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Abstract. We prove that the negative resonances of the Chazy equation (in the sense

of Painlevé analysis) can be related directly to its group-invariance properties. These

resonances indicate in this case the instability of pole singularities. Depending on

the value of a parameter in the equation, an unstable isolated pole may turn into the

familiar natural boundary, or split into several isolated singularities. In the first case, a

convergent series representation involving exponentially small corrections can be given.

This reconciles several earlier approaches to the interpretation of negative resonances.

On the other hand, we also prove that pole singularities with the maximum number

of positive resonances are stable. The proofs rely on general properties of nonlinear

Fuchsian equations.
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1. Introduction

The method of pole expansions is a versatile tool for the investigation of singularities of

ODE and PDE. Going as far back as the work of Briot and Bouquet, and Kowalewska,

this method acquired new significance when it was found that symmetry reductions

of equations integrable by inverse scattering usually have the Painlevé property in the

strong sense: all of their movable singularities are described by the method of pole

expansions [4, 3]. Conversely the inverse scattering transform suggested new approaches

to the study of the Painlevé equations themselves.

We are interested in the case of the Chazy equation

y′′′ − 2yy′′ + 3y′2 = 0, (1)

where this method apparently fails to provide information on the general solution of

the equation under consideration, because the pole expansion has fewer free parameters

than the order of the equation, and therefore does not seem to represent the general

solution. The simplest issue is this: the Chazy equation has order three and possesses

the exact solution

−6/x.

However, this is, up to translations, the only solution with a simple pole. The ‘pole

expansion’ reduces in this case to its first term. This solution should be embedded in a

three-parameter family of solutions: the fact that there is only a one-parameter family

of solutions with simple poles shows that simple poles are unstable under perturbation,

but does not give further information. (More background information on the Chazy

equation is given in section 1.3 below.) Kruskal (see [27]) suggested that the failure of

the pole expansion was due to the omission of exponentially small terms in the expansion

of the general solution y(x). Furthermore, this representation should not be valid in a

full neighborhood of x = 0 in general, but only in a sector, as in the case of expansions

near an irregular singular point. It turns out in this case that the expansion in powers

of exponentials is convergent, which is not expected at an irregular singularity. On

the other hand, the perturbative approach [17, 14], shows that there is a formal series

solution y(x; ε) = y(x) + εy1(x) + . . ., which does contain the full number of arbitrary

parameters. Also, the perturbative approach accounts for the apparent paradox that

the solutions of the linearized equation have solutions which are more singular than

any actual solution of the equation: they are related to the variation of free parameters

in the general solution, at a fixed location away from the singularity. However, all of

the terms in the expansion in powers of ε have only power singularities, and do not

contain exponential terms. There is also no indication that the actual solution cannot

be continued around the singularity.
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Another difficulty comes from the general ‘class XII’ equation of Chazy:

y′′′ − 2yy′′ + 3y′2 = E(6y′ − y2)2, (2)

where E = 4/(36−k2), with k ≥ 0, omitting the ‘complementary terms.’ This equation

has the same special solution, but the general solution can be completely different, and

is in fact rational for some values of k. It is possible for the simple pole to split into two

or more poles by perturbation. This effect cannot be captured adequately in a series

representation in powers of x: take a solution with two poles at x = 0 and x = α. The

radius of convergence of a pole expansion around x = 0 cannot be greater than |α|, and

therefore tends to zero if there is a confluence of the two singularities (α → 0). The

perturbative approach can correctly describe what happens at a fixed location away

from the singularities, but its asymptotics as x → 0 do not describe the singularity

correctly. This can be seen in the treatment of the first example of section 5 in [14]

where the confluence can only be ascertained by explicitly summing the pole expansion.

We address these difficulties as follows:

(i) In considering the perturbative solution y(x; ε), it is not permissible to exchange

the limits x→ 0 and ε→ 0. This explains why no exponential terms are generated

there.

(ii) To recover the results of the perturbative approach from the exponential expansion,

it is necessary to vary the free parameters in a very particular way, which we relate

to the group invariance of the Chazy equation.

(iii) It is possible to describe confluence phenomena analytically by means of a Cole-

Hopf transformation: if u(x; ε) is an analytic family of functions where a pair of

simple zeros coalesces at x = 0, the family u′/u has a confluence of poles. Note

that we can allow u to be analytic in both arguments, whereas the pole expansion

of u′/u would have a vanishingly small radius of convergence, as explained above.

It is convenient to describe all of the above issues as relating to the stability of

singular behavior, because of the close similarity to the stability of solitary waves in

nonlinear wave equations. Note that some authors (in particular Bureau) define a

‘stable equation’ as one which possesses the Painlevé property. We are interested in

a different issue, namely whether the leading asymptotics of a particular solution of

an ODE or PDE are stable under perturbation of the solution. Consider for instance

real-valued solutions of the equation

utt − uxx − uyy = eu,

which has the special solution eu = 2/t2; then [22] all nearby solutions are such that

eu has an expansion in powers of T and T lnT , where T = t − ψ(x, y), with ψ small,
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and the first term is ln(2/T 2). It is not possible to exclude logarithms in general, but

the leading order of the singularity remains the same. The singularity of the solution

ln(2/t2) would be termed ‘stable’ in the sense of the present paper.

