
HAL Id: hal-00002546
https://hal.science/hal-00002546v2

Submitted on 8 Nov 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Characterisation of Intra-Cluster Collective
Communications

Luiz Angelo Barchet-Estefanel, Grégory Mounié

To cite this version:
Luiz Angelo Barchet-Estefanel, Grégory Mounié. Performance Characterisation of Intra-Cluster Col-
lective Communications. 16th Symposium on Computer Architecture and High Performance Com-
puting, 2004, France. pp.254-261. �hal-00002546v2�

https://hal.science/hal-00002546v2
https://hal.archives-ouvertes.fr

cc
sd

-0
00

02
54

6,
 v

er
si

on
 2

 -
 8

 N
ov

 2
00

4

Performance Characterisation of Intra-Cluster Collective

Communications

Luiz Angelo Barchet-Estefanel∗, Grégory Mounié

ID - IMAG Laboratory, APACHE Project†

51, Avenue Jean Kuntzmann, F38330 Montbonnot St. Martin, France

{Luiz-Angelo.Estefanel,Gregory.Mounie}@imag.fr

Abstract

Although recent works try to improve collective com-
munication in grid systems by separating intra and inter-
cluster communication, the optimisation of communica-
tions focus only on inter-cluster communications. We be-
lieve, instead, that the overall performance of the applica-
tion may be improved if intra-cluster collective commu-
nications performance is known in advance. Hence, it is
important to have an accurate model of the intra-cluster
collective communications, which provides the necessary
evidences to tune and to predict their performance cor-
rectly. In this paper we present our experience on mod-
elling such communication strategies. We describe and
compare different implementation strategies with their
communication models, evaluating the models’ accuracy
and describing the practical challenges that can be found
when modelling collective communications.
Keywords: collective communication, performance mod-
els, MPI

1. Introduction

The optimisation of collective communications in
grids is a complex task because the inherent hetero-
geneity of the network limits the use of general so-
lutions. To reduce the complexity cost, most systems
consider grids as interconnected islands of homogeneous
clusters. Although there are no restrictions on the num-
ber of layer that connect those “islands”, as successfully
demonstrated by [7], most systems only optimise com-
munications at the inter-cluster level, because wide-
area networks are slower than LANs. Some examples
of this “two-layered” approach include ECO [15], Mag-
PIe [8][10], that apply this concept for wide-area net-

∗ Supported by grant BEX 1364/00-6 from CAPES - Brazil

† This project is supported by CNRS, INPG, INRIA and UJF

works, and even LAM-MPI 7 [12], that consider SMP
machines as islands of fast communication.

We believe that while inter-cluster optimisation is
necessary to achieve good performances in grid-like
environments, its optimisation should not be discon-
nected from the intra-cluster level. Actually, the mod-
elling and optimisation of intra-cluster communication
is specially important when the clusters are structured
in multiple layers. In this situation, the grid-aware tools
must deal with both communication and topology map-
ping, and a priori knowledge on the intra-clusters com-
munication may lead to more important reductions of
the overall execution time than a simple minimisation
of the wide-area communications.

Hence, in this paper we investigate how performance
models can be used to characterise the communication
patterns of the collective communications. These mod-
els can be used both to predict the performance of these
operations and to decide which implementation tech-
nique is the better adapted for a specific set of param-
eters (number of processes, message size, network per-
formance, etc.).

Consequently, to model collective communications
we need a good performance model. There are several
performance models for message-passing parallel pro-
grams, some of them widely known like BSP [20] or
LogP [5]. Although these two models are equivalent
in most circumstances [17], LogP is slightly more gen-
eral than BSP, as it does not requires a global barrier
to separate communication and computation phases,
and because it adds the notion of finite network ca-
pacity that can only support a certain number of mes-
sages in transit at once. As consequence, we choose to
use, in this paper, the parameterised LogP model [10].
pLogP is an extension of the LogP model that can accu-
rately handle both small messages and large messages
with a low complexity. Due to its simplicity, this model
allows a fast prototyping of the communication per-
formance, even though it has difficulties to represent

contention situations. Nevertheless, our pLogP mod-
els were able to predict with enough accuracy the sys-
tem performance in most cases presented in this paper,
allowing the selection of the most adapted implemen-
tation technique to a specific network environment.

