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THE HEAT KERNEL ON NONCOMPACT SYMMETRIC SPACES

Jean–Philippe Anker & Patrick Ostellari

In memory of F. I. Karpelevič (1927–2000)

The heat kernel plays a central role in mathematics. It occurs in several fields :
analysis, geometry and – last but not least – probability theory. In this survey, we
shall focus on its analytic aspects, specifically sharp bounds, in the particular setting of
Riemannian symmetric spaces of noncompact type. It is a natural tribute to Karpelevič,
whose pioneer work [Ka] inspired further study of the geometry of theses spaces and of
the analysis of the Laplacian thereon.

This survey is based on lectures delivered by the first author in May 2002 at IHP in
Paris during the Special Quarter Heat kernels, random walks & analysis on manifolds &

graphs. Both authors would like to thank the organizers for their great job, as well as
Martine Babillot, Gilles Carron, Sasha Grigor’yan and Jean–Pierre Otal for stimulating
discussions.

1. Preliminaries

We shall briefly review some basics about noncompact Riemannian symmetric spaces
X = G/K and we shall otherwise refer to standard texbooks ([GV]; [H1], [H2], [H3];
[Kn]) for their structure and harmonic analysis thereon.

Thus G is a semisimple Lie group (real, connected, noncompact, with finite center) or
more generally a reductive Lie group in the Harish-Chandra class and K is a maximal
compact subgroup. Let θ be the Cartan involution and let g = k ⊕ p be the Cartan
decomposition at the Lie algebra level. g is equipped with the inner product

(1.1) 〈X, Y 〉 = −B(X, θY ) ,

where B is the Killing form, appropriately modified if g has a central component. (1.1)
enables us to identify g with its dual g∗ , and likewise for subspaces of g . (1.1) induces
the Riemannian structure on X = G/K , whose tangent space at the origin 0 = eK is
identified with p. Let a be a Cartan subspace of p, let m be the centralizer of a in k

and let
g = a ⊕ m ⊕ {⊕α∈Σ gα

}

be the root space decomposition of g with respect to a. Select in a a positive Weyl
chamber a+, in Σ the corresponding sets Σ+ of positive roots, Σ+

0 of positive indivisible
roots, Π of simple roots, and in g the corresponding nilpotent subalgebra n = ⊕α∈Σ+gα.
Let % = 1

2

∑

α∈Σ+ mα α be the half sum of positive roots, counted with multiplicities
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2 JEAN–PHILIPPE ANKER & PATRICK OSTELLARI

mα = dim gα , let ` = dim a be the rank of X and let n = ` +
∑

α∈Σ+ mα be the
dimension of X. Finally A = exp a and N = exp n are closed subgroups of G and M
denotes the centralizer of A in K.

We shall need the following classical decompositions of G
{

G = N A K (Iwasawa)

G = K (exp a+ ) K (Cartan)

and the resulting decompositions of X = G/K. Let us write x = n(x) a(x) k(x) in the

Iwasawa decomposition, which is unique, and A(x) = log a(x) ∈ a . The a+– component
in the Cartan decomposition is uniquely determined, contrarily to the K– components.
We shall write |x| = |H| if x = k1 eH k2 .

Let (Xj) be a basis of g, let bjk = B(Xj , Xk) and let (bjk) be the inverse matrix
of (bjk). Then Ω =

∑

j,k bjkXjXk is the Casimir element in the universal enveloping

algebra U(g). Consider in particular orthonormal bases (Yj) and (Zk) of p and k with
respect to (1.1). Then

Ω = Ωp − Ωk where

{

Ωp =
∑

j Y 2
j ,

Ωk =
∑

k Z2
k .

The Laplace–Beltrami operator on X = G/K can be recovered from the action of the
Casimir element :

∆f (xK) = f (x : Ω) = f (x : Ωp) ∀ x ∈ G .

Here we consider – as we shall always do – functions on X as right–K–invariant functions
on G and we use the following notation for the right–action of U(g) on C∞(G) :

f (x : X1 · · · Xr ) = ∂
∂t1

∣

∣

t1=0
. . . ∂

∂tr

∣

∣

tr=0
f
(

x et1X1 · · · etrXr
)

for all x ∈ G and X1, . . . , Xr ∈ g .

L2 harmonic analysis on X = G/K may be summarized by the Plancherel formula

(1.2) ( LX , L2(X)) ∼=
∫ ⊕

a+

dλ
|c(λ)|2 (πλ,Hλ)

which expresses the decomposition of the left regular representation of G on L2(X)
into spherical principal series. Recall that

(i) πλ is realized on Hλ ≡ L2(K/M) by

{πλ(x) ξ}(kM) = e〈%+iλ,A(k−1x)〉 ξ(x−1.kM) ;

(ii) the Harish–Chandra c –function, which enters the Plancherel measure, was com-
puted explicitly by Gindikin & Karpelevič [GK] ;

(iii) the decomposition (1.2) is realized by the Fourier transform

(1.3) Hf (λ, kM) =

∫

G

dx f(x) {πλ(x)1}(kM) =

∫

G

dx f(x) e〈%+iλ,A(k−1x)〉

and its inverse

(1.4) f(x) = const.

