The roots of any polynomial equation
 Geert-Jan Uytdewilligen

To cite this version:

Geert-Jan Uytdewilligen. The roots of any polynomial equation. 2004. hal-00002529v1

HAL Id: hal-00002529 https://hal.science/hal-00002529v1

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The roots of any polynomial equation

G.A.Uytdewilligen,

Bergen op Zoomstraat 76, 5652 KE Eindhoven. g.a.uytdewilligen@zonnet.nl

$$
\begin{align*}
& \text { Abstract } \\
& \text { We provide a method for solving the roots of the general polynomial equation } \\
& \qquad a_{n} \cdot x^{n}+a_{n-1} \cdot x^{n-1}++a_{1} \cdot x+s=0 \tag{1}
\end{align*}
$$

To do so, we express x as a powerseries of s , and calculate the first $\mathrm{n}-2$ coefficients. We turn the polynomial equation into a differential equation that has the roots as solutions. Then we express the powerseries' coefficients in the first $\mathrm{n}-2$ coefficients. Then the variable s is set to a 0 . A free parameter is added to make the series convergent. © 2004 G.A.Uytdewilligen. All rights reserved.

Keywords: Algebraic equation

The method

The method is based on [1]. Let's take the first $\mathrm{n}-1$ derivatives of (1) to s . Equate these derivatives to zero. Then find $\frac{d^{i}}{d s^{i}} \mathrm{x}(s)$ in terms of $\mathrm{x}(\mathrm{s})$ for i from 1 to $\mathrm{n}-1$. Now make a new differential equation

$$
\begin{equation*}
\mathrm{ml} \cdot \frac{\mathrm{~d}^{\mathrm{n}-1}}{\mathrm{ds}^{\mathrm{n}-1}} \mathrm{x}(\mathrm{~s})+\mathrm{m} 2 \cdot \frac{\mathrm{~d}^{\mathrm{n}-2}}{\mathrm{ds}^{\mathrm{n}-2}} \mathrm{x}(\mathrm{~s})+\cdot+\mathrm{m}_{\mathrm{n}} \cdot \mathrm{x}(\mathrm{~s})+\mathrm{m}_{\mathrm{n}+1}=0 \tag{2}
\end{equation*}
$$

and fill in our $\frac{d^{i}}{d s^{i}} \mathrm{x}(s)$ in (2). Multiply by the denominator of the expression. Now we have a polynomial in $\mathrm{x}(\mathrm{s})$ of degree higher then n . Using (1) as property, we simplify this polynomial to the degree of n. Set it equal to (1) and solve $m_{1} . . m_{n+1}$ in terms of s and $a_{1} . . a_{n}$ Substituting these in (2) gives a differential equation that has the zeros of (1) among its solutions. We then insert

$$
\begin{equation*}
x(s)=y(s)-\frac{a_{n-1}}{n \cdot a_{n}} \tag{3}
\end{equation*}
$$

in (2). Multiplying by the denominator we get a differential equation of the linear form:

$$
\begin{equation*}
\mathrm{p} 1 \cdot \frac{\mathrm{~d}^{\mathrm{n}-1}}{\mathrm{ds}}{ }^{\mathrm{n}-1} \mathrm{y}(\mathrm{~s})+\mathrm{p} 2 \cdot \frac{\mathrm{~d}^{\mathrm{n}-2}}{\mathrm{ds}^{\mathrm{n}-2}} \mathrm{y}(\mathrm{~s})+.+\mathrm{p}_{\mathrm{n}} \cdot \mathrm{y}(\mathrm{~s})=0 \tag{4}
\end{equation*}
$$

With $\mathrm{p}_{1}(\mathrm{~s}) . . \mathrm{p}_{\mathrm{n}}(\mathrm{s})$ polynomials in s . If we substitute our powerseries, all the coefficients are determined by the first $\mathrm{n}-1$ coefficients. The first coefficients are calculated as follows: A powerseries is filled in in (1).