To illustrate our approach, we present three exam-
ples, the Broadcast, Scatter and All-to-All operations,
which respectively represent the “one-to-many”, “per-
sonalised one-to-many” and “many-to-many” collective
communications. While conceptually simple, Broadcast
and Scatter operations have communication patterns
that can be found in many other operations, like Bar-
riers, Reduces and Gathers. The All-to-All operation,
instead, has a complex communication pattern, but is
one of the most important communication patterns for
scientific applications. Additionally, an All-to-All op-
eration is subjected to important problems with com-
munication contention, representing a real challenge to
performance modelling.

The rest of this paper is organised as follows: Sec-
tion 2 presents the definitions and the test environ-
ment we will consider along this paper. Sections 3, 4
and 5 present, respectively the communication models
we developed for both Broadcast, Gather and All-to-
All, while comparing the predictions from those models
with experimental results. Finally, Section 6 presents
our conclusions, as well as the future directions of the
research.

2. System Model and Definitions

In this paper we model collective communications
using the parameterised LogP model, or simply pLogP
[10]. As pLogP parameters depend on the message
size, it can be accurate when dealing with both small
and large messages. Further, the paper that describes
pLogP presents several communication models for grid-
aware collective communications, which served as guide
to many of our own communication models.

Therefore, all along this paper we shall use the same
terminology from pLogP’s definition, such as g(m) for
the gap of a message of size m, L as the communica-
tion latency between two nodes, and P as the number
of nodes. In the case of message segmentation, the seg-
ment size s of the message m is a multiple of the size
of the basic datatype to be transmitted, and it splits
the initial message m into k segments. Thus, g(s) rep-
resents the gap of a segment with size s.

The pLogP parameters used to feed our models were
obtained with the MPI LogP Benchmark tool [9] using
LAM-MPI 7.0.4 [12], and are presented in Figure 1.

The experiments to obtain pLogP parameters, as
well as the practical experiments, were conducted on

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50000 100000 150000 200000 250000

m
ic

ro
se

co
nd

s

message size (bytes)

Send.Recv.icluster2

os
or
g

Figure 1: pLogP parameters for the icluster-2 network

the ID/HP icluster-2 from the ID laboratory Cluster
Computing Centre1. This cluster contains 100 Itanium-
2 (IA-64) machines (Dual processor, 900MHz, 3GB)
interconnected by a switched Ethernet 100 Mbps net-
work, running Red Hat Linux Advanced Server 2.1AS
with kernel 2.4.18smp. The experiments consisted on
100 measures for each set of parameters (message size,
number of processes), and the values presented here are
the average of such measures.

3. One-to-Many: Broadcast

With Broadcast, a single process, called root, sends
the same message of size m to all other (P − 1) pro-
cesses. Classical implementations of the Broadcast op-
eration rely on d-ary trees characterised by two param-
eters, d and h, where d is the maximum number of suc-
cessors a node can have, and h is the height of the tree,
the longest path from the root to any of the tree leaves.
While an optimal tree shape can be deduced from the
network parameters and from d, h ∈[1...P -1] for which
∑h

i=o di ≥ P is true, most MPI implementations usu-
ally rely on two fixed shapes, the Flat Tree, for small
number of nodes, and the Binomial Tree.

Because most MPI implementations rely only on
Flat and Binomial Broadcast, some techniques were de-
veloped to improve its efficiency. This way, it is usual
to apply different strategies according to the message
size, as for example, the use of a rendezvous message
that prepares the receiver to the incoming of a large
message, or the use of non-blocking primitives to over-
lap communication and computation. Unfortunately,
such techniques bring only minimal improvements to
the final performance, and their efficiency still depends
mostly on the network characteristics.

1 http://www-id.imag.fr/Grappes/

Table 1: Communication models for Broadcast

Strategy Communication Model

Flat Tree (P − 1) × g(m) + L

Flat Tree Rendezvous (P − 1) × g(m) + 2 × g(1) + 3 × L

Segmented Flat Tree (P − 1) × (g(s) × k) + L

Chain (P − 1) × (g(m) + L)

Chain Rendezvous (P − 1) × (g(m) + 2 × g(1) + 3 × L)

Seg. Chain (Pipeline) (P − 1) × (g(s) + L)+

(g(s) × (k − 1))

Binary Tree ≤ ⌈log2P⌉ × (2 × g(m) + L)

