(x, t− ψ(x))] =

∑
ca,b,k1,...,kj

(Da
XD

b
Tu)(x, t− ψ(x))Dk1ψ . . .Dkjψ,
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where k1 + · · · + kj = b = s − a (this statement can be checked by induction

on s). The Gagliardo-Nirenberg inequality gives quite generally, for functions

of n+ 1 variables,

‖Djψ‖L2s/j ≤ C|ψ|j/s
s ‖ψ‖(s−j)/s

L∞ ,

provided that s > (n+ 1)/2.

There are now two cases. Either j ≥ 1 and the Gagliardo-Nirenberg in-

equality gives that

∫
|Ds

x[u(x, t− ψ(x))]|2 dx ≤ C|ψ|s(1 + ‖ψ‖s−1
∞ ),

uniformly in t, so that the integral of this quantity over time is a fortiori

bounded, or otherwise j = 0 and we are dealing with the pure x derivativeDsu,

which is estimated in the same way as the time derivatives, since Dx = DX .

To complete the construction of K, it suffices to compose Z ◦ S with E,

which is linear. Since we know that u(x, t− ψ(x)) is of class Hs, we compute

u(x, 1− ψ(x)) ∈ Hs−1/2 and

∂t[u(x, t− ψ(x))](t = 1) = uT (x, 1− ψ(x)) ∈ Hs−3/2,

by the trace theorem.

The twice continuous differentiability of K follows again from the consider-

ation of Gâteaux derivatives upto order 3. We find therefore that K is defined

near the origin and is C2 with values in Hr−9−n/2−1/2 ×Hr−10−n/2−1/2.

This completes the construction of the evaluation at t = 1. Note that one

could obtain more detailed results in Hs
loc using the properties of paracompo-

sition [1] (one would of course need to avoid any preliminary cutoff in space).

6. Step 4: Linearization of K

Since K is the composition of three C2 maps, it is itself C2.
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6.1. Characterization of K ′. We must now characterize solutions of the

linearization of K in order to be able to identify its inverse in the following

section. We first characterize the linearization in two different ways:

Theorem 5. Let K ′(w(0), ψ)[W (0),Ψ] = (U0, U1) and consider U = (Z ◦

S)′(w(0), ψ)[W (0),Ψ]. Then U can be computed in two different ways:

(1) compute the solution of the linearization of (5), linearized with respect

to ψ and w, and substitute into the linearization of Eq. (4);

(2) let u be the solution S(w(0), ψ); then U solves the equation

�Ũ = eũŨ

with data (U0, U1).

As usual, Ũ(x, t) = U(X,T ) and ũ(x, t) = u(X,T ).

Proof: Since S is the composition of the solution operator associated with

the Fuchsian equation (5) with the operator G, its differential is simply the

composition of the differentials of these two operators. We have already seen

that since all differentials can be computed as Gâteaux derivatives, we are

allowed to compute them in the natural way, by linearizing all the equations

used to compute u. This proves (1).

For statement (2), we note that the functions ln(2/t2) + (Z ◦ S)(w(0), ψ), as

w(0) ψ vary. all solve the same equation, namely �u = eu. The differential

can again be evaluated as a Gâteaux derivative. Since the reference solution

ln(2/t2) is independentof (w(0), ψ), the second statement follows.

We now compute an expansion of U in powers of T and T lnT by each of the

two methods. By comparing the results, we will be able to define the inverse

of K ′ and to estimate its regularity.

6.2. First expansion of U .

6.2.1. Computation of w. Let us first clarify the notation of the various maps

involved.
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The linearization S ′ of S is obtained by linearizing the Fuchsian equation

for w. We write this linearization as

S ′(w(0), ψ) : (W (0),Ψ) 7→ (W,WT ) 7→ (U,UT ), (13)

using capitals for solutions of linearized equations.

Similarly, it follows from the definition of Z that

Z ′(ψ, u) : (Ψ, U) 7→ Ũ − ũtΨ, (14)

using the fact that uT (x, t− ψ(x)) = ũt(x, t).

