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Abstract Recently, many works focus on the implementation of col-
lective communication operations adapted to wide area computational
systems, like computational Grids or global-computing. Due to the inher-
ently heterogeneity of such environments, most works separate “clusters”
in different hierarchy levels. to better model the communication. How-
ever, in our opinion, such works do not give enough attention to the
delimitation of such clusters, as they normally use the locality or the
IP subnet from the machines to delimit a cluster without verifying the
“homogeneity” of such clusters. In this paper, we describe a strategy
to gather network information from different local-area networks and to
construct “logical homogeneous clusters”, better suited to the perfor-
mance modelling.

1 Introduction

In recent years, many works focus on the implementation of collective commu-
nications adapted to large-scale systems, like Grids. While the initial efforts to
optimise such communications just simplified the models to assume equal point
to point latencies between any two processes, it becomes obvious that any ten-
tative to model practical systems should take in account the inherently hetero-
geneity of such systems. This heterogeneity represents a great challenge to the
prediction of communication performance, as it may come from the distribution
of processors (as for example, in a cluster of SMP machines), from the distance
between machines and clusters (specially in the case of a computational Grid)
and even from variations in the machines performance (network cards, disks,
age of the material, etc.). It is also a true concern for users that run parallel
applications over their LANs, where there can be combined different machines
and network supports.

As the inherent heterogeneity and the growth of computational Grids make
too complex the creation of full-customised collective operations, as proposed
in the past by [1,14], a solution followed by many authors is to subdivide the
network in communication layers. Most systems only separate inter and intra-
cluster communications, optimising communication across wide-area networks,
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which are usually slower than communication inside LANs. Some examples of
this “two-layered” approach include [7,9,11,12], where ECO [7,11] and MagPIe
[7] apply this concept for wide-area networks, and LAM-MPI 7 [9] applies it to
SMP clusters. Even though, there is no real restriction on the number of layer
and, indeed, the performance of collective communications can still be improved
by the use of multi-level communication layers, as observed by [4,5].

While the separation of the network in different levels can improve the com-
munication performance, it still needs to be well tuned to achieve optimal per-
formance levels. To avoid too much complexity, the optimisation of two-layer
communication or the composition of multiple layers relies on a good commu-
nication modelling of the network. While in this work we use pLogP [8], the
main concern for the accuracy of a network model relies on the homogeneous
behaviour of each cluster. If there are some nodes that behave differently from
what was modelled, they will interfere with the undergoing operation. It is worth
to note, however, that most of the works on network-aware collective commu-
nication seem to ignore this problem, and define clusters according to simple
“locality” parameters, as for example, the IP subnet of the nodes.

While there are many network monitoring tools that could help on the iden-
tification of such heterogeneities like, for example, NWS [15], REMOS [12] or
TopoMon [2], they still do not provide information about machines that hold
multiple application processes, like SMP machines. Further, these tools are un-
able to identify heterogeneities due to the application environment, as for exam-
ple, the use of an IMPI [3] server to interconnect different MPI distributions, or
an SSH tunnel among different clusters protected by a firewall.

In this paper, we describe a framework to allow the gathering of independent
network information from different clusters and the identification of “logical
clusters”. Our proposal combines the detection of “homogeneity islands” inside
each cluster with the detection of SMP processors, allowing the stratification of
the network view, from the node layer (specially in the case of SMP machines)
to the wide-area network.

Section 2 presents our proposal for automatic topology discovery. The frame-
work is divided in two phases. The first one, presented on Section 3, explains
how connectivity data collected by different clusters can be put together. Section
4 presents the second phase, which explains how “logical clusters” are defined
from the collected data, and how SMP nodes can be identified. Section 5 presents
the results from a practical experiment, and some considerations on the benefits
from the use of our framework. Finally, Section 6 presents our conclusions and
perspective for future works.

2 What we propose

We propose a method to automatically discover network topology in order to
allow the construction of optimised multilevel collective operations. We prefer
automatic topology discovery instead of a predefined topology because if there
are hidden heterogeneities inside a cluster, they may interfere with the commu-
nication and induce a non negligible imprecision in the communication models.



The automatic discovery we propose should be done in two phases: the first
phase collects reachability data from different networks. The second phase, exe-
cuted at the application startup, identifies SMP nodes (or processes in the same
machine), subdivides the networks in homogeneous clusters and acquires pLogP
parameters to model collective communications.

As the first step is independent from the application, it can use information
from different monitoring services, which are used to construct a distance matrix.
This distance matrix does not need to be complete, in the sense that a cluster
does not need to monitor its interconnection with other clusters, and several
connectivity parameters can be used to classify the links and the nodes as, for
example, latency and throughput.

When the network is subdivided in homogeneous subnets, we can acquire
pLogP parameters, necessary to model the collective communications and to
determine the best communication schedule or hierarchy. Due to the homogeneity
inside each subnet, pLogP parameters can be obtained in an efficient way, which
reflects in a small impact on the application initialisation time.