∫

a

dλ
|c(λ)|2

〈

Hf(λ), πλ(x)1
〉

L2(K/M)
=

= const.

∫

a

dλ
|c(λ)|2

∫

K

dk Hf(λ, kM) e〈%−iλ,A(k−1x)〉 .

In the bi–K–invariant case, (1.2) boils down to

L2(K\G/K) ∼= L2
(

a, dλ
|c(λ)|2

)W

and the integral transforms (1.3) and (1.4) to

Hf(λ) =

∫

G

dx f(x) ϕλ(x) and f(x) = const.

∫

a

dλ
|c(λ)|2 Hf(λ) ϕ−λ(x) .

These formulas involve the spherical functions
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ϕλ(x) =
〈

πλ(x)1,1
〉

L2(K/M)
=

∫

K

dk e〈%+iλ,A(kx)〉 .

The heat equation is the following parabolic evolution equation

(1.5) ∂
∂t

u(x, t) = ∆xu(x, t)

with Cauchy data u(x, 0) = f (x). It is solved

u(x, t) =

∫

X

ht(x, y) f(y) dy

by the heat kernel ht(x, y), whose fundamental properties are recalled next.

(i) ht is symmetric and positive : ht(x, y) = ht(y, x) > 0 ;
(ii) ht(x, y) is a smooth function of x ∈ X, y ∈ X and t ∈ (0, +∞) ;
(iii) It satisfies the heat equation : ∂

∂t
ht(x, y) = ∆xht(x, y) = ∆y ht(x, y) ;

(iv) For every x ∈ X, ht(x, y) dy is a probability measure on X, which converges to

the Dirac measure δx(y) as t
>−→ 0 .

These properties hold for quite general manifolds. In our setting, the G–invariance
implies moreover that

(v) ht(xK, yK) = ht(y
−1x) is a right convolution kernel;

(vi) x 7−→ ht(x) is a bi–K–invariant function on G, which is thus determined by its
restriction to the positive Weyl chamber.

An alternative consists in solving the heat equation (1.5) via the Fourier transform (1.3) :
{ ∂

∂t
Hu(λ, t) = −(|λ|2 + |%|2) Hu(λ, t)

Hu(λ, 0) = Hf(λ)

yields Hu(λ, t) = Hf(λ) e−(|λ|2+|%|2)t , hence u(x, t) = (f ∗ ht)(x), where

(1.6) ht(x) = const.

∫

a

dλ
|c(λ)|2 e−t(|λ|2+|%|2) ϕ±λ(x) .

2. Explicit expressions

The expression (1.6) for the heat kernel, as inverse spherical Fourier transform, is
neither explicit nor easy to handle in general. For instance, it is not obvious from (1.6)
that ht(x) > 0 . We shall now list some particular cases, where (more or less) explicit
and manageable expressions are available.

Case 1 : G complex

This is the most elementary case, as far as spherical Fourier analysis is concerned, which
boils down to Euclidean Fourier analysis on a or on p . The following formula was
written down first by Gangolli [Ga] (and must have been known to the Russian School
led by Dynkin, Gelfand, Karpelevič, . . . ) :

ht(e
H) = (4πt)−

n
2 e−|%|2t

{

∏

α∈Σ+
〈α,H〉

sinh〈α,H〉

}

e−
|H|2

4 t ∀ t > 0, ∀ H ∈ a .

Notice that the expression between braces coincides here both with the Jacobian J(H)
of the exponential map exp0 : p → X , raised to the power − 1

2 , and with the basic

spherical function ϕ0(e
H) .
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Flensted–Jensen [F] found a remarkable relation between spherical analysis on a real
(semisimple or reductive) Lie group GR and spherical analysis on its complexification
GC , which yields the following relation between the corresponding heat kernels :

hR
t (eH) = const.

∫

KC

dk hC
t
2
(k e 2H) ∀ H ∈ a .

Some information can be deduced from this formula, especially in the split case, but it
has been unfortunately of little practical use in the general case so far.