Binomial Tree ⌊log2P⌋ × g(m) + ⌈log2P⌉ × L

Binomial Tree Rendezvous ⌊log2P⌋ × g(m)+

⌈log2P⌉ × (2 × g(1) + 3 × L)

Seg. Binomial Tree ⌊log2P⌋ × g(s) × k + ⌈log2P⌉ × L

Another possibility, however, is to compose a Chain
among the processes, pipelining messages [1]. This
strategy benefits from the use of message segmenta-
tion, presenting many advantages as recent works in-
dicate [10][18]. In a Segmented Chain Broadcast, the
transmission of messages in segments allows a node to
overlap the transmission of segment k and the recep-
tion of segment k+1, reducing the overall gap time.

However, the size of the segments should be care-
fully chosen according to the network environment. In-
deed, too small messages pay more for their headers
than for their content, while too large messages do not
explore enough the network bandwidth. The search for
the segment size s that minimises the communication
time can be done using the communication models pre-
sented on Table 1 and the network parameters. An ef-
ficient method consists in searching through all values
of s such that s = m/2i, i ∈ [0 . . . log2m]. To refine
the search, we can also apply some heuristics like lo-
cal hill-climbing, as proposed by Kielmann et al. [10].

In our work we developed the communication mod-
els for some current techniques and their “flavours”,
which are presented on Table 1. Most of these varia-
tions are clearly expensive, while others have only an
“historical” interest. Hence, we chose for the experi-
ments from Section 3.1 two of the most efficient tech-
niques, the Binomial and the Segmented Chain Broad-
casts, and the simplest one, the Flat Tree Broadcast.

3.1. Practical Results

To evaluate the accuracy of our models, we mea-
sured the completion time of the Flat, Binomial and
the Segmented Chain Broadcasts in real experiments,
and we compared these results with the model predic-
tions. Although Flat tree is not adequate for a large
number of processes, we included it because its sim-
plicity is a good parameter to evaluate other algorithms
that use more complex strategies. Hence, Figures 2, 3
and 4 present each strategy compared to its perfor-
mance model’s predictions. Despite some performance
variations found mostly in the Segmented Chain and
the Binomial Broadcast, we can observe that predic-
tions seem to follow the real experiments general be-
haviour. Actually, as these variations are much less im-
portant in the case of the Flat Broadcast, we think that
they are related to communication delays in some ma-
chines, which are further propagated by the message
forwarding, a characteristic present only on Binomial
and Chain broadcasts. As the Flat Tree Broadcast con-
tacts each node directly, variations in a machine can-
not be propagated to the others, resulting in more ac-
curate predictions, as observed in Figure 4.

Chain
Predictions

 5 10 15 20 25 30

Number of nodes 0
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Completion time (s)

Segmented Chain Broadcast (Pipeline)

Message size (bytes)

Figure 2: Real and expected performance for the Seg-
mented Chain Broadcast

Figures 2, 3 and 4, however, are not in the same
scale due to the different performance level of each al-
gorithm. To compare these algorithms and to better
observe the models’ accuracy, we present on Figure 5
the results obtained for a group of 16 machines. Here,
we observe that the Segmented Chain Broadcast is the
better adapted strategy for our cluster, even if the mod-
els predictions have slightly underestimated the com-
munication cost. While the observed error rate does
not interfere in the selection process, our attention was
drawn by the unexpected delay presented by the Bino-

Binomial
Predictions

 5 10 15 20 25 30

Number of nodes 0
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Binomial Tree Broadcast

Completion time (s)

Message size (bytes)

Figure 3: Real and expected performance for the Bino-
mial Broadcast

Flat
Predictions

 5 10 15 20 25 30

Number of nodes 0
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Completion time (s)

Flat Tree Broadcast

Message size (bytes)

Figure 4: Real and expected performance for the Flat
Tree Broadcast

mial broadcast when messages are small. A close look
on small messages, as presented in Figure 6, shows that
not only the Binomial Broadcast was affected, but also
the Segmented Chain Broadcast. Although this varia-
tion does not affect the choice on the best algorithm,
we decided to investigate it closer.