At the end of this process we have logical clusters of homogeneous machines
and accurate interconnection parameters, that can be used to construct an in-
terconnection tree (communicators and sub-communicators) that optimises both
inter and intra-cluster communication.

3 First Phase: Gathering Network Information

While there are many works that focus on the optimisation of collective com-
munications in Grid environments, they consider for simplicity that a cluster
is defined by its locality or IP subnet, and that all machines inside a cluster
behave similarly. Unfortunately, this “locality” assumption is not adequate to
real systems, which may contain machines that behave differently both in per-
formance and in communication. In fact, even in clusters with similar material,
machines can behave differently (we believe that it is nearly impossible to have
homogeneity in a cluster with hundreds of machines). Hence, to better optimise
collective communications in a Grid environment, the choice of the topologies
must be based on operational aspects that reflect the real performance level of
each machine or network.

3.1 Obtaining Network Metrics

There are many tools specialised on network monitoring. These tools can ob-
tain interconnectivity data from direct probing, like for example NWS [15], from
SNMP queries to network equipments, like REMOS [12], or even combine both
approaches, like TopoMon [2]. For simplicity, this work obtains data at the ap-
plication level, with operations built according to NWS definition. We chose
NWS as it is a de facto standard in the Grid community, and can be config-
ured to provide information like communication latency, throughput, CPU load
and available memory. To our interest, we can use communication latency and



throughput, obtained from NWS, to identify sets of machines with similar com-
munication parameters.

However, contrarily to some tools like TopoMon, our method does not require
total interconnection among all nodes in all clusters. Indeed, the objective of the
first step of our topology discovery is to identify heterogeneity inside each cluster,
and by this reason, each cluster may use its own monitoring tool, without being
aware of other clusters. This strategy allows the use of regular monitoring data
from each cluster, while does not create useless traffic between different clusters.
Hence, the data obtained from different clusters is collected and used to construct
a distance matrix, which will guide the elaboration of the cluster hierarchy for
our collective operations.

As clusters are not aware of each other, the “missing interconnections” clearly
delimit their boundaries, which reduces the cost of the clustering process. More-
over, we are not strongly concerned with the problem of shared links, like [2] or
[10], because the reduction of the number of messages exchanged among different
clusters is part of the collective communication optimisation.

4 Second Phase: Application-level Clustering

One reason for our emphasis on the construction of logical clusters is that ma-
chines may behave differently, and the easiest way to optimise collective com-
munications is to group machines with similar performances. In the following
section we describe how to separate machines in different logical clusters accord-
ing to the interconnection data we obtained in the First Phase, how to identify
processes that are in the same machine (SMP or not), and how this topology
knowledge may be used to obtain pLogP parameters in an efficient way.

4.1 Clustering

From the interconnection data from each cluster acquired on the previous phase,
we can separate the nodes in different “logical cluster”. To execute this classifica-
tion, we can use an algorithm similar to the Algorithm 1, presented by ECO[12].

This algorithm analyses each interconnection on the distance matrix, group-
ing nodes for wich their incident edges respect a latency bound (20%, by default)
inside that subnet. As this algorithm does not generate a complete hierarchy,
just a list of subnets, it does not impose any hierarchical structure that would
“freeze” the topology, forbidding the construction of dynamic inter-cluster trees
adapted to each collective communication operation and its parameters (message
size, segments size, etc.).

4.2 SMP Nodes and Group Communicators

While NWS-like tools provide enough information to identify logical clusters,
they cannot provide information about processes in SMP nodes, as they are
created by the application. Actually, as the processes distribution depends on



Algorithm 1. ECO[12] algorithm for partitioning the network in subnets
initialize subnets to empty

for all nodes
node.min edge = minimum cost edge incident on node

sort edges by nondecreasing cost
for all edges (a,b)

if a and b are in the same subnet

continue
if edge.weight>1.20 * node(a).min edge or edge.weight>1.20 * node(b).min edge

continue
if node (a) in a subnet

if (edge.weight>1.20 * node(a).subnet min edge)

continue
if node (b) in a subnet

if (edge.weight>1.20 * node(b).subnet min edge)
continue

merge node(a).subnet and node(b).subnet

set subnet min edge to min(edge,node(a).subnet min edge, node(b).subnet min edge)

the application parameters (and environment initialisation), the identification of
processes in SMP nodes shall be done during the application startup.

However, the implementation of an SMP-aware MPI is not easy, because the
definition of MPI does not provides any procedure to map process ranks into
real machine names. To exemplify this difficulty, we take as example the recent
version 7 from LAM/MPI [9]. Their SMP aware collective communications, based
on MagPIe [7], rely on the identification of processes that are started in the same
machine, but they use proprietary structures to identify the location of each
process. To avoid be dependent on a single MPI distribution, we adopted a more
general solution, where each process, during its initialisation, call gethostname(),
and sends this data to a “root” process that will centralise the analysis. If perhaps
this approach is not as efficient as the one used by LAM, it still allows the
identification of processes in the same machine (what can be assumed as an
SMP machine).