The main technical tool in the proofs of our results is the Fuchsian algorithm ([20, 24]

and earlier references therein). The basic step is to show that the method of pole

expansions for ODE or PDE amounts to seeking solutions of a nonlinear ordinary or

partial differential equation with a regular singularity, which may include logarithmic

terms. As far as the present discussion is concerned, note that several authors (in

particular, Bureau, see also Conte, Fordy and Pickering [14]) have identified ARS-WTC

resonances with the indices of a linear Fuchsian ODE, and have observed in many cases

that the linearization of the equation itself is Fuchsian. On the other hand, we have

shown, see e.g. [24], that under very general circumstances, the equation itself can be

reduced to a nonlinear Fuchsian ODE or PDE, without linearizing. We have also shown

that the initial-value problem for Fuchsian PDE can be solved in both the analytic

and non-analytic cases. The Chazy equation itself can be reduced to Fuchsian form

in several different ways, see the proofs of theorems 7 and 8. The Fuchsian algorithm

is not restricted to ‘integrable’ problems, but is in fact useful in analyzing singularity

formation in more general nonlinear wave equations, see [22, 20, 23]. Of course, in the

linear case, none of the above issues arises: if a linear equation has solutions with leading

order xν1 , xν2 ,. . . , the general solution is simply a linear combination of these, and its

singular behavior is apparent. Confluence of singularities of linear Fuchsian equations

involves varying the coefficients of the equation, rather than perturbing one solution of

a fixed equation.

1.1. The method of pole expansions

The principle of the method is familiar: given an equation, substitute for the unknown

u a series of the form:

u = xν
∑

j≥0

ujx
j , (3)

and identify like powers of x. This determines first ν and u0, hence the leading balance

u ∼ u0x
ν . The other coefficients are usually determined by a recurrence relation of the

form

Q(j)uj = Fj(u0, . . . , uj−1). (4)

The zeros of Q are called resonances.

When Q(j) = 0 and Fj also vanishes, the coefficient uj is arbitrary. If Q(j) = 0

but Fj does not vanish, the series (3) must be corrected by the addition of logarithmic

terms, and one can predict their form rather precisely [24]. The requirement that
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no logarithmic terms are needed sets rather strong constraints on the equation; this

observation was one of the ingredients of the ‘Painlevé test’ in its original form, because

many symmetry reductions of integrable equations do have this property. We do not

discuss the modern status of this test, referring the reader to recent reviews [2, 26, 21, 27]

and their references. The method can be extended to partial differential equations, in

which case it is known as the WTC method [35, 24].

Therefore, as far as this paper is concerned, the upshot is that singularities of the

form (3) are expected to be stable under perturbations, in the sense defined below,

provided that the series (3) has the maximum number of arbitrary constants in it:

any nearby solution must have a singularity of the same type, with a possible shift in

location.

1.2. Stability of singular behavior

The stability of a singular solution will be defined by analogy with the case of orbital

stability of solitary waves in translation-invariant problems: a solitary wave u is

(orbitally) stable if any perturbation of the initial condition for a solitary wave generates

a solution which remains close to the orbit of u under translations. Thus, in the case of

the Korteweg-de Vries (KdV) equation, an initial condition close to a one-soliton leads

to a solution which remains close to the set of all translates of this soliton (see Strauss

[32, 33], Bona, Souganidis and Strauss [6] for the KdV case, and their references; further

results for KdV-like equations are also found in [29]).

We encounter a comparable situation for movable singularities of differential

equations: if an equation is translation-invariant, we expect that a small perturbation

of any solution, in a domain away from the singularity, will in general result in a shift

in the singularity location. This should be distinguished from a possible change in the

type of singularity.

As an example with a simple closed-form solution, consider the equation

du/dx = 2xu2,

and let us focus on real solutions to fix ideas; a similar discussion could be made for

complex solutions as well. The general solution is

u(x) =
1

c− x2
,

where c is a real constant, and consider small values of c. If c is positive, we have two

stable single poles: a slight change in the value of, say, u(1) = 1/(c − 1), results in a

small change in the value of c, hence a small shift of the pole. However, if c = 0, we

obtain an unstable double pole for x = 0, because a small change in the value of u(1)

causes the pole either to disappear, or to break up into two simple poles, depending on

whether c becomes negative or positive.
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In the Chazy case, we will be interested in the stability of exact solutions of the

form a/x in some fixed disk D around the origin. Fix also some nonzero value ξ in D.

