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1 Introduction

RBP is the acronym for Reliable Broadcast Protocol. It was published by Chang and
Maxemchuck [CHA 84] in 1984, and aims to provide total order and reliable broadcast in a
distributed system subjected to process failures and fair−lossy links. While the original definitions
are not recent, new protocols and implementations still make use of its concepts (for example, RMP
[MON 94], Pinwheel [CRI 95] and TRMP [MAX 2001]). 

Basically, RBP is structured around a token ring, used to distribute responsibility for
acknowledgements. A single token is passed from site to site around the ring, and only the holder
of the token (also called "the sequencer") can acknowledge the messages, and assign sequence
numbers to them. The acknowledgement contains the identifiers (source id, for example) of the
sequenced message, and is broadcasted to all members of the ring. 

In order to provide "high−performance characteristics" [MON 95], the acknowledgements
are piggybacked with extra functionalities: at the same time RBP assigns a sequence number to a
message, the token is passed. This approach orders the data packets consistently across all sites, and
provides the means to pass the token to the next process in the ring.

When a site gets  the token (i.e., it becomes the sequencer), it broadcasts an acknowledgement
if and only if it has seen all data messages since the last acknowledgment it received. When a
process detects that it has lost a message (using the message identifier), it uses negative
acknowledgements to request retransmission of any missing message. When all messages since the
last acknowledgement were received by the current sequencer, it can broadcast its
acknowledgement and thus pass the token. Hence, when a process sends an acknowledgement, it is
guaranteed that it has all previous sequenced messages.

RBP also should deal with process failures, and for that, its definition considers a
"Reformation Phase", where crashed process are excluded from the membership. Nevertheless,
RBP is an old protocol, that was proposed in a time when most of distributed system "building
blocks" (like Consensus, Reliable Broadcast, Failure Detectors, etc.) did not exist. By this reason,
the Reformation Phase cannot ensures most of the group communication properties. 

We started our analysis by comparing RBP with another Total Order solution, the Primary−
Backup+VSC replication model. As View Synchronous Communication (VSC) is widely studied, it
presents many techniques that can be used in order to update RBP. One of these techniques, called
"two views" model [CHB ??] is specially interesting because it allow us to take advantage from
failure detectors with aggressive timeouts while minimizing the drawbacks from incorrect
suspicions. Based on the analysis we’ve done, we propose an improved version from the RBP
protocol that uses the techniques studied in this work.

In Chapter 2 we present the system definitions and models considered in this work, as well as
a review from the properties of Total Order Broadcast that RBP must ensure.

Chapter 3 describes the RBP protocol. We decided to present it describing its operational
model in a failure−free environment, and then in a the presence of process failures. We believe that
this "step−by−step" description allow a better analysis from the protocol, its characteristics and
drawbacks.

Chapter 4 analyses the Primary−Backup replication model. We could identify many
similarities between this approach for Total Order Broadcast and RBP. However, as Primary−
Backup is widely known and studied, it present many solutions that can be applied on RBP.

Chapter 5 quickly describes how the improved RBP was implemented, as well as the
problems we found and the tests we have done with it.

Finally, Chapter 6 presents the conclusions of this work.
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2 System Model and Definitions

Distributed systems are modeled as a set of processes Π = {p1; p2;...; pn} that interact by
exchanging messages through communication channels. By the RBP definition, the set of processes
is dynamic: a process that fails can be removed from the set, as well as new processes can join the
set. Thus, a better representation for the set of processes is π(t), that means, the set of processes can
vary over time. A process that does not crash during all the execution is called "correct". However,
as we assume an asynchronous system, even a correct process can be suspected of crashing. To
differentiate a wrongly suspected process from a crashed process is a problem in asynchronous
distributed systems, and thus, the protocols should consider this possibility.

The communication channel definition that is more adequate to model the existing transport
layers is the following [AGU 97]:

• Fair−lossy channel − if p send a message m to q an infinite number of times and q is
correct, then q receives m from p an infinite number of times.

If we have fair−lossy channels, we can construct "reliable" communication primitives
SEND(m) and RECEIVE( ) using "unreliable" send(m) and receive( ), by ensuring that the
message m is retransmitted until its successful reception (the receiver can send an ack, for
example).

The reason why we consider the definitions of reliable and unreliable communication is that,
in opposition to many agreement protocols presented in the literature, RBP was designed to use
unreliable communication. In fact, RBP implements a reliable communication within the protocol
(using a mix of ACKs, NACKs and retransmissions). If we consider that channels "behave well",
i.e., they do not lose too many messages, the mechanism constructed by RBP can reduce the cost of
a transmission.

2.1 Total Order Broadcast Specification

While RBP was initially designed to use broadcast primitives, it can easily be adapted to
multicast, i.e., the messages are sent to Dest(m), the set of destinations of a message m. According
to its objectives, RBP belongs to the set of Total Ordered Multicast protocols. The problem of Total
Order Multicast can be defined by four properties: Validity, Agreement, Integrity, and Total Order
[DEF 2000]. 

• VALIDITY − If a correct process broadcasts a message m to Dest(m), then some correct
process in Dest(m) eventually delivers m.

• UNIFORM AGREEMENT − If a process in Dest(m) delivers a message m, then all
correct processes in Dest(m) eventually deliver m.

• UNIFORM INTEGRITY − For any message m, every process p delivers m at most
once, and only if (1) m was previously broadcast by sender(m), and (2) p is a process in
Dest(m).

• UNIFORM TOTAL ORDER − If processes p and q both deliver messages m and m’,
then p delivers m before m’ if and only if q delivers m before m’.

To reliably transmit messages over unreliable channels (as in the case of fair−lossy channels)
RBP uses explicit retransmission requests. Message losses are detected by finding discrepancies
between the expected messages and the received ones. Total ordering is achieved in RBP by
assigning an unique sequence number to each message sent to the group, and delivering messages
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in this order. Most of the complexity of the protocol resides in providing these sequence numbers,
ensuring that for each sequence number corresponds a single message.

We should remark that the Agreement, Integrity and Total Order properties presented above
are "Uniform". An Uniform property applies not only to correct processes but also to faulty
processes. While the basic definition of RBP suppose Uniform deliver, i.e., a process can only
deliver messages after all process have received it, we can suppose possible scenarios where this
requirement can be weakened. In Section 4.2 we discuss what is the lowest level of "Non−
Uniform" deliver that the protocol can use without violating the consistency of the application. Due
to this possibility, the Non−Uniform properties are presented below:

• AGREEMENT − If a correct process delivers a message m, then all correct processes in
Dest(m) eventually deliver m.

• INTEGRITY − For any message m, every correct process p delivers m at most once, and
only if (1) m was previously broadcast by sender(m), and (2) p is a process in Dest(m).

• TOTAL ORDER − If correct processes p and q both deliver messages m and m’, then p
delivers m before m’ if and only if q delivers m before m’.
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3 The RBP Protocol

While the original definition of RBP [CHA 84] describes how Reliable Broadcast and Total
Ordering can be achieved, no precise algorithm is given. Additionally, the protocol mixes many
structures (like reliable communication and total ordering) in order to minimize the number of
control messages. This interleaving makes difficult the analysis of each functionality, and is the
main reason why the properties for Reliable Broadcast and Total Order were not yet prove for RBP.

To help the analysis and the understanding of the protocol and its peculiarities, we decided to
present the protocol step by step, showing each functionality separately, merging them and
increasing the environment complexity, to reach the RBP definitions. 

3.1 Operation Without Failures

In this section, we present the basic structure of the RBP protocol, in an environment where
only message losses can occur (process failures will be described in Section 3.2). Here, we describe
how to achieve Reliable Broadcast and Total Ordering, and how they can be implemented together,
as in the RBP protocol.

3.1.1 Reliable Communication and Reliable Broadcast

Reliable Broadcast (or Multicast) can be easily implemented in asynchronous systems with
reliable channels: when a process p wants to R−Broadcast a message m, p sends m to all processes.
When some process q receives m for the first time, then q sends m to all processes and after this, R−
Delivers m.

However, providing Reliable Broadcast in an environment subjected to messages losses (as
the fair−lossy channels that we consider in this work) is not so easy. Even if processes do not crash,
we can’t be sure that a process correctly received a message unless we have some feedback from
this process. Hence, a common solution is to implement point−to−point reliable communication
over (point−to−point) fair−lossy channels, and implement Reliable Broadcast on the top of it. 

To transform an unreliable channel, the basic principle is to retransmit a message until the
reception of an acknowledgment. Consider SEND and RECEIVE as the primitives that provide
reliable communication, and send and receive as the primitives for unreliable communication. To
execute SEND(m) to q, a process p copies m into an output buffer (Figure 1) and executes send(m)
repeatedly until it receives and acknowledgement of m from q, denoted by ack(m). The first time q
receives m, it executes RECEIVE(m). Each time q receives m, it sends ack(m) back to p. When p
receives ack(m), it removes m from the output buffer. 
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Based on the implementation of reliable communication presented above, it is possible to
implement Reliable Broadcast as if the channels were reliable. In order to make a Reliable
Broadcast, each process must wait for the ack from all processes in the destination set. 

However, simply retransmitting a message until receiving and acknowledgement has a great
drawback. If each process that receives the broadcasts sends back an acknowledgement, soon the
network will be flooded with ack messages. As scalability must always be a concern in distributed
systems, this is not a good solution. 

A better solution implies reducing the number of exchanged messages. For example, RBP
considers a ring structure. If we ensure that the token is reliably passed, processes can use this
token to check that messages were delivered by all processes (the only restriction is that all receives
should be members of the ring). 

Consider a process p that wishes to R−Broadcast a message m to all processes along a ring
(logical or physical). If only the token passing is reliable, p can do the following: once it receives
the token, it appends the message m to the token contents, and passes the token to the next process.
If each process q that receives the token delivers the message m attached to the token, at the end of
the token passing, when p gets the token again, p can be sure that all processes delivered m. Instead
of receiving an ack from every process, the sender p has just to wait the return of the token. 

This method, however, does not use well the network resources. As only one process each
time can append a message to the token, processes that need to send many messages are forced to
wait until all processes get the token, even if they have no messages to send (actually, the token
behaves like a "permission" to send messages).

A better possibility considers that each sender unreliably broadcasts the message m to all
processes. The process that has the token appends to the token all messages that are in its buffers
(including the messages received from other processes), and delivers them. After, when the token is
passed to a process q, it verifies if the messages appended to the token were already delivered or
not. If they were not, q delivers the "missing" messages, append new ones to the token and passes it
away. This ensures that all processes that receive the token will deliver a message, and at the same
time, allows processes to use better the network resources (the token is used only to ensure that a
message is received by all processes, not to restrict message transmission). 

A simple algorithm for the "token−based reliable broadcast" can be seen in Figure 2. It
express the algorithm for the senders (lines 1−3), token holders (lines 4−13) and receivers (lines
14−21). While the role of senders is only execute a "send to all", and receivers deliver messages as
they arrive, the token holder has more responsibilities. Every time a process receives the token, it
uses the token to check if some message was missing (comparing the token.delivered list with its
own delivered queue). If this is the case, the token holder can acquire the missing messages from
the token.delivered list, and delivers them.