In fact, similar discrepancies were already observed
by the LAM-MPI team [13], and according to Loncaric
[14], they can be due to the TCP acknowledgement
policy in some Linux versions. This problem may de-
lay the transmission of some small messages even when
the TCP NODELAY socket option is active (actually,
only one every n messages is delayed, with n varying
from kernel to kernel). It is true that these effects were
mostly present in Linux kernels 2.0.x and 2.2.x, but ac-
cording to Loncaric [14], it seems that “anecdotal evi-
dence suggests that the improved TCP stack in Linux
2.4 may have problems with many-to-many communi-
cation patterns even though each point-to-point link
performs fine”.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200000 400000 600000 800000 1e+06 1.2e+06

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

Broadcast Comparison − 16 Machines

Chain

Binomial

Flat
Flat prediction

Chain prediction

Binomial prediction

Figure 5: Comparison between models and real results,
for 16 machines

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50000 100000 150000 200000 250000

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

Broadcast Comparison 16 Machines − Zoom

Chain
Chain prediction

Binomial
Binomial prediction

Flat
Flat prediction

Figure 6: Detail on performance degradation with small
messages

However, if this problem affects the transmission of
small messages, it should also affect the Segmented
Chain Broadcast with any message size, as large mes-
sages are split in segments with relatively small sizes.
As the delay observed in Figure 6 does not seem to be
much evident in the case of Segmented Chain, we be-
lieve that this problem is also related to the manage-
ment of the send buffers. We think that the arrival of
successive segments forces the transmission of the mes-
sages, masking the undesirable effects when messages
are larger. We plan to answer this question through
the investigation of the segmented variations of the
Flat and the Binomial Broadcast, which similarly to
the Segmented Chain, have to deal with small mes-
sages but send many more messages than their tradi-
tional versions.

4. Personalised One-to-Many: Scatter

The Scatter operation, which is also called “person-
alised broadcast”, is an operation where the root holds
m × P data items that should be equally distributed
among the P processes, including itself. As this is ex-
actly the opposite operation from the Gather primi-
tive, once modelling the Scatter we have a good ap-
proximation with the Gather model, which represents
the ”Many-to-One” communication pattern.

In the case of Scatter, whose root holds a different
message for each process, it is believed that optimal al-
gorithms for homogeneous networks use flat trees [10],
and by this reason, the Flat Tree approach is the de-
fault Scatter implementation in most MPI implemen-
tations.

Actually, any other alternative to perform Scatter
parallelising the communications requires the transmis-
sion of large sets of data to the auxiliary processes,
because messages are not identical. Taking for exam-
ple the Binomial tree, the root will send down the tree
“bulk” messages composed by subsets of the total data.
Because this strategy allows parallel sends, the com-
pletion time could be reduced, but because the “bulk”
messages are larger than a simple message, they take
more time to be sent. Hence, the efficiency of the Bi-
nomial Scatter strategy depends on how good the net-
work deals with large messages, and how the trade-off
between parallel sends and transmission of large mes-
sages will affect the completion time.

Table 2 presents the communication model we con-
structed for the strategies presented above, and in this
paper we compare Flat Scatter and Binomial Scatter
in real experiments. In a first look, a Binomial Scat-
ter is not as efficient as the Flat Scatter, because each
node receives from the parent node its message as well
as the set of messages it shall send to its successors.
On the other hand, the cost to send these “combined”
messages (where most part is useless to the receiver
and should be forwarded again) may be compensated
by the possibility to execute parallel transmissions. As
the trade-off between transmission cost and parallel
sends is represented in our models, we can evaluate
the advantages of each strategy according to the clus-
ters’ characteristics.

4.1. Practical Results

In the case of Scatter, we compare the experimental
results from Flat and Binomial Scatters with the pre-
dictions from their models. Due to our network charac-
teristics, our experiments shown that a Binomial Scat-
ter can be more efficient than Flat Scatter, a fact that

Table 2: Communication models for Scatter

Strategy Communication Model

Flat Tree (P − 1) × g(m) + L

Chain
∑

P−1

j=1
g(j × m) + (P − 1) × L

Binomial Tree
∑

⌈log2P⌉−1

j=0
g(2j × m) + ⌈log2P⌉ × L

is not usually explored by traditional MPI implemen-
tations. As a Binomial Scatter should balance the cost
of combined messages and parallel sends, it might oc-
cur, as in our experiments, that its performance out-
weighs the “simplicity” from the Flat Scatter with con-
siderable gains according to the message size and num-
ber of nodes, as shown Figures 7 and 8. In fact, the
Binomial Scatter performance depends on the num-
ber of processes, which gives its characteristic “stair”
shape, while the Flat Tree model, limited by the time
the root needs to send successive messages to different
nodes (the gap), follows a more linear behaviour. The
varying trade-off on the Binomial Scatter algorithm en-
courages the use of our models to identify which imple-
mentation is the better adapted to a specific environ-
ment and a set of parameters (message size, number of
nodes), as shown in Figure 9.