Finally, E is linear.

Now, the successive derivatives of w with respect to t0 and t1 exist upto order

three if we assume, say, r − 11 − n/2 > 0. In fact, if we let ~w = t0 ~w
′ + t1 ~w

′′,

one can, as in the previous paper in this series [15], define a Fuchsian system

for (~w′, ~w′′) which implies the original system for ~w. These systems contain

derivatives of w. By iterating the process, we establish the existence of an

expansion of the solution in powers of T and T lnT , at least as long as the

nonlinearities in these “derived” Fuchsian systems continue to act on a Sobolev

space of order greater than n/2 + 1:

w = w(0) + w(1)T + w(1,1)T lnT + · · ·+ w(j,k)T j(lnT )k + . . . ,

with k ≤ j. The same considerations apply to the linearization of (5), or

rather the associated Fuchsian system, and its solution W , corresponding to

the initial value W (0). giving

W = W (0) +W (1)T +W (1,1)T lnT + · · ·+W (j,k)T j(lnT )k + . . . .

Since each term in these series entails a loss of one derivative, these expansions

remain valid upto order j as long as r − 4− j > n/2.

It should be kept in mind that the coefficients w(j,k) are known, since they

are the coefficients of the expansion of the reference solution. They can be
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computed by substitution of the expansion into (5). We give the result for

w(1) and w(1,1), for later use:

w(1,1) = −γ−1
∑

i

∂i(R1∂iψ);

4γw(1) = 4
∑

i

(ψi∂i − ∂iψi)w
(0) +

∑
i

(3ψi∂i + 4∂iψi)R1 + ∆v(1) +
1

3
γ[v(1)]3.

6.2.2. Computation of U . We now compute U by linearization of (4). This is

accomplished in two steps: first, we linearize w, which produces

U = V (0) + V (1)T +R′1T
2 lnT

+ T 2(W (0) +W (1)T +W (1,1)T lnT ) +O(T 2(lnT )2),

where V (0), V (1) and R′1 are the linearizations of v(0), v(1) and R1 respectively,

with respect to ψ. We are interested in

Ũ = (Z ◦ S)′(w(0), ψ)[W (0),Ψ].

By (14), the linearization of Z ◦ S is computed by replacing T by t−ψ in the

above expression for U , and by adding

−Ψ(− 2

T
+ v(1) +R1T (1 + 2 lnT ) + 2Tw + T 2wT )

to the result. Therefore, we obtain an expression for Ũ of the form

Ũ =
U (−1)

T
+ U (0) + U (1,1)T lnT + U (1)T

+ U (2,1)T 2 lnT + U (2)T 2 + . . . . (15)
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where the higher-order terms have at least a factor of T 3 (possibly multiplied

by powers of lnT ). The first few coefficients are

U (−1) = 2Ψ (16)

U (0) = V (0) −Ψv(1)

U (1,1) = −2ΨR1

U (1) = V (1) −Ψ(R1 + 2w(0))

U (2,1) = R′1 − 3Ψw(1,1)

U (2) = W (0) −Ψ(3w(1) + w(1,1)). (17)

Observe that Ψ and W (0) can be recovered from U (−1) and U (2) if w and ψ are

known. Note also the absence of a pure lnT term.

7. Step 5: Inversion of K ′

To compute the inverse of K ′, we must consider a reference solution u =

S(w(0), ψ), such that (u0, u1) = K(w(0), ψ), and a pair (U0, U1). We must then

find a pair (W (0),Ψ) such that K ′(w(0), ψ)[W (0),Ψ] = (U0, U1). We assume

that these data are in Hσ ×Hσ−1, where σ = r − 10− n/2.

From the characterization of Step 4, we know that we must first define U

by solving �Ũ = eũŨ with data (U0, U1). We must then study the behavior

of the function U = Ũ(X,T + ψ(X)) as T → 0.