All other cases rely on explicit formulas for the inverse Abel transform. Recall that the
Abel transform is defined by

Af(H) = e−〈%,H〉
∫

N

dn f (n eH) = e 〈%,H〉
∫

N

dn f (eH n) ∀ H ∈ a

for bi–K–invariant functions f on G , let say in the Schwartz class, and that its prop-
erties are summarized by the following commutative diagram

(2.1)

S(a)W

H ↗ ↖ F

S(K\G/K)W −→
A

S(a)W

where F denotes the Euclidean Fourier transform and each arrow is a topological iso-
morphism. More information about the Abel transform and its inverse can be found in
the survey [S4] by Sawyer in this volume. The diagram (2.1) yields the following abstract
formula for the heat kernel

ht = (4πt)−
`
2 e−|%|2t A−1

{

H 7−→ e−
|H|2

4 t

}

which can be made explicit in a few cases.

Case 2 : X of rank one

According to the classification, X is a hyperbolic space Hd(F) .

• X = Hd(R) with d odd ≥ 3 :

With an appropriate normalization of the metric,

(2.2) ht(r) = c t−
1
2 e−( d−1

2 )2t
(

− 1
sinh r

∂
∂r

)

d−1
2 e−

r2

4 t ,

where r denotes the geodesic distance to the origin and c = 2− d+1
2 π−d

2 .

• X = Hd(R) with d even ≥ 2 :

(2.3) ht(r) = c t−
1
2 e−( d−1

2 )2t

∫ +∞

r

ds√
cosh s−cosh r

(

− ∂
∂s

)(

− 1
sinh s

∂
∂s

)
d
2−1

e−
s2

4 t ,

where c = 2−
d+1
2 π− d+1

2 .

• X = Hd(C) with d ≥ 2 :

ht(r) = c t−
1
2 e−d2t

∫ +∞

r

ds√
cosh 2s−cosh 2r

(

− ∂
∂s

)(

− 1
sinh s

∂
∂s

)d−1
e−

s2

4 t ,

where c = 2−d+ 1
2 π−d− 1

2 .

• X = Hd(H) with d ≥ 2 :

ht(r) = c t−
1
2 e−(2d+1)2t ×

×
∫ +∞

r

ds√
cosh 2s−cosh 2r

(

− ∂
∂s

)(

− 1
sinh 2s

∂
∂s

)(

− 1
sinh s

∂
∂s

)2(d−1)
e−

s2

4 t ,

where c = 2−2d+ 3
2 π−2d− 1

2 .
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• X = H2(O) :

ht(r) = c t−
1
2 e−112t ×

×
∫ +∞

r

ds√
cosh 2s−cosh 2r

(

− ∂
∂s

)(

− 1
sinh 2s

∂
∂s

)3(− 1
sinh s

∂
∂s

)4
e−

s2

4 t ,

where c = 2−
9
2 π− 17

2 .

These formulas are constantly rediscovered, which makes it hard to give a fair historical
account. The simplest case is H3(R) , which corresponds to the complex group G =
SL(2, C) . The case H2(R) is usually attributed to McKean [Mc], although the Abel
transform and its inverse had been considered earlier for G = SL(2, R) , in connection
with the Selberg trace formula [Go]. The difference between d odd and d even in the real
case is only apparent. Up to constants, the family of Abel transforms on Hd(R) occurs
indeed discretely in the one–parameter group of Weyl fractional transforms

{

W τ
µ

}

µ∈C

with τ = 1 , where

W τ
µ f (r) =











1
Γ(µ)

∫ +∞

r

d (cosh τs) (cosh τs − cosh τr) µ−1 f(s) if Re µ > 0

(

− ∂
∂(cosh τr)

)

f (r) if µ = −1

Hence (2.2) and (2.3) rewrite

h
(d)
t (r) = (2π)−

d−1
2 e−( d−1

2 )2t W 1
− d−1

2

(

1√
4πt

e−
r2

4 t

)

.

This explains in particular the following recurrence, which was observed first by Millson,
according to [DGM] :

h
(d+2)
t (r) = 1

2π e−d t
(

− 1
sinh r

∂
∂r

)

h
(d)
t (r) ,

The heat kernel on all hyperbolic spaces Hd(F) was first written down by Lohoué & Rych-
ener [LRy]. The Abel transform and its inverse had been computed earlier [Ko1] within
the framework of Jacobi function theory developed by Flensted–Jensen & Koornwinder.
The general expression for Hd(C) , Hd(H) and H2(O) involves two Weyl fractional
transforms parametrized by the root multiplicities :

h t(r) = c t−
1
2 e−(

m1
2 + m2)

2t
(

W 2
− m2

2
◦W 1

−m1
2

)(

e−
r2

4 t

)

where c = 2−
m1+1

2 π−m1+m2+1
2 . This formula extends straightforwardly to Damek–Ricci

spaces [ADY], up to renormalization. Among other approaches, let us point out the work
of Gruet [Gr] who reobtains the case Hd(R) by specializing a stochastic integral initially
established by Yor in connection with financial mathematics.