As the data received by the root contains both the machine name and the
process rank, it can translate the logical clusters into communicators and sub-
communicators, adapted to the MPI environment.

5 Practical Results

5.1 Clustering

To validate our proposal, we looked for a network environment that could raise
some interesting scenarios to our work. Hence, we decided to run our tests on
our experimental cluster, IDPOT1. IDPOT can be considered as a “distributed
cluster”, as its nodes are all spread through our laboratory, while connected
with a dedicated Gigabit Ethernet (two switches). All machines are Bi-Xeon 2.5
GHz, with Debian Linux 2.4.26, but they have network card from two different
manufacturers, and the distribution of the machines in the building may play

1 http://idpot.imag.fr



an important role in the interconnection distance between them and the Gigabit
switches.

Applying the methods described in this paper over a group of 20 machines
from IDPOT gives the following result, depicted on Fig. 1. This figure presents
the resulting subnets, as well as the interconnection times between each subnet
and among nodes in the same subnet. It is interesting to note how the relative
latency among each cluster would affect a collective communication that was not
aware of such information. For example, in the case of a two-level model, subnets
C and E would affect the expected performance, as their interconnections are
twice or even three times slower than others. This would also reflect in the case of
a multi-layer model, where an unaware algorithm could prefer to connect directly
subnets C and E, while it is more interesting to forward communications through
subnet D.
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Figure1. IDPOT network partition, with latency among nodes and subnets

We identified as the main factor for such differences the presence of network
cards from one manufacturer on subnets A and D, while subnets B, C, E and F
have onboard cards from other manufacturer. As second factor, we can list the
location of the nodes. While it played a less important role, the location was the
main cause for separation between subnet A and subnet D. Actually, the distance
between those machines, which are under different switches, affected the latency
just enough to force ECO’s algorithm to separate them in two different subnets.
A correct tuning on the parameters from ECO’s algorithm may allow subnets A
and D to be merged in a single one, a more interesting configuration for collective
communications.

5.2 Efficient Acquisition of pLogP Parameters

While the logical clusters generated by our framework allow a better under-
standing of the network effective structure, we are still unable to model commu-
nications with precision. This first reason is that interconnection data may be
incomplete. As said in Section 3.1, the monitoring tools act locally to each LAN,
and by this reason, they do not provide data from the inter-cluster connections.



Besides this, the data acquired by the monitoring tools is not the same as
the data used in our models. For example, the latency, which originally should
have the same meaning to the monitoring tool and the application, is obtained
differently by NWS and pLogP. In NWS, the latency is obtained directly from
the round-trip time, while pLogP separates the round-trip time in latency and
gap, as depicted by Figure 2, with differences that may interfere on the commu-
nication model. In addition, the information collected by the monitoring tools
is not obtained by the application itself, and thus, is not submitted to the same
constraints that the application will find at runtime, as for example, the use of
an Interoperable MPI (IMPI) server to interconnect the clusters.

g(0)

RTTRTT

L = ( RTT(0) − 2g(0) ) / 2L = RTT(0) / 2

pLogPNWS

Figure2. Differences between NWS and pLogP “latency”

Hence, to model the communication in our network, we need to obtain pa-
rameters specifically for pLogP. Hopefully, there is no need to execute n(n − 1)
pLogP measures, one for each possible interconnection. The first reason is that
processes belonging to the same machine were already identified as SMP pro-
cesses and grouped in specific sub-communicators. And second, the subnets are
relatively homogeneous, and thus, we can get pLogP parameters in an efficient
way by considering a single measure inside each subnet as a sample from the
pLogP parameters common to the entire cluster. As one single measure may
represents the entire subnet, the total number of pLogP measures is fairly re-
duced. If we sum up the measures to obtain the parameters for the inter-clusters
connections, we shall execute at most C(C+1) experiments, where C means the
number of subnets. Further, if we suppose symmetrical links, we can reduce this
number of measures by half, as a → b = b → a. By consequence, the acquisition
of pLogP parameters for our experimental 20-machines cluster would need at
most (6 ∗ (6 + 1))/2 = 21 measures.

6 Conclusions

This paper proposes a simple and efficient strategy to identify communication
homogeneities inside computational clusters. The presence of communication
heterogeneities reduces the accuracy from the communication models used to
optimise collective communications in wide-area networks. We propose a low
cost method that gathers connectivity information from independent clusters
and groups nodes with similar characteristics. Using real experiments on one of
our clusters, we show that even minor differences may have a direct impact on
the communication performance. Our framework allowed us to identify such dif-
ferences, classifying nodes accordingly to their effective performance. Using such



classification, we can ensure a better accuracy for the communication models,
allowing the improvement of collective communication performances, specially
those structured on multiple layers.
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