We first show that the linearization of (1) is itself again a Fuchsian equation.

We next show that a solution of a linear Fuchsian equation cannot have a

singularity worse than a power of T . We then prove iteratively that the solution

of the linearized equation has in fact an expansion in powers of T and T lnT to

all orders. Finally, by comparing this expansion with the result of the previous

step, and more specifically Eqs. (16) and (17), we identify the desired values

of W (0) and Ψ.

7.1. Fuchsian equation for U .
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7.1.1. Expansion of eu. We provide below the expansion of eu in terms of T ;

its existence is a consequence of the representation (4), combined with the

properties of w:

eu =
2γ

T 2
{v(1)T +R1T

2 lnT + T 2w}

=
2γ

T 2
{1 + v(1)T +R1T

2 lnT + T 2(w +
1

2
[v(1)]2) +O(T 3 lnT )}. (18)

Note that there is no T lnT term in the curly brackets.

The equation �U = exp(u)U therefore reads, in the (X,T ) variables,

T 2(γUTT −∆U + 2ψi∂iuT + (∆ψ)UT ) = γ(2 + a1T + a21T
2 lnT + . . . )U.

7.1.2. Fuchsian system for the determination of U . The equation for U is

converted into Fuchsian form by letting

~U = (U,U0, Ui) := (U, T∂TU, T∇xU).

We find

Q(T∂T +B)~U = TAi∂i
~U + T


0

[ exp(Tv(1) + T 2w)− 1]U/T − U0∆ψ

0

 ,

where

B =


0 −1

−2 −1

0n

 .

7.1.3. A general property of Fuchsian systems. We now show that a solution

of a linear Fuchsian equation cannot have a singularity worse than a power

of T . We then prove iteratively that the solution of the linearized equation

has in fact an expansion in powers of T and T lnT to all orders. Finally, we

identify from the terms of this expansion the desired values of W (0) and Ψ.

Let us therefore start with a general Fuchsian system, and show that its

solutions have only power singularities in T . We then apply the argument to
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U . This generalizes results of Tahara for the linear, C∞ case. In our case, we

need in addition to track the number of derivatives involved carefully.

Let ~w solve

Q(T∂T + A)~w = T (B ~w + f(~w))

for T > 0, where B =
∑

j Aj∂j, f is linear (or sublinear), and is only as-

sumed to be continuous in T (it might therefore involve terms in T lnT ). The

dependence of f on space and time coordinates is suppressed.

We find by multiplication that if e(T ) = (~w, V Q~w)(T ),

T∂T e+ αe ≥ −CT (1 + e),

where α can always be taken to be positive. In this particular example, α = 1,

but the following applies quite generally. It follows that

(Tαe)T ≥ −CTα(1 + e) ≥ −C(1 + Tαe),

so that we get, by integration, say from T to 1,

1 + e(T )Tα ≤ const.

Therefore, we see that ‖~w‖L2 cannot grow faster than a power of T .

In fact, we know [15] that (1 −∆)σ/2 solves again an equation of the same

form as ~w, and therefore, we also know that Tα‖~w‖Hσ remains bounded.

7.2. Definition of the inverse of K ′.

7.2.1. Existence of an expansion for U . We now apply these general facts to

the Fuchsian equation for U . We find we may take α = 1; indeed, α is

determined as the smallest value which makes the inequality (V QB~w, ~w) ≤

α(V Q~w, ~w) hold.

Remark: It is fortunate that α = 1 here. But quite generally, it is always

possible to reduce oneself to this case: Assume for example that

|U(T )|σ + |TUT (T )|σ ≤ CT−a.
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The equation for U takes the form

(T∂T + 1)(T∂T − 2)U = O(T )[U ],

where the r.h.s. contains products of T by bounded expressions involving sec-

ond derivatives of ψ derivatives of U of the form D2U , DU or DT∂TU at most,

where D stands for any space derivative. This r.h.s. is therefore estimated by

CT 1−a in Hσ−2 if σ−2 ≥ r−2 > n/2. By solving this equation for U , we find

that U is in fact O(T 1−a) in Hσ−2 unless 1− a ≥ −1. TUT satisfies a similar

estimate.