This way, processes use the token to verify the "history" of delivered messages, and by this
reason, all processes eventually deliver a message, according to the Reliable Broadcast properties.

While simple, this solution has a problem: this algorithm is not optimal in relation to the
token size. As the token.delivered list should include all delivered messages, soon the token
message becomes very large. In order to reduce this problem we can append to the token only a
message ID’s, instead of the full message.
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The drawback of this new solution is that a process can no more get "missing" messages from
the token. Instead, it has to request retransmission of the message. This situation is presented in
Figure 3. If a message is broadcasted at time t=0, but process r did not receive it, it will detect that
a message is missing when it received the token at time t=1, and thus, requires retransmission of
that message. This retransmission request can be considered as a negative acknowledgement (nack),
and if the network behaves well most of the time (as it normally happens in a LAN), the number of
nack is insignificant if we compare with an ack solution. If we require that a process only passes the
token away after having delivered all previous messages (that means, after having acquired the
missing messages), this protocol provides Reliable Broadcast as well.

A variant of this solution, considers that the token holder sends the the message ID from
delivered messages to all processes (Figure 4). This solution can help to speed−up the acquisition of
missing messages: even if a process does not receive the token, by receiving the message ID from
delivered messages (at time t=1) it can verify if something is missing, and thus, it can request lost
messages concurrently with the token passing (for example, at time t=2). When a process finally

8

1: Sender:

2:    procedure RBroadcast(m)                                             {To RBroadcast a message m}

3:       send (m) to all

4: Token holder (code of process s):

5:    Initialisation:

6:       token = {delivered[ ] ← ε}                                         {token, composed by  the history of all messages delivered }

                                                                                                

7:   Upon reception of token from s−1 mod n                      {when becomes the token holder}

8:      if ∃ m’ in token.delivered  ∉ deliveredQs                    {m’ was not yet delivered}

9:         deliver (m’)

10:       deliveredQs ← deliveredQs ∪ {m’}                          {adds m’ to the delivered queue}

11:    for ∀ m’ in deliveredQs ∉ token.delivered                {pick all messages not yet in token.delivered}

12:       token.delivered ← token.delivered ∪ {m’}            {add the delivered message to the history}

13:    SEND token to s +1 mod n                                             {reliably passes the token to the next process}

14: Destinations (code of process p):

15:    Initialisation:

16:       recvQp[ ] ← ε                                                               {set of received messages (received queue)}

17:       deliveredQp[ ] ← ε                                                       {set of delivered messages (delivered queue)}

18:    Upon  reception of m                                                    {when receive a message sent by a sender}

19:       recvQs ← recvQs ∪ {m}                                             {add the message to the received queue}

20:       deliver (m)                                                                  {delivers m}

21:       deliveredQs ← deliveredQs ∪ {m}                           {adds m to the delivered queue}

Figure 2 − Token−based reliable broadcast
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becomes the token holder, it likely has all messages. Therefore, if correctly applied, the
retransmission mechanism compensates eventual message losses. As consequence, there is no need
for "reliable" channels, because the protocol can implement itself the necessary mechanisms to
acquire missing messages.

In Figure 5, an algorithm for this new solution is presented. The role of senders is still a
simple "send to all", but receivers (lines 19−32) and token holder (lines 7−18) need to reflect the
use of message IDs and retransmission requests. 

As consequence, when a process receives the token, it first checks if all messages in
token.delivered were already delivered. If the token holders has missed a message m, it sends a
retransmission request, and waits until this message is received (otherwise, we cannot ensure that a
message was delivered by all processes). 

Once the token holder has delivered all messages from token.delivered, it appends to
token.delivered new messages it has delivered, and passes the token to the next process.
Furthermore, it sends the message ID from these new messages to all processes. 

Upon the reception of a message "delivered(id(m))", a process can verify if this message was
already received, otherwise it requests its retransmission. However, this process does not block
suntil receiving the answer: this request has the only objective to speed−up the processing, not to
guarantee delivering (what is done by the token holder). 
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Figure 4 − Process s requests retransmission concurrently to the token passing
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3.1.2 Total Ordering

In distributed algorithms, Total Ordering is usually provided by defining a global agreed
sequence of messages (for example, by assigning sequence numbers to the messages), and then
delivering them to the application following that order. If we use sequence numbers, this implies
that no two messages receive the same sequence number, and by this reason, the sequence number
must be globally unique. A simple solution to provide Total Order would be to centralize the
distribution of sequence numbers in a fixed process (the sequencer). This approach, however, has
many drawbacks, specially when the environment is subject to process failures (it introduces a
single point of failure).

To ensure the liveness of the algorithm, the protocol must use some fault tolerant mechanism.
There are many classes of totally ordered broadcast and multicast algorithms [DEF 2000].
According to its definition, RBP can be classified as a "moving sequencer" algorithm.

10

1: Sender:

2:    procedure RBroadcast(m)                                             {To RBroadcast a message m}

3:       send (m) to all

4: Token holder (code of process s):

5:    Initialisation:

6:       token = {delivered[ ] ← ε}                                         {token, composed by  the history of all messages delivered }

                                                                                                

7:   Upon reception of token from s−1 mod n                      {when becomes the token holder}

8:      if ∃ id(m’) in token.delivered s.t. m’ ∉ deliveredQs                    {m’ was not yet delivered}

9:         if m’ ∉  recvQs                                                              {m’ was not received}

10:          do

11:             send request(id(m)) to all                                       {request the retransmission of  m’}

12:          while m’ ∉  recvQs                                                     {do this until receiving m’}

13:       deliver (m’)

14:       deliveredQs ← deliveredQs ∪ {m’}                          {adds m’ to the delivered queue}

15:    for ∀ m’ in deliveredQs ∉ token.delivered                 {pick all messages not yet in token.delivered}

16:       token.delivered ← token.delivered ∪ {m’}            {add the delivered message to the history}

17:       send delivered(id(m’)) to all                                     {informs that a message m’ was delivered}

18:    SEND token to s+1 mod n                                           {reliably passes the token to the next token holder}

19: Destinations (code of process p):

20:    Initialisation:

21:       recvQp[ ] ← ε                                                               {set of received messages (received queue)}

22:       deliveredQp[ ] ← ε                                                       {set of delivered messages (delivered queue)}

23:    Upon  reception of m                                                    {when receive a message sent by a sender}

24:       recvQs ← recvQs ∪ {m}                                             {add the message to the received queue}

25:       deliver (m)                                                                  {delivers m}

26:       deliveredQs ← deliveredQs ∪ {m}                           {adds m to the delivered queue}

27:   Upon reception of delivered(id(m))                             {indicates that this message was delivered by someone}

28:         for ∀ m’ in token.delivered ∉ recvQs                            {if the message was missed}

29:             send request(id(m)) to all                                 {request retransmission of that message}

30:    Upon reception of request(id(m)) from q

31:      if m ∈  recvQs

32:         send (m) to q

Figure 5 − Token−based reliable broadcast using message IDs



In the "moving sequencer" strategy, the process that assigns sequence numbers is not fixed,
but moves among the processes. This algorithm can be implemented using a token: the process that
holds the token is the only one that can assign sequence numbers to the messages (that’s why the
sequencer is usually called "token site" or "token holder"). If there are no failures, the token passing
is enough to provide Total Order.

Once sequence numbers are assigned, all receivers eventually obtain them (due to the
Reliable Broadcast properties). To simplify the modeling of our protocol, we can make strong
assumptions, requiring that each token site assigns a sequence number to a single message, and then
must pass the token to the next process.

This algorithm is very similar to the algorithm for reliable broadcast presented before in
Figure 5. The main difference is that now the token does not contain the identifiers of all messages,
just the last sequence number assigned to a message.

Basically, each "sequencing round" of the protocol can be described in three steps. First,
someone (a sender) broadcasts a message m to all processes (Figure 6). The token holder picks this
message, assigns a sequence number to it, and broadcasts the message ID and the sequence number
to all processes (Figure 7). Finally, the token is passed to the next process in the ring (Figure 8).

This scheme ensures that the sequence number assigned to each message is globally unique
because the last sequence number assigned is transmitted with the token, and only the process that
has the token can assign a new number. If messages are delivered according to this order, Total
Order is ensured.

Of course, this is not enough if the channels are not reliable. It can happen, for example, that
some processes do not receive the message m from the sender. In this case, the solution is similar to
the one used in Section 3.1.1: request retransmissions. Figure 9 illustrates an example of such a
situation. At time t=0, process s did not receive the message m. Later, it receives a message
containing the message ID and a sequence number assigned to that message. As message m was not
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received, process s cannot deliver it, and thus, must request a retransmission, which is done at time
t=2 (Figure 9).

Another situation that requires message retransmission is when the sequence number is not
received. To illustrate this, we show the following scenario. Starting in Figure 10, we see that at
time t=1 the message containing {id(m),1} is not received by process s. As processing continues, q
send a message m’ at time t=2. 

At time t=2, process s has no way to know that a message was lost, because it didn’t get
enough information to detect the lost. Later, as presented in Figure 11, s receives a message that
assigns a sequence number=2 to the message m’ (at time t=3). As s did not receive before a
message assigning the number 1, at time t=4 it requests the retransmission of all "sequence
messages" between 1 (the number it was expecting) and 2 (the last number it received). Only when
someone answer to its requests, with a copy of the lost message ({id(m), 1}), s can go ahead with
message processing (and for example, accept the token).

Summing up, detection of lost messages and retransmission requests are essential operations
for the moving sequencer algorithm if the network is unreliable. In Figure 12 we present an
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Figure 10 − Process s loses a message

Figure 9 − Process s requests retransmission concurrently to the token passing
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algorithm that provides total order and reliable broadcast using the moving sequencer strategy. To
understand better this algorithm, suppose a set of processes {p,q,r,s} organized around a ring,
similarly to the set used on the previous examples. As in Figure 6, when p calls the procedure TO−
multicast(m), it will send the message m to all processes (line 3). All processes that receive this
message will then add the message m to their "receive queue" recvQ (line 27). 

If process q is the token holder, it will first check if there is no missing messages (lines 8−11)
or missing sequence numbers (lines 12−16). If these verifications fail, then q requests the lost
messages until the verification is successful.

Next, process q picks the message m from its recvQ (line 17), increases the value of
token.seqnum (line 18), and assigns this sequence number to m by broadcasting the ID of message
m and the sequence number token.seqnum (line 19). This was already shown in Figure 7. After that,
process q sends the token to the next sequencer (line 20, or Figure 8). 

If the process is not a token holder (for example, process r), it will wait to receive a message
containing id(m) together with a sequence number seqnum. When this message is received (line 28)
the process will check if m is in its recvQ (or request it), and add the tuple (id(m), seqnum) to the
sequenced queue seqQ (line 31). 