We will say that the singularity is stable if any solution with Cauchy data at ξ close to

those of a/x, must have an expansion

a/(x− x0) +
∑

j≥0

uj(x− x0)
j

valid in D. We could allow logarithmic terms in the series, but they will not be needed.

We therefore require a simple pole to perturb to another simple pole. An example of

an unstable situation would be the case in which a small change in the data at ξ causes

the pole to turn into a natural boundary, or to split into several poles.

1.3. The Chazy equation

We recall here some background information on eq. (1). The Chazy equation came

up in the course of Chazy’s extension of Painlevé’s program to third-order equations

[10, 11, 12]. It is actually one of the ‘class XII’ equations (2). It is closely related to a

system considered by Halphen, and its general solution can be parametrized using the

solutions of a hypergeometric equation if k > 0, and the Airy equation if k = 0 (see

Clarkson and Olver [13], Ablowitz and Clarkson [2], and their references).

The modern interest in this equation comes from the fact that it arises as a reduction

of self-dual Yang-Mills equations with an infinite-dimensional gauge group [1, 2, 34]. It

arises in connection with one of the special reductions of Einstein’s equations in a Bianchi

IX space-time. It can be given a commutator representation. A particular solution is

1

2

d

dx
ln∆(x),

where ∆(x) is the discriminant modular form (see Takhtajan [34], Bureau [7, 8], and

Chazy [12] for the relation to modular forms, and Koblitz [25] for background material

on modular forms). This solution has the real axis as a natural boundary. It generates

a three-parameter family of solutions through an SL(2) action which maps solutions to

solutions: more precisely, if y(x) is a solution, so is

ad− bc

(cx+ d)2
y(
ax+ b

cx+ d
)−

6c

cx+ d
(5)

for any choice of the complex parameters a, b, c and d, subject to ad − bc 6= 0. There

are effectively only three parameters, since scaling the parameters by a common factor

does not generate a new solution. The transformed solution has, in general, a circular

natural boundary. The relation of the Chazy equation to the Schwarzian derivative

and invariants of SL(2) actions was elucidated by Clarkson and Olver [13], who showed

how to use the group action to obtain the general solution, despite the fact that the

symmetry group is not solvable.
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On the other hand, the method of pole expansions generates exact solutions which

have no natural boundary at all, namely

−
6

x− x0
+

A

(x− x0)2
,

where A is arbitrary. This is a two-parameter deformation of the solution −6/x.

The problem is to decide the stability of the solution −6/x.

A similar problem arises for the general class XII equation, for which we have the

solutions [12, 31]:

k − 6

2(x− a)
−

k + 6

2(x− b)
,

where a and b are arbitrary. One recovers the solution −6/x by confluence of a and b.

The resonances corresponding to the singularities a and b are (−1, 1, k) and (−k,−1, 1)

respectively.

1.4. Earlier approaches

1. Linearization. The method of Fordy and Pickering [17] considers perturbations of

the solution −6/x of the form

−
6

x
+ εu1(x) + ε2u2(x) + . . . (6)

and shows that one can compute the uk recursively by solving linear equations involving

the linearization of the Chazy equation at the reference solution−6/x. This linearization

reads

(D + 2)(D + 3)(D + 4)v = 0,

where D = xd/dx, and the corrections are sums of increasingly high powers of 1/x and

x.

The advantage of this method is that the new series does contain three arbitrary

parameters, which can be identified with the three parameters required to describe the

general solution of the linearized equation.

The solutions of the linearization are more singular than −6/x, but this does not

mean that the equation itself has more singular solutions: for example, we have

−
6

x− ε
= −

6

x
(1 + ε/x+ ε2/x2 + . . .).

Since the series converges only for |x| > ε, the series does not provide information on

the behavior of this solution as x approaches zero. In fact, x = 0 is a regular point for

ε 6= 0. Similarly, the series (6) is not expected to converge for x and ε small without any

further restriction, since this would predict that pole singularities perturb to Laurent
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expansions defined in a full neighborhood of x = 0, and such expansions do not allow

for the formation of a small natural boundary near the origin.

2. Exponentially small corrections. Kruskal considered the general solution as

a perturbation of the solution −6/x+A/x2. In this case, the linearized equation reads

(x(D + 4)− 2A)(D + 2)(D + 3)v = 0,

where again D = xd/dx, and has therefore an exponential solution which involves

exp(−2A/x). The appearance of non-Fuchsian terms was to be expected from the

fact that the leading balance, for a second-order pole, does not involve the top-order

derivatives. He derived systematically a representation of the general solution in the

form

−
6

x
+
A

x2
(1 + k exp(−2A/x) + . . .),

which, after including a parameter for translations, contains three parameters, but is

defined at best in a sector in which the exponential is small. This sector has maximal

angle π, and this restriction corresponds to the fact that the solution cannot be continued

around the singularity at x = 0 in general, but has a natural boundary which is a circle

(or a line) through x = 0.