Iterating the process, we see that there is an integer r1 such that

|U |σ−r1 ≤ CT−3/2.

This remark would be useful in handling more general equations. It is imple-

mented in the next paragraph to produce the existence of an expansion of U

in powers of T and T lnT , to be identified with the expansion of §6.2.

Since one can solve (T∂T + 1)(T∂T − 2)U = g(t) as

U =
c−1

T
+ c2T

2 +
∫ T T 3 − s3

3s3T
g(s) ds,

we see that whenever g(s) = O(sa), where a is not an integer, there is a

particular solution which is O(T a) as well. Indeed, for a < 0, we take the

lower limit of integration to be 1, and for a > 0, we split the integrand into

two parts, one of order sa−3, and the other of order sa; we then choose different

constants of integration for these two terms.

It follows that there is a function U0 in Hσ−2 such that the linearization U

satisfies

U =
U (−1)(X)

T
+O(1).

We may now insert U = U (−1)T−1 + V in the l.h.s. of the equation for U .

Integrating again produces the next term, so that

U = U (−1)T−1 + U (0) +O(T lnT ).
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The T−1 term obtained at this step must clearly be the same as that obtained

before. In addition, we find that U (0) ∈ Hσ−1. The process can clearly be

iterated. Quite generally, since the second derivative terms are multiplied by

T 2, we find that terms at level j have two derivatives less than those at level

j − 2.

One can immediately conclude to the existence of a logarithmic series for U ;

the source of the logarithmic terms is to be found already in the logarithms

in the expansion of eu. we also note that this series has only T lnT as its first

logarithmic term (and not lnT ), in accordance with the expansion of U found

earlier.

7.2.2. Definition of K ′−1. We have therefore found two different ways of com-

puting the expansion of U in powers of T and T lnT .

Comparing with (16) and (17), we find that

Ψ = U (−1)/2

and

W (0) = U (2) + Ψ(3w(1) + w(1,1)).

Note that Ψ ∈ Hσ−2, and U (2) ∈ Hσ−8.

7.3. Is this a right inverse? The above procedure gave us a left inverse of

K ′. In fact, this operator is also a right inverse, as we proceed to show. Let us

apply our inverse to a given pair (U0, U1). We obtain a pair (W (0),Ψ). We want

to show that K ′(w(0), ψ)[W (0),Ψ] coincides with (U0, U1). Now the given pair

(U0, U1) generaltes a solution U of the linearized equation, and it would suffice

to show that this U coincides with the solution U ′ generated by (W (0),Ψ)

as in Theorem 5. However, both generate solutions of the Fuchsian equation

for ~U , and they have the same expansion upto order two at least, because

these coefficients are completely determined by the value of (W (0),Ψ). But

the coefficients of the expansion of U are determined recursively after order

T 2, and therefore U and U ′ coincide to all orders. We then note that we may,
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by the process already used to derive the system for ~w from that satisfied by

~u, write U = U−1/T + · · · + (U (2) + Y )T 2, where Y is the first component

of a generalized Fuchsian system. Similarly, U ′ is associated with a function

Y ′ which solves the same equation. Since this system will has [15] only one

solution which vanishes for t0 = t1 = 0, we conclude that U ′ = U , as desired.

8. Step 6: Application of the Nash-Moser theorem, end of

proof

We wish to use the Nash-Moser theorem with smoothing to invert the map-

ping K. To this end, we recall the statement and proof of anappropriate

version, based on [19]. We then describe its application. There are several

versions of the Nash-Moser theorem in the literature, and many references

can be found in Hamilton [6] and Hörmander [7] in particular. The former

contains a very general set-up for the inversion of smooth maps on scales of

Banach spaces, while the latter deals with the case when the injections in the

target scale of spaces is compact, but deals with C2 maps. Hörmander’s argu-

ment would therefore apply here in the case of periodic boundary conditions.