Finally, the processes must deliver messages. In order to do this, they wait until a tuple in
seqQ corresponds to the next expected message (line 35), and only then deliver that message (lines
36). As messages are ordered by a global sequence number, to deliver according this order ensures
total order in the algorithm.
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1: Sender:

2:     procedure TO−multicast(m)                          {To TO−multicast a message m}

3:            SEND (m) to all

4: Sequencer (code of process si):

5:    Initialisation:

6:        token = {integer seqnum ← 0}                                            {token, composed by a sequence number}

7:    Upon reception of token from s−1 mod n                               {when becomes the token holder}

8:       if token.seqnum > netxdeliver                          {a seq. num. was missed, and is blocking the deliver of other messages}

9:          do

10:           send request_sn(nextdeliver,token.seqnum) to all     {request all  missing seq. num. messages}

11:        while token.seqnum > netxdeliver                 {a seq. num. was missed, and is blocking the deliver of other messages}

12:     while ∃ {id(m’),num} in  seqQs  s.t. m’ ∉ recvQs                    {I missed the message m’}

13:        do

14:           send request(id(m)) to all                                      {request the retransmission of  m’}

15:        while m’ ∉  recvQs                                                   {do this until receiving m’}

16:        seqQs ← seqQs ∪ {id(m’),num}                                 {adds m’ to the sequenced queue}

17 :    pick the first m’ in recvQs ∉ token.sequenced          {pick the first message not yet sequenced}

18:     token.seqnum ← token.seqnum + 1                            {increases the sequence number (to ensure unique ordering)}

19:     send (id(m’);token.seqnum) to all

20:     SEND token to s+1 mod n                                            {passes the token to the next sequencer}

21: Destinations (code of process p):

22:     Initialisation:

23:         recvQp[ ] ← ε                                                               {sequence of received messages (received queue)}

24:         seqQp[ ] ← ε                                                         {sequence of ordered messages (sequenced queue)}

25:         integer nextdeliverp ← 1                                      {the sequence order of the next message to be delivered}

26:     Upon  reception of m                                                {when receive a message sent by a sender}

27:         recvQs ← recvQs ∪ {m}                                        {add the message to the received queue}

28:     Upon reception of  (id(m);seqnum)                         {when received a message with a sequence number}

29:          if m ∉ recvQs                                                      {m’ was not received}

30:             send request(id(m)) to all                                 {request the retransmission of  m’}

31:         seqQp ← seqQp ∪ {(id(m);seqnum)}                {add the message and its sequence number to the sequenced queue}

32:    Upon reception of request(id(m)) from q

33:      if m ∈  recvQs

34:         send (m) to q

31:    Upon reception of request_sn(first,last) from q

33:      for all {id(m’),seqnum} in seqQp s.t. first ≤ seqnum < last

34:         send {id(m’),seqnum} to q

35:         while ∃(m’ ; seqnum’) ∈ seqQp s.t. seqnum’ = nextdeliverp do           {while there are messages to deliver in order}

36:             deliver (m’)

37:             nextdeliverp ← nextdeliverp + 1                        {increases the value of the next expected sequence number}

Figure 12 − Moving sequencer algorithm



3.1.3 A better Use of Message Passing

While the algorithm presented in Figure 12 provides total order and reliable broadcast, it still
can be improved in relation to the number of messages exchanged. On example can be observed in
the algorithm: the sequencer sends two different messages, the sequence number and the token.
Other example is the use of the SEND primitive for the sender and the token passing. Once SEND
is expanded in "keep sending until receive ack", this represents many extra messages (perhaps, even
more than all messages sent by the rest of the protocol), what is not desirable.

It is interesting to see that the definition of the RBP protocol has already a solution for these
problems. In fact, if a single message piggybacks extra information, we can overload its functions
and reduce drastically the number of messages. According to RBP, the messages broadcasted by the
sequencer aggregate four separate functions as follows:

• acknowledgement to source s that message m has been received by the ring members;
• informs all receivers that message m is assigned to the global sequence number seqnum;
• acknowledgement to the previous sequencer (acceptation of the token);
• transmission of the token to the next sequencer.

Aggregating such functions in a single message (the token), a "step" of communication in
RBP is reduced to two messages, as presented in Figure 13. There, the message sent by the
sequencer at time t=1 has the following roles: it sends an ack to sender s, it indicates to all the
sequence number assigned to m, it sends an ack to the previous sequencer p, and it sends the token
to r.

A problem that occurs when we overload all functions in a single message is that if this
message is lost, many events dependent on its reception are trigged. A good example, which must
be handled by the protocol, is the phenomenon of "old" messages. "Old" messages are in fact
messages that have already been acknowledged, but continue to arrive. This can occur when a
source or a sequencer did not receive the acks it was waiting (due to communication failures, for
example), and thus, keeps sending a message. If a source retransmits a message that has already
been acknowledged, we can suppose that the source failed to receive the acknowledgement (and by
definition, will continue to retransmit the message until receiving the ack). In this case, the token
holder must retransmit the acknowledgement to that source. An example of this situation is shown
in Figure 14, where at time t=0 the ack is not delivered to process p. For this reason, process p
continues to retransmit the message m. When the token holder receives again the message m at time
t=1, it sends back to p a copy of the token message, that was awaited by p. 
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Figure 13 − process p sends message m to all
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Another situation where "old" messages can occur is when a former sequencer keeps sending
the token. If it keeps sending the token, we can suppose that the process failed to receive the token−
passing acknowledgement. When this situation happens, the acknowledgements must be
retransmitted by the current sequencer. In Figure 15 we illustrate an example of this situation. At
time t=0, process q sends the ack for a message m, passing the token to process r. At time t=1, r
accepts the token, assigns a sequence number to a message m’ and sends this sequence number to
all processes.

This message sent by r should be the ack for process q, in order to stop sending the token to r.
However, q did not receive this message, and thus, keeps retransmitting the token to r (time t=2).
At time t=4, process s, that is the current sequencer, reacts to the retransmissions from q, by
sending back to q the missing message, in order to  notify q that its token was correctly passed.  

Figure 16 presents an algorithm that was improved in order to incorporate the remarks
presented above. It is important to note that while this algorithm is based on that one from Figure
12, it was rewritten according to the model and notation presented in [DEF 2000]. This model
presents some advantages, specially by allowing the expression of concurrent task, and not only an
"event−driven machine". The main difference with the algorithm presented in Figure 12 is that
there is no more a specific code for the receivers and the sequencers. Due to the ring structure, the
processes must execute both roles, and thus, we decided to define a "single" code where the role of
the process (line 24) determines the actions it must execute (for example, if it simply requests
retransmissions or if it must keep requesting retransmissions until receive the answers). 

"Old" messages are handled in two places of the algorithm. First, if the sender keeps sending
a message that was already acknowledged, the algorithm sends back the respective ack (lines 16−
19). If it is and "old" token, the current token holder detects it by comparing the sequence number
received, and thus, retransmits the lost ack (lines 35−36).
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Figure 15 − Retransmitting a lost ack to an older sequencer

Figure 14 − Ack retransmission when the source lost the message

p

q

r

s
id(m),1,r

p

q

r

s

m

p

q

r

s id(m),1,r

time = 0 time = 1 time = 2

p

q

r

s id(m’),2,s

p

q

r

s

p

q

r

s
id(m),1,r id(m),1,r

p

q

r

s
id(m’),2,s

time = 1time = 0 time = 2 time = 3



3.2 Operation in Case of Failures

In the previous section we studied the RBP definitions and properties, and constructed the
RBP protocol in an environment without processes failures. In this section we analyze the failure
situations that the algorithm can face and how the protocol should react.
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1 Initialization:
2    recvQp ← ε {sequence of received messages (receive queue)}

3    seqQp ← ε {sequence of messages with a seq. number}

4    lastdeliveredp ← 0 {sequence number of the last delivered message}

5    toknextp ← p + 1(mod n) {identity of the next process along the logical ring}

6
   message idp ← 0 {each process keeps a "local" message id, in order to differentiate messages from

the same source}
7    tsp ← 0 {the last timestamp (sequence  number) received}
8    if p=p1 then {virtual message to initiate the token rotation}
9       send ACK(⊥,tsp + 1, toknextp) to p1 {format: (B, tsp, toknextp); B = (source id, message id) }
 
10 procedure TO−broadcast(m) {To TO−broadcast a message m}
11    do {resent the message until be ACKed}
12       message idp ← message idp + 1 {increments the local message identifier}
13       send(m, B) to all
14    until receive ACK (B,−,−,−) {resent the message until be ACKed}

15 Task 1:
16    when receive (m, B) from q
17       if ∃ (B, seqnum) in seqQp {if is an "old" message}
18             if p = toknext then {only the token holder resends the ack}
19               send (B, seqnum) to q {retransmit the corresponding ack}
20      else
21          recvQp ← recvQp + (m, B) {include the message (m,B) in the receive queue}

22    when receive ACK(B, seqnum, toknext) from q {when receive an ACK}
23       seqQp ← seqQp + (B, seqnum) {add the mesg Id and seq num in the seq. queue}

24       if p ≠ toknext then {if the process is not the next token holder}
25           if seqnum > tsp+1 then {p expected seq num is lesser that the seqnum received}
26                request_sn (tsp+1, seqnum) {requests retr. of the ack messages from (tsp +1 to seqnum}
27           if B ∉ recvQp then {if message (m,B) is not in the receive queue}
28              request_retransmission (B) {requests retransmission of the message identified by B}
29       else {if p is the next token site}
30          if  seqnum > tsp+1 then {p expected seqnum is lesser that the seqnum received}
31             do
32                request_sn (tsp+1, seqnum) {requests retr. of the ack messages from (tsp+1  to seqnum}
33             until (tsp = seqnum)
34          else
35             if  tsp > seqnum then {receiving an old ACK}
36                retransmits_acks (seqnum, ntsp) {retransmits acks from seqnum to tsp}
37             else  tsp ← seqnum {if is the expected message}

38          if B ∉ recvQp then {if message (m,B) is not on the receive queue}
39             do
40                request (B) {requests retransmission of the message identified by B}
41             until (B ∈ recvQp)
42          wait until (recvQp \ seqQp) ≠ ε {if there are new messages to sequence}

43                msg ← select first msg s.t. (m,B) ∈ recvQp and (B) ∉ seqQp {selects a msg that was not yet sequenced}
44                do
45                   send ACK(B,tsp+1,toknextp) to all {assigns a seqnum tsp+1 and sends the ACK for the sequenced msg}
46                until receive ACK from toknextp 

47    when receive request (B) from q {resent requested messages}
48       if ∃ (m’,B) in recvQp do 
49          send m’ to q

50    when receive request_sn (first, last) from q {resent requested acks}
51       for each (B,seqnum) in seqQp s.t. first ≤ seqnum ≤ last
52          send (B,seqnum) to q

53 Task 2:
54    do forever
55       while ∃ m’ s.t. (B, lastdeliveredp +1) ∈ seqQp  do {check if there are messages to deliver}
56          deliver (m’)
57          increment (lastdeliveredp) {allows to delivers messages in order and only once}

Figure 16 − RBP algorithm (without failures)



3.2.1 Someone has Failed

The mechanism of the RBP protocol is intrinsically connected to the token passing
mechanism. As the token is passed in a logical ring, a single failure can block the protocol. To
restart the token passing, the token list must be reconstructed (in a procedure called "Reformation
Phase"), removing suspected processes and restarting the token passing [CHA 84]. As the
possession of the token gives an special role to a process, the impact of a failure is directly
connected to the role of the failed process. To make this scenario even more complex, message
losses can lead to inconsistent states, and thus, the set of messages received or sent by the failed
process is also an important parameter to determine the impact of the problems caused by the
failure. 