This representation can be checked directly in this special case using the general

solution [2]. One can see by inspection that as A approaches zero, the natural boundary

is a small circle which shrinks to a point.

However, it is not clear how to account for resonance −3 in this context, even

though the solution thus obtained does contain three arbitrary parameters. Indeed, if

we differentiate the expansion with respect to A or k and set A = 0, we cannot generate

a function with a fourth-order pole at the origin, as was possible in the linearization

approach. As we will see, it is possible to recover the fourth-order pole by using a

simultaneous variation of all three parameters.

3. Remarks.

Two other approaches to the interpretation of missing parameters in pole expansions

are as follows.

(1) The fact that some equations have two Painlevé series with leading orders of

the form a/x and na/x where n is an integer suggests that the second series results

from the confluence of n singularities of the first type (see Adler and van Moerbeke [5],

Ercolani and Siggia [15], Flaschka et al., [16], among others). However, as noted above,

it remained difficult to obtain an analytical representation of confluence, because the

pole expansion near one of the singularities has a shrinking radius of convergence.

(2) It is possible to seek solutions in powers of s = 1/x rather than x. In that

case, negative resonances become positive resonances of the equation in the s variable.

Such a series already appears in Chazy [12]. However, this solution is only defined for
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x large, and there may be one or more natural boundaries which separate the domain

of existence of this solution from the origin. Also, this interpretation is not applicable

if there are both positive and negative resonances.

1.5. Results of this paper

The necessary reconciliation of the linearization and exponential approaches, for

equations (1) and (2) for k = 2, 3, 4, 5, is obtained through the results below.

a. (Theorems 1 and 9) Pole expansions with the maximum number of arbitrary

parameters represent stable singularities. This applies to the solution (k − 6)/2x.

b. (Theorems 2–4) Any equation with the group invariance property of the equation

(5) has a one-parameter family of solutions y(x; ε) such that

y(x; 0) = −
6

x
;

∂y

∂ε
(x; 0) = const. x−1+r

for each negative resonance r (i.e., for r = −1, −2 or −3). The perturbative expansion

follows. This argument applies to both (1) and (2).

c. (Theorem 5) Conversely, if an equation has the solution −6/x, it cannot have

the SL(2) action (5) if the resonances do not include −1, −2 and −3. The existence of

a full expansion of y(x; ε) also follows from our proof.

d. (Theorem 6) If there is a solution with branching involving xk, the group

invariance proves the existence of pole-like singularities with resonances −1 and −k.

e. (Theorem 7) In the case of (1), as ε increases from zero, the isolated pole is

unstable and goes into a circular natural boundary of small radius. However, the general

solution is still described in terms of a convergent series of exponentials; this follows from

the fact that even though the linearization of the equation can be non-Fuchsian, there

still is a reduction to a nonlinear Fuchsian equation.

f. (Theorem 8) In the case of (2), for k = 2, 3, 4 and 5, the isolated pole does not

turn into a natural boundary, but rather splits into a finite number of poles. However,

the confluence pattern is restricted: all poles except one at most must coalesce. If all

confluence patterns had been allowed, the resonances of the solution −(k+6)/2x would

have included all the negative integers from −k to −1. The confluence is described

analytically by representing the solution in terms of u′/u, where u is analytic in a fixed

domain which includes both coalescing singularities.

This paper was motivated by M. D. Kruskal’s questions on the relation between

the nonlinear Fuchsian approach to WTC expansion in [24, 21], and the problem of

negative resonances. I am also grateful to him for sharing with me his own results on

this problem.
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2. Nonlinear Fuchsian equations

We collect here a few results on Fuchsian equations which are used later. We also include

a proof of the stability of polar singularities with the maximum number of arbitrary

coefficients in their expansion (3), which is similar in spirit to, but considerably simpler

than the result of [22], because of the fact that we are dealing here with an ODE rather

than a PDE.

2.1. Existence results for Fuchsian ODE

A nonlinear Fuchsian equation has the general form

P (D)u(x) = xF [x, u,Du, . . . , Dm−1u], (7)

where D = xd/dx, and P is a polynomial of degree m. There are similar definitions and

results for systems, but they will not be needed here.

If the zeros of P all have negative real parts, there is precisely one solution of this

equation which vanishes for x = 0, and it is given by a convergent series in powers of x

near x = 0. The proof is by iteration in a space of analytic functions, and is in this sense

constructive. In particular, it could in principle be used to generate the coefficients of

the expansion of the solution, but it is in practice quite cumbersome to do so.

The convergence of WTC expansions follows from the fact (see [21]) that it is

possible to allow u to depend on additional ‘transverse’ variables, provided that spatial

derivatives terms are multiplied by appropriate powers of t, see [20, 24]. This condition

is satisfied in a remarkably large number of cases.