 5 10 15 20 25 30

Number of nodes 0
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Completion time (s)

Binomial Tree Scatter

Message size (bytes)

Binomial
Binomial Predictions

Figure 7: Real and expected performance for the Bino-
mial Scatter

Nevertheless, Figure 9 shows that the models, espe-
cially in the case of the Binomial Scatter, could not
avoid a certain level of imprecision. We believe that
this difference is mostly due to the manipulation of
large amount of data, which in the case of the Bino-
mial Scatter is heavily required due to the “combined”
messages the nodes receive and forward.

 5 10 15 20 25 30

Number of nodes 0
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Flat Tree Scatter

Completion time (s)

Message size (bytes)

Flat
Flat Predictions

Figure 8: Real and expected performance for the Flat
Scatter

 0

 0.5

 1

 1.5

 2

 2.5

 0 200000 400000 600000 800000 1e+06 1.2e+06

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

Scatter Results − 24 machines

Binomial
Binomial prediction

Flat
Flat prediction

Figure 9: Comparison between Scatter models and real
results, for 24 machines

5. Many-to-Many: All to All

The most intensive and one of the most important
communication patterns for scientific applications is
the complete exchange, or All-to-All. There are several
concrete problems whose parallel or distributed algo-
rithms alternate periods of computing with periods of
data exchange among the processing nodes, with dif-
ferent messages for each other process. Actually, the
All-to-All operation performs a transposition of data
stored across a set of processes, because every process
holds m × P data items that should be equally dis-
tributed among the P processes, including itself.

There are many works that focus on the optimisa-
tion of All-to-All and its variant All-to-All-v, where
messages can have arbitrary sizes. Most of these pro-
posals are adapted only to specific network structures,
like meshes, toroids and hypercubes [3]. General solu-
tions, like those found in well known MPI distributions,
consider that each process engages a point-to-point

communication with each other, and by consequence,
the simplest algorithm for All-to-All is called Direct
Exchange, where all sends and receives are started si-
multaneously.

An example of implementation of the Direct Ex-
change algorithm is the LAM 6.5.2 MPI Alltoall [11].
A problem with this algorithm, however, is that pro-
cesses usually start communication in the same or-
der, and consequently, may overload a link by simul-
taneously sending messages to a single process each
“round”. Hence, a little optimisation consists on rotat-
ing the communication order from each process, as now
implemented in both LAM 7.0.4 [12] and MPICH 1.2.5
[16]. In spite of this optimisation, that avoids the over-
load of a specific process, both strategies do not min-
imise communication, and by consequence, communi-
cation congestion is highly probable when the number
of nodes increases.

Thus, a major challenge on modelling the com-
munication performance of the All-to-All operation is
the influence of network contention. Models like those
presented by [3] are simply extension to the Scatter
model that do not take in account the specificities of
the All-to-All communication pattern, nor the non-
deterministic behaviour of the network contention.

Although non-deterministic behaviours are difficult
to model, [4] introduced a simple mean to account con-
tention in shared networks, such as non-switched Eth-
ernet, consisting in a contention factor γ that augments
the linear communication model T:

T = l +
bγ

W

where l is the link latency, b is the message size and
W is the bandwidth of the link, and γ is equal to the
number of processes. Using this approach, they found
that this simple contention model greatly enhanced the
accuracy of their predictions for essentially zero extra
effort.

Similarly, we assume that contention is sufficiently
linear to be modelled. Our approach, however, con-
sists on identifying the performance bounds for the All-
to-All operation, and deriving a relation between such
bounds that fits with the experimental results for the
All-to-All operation. As this ratio depends on the net-
work characteristics, it is a “signature” of such net-
work, and therefore can be used in further predictions
to obtain results with a considerable precision.