An important aspect to be considered is how failures are detected. In the RBP definition,
dated from 1984, failure detectors as proposed by Chandra and Toueg did not exist yet. In fact, it is
mentioned that a process suspects a failure if it tries to send a message for a certain number of
times, without obtaining any answer. This makes the failure detection very specific: a process only
suspects process that it is trying to communicate. As the roles executed by the processes differ in
importance (a sequencer worth more than a sender) this "ad−hoc" failure detection can help us to
better understand the impact of a failure in the system.

In the following section we will identify some failure scenarios that illustrate possible
problems, and we will analyzing the relation between the role of the failed process, the process that
detects its failure and the impact into the system.

 

a. Simple process

If a process is just a sender, i.e., it is not the current sequencer nor the next sequencer, its fail
does not affect immediately the protocol. We can assume this because no action is immediately
dependent of this process. In Figure 17 there is an example of this situation. When process q sends
an ack message, the only process expected to reply is r, and thus, the failure of s is not important at
that moment. 

As consequence, when a "simple" process fails, the detection of its failure (and specially, the
actions to circumvent it) can be delayed. The moment where its failure needs to be handled is when
the failed process should become the next sequencer.

b. Next sequencer

While in the previous scenario the Reformation Phase can be delayed, if the next sequencer
fails the token passing is blocked (Figure 18), forcing the reconstruction of the token list. Initially,
is the sequencer (in the example, process q) that must detects the failure and start the Reformation
Phase, as it is in directly communication with the next sequencer.
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Figure 17 − Failure of a sender process
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Unfortunately, this is not a simple scenario. Failure detection as defined in RBP does not
allows to determine if the next sequencer was already failed or if it failed after receiving the token
from q. If it had time to do some computations (or it was a false suspicion), a new and complex
situation can occur: as the communication is not reliable, the next sequencer actually can accept the
token, but the ack message is not received by all processes (including the sequencer), as shown in
Figure 19. 

This "misunderstanding" must be solved by the Reformation Phase. Actually, to ensure that
consistency of the sequence number assignment is not violated (i.e., a new token does not assign
the same sequence number to a different message), the Reformation Phase must be aware of both
possibilities, and thus, act to compute all sequenced messages received by correct processes, no
matter if it was a real failure or a communication failure.

c. Sequencer

When the sequencer fails, there are also two possible situations that can block the token
passing. In the first situation, the sequencer fails but the next sequencer has not received the token.
In the second situation, the sequencer fails and the next sequencer has not yet all previous
messages. Just to remember, a process is formally considered as a sequencer if it has accepted the
token, i.e., it transmitted its own ACK message (we consider here that the previous sequencer has
received that message, and by consequence, has no more obligation to detect the failure of the
sequencer).

The first failure scenario occurs when the sequencer sends the token and fails, but the
message is not received by the next sequencer (due to the unreliable communication or to the
failure itself). In this situation, presented in Figure 20, the previous sequencer (process p) has
already received the ACK. More, as the next sequencer r is not trying to communicate with the
sequencer, it does not detect its failure. 

19

Figure 18 − Next sequencer fails
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When this situation occurs, no process is directly monitoring q, and thus, no process knows
that the token is lost. The failure detection based on "some message retransmission without
answer" does not help, as no one is actively communicating with the failed process.

Due to this possibility, RBP requires that after some time interval sequencers must pass away
the token, even if there is no message to sequence. In this case a sequence number is assigned to a
NULL message "ACK(⊥,tsp + 1, toknextp)". Thus, when the sequencer has waited for messages to
sequence but nothing has arrived, it should send an "empty" ack to transmit the token. Based on this
"forced" token passing, Maxemchuck [CHA 84] proposed another kind of failure detection that
circumvents the problem presented before: any process can suspect a failure of the sequencer and
call the Reformation Phase if it does not detect activity from the sequencers for a large enough
time. Informally, as sequencers are forced to pass the token from time to time, the absence of a
token passing for a time too long can indicate that the token passing is blocked, even if it is
impossible to know which process has failed. 

In the second situation, the sequencer fails and the next sequencer has not yet all previous
messages (Figure 21). Here, the token passing can be blocked because the next sequencer (process
r) is unable to recover all lost messages before accepting the token (and perhaps, the failed process
is the only one that could retransmit the missing messages). According to the failure detection
presented in [CHA 84], the "next sequencer" is the process that shall raise a suspicion and call the
Reformation Phase, as it cannot receive any answer for the retransmission requests.

d. Multiple Failures

As with simple failures, the impact of multiple failures is related to the token passing. If only
simple processes fail, there is no immediate need of Reformation. If a sequencer or a next
sequencer fails together with other processes (but not the two at the same time), we also fall in the
previous situations.
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Figure 21 − Next sequencer has not all messages
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However, if both sequencer and next sequencer fail at the same time, the token is lost and no
alive process is directly concerned in monitoring the failures. In this scenario as well, the absence
of token passing must be used as a failure trigger, and the Reformation Phase must be called by any
alive process, as presented above.

3.2.2 Resiliency, Message Stability and Garbage Collection

Up to now, nothing was said about resiliency. However, as processes may crash (and the
network may lose messages), it is important to specify the resiliency level that the protocol
provides (or requires).

Resiliency is intrinsically tied to message delivery. If we want to tolerate process failure, we
cannot deliver messages immediately as they are received: if only one process receives a message,
delivers it and crash, it can happens that other processes do not follow the same "delivery order",
which can lead to inconsistencies in the application.

Usually, we express resiliency levels by "k−resiliency". This means that if we want to tolerate
k−1 failures, we should ensure that the message was received by at least k processes. The most
restrictive level that can be achieved in a system is the "total resiliency", where all processes must
receive the message before delivering it to the application layer. This way, using "total resiliency"
we ensure the Uniform property.

In RBP, total resiliency is easy to be implemented. We just need to wait until the token be
transmitted to all processes before delivering the message(s) (as each process that receives the token
must acquire all previous messages). In our assumptions (defined at the beginning of Section 3.1.2),
each new sequence number broadcast means a new token passing. As result, when the sequence
number k is sent by sequencer r, this implies:

• receiver r has all messages up to and including the kth sequenced message,
• receiver (r−1) mod n (we use modulo operation because the processes are in a logical

ring) has all messages up to and including the (k−1)th sequenced message,
• ...
• receiver (r−n+1) mod n has all messages up to and including the (k−n+1)th sequenced

message.

When a message was received by all processes, it can be considered stable. If we consider the
relations above, when process p sends a sequence number k, all messages with sequence number
less or equal than k−n+1 can be delivered, because all processes have them. However, even if the
application requires lower levels of resiliency, detecting message stability is an important issue.

The reason why message stability is so important comes from the following observation: if all
processes have a message m, then m will not be requested anymore for a retransmission. If we can
detect message stability, we can execute garbage collection safely, saving storage space.

Due to its ring characteristic, RBP is specially apt to detect message stability, and thus, can
execute a very efficient garbage collection. 

 

3.2.3 Reformation Phase

According to the RBP definition, a failed process must be removed from the token list. When
a failure is detected, the correct processes enter in a different execution mode, called "Reformation
Phase", that aims to create a new token list. When a new token list is accepted, a new sequencer
must be defined to restart the sequencing. Note that the reformation phase is blocking, as none of
the failure situations exposed in the previous section allow the processing to continue.
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In a failure situation, each process that detects the failure (called "originator") invokes the
reformation phase and proposes a new token list. This new token list carries a version number. As
new failures and communication losses can occur, the own reformation phase must be tolerant to
these failures. 

In RBP, Reformation is a three−phase commit (3PC) protocol coordinated by the originator
[MAX 2001]. Figure 22 presents a good run of the RBP Reformation Phase. It starts when the
originator contacts each process in the new token list (the "slaves"), and ask them to join this list
(Phase 1).

If the list is accepted by all members that compose it (Phase 2), the originator chooses a
process to be the new sequencer. This selection aims to chose the process with the greatest
knowledge from the previous list, i.e., the process with the most recent committed message.

Before restarting the message sequencing, the new sequencer must update the other processes,
by retransmitting the "lost" messages. This last step is really important because when the
reformation finishes, we assume that all processes have the same knowledge about the others.

However, this Reformation protocol has some drawbacks. As the detection is not
simultaneous to all processes, multiple processes can invoke the reformation concurrently (multiple
originators). To ensure that only a valid token list emerges from the reformation phase, RBP
defines some constraints for the new token list:

• There must be only one valid token list;
• It must be composed by the majority of processes;
• It must be the most recent list proposed (having the higher version number);
• No message committed by the old token list can be lost.

According to the RBP definition, these constraints can be grouped in three tests that a list
must pass during the reformation phase [CHA 84]:

• Majority test: A site can only join only one list each time. The list must have a majority of the
processes.

• Sequence test: A site can only join a list with a version number greatest than its previous list
• Resiliency test: No message committed by the old token list is lost. At least one site must have

all committed (stable) messages.

Thus, a list must pass by all these tests before being accepted. One important point to remark
is that a process excluded from the token list is allowed to join it in a future reformation (RBP does
not specify how these processes could recover messages in order to keep the application consistent).
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Figure 22 − Reformation phase in a good run
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Chang and Maxemchuck [CHA 84] present the algorithms for the originator (Figure 23), the
"slaves" and the sequencer (Figure 24). These algorithms have different elements, as each
participant has different roles in the reformation phase.

As some processes can be excluded from the token list (due to a false suspicion, for example),
the protocol must ensure that messages sent by excluded processes do not interfere with the
processing. Thus, each message is tagged by the "token list version", which allow a process in the
"normal phase" to discard messages coming from excluded processes.

Updating the algorithm from Section 3.1.3 to deal with processes failures, we can define an
algorithm as presented in Figure 25.
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Figure 23 − Reformation protocol for the originator site [CHA 84]

Figure 24 − Reformation protocol for the slaves and new token site [CHA 84]

Reformation protocol for slave j including new token site

Phase I: Wait until "Reformation Invitation" is received; 
If (Sequence Test passes and j does not belong to any reformation list) 
  Vote "Yes"; 
Else 
  Vote "No"; 

Phase II: Wait until either "New TL", "Abort" is received, or TIMEOUT
j
; 

If ("New TL" is received) 
  If (j still belongs to this list) 
    Recover all missing messages and then Vote "Yes";  
    Commit the New TL; 
    End of Reformation Phase (except the new token site); 
  Else 
    Vote "No"; 
If ("Abort" is received or TIMEOUT

j
) 

  Leave the list that previously joined. 
  Wait and Restart;

Authorization phase for new token site k

Phase III: Wait until either "New Token," "Abort," or TIMEOUT
k
; 

If ("a New Token" is received and j still belongs to this list) 
  Accept the token and Starts Acknowledging Messages; 
  End of Reformation Phase; 
If ("Abort" is received or TIMEOUT

k
) 

  Wait and Restart;

Reformation protocol for originator site i

Phase I: When a failure or recovery is detected, start Reformation; 
Broadcast an invitation to all sites in the broadcast group. 