$$
\begin{equation*}
x(s)=\sum_{i=0}^{n-2} b_{i} \cdot s^{i}-\frac{a_{n}}{n \cdot a_{n-1}} \tag{5}
\end{equation*}
$$

and it should be zero for all s. From this, we calculate b_{i} for i from 0 to $n-2 . b_{0}$ Is a root af an $n-1$ degree polynomial and the other b_{i} are expressed in b_{0} Now a powerseries is inserted in (4):

$$
\begin{equation*}
y(s)=\sum_{i=0}^{\infty} b_{i} \cdot s^{i} \tag{6}
\end{equation*}
$$

and we get an equation of the form:

$$
\begin{equation*}
\mathrm{q}_{1}(\mathrm{i}) \cdot \mathrm{c}_{1} \cdot \mathrm{~b}_{\mathrm{i}}+\mathrm{q}_{2}(\mathrm{i}) \cdot \mathrm{c}_{2} \cdot \mathrm{~b}_{\mathrm{i}+1}+.+\mathrm{q}_{\mathrm{n}}(\mathrm{i}) \cdot \mathrm{c}_{\mathrm{n}} \cdot \mathrm{~b}_{\mathrm{i}+\mathrm{n}-1}=0 \tag{7}
\end{equation*}
$$

where q_{m} (i) are polynomials in i of degree $n-1 . c_{m}$ Are constants.
We define b_{n-1} as the determinant of a matrix A
and for the rest of the coefficients

$$
\begin{aligned}
& \| \begin{array}{cccccccc}
\frac{-c_{n-1} \cdot q_{n-1}(i)}{c_{n} \cdot q_{n}(i)} & \frac{-c_{n-2} \cdot q_{n-2}(i)}{c_{n} \cdot q_{n}(i)} & \frac{-c_{n-3} \cdot q_{n-3}(i)}{c_{n} \cdot q_{n}(i)} & \frac{-c_{1} \cdot q_{1}(i)}{c_{n} \cdot q_{n}(i)} & 0 & 0 & 0 & 0 \\
-1 & \frac{-c_{n-1} \cdot q_{n-1}(i-1)}{c_{n} \cdot q_{n}(i-1)} & \frac{-c_{n-2} \cdot q_{n-2}(i-1)}{c_{n} \cdot q_{n}(i-1)} & \frac{-c_{2} \cdot q_{2}(i-1)}{c_{n} \cdot q_{n}(i-1)} & \frac{c_{1} \cdot q_{1}(i-1)}{c_{n} \cdot q_{n}(i-1)} & 0 & 0 & 0
\end{array} \\
& 0 \quad 0 \quad-1 \frac{-c_{n-1} \cdot q_{n-1}(1)}{c_{n} \cdot q_{n}(1)} \frac{c_{n-2} \cdot q_{n-2}(1)}{c_{n} \cdot q_{n}(1)} \cdot \frac{c_{1} \cdot q_{1}(1)}{c_{n} \cdot q_{n}(1)} 0 \\
& \begin{array}{ccccc}
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array} \\
& \text { A }
\end{aligned}
$$

The series (6) can be proven to be convergent [2] if for a constant E

$$
\begin{equation*}
\mathrm{s} \leq \frac{1}{\mathrm{E}} \cdot\left|\mathrm{c}_{\mathrm{n}}\right| \tag{10}
\end{equation*}
$$

and if all the absolute values of the coefficients of (1) are chosen smaller then 1 . This is done by dividing a polynomial by (more than) the maximum of the absolute values of the coefficients.

To make the series convergent, we transform s to e-s. That is, if we insert the powerseries it is not in s but in e.s. Writing out the terms of the sum, we find that each term d_{i} has a factor $s^{i} \cdot e^{i-n+1}$. Setting

$$
\begin{equation*}
\mathrm{e}=\frac{\left|\mathrm{c}_{\mathrm{n}}\right|}{\mathrm{E}} \tag{12}
\end{equation*}
$$

We still need $\mathrm{s}<1$, which is why we set s to a_{0} and $\mathrm{a}_{0}<1$.

References

[1] R. Harley, On the theory of the Transcendental Solution of Algebraic Equations, Quart. Journal of Pure and Applied Math, Vol. 5 p.337. 1862
[2] E. Kreyszig, Advanced Engineering Mathematics, John Wiley \& Sons, Inc. p.789. 1993.