We will meet in section 3 an equation of the form

P (D)Du = xF, (8)

where P and F are as above. To reduce this situation to the the case of (7), let us write

u = a+ xv(x), where a is arbitrary. One can write

xF = xF [0, a, 0, . . .] + x2G[x, v,Dv, . . . , Dm−1v],

for some function G. The equation now becomes, after division by x,

Q(D)v := P (D + 1)(D + 1)v = F [0, a, 0, . . .] + xG,

where the zeros of Q all have negative real parts. We now replace v by v − b, for a

suitable constant b, to annihilate the first term on the right-hand side. In this way, we

reduced the problem to an equation of the form (7), and we conclude that there is a

unique solution v which vanishes at the origin. Therefore, for any a, there is a unique

analytic solution of (8) which satisfies u(0) = a.
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2.2. Stability and parameter dependence

We now prove a stability result for pole singularities of an equation with the maximum

number of coefficients in their pole expansions. This result makes rigorous the intuitive

argument to the effect that a series which contains as many free parameters as there are

Cauchy data must represent the general solution locally.

To prove the result, one must show that these parameters are not redundant. We

achieve this by a reduction to the implicit function theorem. An example of a redundant

parametrization is the two-parameter family of series:

u(x; ε, η) =
∑

j≥0

ηj

(x− ε)j+1
. (9)

The parameters ε and η are redundant, because u(x; ε, η) = 1/(x − ε − η): the pairs

(ε, η) with the same value of ε+ η all define the same function.

To fix ideas, let us consider an autonomous equation of the form

(d/dx)mu = f(u, . . . , u(m−1)), (10)

where f is, say, a polynomial.

Let u(x − x0, c1, . . . , cm−1) be a family of solutions, which depends analytically on

(x0, c1, . . . , cm−1) for |x0| and |ck| < a and 0 < |x − x0| < b, for some positive a and b.

We have the following result:

Theorem 1. Assume that ∂u/∂x0, ∂u/∂c1,. . . , ∂u/∂cm−1 form a linearly independent

set of solutions of the linearization of (10). Then u(x − x0, c1, . . . , cm−1) is a local

representation of the general solution. In particular, the assumption holds for any pole

expansion with the maximum number of parameters if ν 6= 0.

Remarks: (1) If ν = 0, we are in the case of the Cauchy problem, and the series for

the solution contains m+1 parameters, namely the location of the initial point and the

m Cauchy data. These data are clearly redundant.

(2) In the case of (9), the representation is redundant because ∂u/∂ε = ∂u/∂η.

Proof: Consider the reference solution U = u(x, 0, . . . , 0) for definiteness. Given any

point x1 with 0 < |x1| < b, we consider

ϕ : (x0, c1, . . . , cm−1) 7→ (u(x1), u
′(x1), . . . , u

(m−1)(x1)),

where u(x1) = u(x1 − x0, c1, . . . , cm−1), and similarly for the derivatives of u. Applying

the inverse function theorem to this map near (x0, 0, . . . , 0), we conclude that any set of

Cauchy data close to the data of U at x1 coincides with the Cauchy data of a member

of our family, QED.

To prove that the linear independence condition holds in the context of the theorem,

it suffices to consider the family u(x− x0, c1, . . . , cm−1), where the cl’s are the arbitrary
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coefficients in the expansion of u. The functions ∂u/∂x0, ∂u/∂cl are derivatives of

families of solutions, and are therefore themselves solutions of the linearized equation.

It is easy to see that these derivatives all have different leading behaviors at x = x0,

and are therefore linearly independent, QED.

3. The transformation formula and negative resonances

3.1. Statement of results

Consider any equation which admits the transformation formula (5). Assume that any

uniform limit of analytic solutions is also a solution. This assumption is clear for ODEs;

it will allow us to extend (5) to some cases when the transformation (ax + b)/(cx + d)

is non-invertible, by viewing it as a limit of invertible transformations.

Let y(x) be any solution. We wish to prove that there are families of solutions

y(x; ε, r) such that

y(x; 0, r) = −6/x and
dy

dε
(x; 0, r) = x−1+r

for r = −1, −2 and −3. This will account for the three ‘negative resonances.’ It will

be apparent from the proofs that y(x; ε; r) can in fact be expanded to higher order, and

that the coefficients of the higher-order terms are increasingly more singular in x.

We find that the construction is possible provided that it is possible to prescribe

y, y′, y′′ arbitrarily at one point. This construction precisely fails for the non-generic

solutions −6/x + A/x2. The fact that the resonance structure can be derived on the

sole basis of the representation formula implies conversely that if we have an equation

with a different resonance structure, it cannot admit the transformation formula (5).

Fix a solution y(x) which is analytic near x = 0. Consider the family

y(x; ε) = −
6

x− η
+

µ

(x− η)2
y(

−µ

x− η
), (11)

where η and µ depend on ε, and are assumed to be small as ε → 0. This is a special

case of the transformation (5).

Our results are as follows.