Phase II: Wait until either all responses received or TIMEOUT
i
; 

If (all responses = "yes" and pass Majority and Resiliency Tests) 
   New TL ← {all sites that responded}; 
  Announce New TL to all sites in the New TL; 
Else 
  Announce "Reformation Abort" to all sites in the New TL; 
  Modify TL version number, Wait and Restart; 

Phase III: Wait until either all responses received or TIMEOUT
i
; 

If (All responses from sites in New TL = "Yes") 
  Generate "a New Token" and pass to New Token Site; 
  Commit New TL; 
  End of Reformation Phase; 
Else 
  Announce "Reformation Abort" to New Token site; 
  Wait and Restart;



1 Initialization:
2    recvQp ← ε {sequence of received messages (receive queue)}

3    seqQp ← ε {sequence of messages with a seq. number}

4    stableQp ← ε {sequence of stable messages (stable queue)}

5    lastdeliveredp ← 0 {sequence number of the last delivered message}

6
   message idp ← 0 {each process keeps a "local" message id, in order to differentiate messages

from the same source}
7    toknextp ← p + 1(mod n) {identity of the next process along the logical ring}

8    tsp ← 0 {the last timestamp (sequence  number) received}

9    TLp ← 0 {the token list version }
10    if p=p1 then {virtual message to initiate the token rotation}
11       send ACK(⊥,tsp + 1, toknextp) to p1 {format: (B, tsp, toknextp); B = (source id, message id) }
 
12 procedure TO−broadcast(m) {To TO−broadcast a message m}
13    do
14       message idp ← message idp + 1 {increments the local message identifier}
15       send(m, B, TLp) to all
16    until receive ACK (B, seqnum, toknext, TLp) {resent the message until be ACKed}

17 Task 1:
18    when receive (m, B, TLq) from q
19       if (TLq=TLp) then
20          if ∃(B,seqnum’) ∈ seqQp then {if m was already sequenced, and the sender didn’t receive the ack}
21             if p = toknext then {only the token holder resends the ack}
22                send ACK(B,seqnum’,⊥) to q {retransmits the corresponding ack}
23          else
24             recvQp ← recvQp + (m, B) {include the message (m,B) in the receive queue}

25    when receive ACK(B, seqnum, toknext, TLp) from q {when receive an ACK}
26             seqQp ← seqQp + (B, seqnum) {add the mesg Id and seq num in the seq. queue}
27       if (TLq=TLp) then
28          reset activityTimeOut {the sequencers are active}
29       if p ≠ toknext then {if the process is not the next token holder}
30           if seqnum > tsp+1 then {p expected seq num is lesser that the seqnum received}
31                request_sn (tsp+1, seqnum) {requests retr. of the ack messages from (tsp +1 to seqnum}
32           if B ∉ recvQp then {if message (m,B) is not in the receive queue}
33              request_retransmission (B) {requests retransmission of the message identified by B}
34       else {if p is the next token site}
35          if  seqnum > tsp+1 then {p expected seqnum is lesser that the seqnum received}
36                do
37                request_sn (tsp+1, seqnum) {requests retr. of the ack messages from (tsp+1  to seqnum}
38                until (tsp = seqnum) or failure(q)
39                if failure(q) then
40                   Reformation()
41          else
42             if  tsp > seqnum then {receiving an old ACK}
43                retransmits_acks (seqnum, ntsp) {retransmits acks from seqnum to tsp}
44             else  tsp ← seqnum {if is the expected message}

45             if B ∉ recvQp then {if message (m,B) is not on the receive queue}
36                do
46                request (B) {requests retransmission of the message identified by B}
47                until (B ∈ recvQp) or failure(q)
48                if failure(q) then
49                   Reformation()
50             wait until (recvQp \ seqQp) ≠ ε  or timeout {if there are new messages to sequence, or timeout}

51                if (recvQp \ seqQp) = ε  then {if there are no messages to sequence}
52                   do
53                      send ACK (⊥,tsp+1,toknextp, TLp) to all {passes the token to the next holder − acks a null message}
54                   until receive ACK from toknextp or failure(toknextp)
55                   if failure(toknextp) then
56                      Reformation()
57                else
58                   msg ← select first msg s.t. (m,B) ∈ recvQp and (B) ∉ seqQp {selects a mesg that was not yet sequenced}
59                   do
60                      send ACK(B,tsp+1,toknextp) to all {sends the ACK for the sequenced msg}
61                   until receive ACK from toknextp or failure(toknextp)
62                   if failure(toknextp) then
63                      Reformation()

64    when receive request (B) from q {resent requested messages}
65       if ∃ (m’,B) in recvQp do 
66          send m’ to q

67    when receive request_sn (first, last) from q {resent requested acks}
68       for each (B,seqnum) in seqQp s.t. first ≤ seqnum ≤ last
69          send (B,seqnum) to q

70    when detects ActivityFailure then {Detects inactivity on the protocol }
71       Reformation() {starts reformation }

72 Task 2:
73    do forever
74       while ∃(B,seqnum’) ∈ seqQp s.t. (m’,B) ∈ recvQp do {search through all sequenced messages}

75          if seqnum ’
 
< (tsp 

−n+1) then {detects messages received by all processes (stability) }

76             stableQp ← stableQp + (m’,seqnum’) {in practice, the protocol waits the roundtrip of the token}
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77             seqQp ← seqQp \ {B,seqnum’} {remove msg from the recv queue and seq queue}

78             recvQp ← recvQp \ {m’,B}
79       while ∃ m’ s.t. (m’, lastdeliveredp +1) ∈ stableQp do {deliver the stable messages}
80          deliver (m’)
81          stableQp ← stableQp \ {(m’,−)}
82          increment (lastdeliveredp) {lastdelivered makes the delivering ordered}

Figure 25 − RBP algorithm with process failures

3.3 Other Protocols Based in the RBP

In the literature there are some examples of protocols that rely in the same principles of RBP.
Actually, most of them (RMP [MON 94], TRMP [MAX 2001]) are evolutions from RBP, and were
developed by the same research group.

Anyway, it is interesting to identify what was changed in the original RBP across the time.
Here, we present only a simple review on the features of RMP and TRMP that we found
interesting.

3.3.1 RMP

RMP was the first evolution of the RBP. The most evident change is the use of IP multicast,
what allows the protocol to reduce even more the cost of a communication step (compared to an
unicast "send to all"). Nevertheless, RMP includes many other changes in relation to the RBP
protocol, as for example, acknowledgement of multiple messages in a single ack, management of
multi−groups and selection of the resiliency level.

Most of these innovations were proposed with the specific objective to increase the
performance of the protocol. It was also extensively verified (after all, the research group was
based in the NASA Independent Verification and Validation Facility − IV&V) [WHE 95].

Even if RMP has extra functionalities in relation to RBP, it kept most of the structure from its
RMP. An example is the failure detection. Failure detection is still based in the number of
retransmissions a process executes without receiving answers. The difference is that RMP utilizes a
dynamic analysis of the network connectivity, in order to set the number of retransmissions a
process must execute before raising a suspicion.

The Reformation Phase was changed, but only to a limited degree. While RMP’s
Reformation is compliant with the virtually synchronous execution model (RBP does not provide
virtual synchrony), it still uses a Three−Phase Commit (3PC) protocol in order to define the
membership.

3.3.2 TRMP

TRMP [MAX 2001] is a time driven version of the RMP protocol, and was presented as an
Internet multicast protocol for the stock market. Due to the complexity of a world−wide distributed
stock market system, TRMP has to deal with other problems like scalability, fairness and
communication authentication, in addition to time constraints. 

To deal with scalability, TRMP proposes the use of a hierarchy of rings, instead of one single
ring, as used by RBP and RMP. This avoids a long stabilization time, reduces the probability that
the system stops due to the failure of a remote process (in particular, a "world−wide Reformation"),
and allows the assignment of different levels of trustness to the processes.
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These hierarchical rings are organized such that processes of the higher ring is also a member
of a lower ring, or at least, the lower ring receives retransmissions from the higher ring. In the same
way, secondary sources can participate by sending messages to primary sources, which will insert
them in the primary token ring.

As the main ring can be considered as the "core" of all operations in the stock market used as
example, the Reformation Phase must be extremely fast. For these reasons, the authors assume that
instead of distributed, the Reformation is done by a centralized "reformation server". There are
redundant reformation servers in case of failures.
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4 Revisiting the RBP Protocol

In the previous section, we presented the RBP protocol trying to follow the original
specification (actually, we just tried to present it step by step, in order to make easier the
comprehension of its objectives and structures). We also presented some interesting characteristics
from the "evolutions" of RBP.

While we presented some remarks that could improve the protocol (or at least, update it with
more recent techniques), no extra details were provided. In this section we will present our
suggestions to improve the protocol, based in the evaluations we have done so far and in the
techniques used nowadays to solve similar problems.

4.1 A Note in Failure Detection

According to the RBP definition, failure detection is mainly executed based in a number of
message retransmissions without answer. On the other hand, failure detection has evolved
considerably since the RBP publication, and the model of failure detection specified by Chandra
and Toueg is essential to most distributed applications today.

Examining again the failure scenarios proposed in Section 3.2.1, it is possible to define two
models of detection: detection on a process failure (process deterministically identified) and
absence of activity from the sequencers.

The first model, similar to a "traditional" failure detection, relies simply on monitoring
another process. Due to this characteristic, it is easy to detach the detection from the RBP algorithm
and use some other technique than the "number of retransmissions".

An analysis on the scenarios presented in Section 3.2.1 show that when this kind of detection
is required, monitoring is done on the next or on the previous process in the ring. If we consider
that some detection techniques (like the Push and Pull detectors) have some scalability problems,
this specificity on the monitoring can help to minimize the traffic on the network. In fact, this
specific monitoring is similar to the ad−hoc failure detectors, proposed to solve the Consensus
problem.

In the second model of detection, however, there is no specific monitoring on some process;
the suspicion of a failure means that the protocol is not acting as usual. This detection is specially
important when the token is lost, because it prevents the protocol from blocking forever (preserving
the liveness property). A possible implementation of the model presented by Chang and
Maxemchuck [CHA 84] is monitoring the token passing (the protocol specifies that there is a
maximum time that a sequencer can hold the token before passing it). However, as this maximum
time is a parameter related to the implementation of the RBP, this kind of detection cannot be easily
detached from the protocol, as the suspicion must be tuned with the same parameters as the token
passing. A good aspect, however, is that this model of detection does not generate any extra
message.