Our performance bounds were also defined as an ex-
tension to the Scatter model, but they considered the
main restrictions to the communication in the all-to-all
pattern, specially the nodes’ capacity to overlap sends
and receives. Indeed, we explore the fact that even if

Table 3: Communication bounds for the All-to-All op-
eration

Communication Model

Upper Bound (P − 1) × g(m) + (P − 1) × or(m) + L

Lower Bound (P − 1) × os(m) + (P − 1) × or(m) + L

two messages cannot be sent consecutively in less than
g through the same link, it takes only os to send a
message (more specifically, to deliver the message to
the network card) and or to receive it. Consequently,
a lower bound represents the capability to access the
network interface as soon as the precedent send opera-
tion returned, while in the upper bound a node needs
to serialise its transmissions due to the link contention.
These two limits are represented on Table 3.

5.1. Practical Results

To illustrate our approach to represent the All-to-
All operation in an environment subjected to network
contention, we present, in Figure 10, a comparison
among the measured performance for both Direct Ex-
change algorithm and its optimised version with the
predicted performance bounds for a group of 24 ma-
chines. It can be observed that both algorithms behave
almost identically, and that their performance differs
from the ”Scatter-based” model (Lower bound) in a
non-negligible amount, which indicates the influence of
network contention.

In fact, the analysis conducted by Grove [6] indi-
cated that “slow completion times were due to packet
losses and their associated TCP/IP retransmit time-
out, caused by extreme network load”. Another fact
that corroborates Grove’s observations is the similar-
ity between the Direct Exchange and the Optimised
Direct Exchange performances (Figure 11). This result
clearly indicates that the contention in our experiments
comes from the network itself, and not from the over-
load of a specific machine.

Therefore, we were able to determine a ratio between
the predicted Upper and Lower bounds that provides
good predictions on the performance of the All-to-All
operation. This contention ratio γ is constant and de-
pends only on the network characteristics, whilst the
Lower and Upper bounds depend on the number of pro-
cesses, giving a predicted performance of:

T = Lower + (Upper − Lower) × γ

As a result of our practical experiments, the con-
tention ratio that better represents the characteristics

of our network was assumed to be γ = 2
5 . The pre-

dicted performances fit with most of the observed re-
sults, with a small variation only in the case of small
messages, which are also subjected to the TCP Ac-
knowledgement problem discussed on Section 3.1.

This way, despite the non-deterministic behaviour of
the network contention, we adopted a linear approach
where a constant factor, characteristic to each network,
allows the generation of accurate prediction results.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 200000 400000 600000 800000 1e+06 1.2e+06

C
om

pl
et

io
n

tim
e

(s
)

Message size (bytes)

Alltoall Bounds − 24 machines

Direct Exchange
optimised DE
Upper bound
Lower bound

2/5 factor

Figure 10: Algorithms performance compared to All-
to-All performance bounds, for 24 machines

Direct Exchange
optimised DE

 5 10 15 20 25 30

Number of nodes 0
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

AlltoAll Results

Completion time (s)

Message size (bytes)

Figure 11: Comparison between two All to All algo-
rithms

6. Conclusions and Future Works

Existing works that explore the optimisation of het-
erogeneous networks usually focus only the optimisa-
tion of inter-cluster communication. We do not agree
with this approach, and we suggest to optimise both
inter-cluster and intra-cluster communication.

For instance, in this paper we propose the use of per-
formance models to decide, among well known tech-

niques for collective communication, which is the bet-
ter adapted for a specific set of parameters (number of
processes, message size).

As our approach suggests the use of communication
models to allow a fast performance prediction, its accu-
racy needed to be validated. Consequently, in this pa-
per we presented three cases that compare the models’
predicted performances and the real results for three
collective communication patterns - “one-to-all”, “per-
sonalised one-to-all” and “many-to-many”. We verified
that the models we construct were accurate enough to
predict the performance of the collective communica-
tions, and to allow the selection of the implementation
strategy that better adapts to our network.

For the modelling of the All-to-All operations, we
chose to represent the effects of network contention as
a linear factor. Although our experiments demonstrate
that linear assumptions were accurate enough to pre-
dict the performance of such operation, we agree that
this approach does not cover all possibilities in a real
environment. Even though, the results presented in this
work offers many clues to future investigations on the
modelling of communication operations subjected to
non-deterministic network contention behaviours.