Theorem 2. If µy(0)− 6η = ε, and µ and η are proportional to ε,

y(x; 0) = −6/x and
dy

dε
(x; 0) = 1/x2.

Theorem 3. Assume µy(0)− 6η = 0, but 6y′(0)− y(0)2 6= 0. Then, if µ and η are both

proportional to ε1/2, we have

y(x; 0) = −6/x and
dy

dε
(x; 0) = c/x3,

where c 6= 0.
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Theorem 4. Assume µy(0) − 6η = 0 and 6y′(0) − y(0)2 = 0, but y′′ − yy′ + y3/9 6= 0

when x = 0. Then, if µ and η are both proportional to ε1/3, we have

y(x; 0) = −6/x and
dy

dε
(x; 0) = c/x4,

where c 6= 0.

Theorem 5. If an equation of order three or higher, to which the Cauchy existence

theorem applies, admits the special solution y = −6/x, and if the linearization of the

equation at this solution does not have 1/x2, 1/x3 and 1/x4 among its solutions, then

the given equation cannot admit the SL(2) action (5).

The restriction that the solution y(x) be analytic is essential. In fact, we can obtain

quite different results if y admits branching:

Theorem 6. If there is a solution of the form y(x) = x−1h(xk), where h is analytic,

k > 0, and h(0) = (k − 6)/2, there exist two families of solutions, y1(x; ε) and y2(x; ε),

such that

y1(x; 0) = y2(x; 0) = −
k + 6

2x
,

and

dy1
dε

(x; 0) = c/x2 and
dy2
dε

(x; 0) = c/xk+1.

3.2. Remarks

1. If we take y = −6/(x− x0), theorems 2 and 3 do not apply.

2. If we take y = −6/(x−x0)+A/(x−x0)
2, theorem 3 applies, but theorem 4 does

not. Indeed, in this case,

y′ − y2/6 = −A2(x− x0)
−4/6, (12)

and

y′′ − yy′ + y3/9 = (d/dx− (2/3)y)(y′ − y2/6) = A3(x− x0)
−6/9. (13)

It is therefore not possible to make (12) vanish without having A = 0—in which case

(13) vanishes as well. One can rephrase the assumption in theorem 4 by saying that we

require y′ = y2/6 but y′′ 6= y3/18, for x = 0.

3. Theorems 2, 3 and 4 all apply, for example, when there is a solution for every

choice of y(0), y′(0) and y′′(0). The result therefore holds for any third-order autonomous

equation, hence for both equations (1) and (2) which, as we show in section 4, have

completely different singularity structures.
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4. It follows from theorem 8 below that theorem 6 applies to equations (2). A result

similar to theorem 5 could of course be stated for this situation.

5. An example to illustrate theorem 5 is the equation

y′′′ = 2yy′′ − 3y′2 + cy′(6y′ − y2)

which has the solution −6/x, but where the resonance equation is (r + 1)[(r + 2)(r +

3) − 36c] = 0. −2 and −3 are therefore both resonances only if c = 0. We conclude,

without computing the symmetry group of the equation, that this equation does not

admit the transformation law (5) if c 6= 0.

3.3. Proofs

Let us begin with a computation which is used in the proofs of the first three theorems.

Any solution y(x) generates the one-parameter family of solutions

y(x; ε) = −
6

x− η(ε)
+

µ(ε)

(x− η(ε))2
y(−

µ(ε)

x− η(ε)
).

If x is fixed and nonzero, and if µ and η are small as ε→ 0, we can expand this solution

in the form

y(x; ε) =
−6

x
+
µy − 6η

x2
+
µ(2ηy − µy′)− 6η2

x3

+ x−4[−6η3 + µ(3η2y − 3ηµy′ + µ2

2
y′′)]

+O(η4, η3µ, η2µ2, ηµ3, µ4),

where y, y′,. . . stand for y(0), y′(0),. . .

Any such family has the property that y(x; 0) = −6/x. Furthermore, it is clear

that the above expansion could be pushed to all orders, and that the coefficients of the

higher order terms contain higher and higher powers of 1/x.

Proof of Th. 2: If we take µ and η proportional to ε, in such a way that

µy(0)− 6η ∼ ε, we have ∂y/∂ε = 1/x2 for ε = 0.

Proof of Th. 3: If we take µ and η proportional to ε1/2, in such a way that

µy(0) − 6η = 0, and if y is such that 6y′(0) 6= y(0)2, we have ∂y/∂ε = const./x3 for

ε = 0.

Proof of Th. 4: If we take µ and η proportional to ε, in such a way that

µy(0) − 6η = 0, and assume that 6y′(0) − y(0)2 = 0, but y′′ − yy′ + y3/9 6= 0 for

x = 0, we find that ∂y/∂ε = const./x4 for ε = 0.

This proves theorems 2, 3 and 4.