It is clear that both detection techniques have different purposes. While the the first method
leads to a fast detection of failed processes, the second method aims at preserving the liveness of
the protocol, even if it does not provide aggressive detection. As "token lost" situations tend to be
rare in comparison with the other failure situations, the second model of detection can be tuned
with conservative timeouts. An "active" detection is good enough for most situations, and only
when the token is lost the "passive" detection should raise a suspicion.

According to these remarks, we can replace the failure detection within the RBP by two
Chandra and Toueg−like detectors, each one operating under different requirements:

27



• "Active" Detector: a failure detector with aggressive timeouts, that monitors only a specific
process.

• "Passive" Detector: a failure detector with conservative timeouts (ideally, a detector that only
uses application messages in the detection), which starts the Reformation Phase no matter the
suspected process.

4.2 A Lower Bound on RBP Delivering 

In the RBP definition [CHA 84], the delivery and the garbage collection are strictly related to
k−resiliency. In fact, due to its construction around a logical ring, RBP can provide n−resiliency
(all processes) easily, and by that reason, lower levels of resiliency are not discussed in the original
paper. As n−resiliency also ensures message stability, these concepts are interchangeable in RBP. 

In RMP [MON 94], however, the application can define the level of resiliency it wants (in
[MON 95] this is considered a "QoS level"), and thus, RMP can provide n−resiliency, majority
resiliency, and even unreliable deliver. As in distributed systems subjected to process failures the
consistency of the application is a fundamental concern, we should analyze what is the lowest level
of resiliency that RBP can provide without violating consistency. In order to analyze this, we
suppose the failure situation presented in Figure 26.

First, suppose that p assigns a sequence number to a message m, broadcasts it and crashes
(real failure). Suppose also that once a process receive a message, it can deliver it immediately.

Due to network links and the failure, it is possible that only a set of processes have received
the message from p. If at least one process receives the sequenced message, it will deliver the
message, and once the Reformation Phase is called, this process will share the message with the
other processes, propagating the sequence number of m.

Now, suppose the same scenario but p does not really crashes. Due to a network partition, p is
not able to send messages to the other processes. Now, if p is the only process to have received the
message, it will be the only process to deliver it. When the other processes detect its failure, the
reformation shall generate a new token list without the message sequenced by p, and thus, that
sequence number will be assigned to other message. As p is not really crashed, this scenario leads
the system to an inconsistent state.

Through this example, we show that there is a lower bound on the RBP resiliency. We cannot
deliver messages immediately without risking an inconsistent state. In fact, if the protocol is
tolerant to f failures, it must wait f+1 "token passings" before delivering, to be sure that at least one
correct process has all messages. Unreliable deliver such provided by RMP can only be executed if
the application does not require consistency among the processes.
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Figure 26 − Crash of the sequencer p

p

q

r

s



4.3 Primary−Backup and View Synchronous Communication

In order to provide Total Order and Reliable Broadcast, a technique usually present in the
literature [CHB ??] is the use of Primary−backup replication together with the View Synchronous
Communication. While Primary−backup provides total ordering (as the RBP "normal phase"),
View Synchronous Communication deals with the membership changes in a dynamic group (as the
RBP Reformation Phase). 

Because this is a widely studied technique, it presents interesting solutions that can be used to
improve the RBP protocol. A short definition of these techniques is provided below, and in Section
4.4 we suggest some innovations for the RBP protocol, using the solutions presented here.

4.3.1 Primary−Backup Replication

The primary−backup replication technique consists in having one primary server and one or
more backup servers (Figure 27). If the primary fails, one of the backup servers is chosen to take
the role of primary. 

By definition, client requests are sent to the primary. When the primary receives a request
from a client, it performs the corresponding operation. Once the primary has processed the request,
it makes sure that each backup server is up−to−date with respect to the new state. For that, the
primary sends to the backup server an update message, representing the state change induced by the
processing of the request. After broadcasting the update message, the primary waits for an
acknowledgement from all backups. Once acknowledgement have been received, the primary
returns the reply to the client, and then it is ready to handle the next request.

If there is no failure, it is clear that ordering is provided as all requests from the client are
processed by the primary, and the update messages replicates this order in the backups. Atomicity
is also ensured because the update is forwarded to all the backups and ack is awaited by the primary
before sending the response.

However, if there are failures, some situations make difficult to ensure Atomicity without the
use of additional techniques [SCH 2002]. Specifically, a hard problem to solve occurs if the
primary fails while sending the update and before sending the reply. Besides this problem of
Atomicity, a new primary must be selected as the primary fails.
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4.3.2 Group Membership and View Synchronous Communication

View Synchronous Communication (VSC, for short) is an extension of the Group
Membership specification. It assumes an asynchronous system model where processes may fail by
crashing and may recover (joining the system under a new identity). VSC manages the creation and
maintenance of a set of processes (called group) in a dynamic system model, i.e., processes can join
and leave the system during the computation. The successive memberships of a group are called
views, and the event by which a new view is provided to a process is called the install event. A
process may leave the group, as result of an explicit request, because it failed or because it was
excluded by other members of the current view. In the same way, a process can join the group. 

Considering a primary−partition group membership, we can define an agreement property on
the view history: if p installs vi

p and if q installs vi
q, then vi

p = vi
q.

In VSC, broadcasts to members of the current view are delivered with some guarantees. Let
VSCast denote the primitive by which a message is broadcasted by a process in view v, and by VS−
Deliver the primitive that delivers a message to a process in view v. The properties of the VSC can
be considered as [CHB ??]:

• Validity − If a correct process executes VSCast(m), then it eventually VS−Delivers m (in view v
or in a subsequent view).

• Termination − If a process executes VSCast(m), then (1) every process in view v VS−
Deliver(m) or (2) every correct process in v installs a new view.

• View Synchrony − If a process p belongs to two consecutive views v and v’, and VS−
Deliver(m) in view v, then every process q in v ∩ v’ that installs v’, also VS−Delivers(m), i.e.,
delivers m before installing v’.

• Sending View Delivery − A message broadcasted in view v, if delivered, ought to be delivered
in view v.

• Integrity − For any message m, every correct process VS−Delivers m at most once, and only if
m was previously VSCast.

According to [VIT 99], some protocols allow a weaker version of the Sending View Delivery
property. This weaker property, called Same View Delivery assumes that all processes deliver a
message m in the same view, even if this is not the view where the message was initially sent.

The use of VSC in the primary−backup replication ensures the Atomicity requirements even
if there are failures, and allows the processes to select the primary server in a deterministic way (as
the view is agreed by all processes). Figure 28 illustrates how to use the VSCast primitive together
with the primary−backup replication.
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Figure 28 − Primary−backup replication and VSC
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Assuming that a message stability detector (i.e., a process that verifies if all processes in a
view have received m) running concurrently, we can implement VSC as presented by [SCH 2002]
(Figure 29):

4.3.3 The time−bounded buffering problem

Reliable Broadcast, as used in the VSC algorithm presented above (including in the
consensus) are easy to implement in asynchronous systems with reliable channels, as discussed in
Section 3.1.1: when a process p wishes to R−Broadcast a message m, p sends m to all process.
When some process q receives m for the first time, q sends m to all processes and then R−Delivers
m. 

In Section 3.1.1 we also observed that this implementation does not work with fair−lossy
channels. A possible solution was presented in Figure 1, and basically consists on repeatedly
execute send(m) until receiving an acknowledgement of m from each process. Once a process p
receives ack(m) from all processes in Dest(m), it can delete m from its output buffer. This strategy,
however, has a problem. If q crashes, p might never receive ack(m) from q, then it must keep m in
its output buffer forever.  

This problem leads to the following question: is there an implementation of SEND and
RECEIVE in which p can safely delete m from its output buffer after a finite amount of time? This
problem was formalized by [CHB ??] as the time−bounded buffering problem. A time−bounded
buffering implementation of reliable communication is an implementation where every message is
eventually discarded from all output buffers.

It is easy to see that time−bounded buffering is related to message stability. If process p
knows that all processes in Dest(m) have either received m or crashed, then the message m become
stable, and p can remove the message safely. 

[CHB ??] claim that no implementation of Reliable Broadcast over fair−lossy links can solve
the time−bounded buffering problem, based solely on failure detectors of either class S or class ◊P.
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Figure 29 − Solving VSC view change [SCH 2002]
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The only way to solve the time−bounded buffering problem is to use a perfect failure detector P: it
is the only failure detector that allows removing a message with safety, because it does not make
incorrect suspicions. As this is a strong requirement, View Synchronous Communication addressed
this problem by inducing process−controlled crash.

4.3.4 Program−Controlled Crash and View Changes

The impossibility of solving the time−bounded buffering problem with a ◊P failure detector
is a quite limiting constraint for practical systems. Systems based on View Synchronous
Communication usually overcome this impossibility by relying on program−controlled crash.
Program−controlled crash gives the ability to kill other processes or to commit suicide. 

Program−controlled crash can be used in order to have a View Synchronous Communication
implementation that ensures time−bounded buffering. Consider the following implementation: if
after some time process p has not received ack from q, p can decide to kill q, and then to discard m
from its output buffer. Indeed, as q eventually crashes, there is no obligation for q to R−Deliver m,
and thus, p can safely discard m.

In fact, program−controlled crash is also used to ensure the view change properties. By the
Sending View Delivery property, if a message is broadcasted in view v, all correct processes should
deliver the messages broadcasted in the same view v. If a process is suspected, we are not sure that
it is crashed. In addition, the Termination property says that if there is a view change, all correct
processes eventually install view v’. Thus, by relying on program−controlled crash, processes
excluded from the next view are forced to crash, ensuring VSC properties. For example, a simple
way to force an excluded process to crash is to verify the new view. If the process does not belong
to the new view, it commits suicide. 

Of course, the use of program−controlled crash has a non negligible cost. Every time a
process q is forced to crash, a membership change is required to exclude q. If in addition we should
keep the same degree of replication, another process q’ must replace q, this brings the extra cost of
the state transfer to q’. Summing up, while program controlled crash is necessary to solve the time−
bounded buffering problem, incorrect suspicions must be avoided as much as possible, to reduce
the overhead caused by program−controlled crash. In order to reduce the occurrence of this
incorrect suspicions, a common solution is to choose a conservative timeout value for the
implementation of the failure detectors. Unfortunately, the price of this choice is a high fail over
time, which can lead to blocking situations.

4.3.5 Two views

In a typical group membership architecture, solving efficiently the time−bounded buffering
problem and blocking prevention problem at the same time is not possible, because they are linked
to the same failure suspicion scheme. In order to explore better both issues, [CHB ??] propose the
use of two levels of GMS. 

On the propose from [CHB ??], each level of GMS defines different types of views. Ordinary
views (or simply views) are identical to the views of View Synchronous Communication.
Intermediate views (or i−views) are installed between ordinary views. 