In parallel, we should continue our research on grid-
aware collective communications. We wish to evaluate
the accuracy of our models with other network inter-
connections, like Myrinet, and we are especially inter-
ested on the automatic organisation of multi-level col-
lective communications. Hence, our final objective is
to integrate both performance prediction and wide-area
communication optimisation in a highly automated col-
lective communication library for grid environments.

References

[1] R. Barnett, D. Payne, R. van de Geijn, and J. Watts,
“Broadcasting on meshes with wormhole routing”,
Journal of Parallel and Distributed Computing, 35(2),
pp. 111-122, 1996.

[2] P. Bhat, C. Raharendra, and V. Prasanna, “Efficient
Collective Communication in Distributed Heteroge-
neous Systems”, Journal of Parallel and Distributed
Computing, vol 63, pp. 251-263, 2003.

[3] C. Christara, X. Ding and K. Jackson, “An efficient
transposition algorithm for distributed memory com-
puters”, in Proc. High Performance Computing Systems
and Applications, 2000, pp. 349-368.

[4] M. Clement, M. Steed, and P. Crandall, “Network per-
formance modelling for PM clusters”, in Proceedings of
Supercomputing, 1996.

[5] D.Culler,R.Karp,D.Patterson,A. Sahay,E. Santos,K.
Schauser, R. Subramoniam, and T. von Eicken, “LogP -
A practical model of parallel computing”. Communica-
tions of the ACM, 39(11), pp. 78-85, 1996.

[6] D. Grove, “Performance Modelling of Message-Passing
Parallel Programs”, PhD. Thesis, University of Ade-
laide, 2003.

[7] N.T.Karonis, I. Foster,B. Supinski,W.Gropp,E.Lusk,
and S. Lacour, “A Multilevel Approach to Topology-
Aware Collective Operations in Computational Grids”,
Technical report ANL/MCS-P948-0402, Mathematics
and Computer Science Division, Argonne National Lab-
oratory, 2002.

[8] T. Kielmann, R. Hofman, H. Bal, A. Plaat, and R.
Bhoedjang, “MagPIe:MPI’sCollectiveCommunication
Operations for Clustered Wide Area Systems”, in Proc.
ACM Symposium on Principles and Practice of Paral-
lel Programming, 1999, pp. 131-140.

[9] T. Kielmann, H. Bal, and K. Verstoep, “Fast Measure-
ment of LogP Parameters for Message Passing Plat-
forms”, in 4th Workshop on Runtime Systems for Paral-
lel Programming , LNCS Vol. 1800, 2000, pp. 1176-1183.

[10] T. Kielmann, H. Bal, S. Gorlatch, K. Verstoep, and R.
Hofman, “Network Performance-aware Collective Com-
munication for Clustered Wide Area Systems”. Parallel
Computing, 27(11), pp. 1431-1456, 2001.

[11] LAM-MPI Team. LAM/MPI Version 6.5.2.
http://www.lam-mpi.org/, 2003.

[12] LAM-MPI Team. LAM/MPI Version 7.
http://www.lam-mpi.org/, 2004.

[13] LAM-MPI Team, “Performance Issues with LAM/MPI
onLinux2.2.x”,http://www.lam-mpi.org/linux/,2001.

[14] J. Loncaric, “Linux TCP Patches to improve ac-
knowledgement policy”, http://research.nianet.org/
˜josip/LinuxTCP-patches.html, 2000.

[15] B. Lowekamp, “Discovery and Application of Network
Information”, PhD Thesis, Carnegie Mellon University,
2000.

[16] MPICH Team. MPICH Version 1.2.5. http://www-
unix.mcs.anl.gov/mpi/mpich/, 2003.

[17] D. Skillicorn, J. Hill, and W. McColl, “Questions and
answers about BSP”. Scientific Programming, 6(3), pp.
249-274, 1997.

[18] R. Thakur, W. Gropp, “Improving the Performance of
Collective Operations in MPICH”, in Proc. of the Euro
PVM/MPI 2003, LNCS Vol. 2840, 2003, pp. 257-267.

[19] S. Vadhiyar, G. Fagg, and J. Dongarra, “Automatically
Tuned Collective Communications”, in Proc. of Super-
computing 2000, 2000.

[20] L. G. Valiant, “A bridging model for parallel computa-
tion”. Communications of the ACM, 33(8), pp. 103-111,
1990.