Proof of Th. 5: Consider an equation F [u] = 0 of order three or higher with such

a group action. Solving the Cauchy problem, we can construct solutions to which each

of theorems 1, 2 and 3 apply. Consequently, there are differentiable families of solutions
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y(x; ε) as in these theorems. Since F [y(x; ε)] is identically zero, we have

0 =
d

dε
F [y(x; ε)]

ε=0

= F ′[−6/x](
dy

dε
(x; 0)),

where F ′ denotes the linearization of F . We conclude that this linearized equation must

admit the three solutions 1/xm, m = 2, 3 and 4. If these three functions do not solve

the linearization, there can be no such group action, QED.

The specific coefficients of the group action are not essential to the result: only the

existence of an expansion of families of solutions matters.

Proof of Th. 6: The solution y(x) in the statement of the theorem is constructed

in theorem 8.

From y, we construct the one-parameter family:

y2(x; ε) = −
6

x
−

1

x
h(

ε

xk
),

using (5) for the inversion x 7→ ε1/k/x.

Letting ε → 0, we find that −(6 + h(0))/x = −(k + 6)/2x must be a solution. We

now define

y1(x; ε) = −
k + 6

x− ε
.

The properties listed in the theorem are now readily verified.

4. Instability of isolated poles

4.1. Results

Even though the construction of the perturbation expansion of solutions close to −6/x

can be made solely on the basis of the group action on solutions, the singularities

which arise by perturbation of simple poles are different for (1) and (2). We know that

perturbation series near a single pole do not allow an analytical description of confluence

phenomena. However, even though a function such as (x−a)−1+(x−b)−1 is not jointly

analytic in x, a and b small, it is the logarithmic derivative of (x − a)(x − b) which

is perfectly well-behaved. More generally, we show that a Cole-Hopf transformation

provides an analytical description of confluence phenomena in the Chazy equation.

More precisely,

Theorem 7. For any constant a, equation (1) has precisely one solution of the form

y(x) = u′/2u with

u(x) = ex(1 + exw(ex)),

where w is analytic when its argument is small, and w(0) = a. Using transformations

(5), this solution generates a one-parameter family of perturbations of −6/x, with a
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natural boundary shrinking to a point as the parameter vanishes. Their asymptotics at

the boundary are those suggested by the method of exponential corrections.

For equation (2), we have

Theorem 8. Let a be a constant. For k 6= 0 or 1, equation (2) has a unique solution of

the form

y(x) = x−1h(xk),

where h is analytic when its argument is small, h(0) = (k−6)/2, and h′(0) = a. If k = 2,

3, 4 or 5, this solution is rational. Using transformations (5), this solution generates

a one-parameter family of perturbations of −6/x, where all poles, except possibly one,

cluster at the origin as the parameter vanishes.

Thus, −6/x is unstable; the next result shows that (k − 6)/2x is stable, but

−(k + 6)/2x is unstable:

Theorem 9. For k = 2, 3, 4, 5, there is a three-parameter family of solutions of (2)

which contains the solution (k − 6)/2x. These parameters are in correspondence with

the Cauchy data at a nearby regular point. Solutions with leading term −(k+6)/2x on

the other hand are unstable under perturbation: they arise from the confluence of all

singularities save one.

4.2. Remarks

1. Since equation (14) below admits the discriminant modular form ∆ as a special

solution [30], Theorem 7 provides a proof that ∆ is entirely determined by the first

two terms of its expansion in powers of q = exp(2πix). Its reduction to Fuchsian form

implies in particular a (perhaps new) recurrence relation on the coefficients of ∆, that

is, on the Ramanujan τ function. On the other hand. our proof does not make use of

any properties of modular forms, and therefore suggests that some of the phenomena

found in the Chazy equation are of wider significance.

2. The existence of rational solutions and the observation that a Cole-Hopf

transformation simplifies some of the issues is found in Chazy [12].

4.3. Proofs

For clarity, some tedious but straightforward computations have been omitted; we

sometimes found it convenient to perform some of the verifications using a symbolic

manipulation package.

Proof of Th. 7: Let y be a solution of (2). Let

y =
u′

2u
.
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We find that u satisfies:

u3u(4) − 5u2u′u(3) −
3

2
u2u′′2 + 12uu′2u′′ −

13

2
u′4 = 0. (14)

If u is a solution, so is

(cx+ d)−12u(
ax+ b

cx+ d
).

Since ex is an exact solution of this equation, we seek solutions of the form exv(ex).

Note that u = exp(2bx) leads to y = b, that is, to constant solutions of (1).

We make change of variables z = ex, and let D := zd/dz = d/dx. This turns (14)

into a Fuchsian equation for v(z) = u(z)/z:

v3(D + 1)4v − 5v2(D + 1)v(D + 1)3v −
3

2
v2(D + 1)2v

+ 12v[(D + 1)v]2(D + 1)2v −
13

2
[(D + 1)v]4 = 0.