If ordinary views are denoted by v0, v1, ..., vi, ..., the i−views between vi and vi+1 are denoted
as vi

0, vi
1, ..., vi

j, ..., vi
last. The intermediate view vi

0 is equal to vi, and the last intermediate view vi
last

is equal to vi+1. One important point is that the membership of all intermediate views vi
0,... , vi

last−1 is
the same as the membership of vi, that is, they only differ in the order that processes are listed in the
view. For example, vi = vi

0 = {p,q,r}, vi
1 = {q,r,p}, etc. During the existence of the i−views

vi
0...vi

last−1 the ordinary view remains vi.
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This model in two layers allows us to solve the problem from Section 4.3.4. Ordinary views
are generated by suspicions resulting from conservative timeouts, while i−views are generated by
suspicions resulting from aggressive timeouts. As all i−views from vi

0...vi
last−1 are composed by the

same set of processes, they do not force the crash of processes. This way, i−views contribute to
avoid blocking situations, while ordinary views ensure time−bounded buffering of messages.

The only issue that must be determined is how i−views are elaborated. An example suggested
by [CHB ??] (among various options) is a rotating coordinator i−view. In this example, the first
process in some i−view is considered the coordinator (for example, the primary server in the
primary−backup replication). When this coordinator is suspected, an i−view change moves it to the
end of the processes list, and a new process is automatically selected as the coordinator.

4.4 Revisiting the Reformation Phase

As presented in Section 3.2.3, the reformation phase proposed in [CHA 84] is a three−phase
commit protocol. If in a good run the reformation can be solved as in Figure 22, this is not
necessarily the most usual situation, and the reformation can take much more time.

Let us consider the problem of defining a new token list. As each process that detects the
failure can start the reformation phase (the "multiple originators" from [CHA 84]), the definition of
a new token list is delayed until some list obtains majority of processes. However, this is not so
simple, because according to the algorithms for the slave processes (Figure 24), if the "majority
test" took too much time, any process is allowed to leave that list and join/start another list.
Together, this events can force new rounds of the reformation phase, and when finally a new token
list is agreed, all processes must acquire the messages (and the message numbers) committed in the
previous token list before returning to the "normal" phase.

Another important point is that, contrarily to the View Synchronous Communication model,
RBP does not force excluded process to crash. Actually, the definition from [CHA 84] is too vague,
and it supposes that if some correct process does not belong to a valid token list, it will start another
reformation, until return to the token list. 

The problem with this assumption is that while the process is not in the valid token list,
garbage collection is running. Once a new token list is defined, messages become stable, and we
can consider that if garbage collection is being done, the buffers from the processes will have at
most the messages sequenced in the last turn of the token, which is a "period" too short, enough to
prevent an excluded process to comes back and acquire all previous messages.

In summary, the reformation phase is the most critical part from the RBP protocol: its
definition is very old, and its definition lacks precision. In the next sections, we identify similarities
between RBP and Primary−Backup+VSC replication model. These similarities can be exploited to
improve the RBP protocol. 

4.4.1  Similarities and Differences between Primary−Backup and RBP

As Primary−Backup and RBP are designed to solve the Total Order Broadcast problem, they
present many similarities. First, they need to provide Total Order. Second, both techniques need
dynamic groups, as failures can block the progress of the protocol. 

To solve the first problem, both techniques are based in the sequencer approach, i.e., they
ensure that only a single process can order the messages, and that this order is respected by all
processes. However, they differ in the way a sequencer is chosen. For the Primary−Backup, a new
sequencer (the primary) is only chosen when the precedent has failed. In RBP, the role of sequencer
moves among the processes, even if there is no failure. 
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Also for the second problem, the need for dynamic groups, these techniques have similar
approaches. Both consider that when there is a failure, the role of the failed process is important to
define the need for a view change. While in Primary−Backup this view change can be delayed
indefinitely if the failed process is a backup, RBP eventually requires the view change, as failures
block the token passing. 

When we compare the view change technique, however, we observe that the Reformation
algorithm presents many drawbacks in comparison with the VSC+Membership model. First, the
Reformation algorithm is not a "full" membership layer, as it does not keep mediating the
communication between the processes. Instead, once a new token list is obtained from the
Reformation algorithm, is the RBP protocol that should manage the membership.

Second, the RBP Reformation seems to not provide the Same View Delivery property, which
all VSC primitives present. Suppose that a process is excluded from the token list, i.e., it is not
more present in the token list n. Once excluded from the token list, it does not receive new
messages from the ring, and thus, cannot detect the stability of the most recent messages. Due to
the k−resiliency requirements, this processes cannot deliver these remaining messages, as they seem
unstable to it. If later this process rejoins the token list n+1, it can realize that those messages are
already stable, and deliver them in view n+1, while the other processes have delivered in view n.

If RBP Reformation Phase does not provide Same View Delivery, it also lacks another
important property, the Sending View Delivery. As this property confines the messages into the
same view, it simplifies the task of controlling message delivery and garbage collection. The
absence of this property usually forces the protocols to tag each message with extra information,
like the view number [VIT 99], and to filter each message in order to eliminate messages from an
"invalid" view. As presented in Figure 25, RBP needs to include a "Token list version" in all
messages exchanged, and to verify this version every time a message is received. Even if these
fields can represent only a small part of each message, the cost associated with the verification
reduces the efficiency of this protocol, that was designed to have high performance levels [WHE
95].

Finally, the absence of the Same View Delivery property and the use of an efficient (but
aggressive) garbage collection generate a contradiction. If a process is allowed to return in a later
view, and deliver messages in this view, we suppose that it could recover lost messages (for
example, the messages sequenced while this process was outside). As the garbage collection is too
aggressive, likely this process will be unable to acquire the missing messages, remaining
inconsistent with the other processes. As RBP does not consider program−controlled crash, this
process cannot be killed to recover the consistency of the application.

The lack of these properties reduce considerably the power from the RBP Reformation Phase.
Hopefully, we can replace the Reformation Phase algorithm. As the membership problem is similar
to both Primary−Backup and RBP, we can use the VSC view change in order to upgrade the RBP
Reformation algorithm. 

The VSC view change presents many advantages in relation to the RBP Reformation. First,
the VSC view change is a distributed algorithm without a central coordinator. Once a view change
is called (through the broadcast of a view change message), all processes are invited to start the
view change. If many processes detect the failure simultaneously, they will send the same view
change message (as they belong to the same view), and thus, they will take part on the same
agreement. The consensus itself has no need to be fully distributed (it can use rotating
coordinators), because all processes agreed to start it.

Based on the view change algorithm from Figure 29, we can define a new algorithm adapted
to the RBP protocol (Figure 30).
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Here, the "unstable" queue is the sequenced queue seqQ. Just remembering the RBP protocol,
a sequenced message remains in the sequenced queue until it is able to be delivered. As we suppose
uniform delivery, this means that messages in the sequenced queue are not yet stable.  

Once a process receives the sequenced queue from all process that are not suspected, it can
compute Msgsk, that is the union of all received seqQ. It also can suggest a new token list, based in
the set of processes that answered it reformation message.

As the decision of the consensus comprise both the new token list and the set of all unstable
messages, all processes that get this decision have the same knowledge on the unstable set. As this
"uniform" knowledge can be considered as message stability, these messages are ready to be
delivered. As all processes share the same sequenced queue, any process can be the new sequencer,
and we can select, for example, the first process in the token list.

A run in this algorithm will be similar to Figure 31.

Another important aspect from using a membership layer that provides Sending View
Delivery as the algorithm from Figure 30 is that we can implement a VSCast−like primitive that
provides a broadcast to the members of the group, taking from the RBP "normal phase" the
responsibility to manage the group and its features.
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Figure 31 − a RBP view change run
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4.4.2 RBP Reformation and Process−Controlled Crash

According to the examples presented in the previous section, the original RBP Reformation
algorithm does not provide neither Same View Delivery nor Sending View Delivery properties.
Associated with an aggressive garbage collection, the absence of these properties can lead the
protocol to a contradictory situation: the protocol allows a removed process to come back to the
token list, but does not ensure that it will be able to acquire all the missing messages. If such
situation occurs, a cyclic situation can happen: the inconsistent process blocks the token passing, it
is removed from the token list, it tries to come back... In fact, the solution to avoid this problem is
to force an excluded process to suicide, which is not considered by [CHA 84].

By modifying "View Change Reformation" algorithm presented in Figure 30, we solve this
problem. As presented in Section 4.3.4, we can implement program−controlled crash by checking
the new view. If a process is excluded from the new view (i.e., the new token list), it is forced to
commit suicide, solving the time−bounded buffering problem and ensuring the VSC properties.
This modification can be easily done, as presented in Figure 31. Here, if a process was excluded
from the new view (line 7), it commits suicide.

4.4.3 I−Views on RBP

As Program−Controlled Crash has a non−negligible cost, we can also apply the technique of
"two views" [CHB ??] in order to minimize this cost. While regular views force the crash of a
process, i−views allow these suspected processes to keep alive. However, we cannot use the
suggestion of i−view proposed by [CHB ??], i.e., move the suspected process to the "end" of the
membership list. As the token is periodically passed among the processes in the view, just moving a
suspect process does not solve the problem, and soon the token passing is blocked again, requiring
a new i−view change (that is also a costly operation).

In this work, we suggest a different approach to implement i−views, which is better adapted
to RBP. If we consider excluded processes as an "external set of processes", we can create i−views
by considering the group {"token list core","external"}. While all broadcasts are sent to the
whole group, the token is passed only among the "core" members, which are not suspected. The
concept of external receivers was already used in the definition of TRMP [MAX 2001], to allow
hierarchical distribution of processes in a world wide network. As a suspected process does not
participate in the sequencing process (it is not in the token ring), it does not block the token
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Figure 32 − "View Change" reformation protocol with program−controlled crash
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passing. As it still belong to the view, it receives all broadcasts, and can send messages to the
group.

Because external processes do not receive the token, we cannot use the token passing to
ensure Reliable Broadcast and Total Order. In fact, as we don’t know precisely if an external
process is correct or not, no assumptions can be made about it. While Reliable Broadcast and Total
Order properties must be ensured for the "core" processes, the only thing we can do for the external
processes is to allow them to be kept up−to−date. This means that if an external process missed a
message, is its own responsibility to detect this event and request message retransmissions, even if
it remained unreachable for a long time (as illustrated in Figure 33).

Now, suppose this scenario: a network partition causes a correct process to be unreachable.
As it is suspected, it will be removed from the token list, and moved to the external list. The
sequencing continues, messages become stable among the token list members, and garbage
collection is performed. If the partition is repaired, the excluded process is unable to acquire lost
messages, because they were already discarded. When this happens, it is obligated to commit
suicide (for example, if core member sends a "no more in the buffers" message, as answer to the
retransmission request). 

Because garbage collection in RBP is executed simultaneously with message delivery, is
highly probable that a correct process excluded due to a network partition or to its relative speed
(too slow) will be forced to commit suicide. Through this fact, we observe that the aggressive
garbage collection from RBP cancels one of the most important advantages in the use of i−views:
avoid program−controlled crash on correct processes.