Similarly, Th. 1.1.1 of [6] could perhaps be adapted to show that the inverse

of K is twice continuously differentiable. In view of these points, a short,

self-contained proof of a simple and convenient version has been included.

8.1. A version of the Nash-Moser theorem. We wish to solve the equa-

tion F [u] = 0, where F acts from a scale {Xs}s>0 of Banach spaces to another

scale {Y s}s>0. It is important to note that we will be using in the statements

and proofs only four spaces in the scale {Xs}; they will be denoted by Xs−a,

Xs, Xs+b and Xs+a+b. These spaces will be products of Sobolev spaces, so the

reader should think of s as a measure of differentiability. In this section, there

is no relation between s and r.

For clarity, the norms in Xs are denoted by double bars, and those in Y s

by single bars.
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8.1.1. Assumptions. There are two sets of hypotheses: one pertaining to the

smoothing, the other to F . In all, M , a and s are fixed constants; M ≥ 1, and

a > 0.

Let us assume that there is a family S(t) of smoothing operators such that

(S1) ‖S(t)u‖s+σ ≤Mtσ‖u‖s if u ∈ Xs and σ ≥ 0.

(S2) ‖(I − S(t))u‖s−σ ≤Mt−σ‖u‖s if u ∈ Xs and 0 ≤ σ ≤ s.

For some versions of the theorem, it is convenient to require a bound on

dS(t)/dt, so as to ensure convexity estimates on the norms involved.

We also assume that the map F has the following properties:

(F1) F is a mapping of class C2 from the open ball of radius R in Xs, with

values in Y s. Its first and second derivatives are bounded by M ≥ 1.

(F2) F ′(u) has a right inverse L(u) which sends Y s to Xs−a, and is bounded

uniformly by M if ‖u‖Xs < R. Furthermore, there is a number b > 8a

such that for every u with ‖u‖Xs < R,

‖L(u)F (u)‖s+b ≤M(1 + ‖u‖s+a+b).

Thus, F ′ fails to be invertible because L(u) has its range in Xs−a instead of

Xs. Note also that L(u) is not required to depend continuously on u.

8.1.2. Result. The result is as follows:

Theorem 6. Under assumptions (S1)–(S2) and (F1)–(F2), equation F (u) = 0

has a solution in Xs if F (0) is small enough in Y s.

Remarks: 1) The assumptions are stronger than requiring that F ′ have

an unbounded inverse. In fact, this latter assumption alone would lead to an

incorrect result, as the case of the mapping F (u) = u − u0 from Hs to Hs−1

shows, if u0 6∈ Hs. What happens here is that (F2) requires L(u)F (u) to be

smoother and smoother if u is. This excludes the counter-example we just

gave. Also, in practice, it is much easier to find L(0) than it is to construct

L(u) for u 6= 0. At the formal level, the existence of L(0) suffices to construct a

formal series to all orders. This series may however be completely meaningless.
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2) We can construct a family of smoothing operators by choosing a function

φ(ξ) which equals 1 for |ξ| < 1 and 0 for |ξ| > 2, with 0 ≤ φ ≤ 1, and by letting

S(t)u = F−1φ(ξ/t)Fu, where F denotes the Fourier transform. Indeed, we

then have φ(ξ/t)(1+|ξ|2)σ ≤ (1+4t2)σ and (1−φ(ξ/t))(1+|ξ|2)−σ ≤ (1+t2)−σ.

8.1.3. Proof. Let qk = exp[λρk] and Sk = S(qk), where ρ = 3/2 for definiteness

(the reader is invited to examine the rest of the proof for ρ ∈ (1, 2)); λ will be

determined later.