Letting v(z) = 1 + zw(z), we find that w satisfies an equation of the form

(D + 1)3Dw = zG[z, w,Dw,D2w,D3w].

It follows that there is exactly one solution with w(0) = a, and that it is given by a

convergent series in z near z = 0.

Coming back to x, we have obtained a solution of the desired form, given by a series

of exponentials which converges at least for Re x < −ρ for some finite ρ. We know in

fact that ρ is equal to zero for the case u = ∆(ix). This completes the proof of the

claims regarding the family of exponential solutions.

Next, let us take the case when the solution y has the real axis for a natural boundary,

to fix ideas.

Consider the transformation (5) generated by x 7→ εx/(x − iε), which maps the

real axis to the circle (Γε) of center ε/2 and radius ε. The solution y(x) generates the

one-parameter family of solutions:

y(x; ε) = −
6

x− iε
−

iε2

(x− iε)2
y(

εx

x− iε
),

which are defined outside (Γε). As ε → 0, we see that the natural boundary shrinks

to a point, and that the solutions y(x; ε) converge, uniformly on any disk at positive

distance from the origin, to the solution −6/x.

However, the limits ε→ 0 and x→ 0 do not commute; in fact, y(x; ε) is not defined

in a full neighborhood of x = 0 for all small values of ε.

This completes the proof of theorem 7.

Proof of Th. 8: Let y be a solution of (2). Let

y =
k − 6

2

u′

u
.
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We find that u satisfies:

uu(4) − (k − 2)u′u′′′ +
3k(k − 2)

2(k + 6)
u′′2 = 0. (15)

If u is a solution, so is

(cx+ d)12/(6−k)u(
ax+ b

cx+ d
).

The first part of the theorem follows from general results on nonlinear Fuchsian

equations. Let us seek y in the form

y(x) = x−1(a+ bz + w(z)z2),

where z = xk, a = (k − 6)/2 and b is arbitrary. Letting zd/dz = D, we find, after

substitution into the equation and some algebra, that w satisfies an equation of the

form

(D + 1)(k(D + 2) + 1)(k(D + 2)− 1)w = zF [z, w,Dw,D2w].

It follows that there is precisely one solution of the form y = h(xk)/x if we specify

h(0) = (k − 6)/2 and h′(0) = b. This proves the first part of the theorem. If b = 0, we

find w ≡ 0.

Let us now focus on k = 2, 3, 4, 5. In each case, there is a polynomial solution of

(15), which generates the desired solutions using the SL(2) action [12]. In fact, we have

u = (x− a1) . . . (x− aN ),

and

y(x) =
1

2
(k − 6)

N∑

j=1

1

x− aj
=

(k − 6)

2x

∑

n≥0

∑
j a

n
j

xn
,

with N = 1+(k+6)/(6−k) = 12/(6−k). Note that u is analytic near x = 0 even when

the aj tend to zero. The relation between linearized solutions and possible confluence

patterns is given by the following:

Lemma 10. If we can choose the pole locations such that aj = ε1/mbj , where
∑

j b
q
j

vanishes for q < m, but is nonzero if q = m, then

y(x; ε) = −
6

x
+

const. ε

x1+m
(1 + o(1)).

In other words, we have a resonance at −m. Since the possible pole locations are

obtained by applying homographic transformations to the zeros of a fixed function, not

all pole configurations are possible.

The lemma follows by direct computation.

If all the poles are equal to zero, we recover y = −6/x; if they are all zero except

for one which we let tend to infinity, we obtain the solution −(k+6)/x. If all poles but
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one are sent to infinity, we obtain the solution (k − 6)/x. It is apparent that the first

two solutions are unstable.

Let us now show that there cannot be any other type of confluence. Assume that

there is a family of homographic transformations, depending on a parameter ε, under

which two distinct poles a1 and a2 tend to zero while two other poles a3 and a4 remain

fixed at nonzero (distinct) locations. We do not restrict the location of any additional

poles. The anharmonic ratio of (a1, a2, a3, a4) tends to 1. But it is also independent of ε;

it is therefore identically equal to 1. This implies that a1 = a2 for all ε: a contradiction.

Therefore, if there is such a confluence, all poles except one at most, must cluster at the

same point.

Proof of Th. 9: The stability statements have already been proved in the course

of the proof of the previous theorem. Since the solution (k − 6)/2x has two positive

resonances, namely 1 and k, we expect to be able to conclude using theorem 1. There

are in fact no logarithms in the pole expansion, but this does not follow from theorem

7, which only generates a one-parameter solution corresponding to the resonance k: to

generate the complete solution, we need to check that the resonance 1 is compatible. It

is convenient to do so using the group action. More precisely, the solution y = x−1h(xk)

generates the solutions

−
6ε

1 + εx
+
h(xk/(1 + εx)k)

x(1 + εx)
,

which contain the additional parameter ε. Adding the translation parameter, we obtain

a three-parameter family to which theorem 1 applies; this completes the proof.
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