In order to minimize the program−controlled crash due to the absence of messages in the
buffers, we can consider that one or more processes keep messages while there is available space,
i.e., they postpone the garbage collection. This technique is completely feasible if we consider
today’s machines, and garbage collection can be executed when buffers are full or when there is a
regular view change (note that both possibilities force the crash of processes).

4.4.4 Optimizing the I−View Change

According to the i−view definition, its aim is to avoid blocking the protocol, not to solve the
time−bounded buffering problem. This means that the installation of an i−view does not require
garbage collection. If we consider the suggestions from the previous section, where garbage
collection is postponed the most possible, we can optimize the algorithm for i−view changes. 
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Figure 33 − I−view change and external members
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In fact, as i−views do not require garbage collection, this means that message stabilization
does not need to be implemented by the i−view change. As message stabilization during a view
change is implemented by exchanging the set of sequenced messages from each process, we can
optimize the i−view algorithm by skipping this step, as presented in Figure 34:

Using this optimized algorithm, processes are no more force to manipulate lists of messages
each time there is an i−view change, what makes the i−views a "light−weight" version of regular
views. By reducing the overhead on the i−view changes, we reduce the impact of wrong suspicions
due to aggressive failure detectors. 

4.4.5 When to use Regular Views in RBP

In the previous sections we focused exclusively on i−views. There, we shown that, in order to
reduce the cost of program−controlled crash, some techniques can be applied to postpone the
suicide of a correct process. However, there should be a time where regular views are required.

According to the "two views" model, a regular view should be installed when a failure
detector with conservative timeouts suspects a process, while an i−view is installed each time a
suspect is raised by a failure detector with aggressive timeouts. Fortunately, this model is very
similar with the detection model presented in Section 4.1. Hence, as we have two "levels" of failure
detection, it is possible to start the view change more adequate: suspicions from the conservative
failure detector generate regular view changes.

But regular view changes are not required only on the case of failures. For example, there are
events that can trigger the definition of a new view. The most obvious events that require regular
views are those who explicitly force the modification of the membership group, i.e., the join and
leave operations. As i−views consider only permutations on the set of processes, when a member
joins or leaves the group, no permutation on the i−view can reflect these changes. 

We can also define another event that triggers a regular view change. The same way as the
installation of a regular view forces processes to crash, we suggest that the suicide of a process due
to the incapacity to acquire missing messages should force a view change. In fact, if a process
knows that it should commit suicide, it can have a "fair" behavior and execute leave before
committing suicide. We consider this a "fair" behavior because if a process execute leave before
die, it informs the group that the replication level will decrease, and the system can take some
actions to compensate this. Otherwise, a new view will be generated only when this process is
suspected by a conservative failure detector.
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Figure 34 − Optimized i−view change
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5 iRBP

Based in the techniques presented on Chapter 4 to update the Reformation algorithm and
circumvent the main problems from the original definition of RBP, we propose iRBP, the improved
RBP protocol. 

The main advantages from iRBP in relation to the original RBP protocol are:

• substitution of the original failure detection model by heartbeat failure detectors;
• a better separation between Total Order protocol and membership control;
• a view change protocol based in [SCH 2002] is used for membership control;
• use of program−controlled crash to solve the time−bounded buffering problem;
• use of the "two views" technique [CHB ??] and delayed garbage collection to minimize

the cost of program−controlled crash due to wrong failure suspicions;
• optimization of the i−view changes, in order to reduce its cost;

In order to test this new specification, we implemented the protocol using the Neko/Java
environment. Our main interest was to validate the operation of the RBP protocol together with the
"two views" membership model. In the next sections we briefly describe the implementation, the
main problems that were found, and some comments on the environment we used.

5.1 The Environment

iRBP was implemented in Java, using Neko, a framework for the development of distributed
algorithm [URB 2001]. The main advantages to use Neko is its modular approach and its
abstraction from the network level. In fact, the network abstraction from Neko allows the
construction of a single program code that can be used for both simulations or real application.

The modular approach of Neko makes easy the development of a distributed algorithm: we
can structure the application as a stack of layers, each one corresponding to a specific "building
block". Processes communicate through message passing, but most of the complexity from the
communication layers is masked by Neko (for example, there is no need to provide IP address and
ports, like sockets require). As the layers are independent and communicate through well−defined
interfaces (the basic interface comprises send and deliver), we can reuse layer and plug them to
construct applications with different requirements.
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Figure 35 − Architecture of Neko [URB 2001]



As Neko was already used to implement many applications and experiments, like:

• Atomic Broadcast algorithms
• Failure detector components
• Consensus algorithms
• Reliable broadcast algorithms
• Evaluation of the cost of distributed algorithms using performance metrics
• Illustration of the FLP impossibility results
• Replicated servers

These previous experiments, together with the modularity and reusability of Neko, allowed us
to profit from most pre−existent layers: we had only to implement the protocol−specific layers
iRBP and MShip, as presented in Figure 37.

Following the basic definitions from RBP, we implemented the token passing using
unreliable communication primitives. Thus, UDP was chosen as the communication protocol for
the "normal phase". However, as the we use Consensus and Reliable Broadcast, we were forced to
use also TCP because these layers were designed for reliable communication. Thus, a better
representation from the interrelation among the layers would be the following (Figure 37):
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Figure 36 − iRBP Protocol Stack
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5.2 Problems Found While Implementing the iRBP Protocol 

5.2.1 Total Order Layer − iRBP Class

The implementation of the total order algorithm is very similar to the "normal phase"
presented in Figure 25. In fact, it was quite easy to implement it. The main problem we had found
was to implement the "send until" instructions. This problem comes from the fact that the active
layer from Neko has a thread (and a message queue) only for incoming messages, not for outgoing
ones (Figure 38).

 
Unless we have a thread also for to send messages, we are forced to execute a loop until the

reception of an ack. As this is not an elegant solution, we decided to add a thread also for the send
primitive: if an acknowledgement is received, we remove the send message from the outgoing
queue, similarly to what happens in Figure 1.

We also had to restructure the queues (recvQ, seqQ, stableQ), in order to optimize them.
Actually, the instructions from the algorithm of Figure 25 hide much of the complexity of
manipulating messages in a queue. If we can speed−up the access to the data on the queues, we can
reduce the cost of the protocol. Hence, these queues were constructed as classes of objects, each
one with different methods for storage and search adapted to their specific needs.

Figure 39shows the basic organization of  internal components from the iRBP layer.
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Figure 38 − Active Layer [URB 2001]

Figure 39 − iRBP internal structure
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Nevertheless, the main modification from the original definition of RBP is that membership
control is no more executed by the total order broadcast protocol, but for a specific layer (called
Mship) that implements group communication primitives, membership control and view changes.

5.2.2 Membership − MShip Class

Compared with the total order protocol, the membership control was harder to implement.
Actually, this happens because the membership control must be present in every communication
among processes. It is responsibility from the membership layer to control the group membership,
to provide primitives for group communication as well as to support membership changes. In
addition, the membership layer needs to provide a notion of "virtual ring" for the token−based total
order layer (iRBP): we tried to hide the complexity on manipulating this ring by providing methods
like nextProcess() and previousProcess().

Unfortunately, we were obligate to violate the encapsulation of the membership layer: as
token passing is a critical operation in iRBP, the total order layer receives the failure suspicions,
and thus, it is responsible for starting view changes. In the same way, the sequenced queue and the
stable queue from the iRBP layer had to be shared with the MShip layer, because during view
changes the content of the sequenced queue should be exchanged with other processes, and both
stable queue and sequenced queue should be manipulated when installing a new view.

At least, implementing the view change protocol was easy. Thanks to the well−defined
algorithm for VSC view changes and Neko’s building blocks, this operation was fast implemented.
In our tests, we used the Chandra and Toueg consensus, together with the Reliable Broadcast layer. 

Figure 40 shows the basic structure from MShip internal components.

5.2.3 Testing

As one of our main objectives was to verify if views and i−views could coexist on the group
membership control, we executed various tests in order to simulate failures and to verify the
behavior of the "two views" model. A specific layer, MuteLayer, was developed to help simulating
failures. Its main function is to prevent a process to communicate with other processes. This is done
by dropping messages, instead of sending them as expected. As the MuteLayer is located below the
Failure Detector layer, "correct" processes cannot receive any message from the "failed" one, and
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Figure 40 − MShip structure
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thus, it is suspected to have failed. As this kind of control could be programmed, it was easy to
simulate crashes, temporary partitions, etc. 

We executed many runs with different failure behaviors, in order to test the following
scenarios: 

• a simple "crash": i−view and regular view changes;
• multiple crashes: i−view and regular view changes;
• temporary network partition: i−view changes, and retransmission requests from the

external process;
• reintegration of external processes in a new i−view;

All these runs were successfully executed if concerning the view changes and acquisition of
missing messages. However, as the Neko framework does not allow us to test a real suicide, we had
to simulate a suicide by muting a process indefinitely. This restriction from Neko comes from the
fact that if connections are broken when a process really crashes, the network layer raises some
exceptions (like "connection refused") that Neko does not handle yet.

While this is a critical concern if we think on real applications, it does not reduces the merit
from Neko. In fact, the ability to deal with broken connections requires a group membership in the
lower levels of the system, and this is not suitable for all applications (for example, simulations do
not need it, and other applications can be concerned with the additional cost of this service).
Anyway, we think that in future versions of Neko we can try to include this network membership
control as an optional layer for Neko.
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6 Conclusions and Future Works

In this work, we studied RBP, a distributed protocol for Total Order Broadcast. One of the
main characteristics of the RBP protocol is that it can operate even in environments subjected to
message losses, but still providing good performance rates and low network traffic. 

If RBP has an interesting mechanism for Total Order Broadcast, it lacks in the management
of groups under failure situations: as RBP was published in 1984, many techniques for group
membership did not exist yet, and unfortunately, this protocol was not brought up to date. 

In this work, we try to compensate all these years. We compared RBP with another protocol
for Total Order that was widely studied in the later years. By identifying common problems to both
protocols, we could select some techniques, which were employed to update the RBP group
membership control.

By replacing the original membership with a more recent protocol, we could provide all
properties that characterize today a group membership service. In addition, we experimented a new
technique used to minimize the problems generated by wrong failure suspicions. This technique is
is subject of recent publications, and to the best of our knowledge, it has not yet been used in any
implementation.

Summing up, the main result from this work was that a good but old protocol can be
upgraded using top−of−art techniques without losing its characteristics. More, we shown that these
techniques, can be implemented in a real application and even optimized.

However, this work is far from the end. The next work that should be finished is to compare
the performance from the RBP protocol with other Total Order protocols: due to time restrictions,
we could not execute these comparisons for the present work, and the performance is the "flagship"
from RBP−based protocols. Later, one can apply the knowledge from this work to update the RMP
protocol, which provides many extra features to the application, but suffers from similar problems
in the membership layer.

RBP also shown some potentialities for the creation of an optimistic protocol: the way as it
manages views and Total Order allow us to imagine possible solutions that do not block the
processing when there is a failure. The study of these situations can lead us to develop a family of
protocols with high performance and optimized view change.
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