We define {uk}k≥0 by u0 = 0 and

uk+1 = uk − SkL(uk)F (uk). (19)

We prove by induction that there exist positive constants µ and ν such that

‖uk − uk−1‖s ≤ q−µa
k ; 1 + ‖uk‖s+a+b ≤ qνa

k . (20)

These estimates will ensure that the iteration is well-defined, and converges

in the s-norm.

We first estimate the difference of two consecutive approximations:

‖uk+1 − uk‖s

≤ Mqa
k‖L(uk)F (uk)‖s−a

≤ M2qa
k |F (uk)|s

= M2qa
k

[
|F (uk−1)− F ′(uk−1)Sk−1L(uk−1)F (uk−1)|s

+ |
∫ 1

0
(1− σ)F ′′((1− σ)uk−1 + σuk) · (uk − uk−1, uk − uk−1) dσ|s

]
≤ M2qa

k

{
|F ′(uk−1)(I − Sk−1)L(uk−1)F (uk−1)|s +Mq−2aµ

k

}
.

Now, using (S2) and (F2), we find

‖L(uk−1)F (uk−1)‖s+b ≤M(1 + ‖uk−1‖s+b+a) ≤Mqaν
k−1,

while (F1) and (S2) imply, for any v ∈ Xs+b,

|F ′(uk−1)(I − Sk−1)v|s ≤M2q−b
k−1‖v‖s+b.
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Therefore

‖uk+1 − uk‖s ≤M5qa
kq

aν−b
k−1 +M3q

a(1−2µ)
k .

Since M ≥ 1, it suffices to have

M5(qa
kq

aν−b
k−1 + q

a(1−2µ)
k ) ≤ q−aµ

k+1 (21)

to ensure the desired estimate on ‖uk+1 − uk‖s.

As for the other bound, we estimate

1 + ‖uk+1‖s+b+a ≤ 1 +
k∑

j=0

‖SjL(uj)F (uj)‖s+b+a

≤ 1 +M
∑
j

qa
j ‖L(uj)F (uj)‖s+b

≤ 1 +M2
∑
j

qa
j (1 + ‖uk‖s+b+a)

≤ 1 +M2
∑
j

q
a(1+ν)
j .

We therefore need

1 +M2
∑
j

q
a(1+ν)
j ≤ qaν

k+1. (22)

Since qk+1 ≥ qj+1, and q0 = eλa this follows from

1 ≥ q−aν
k+1(1 +M2eλa(1+ν)) +M2

k∑
j=1

eλρja[(1+ν)−ρν]

which, since ρ = 3/2, holds if ν > 2 and λ is large enough.

As for (21), we may satisfy it by requiring

λρk−1(aν − b+ aρ+ µρ2) ≤ −5 lnM − ln 2,

and

λρk(a(1− 2µ) + aµρ) ≤ −5 lnM − ln 2.

These hold as well for λ large, provided that

µ > 2 and b > aν + 3a/2 + 9µ/4.
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This estimate also ensures, by taking λ still larger, that ‖uk‖s remains less

than R/2, so that the iterations are well-defined.

To summarize, all we need is to be able to choose µ > 2, ν > 2, and

b > aν + 3a/2 + 9aµ/4. This is certainly possible if b is greater than 2a +

3a/2 + 18a/4 = 8a, which is the case by assumption.

To start the induction, we need to consider u1 = −S0L(0)F (0). Since

‖S0L(0)F (0)‖s+a+b ≤Mqa
0‖L(0)F (0)‖s+b ≤M2qa

0 (from (F2)), we require

1 +M2qa
0 ≤ qνa

1 . (23)

For the first part of (21), we write

‖u1‖s ≤Mqa
0‖L(0)F (0)‖s+a ≤M2qa

0 |F (0)|s,

which leads to the condition

|F (0)|s ≤ q−a
0 q−µa

1 /M2. (24)

We therefore choose λ large enough to satisfy (23), and then check the

smallness condition (24) on F (0).

If F (0) is small enough, we see that the iterations remain in a small neigh-

borhood of 0 (and are therefore well-defined), and converge in the Xs norm.

It follows from the continuity of F and the existence of a uniform bound on

L(u) that L(uk)F (uk) converges in Xs−a, and since the smoothing operators

approximate the identity, we may write

‖(I − Sk)L(uk)F (uk)‖s−a−1 ≤ Cq−1
k → 0

as k →∞. We conclude that u∞ = limk→∞ uk solves

L(u∞)F (u∞) = 0,

in the space Xs−a−1. Applying F ′(u∞), we conclude that

F (u∞) = 0,

QED.
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8.2. Application and end of proof. We now take Xr = Hr−3 ×Hr and

Y r = Hr−10−[n/2] ×Hr−11−[n/2].

For simplicity, all Sobolev spaces will be taken to be have integer order.

F (w(0), ψ) := K(w(0), ψ) − (u0 − ln 2, u1 + 2), and a = 6 + [n/2]. We also

assume r > 11 + [n/2]. We want to apply the Nash-Moser theorem of the

previous section with s = r.

We have seen in §5 that

K ∈ C2(Xr;Y r).

Note that the solution w generated by a pair (w(0).ψ) inXr belongs toHr−4 for

fixed T , and we have seen that the coefficients w(1) and w(1,1) of the expansion

of w are in Hr−6 at least.

On the other hand, the inverse of K ′ sends Hσ×Hσ−1 to (W (0),Ψ) as given

in §7; it therefore takes values in Hr−18−[n/2] ×Hr−10−[n/2]. We conclude that

L(u) exists and is bounded from Y r to Xr−a, where

a = 15 + [n/2].

Since we want b > 8a, we take b = 8a + 1 = 121 + 8[n/2] to fix ideas. To

guarantee (F2), we need F to map Xr+a+b to Y r+a+b; this imposes a regularity

condition on u0 and u1, namely

(u0 − ln 2, u1 + 2) ∈ Hr+146+9[n/2] ×Hr+145+9[n/2].

To ensure that all Sobolev indices appearing in the calculations are greater

than n/2, we require r > 11 + [n/2].

In terms of the Cauchy data, it means that they are taken in Hs × Hs−1

with

s > 167 + 10[n/2].
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The Nash-Moser theorem ensures that if Cauchy data have this regularity

and are close to (ln 2,−2), the corresponding solution must blow-up on a

spacelike hypersurface of class Hr with r = s− 146− 9[n/2].

This proves the announced result.

9. Concluding remarks

We have therefore proved that any solution with data close to those of

ln(2/t2) must blow-up on a spacelike hypersurface near which it has logarithmic

behavior. It is in fact described by the first few terms of the formal expansion

derived in [14], truncated to allow for the limited regularity of the solution.

From the knowledge of ψ, one can read off the blow-up time, which may not

be attained at any finite x, as the case of a bell-shaped ψ shows. Also, because

the Fuchsian equation (5), or the associated Fuchsian system, can be solved

in a full neighborhood of T = 0, the singular solutions are at once defined

on both sides of the blow-up surface. One therefore reaches the conclusion

that singular solutions have a meaningful continuation after blow-up. This

continuation procedure is similar to the regularization of collisions in the three-

body problem [20].

The present approach applies whenever we are given a reference solution

(other than ln(2/t2)), and consider data close to those of this solution. The

reason is that our argument for the invertibility of the linearization of K did

not use in any essential way the properties of this reference solution. This

suggests that the set of data leading to blow-up is open.

It is also possible that one may allow for more general blow-up surfaces,

which do not become flat at infinity, by working in uniformly local Sobolev

spaces.

One should stress in conclusion that the above method is not limited in

scope to the particular example treated here because (i) the exact form of the

reference solution is not used anywhere: what matters is that it should have a
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logarithmic expansion; (ii) such expansions have been shown to exist for very

large classes of nonlinear equations [13, 14, 15, 17].
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11 (1986) 87–121.
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