Case 3 : G = SU(p, q) with p ≤ q

In appropriate coordinates,

h t

(

e r1H1+ ...+ rpHp
)

=

= const. t−
p
2 e−|%|2t

{

∏

1≤i<j≤p

sinh (ri + rj) sinh (ri − rj)
}−1

×

×
∫ +∞

r1

ds1√
cosh 2s1−cosh 2r1

(

− ∂
∂s1

)(

− 1
sinh s1

∂
∂s1

)q−p × . . .

. . . ×
∫ +∞

rp

dsp√
cosh 2sp−cosh 2rp

(

− ∂
∂sp

)(

− 1
sinh sp

∂
∂sp

)q−p ×

×
{

∏

1≤i<j≤p

(

∂
∂si

+ ∂
∂sj

)(

∂
∂si

− ∂
∂sj

)

}

e−
|s|2

4 t .
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This expression is a mixture of the complex and the rank one cases. It is deduced from an
explicit formula for the spherical functions (hence for the Abel transform and its inverse),
which is due to Berezin & Karpelevič [BK]. See [A2] and the references cited therein.

Case 4 : G = SL(d, F)

In the nineties, Sawyer has produced explicit and manageable formulas for the inverse
Abel transform on all symmetric spaces X = G/K with root system of type A , which
correspond to G = SL(d, R) , SL(d, C) , SL(d, H) or SL(3, O) . They involve a mixture
of integral and differential operators in the first case, and purely differential operators in
the last three cases. We shall not reproduce his formulas here, but refer instead to the
original articles ([S1], [S2], [S3]) and to his contribution [S4] to this volume.

3. Estimates

In this section we first state and comment a global estimate for the heat kernel on
X = G/K (same upper and lower bound, up to constants) that was conjectured by the
first author and that we have recently established [AO]. Next we present our proof in the
simplest case, namely real hyperbolic spaces X = Hn(R) . The symbol � between two
positive expressions means that their ratio is bounded above and below.

Main Theorem : We have

(3.1) ht(e
H) � t−

n
2

{

∏

α∈Σ+
0

(

1 + 〈α, H〉
) (

1 + t + 〈α, H〉
)

mα+m2α
2 −1

}

e−|%|2t−〈%,H〉− |H|2

4 t

for all t > 0 and H ∈ a+ .

The upper bound was conjectured in [A2] on the basis of some particular cases (see
section 1) where explicit expressions were available. Independently and around the same
time, Davies & Mandouvalos [DM] established the estimate (3.1) for X = Hn(R) . This
result was extended to all hyperbolic spaces in [GM], to Damek–Ricci spaces in [ADY],
and to more general Sturm–Liouville operators on the half–line [ 0, +∞ ) in [LRo]. In
a series of papers ([S1], [S2], [S3]), Sawyer established the upper bound for all groups
G = SL(n, F) and showed that it was a lower bound too for G = SL(3, R) . This
led the first author to conjecture that he had been lucky enough to guess the correct
upper and lower bound. In joint works ([AJ1], [AJ2]) with Ji, he established (3.1) when
|H| = O(1 + t) (and also for all t > 0 provided H stays far away from the walls of

a+ ) . This is arguably the most important range, since heat diffuses essentially with
finite speed on X (see subsection 4.1). But it misses typically fixed time estimates. On
the other hand, our present method yields only bounds, while the analysis carried out in
[AJ1] yields also asymptotics and estimates for derivatives.

Let us comment on the right hand side of (3.1). The power t−n/2 and the Gaussian

e−|H|2/(4t) are expected from the Euclidean case X = Rn , where the heat kernel writes

heucl
t (r) = (4πt)−n/2 e−r2/(4t) . The spectral gap is responsible for the exponential e−|%|2t

( recall that the L2 spectrum of ∆ is equal to the half line (−∞,−|%|2 ] ) . In order to

understand the remaining factors, let us split the range a+ × (0, +∞) of the space–time
variable (H, t) , depending whether the various coordinates 〈α, H〉 ( α ∈ Π ) are larger
or smaller than t , and let us start with the main two cases :

• Assume that t = O
(

1 + minα∈Π〈α, H〉
)

, for instance t is bounded above. Then the

right hand side of (3.1) is comparable to the expression t−n/2 J(H)−1/2 e−|%|2t−|H|2/(4t) ,
where
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J(H) = det
(

sinh ad H
ad H

∣

∣

p

)

=
∏

α∈Σ+

( sinh 〈α,H〉
〈α,H〉

)mα

is the Jacobian of the exponential map exp0 : p → X .

• Assume that t is bounded below and that |H| = O(t). Then the right hand side

of (3.1) is comparable to t−`/2−|Σ+
0 | ϕ0(e

H) e−|%|2t−|H|2/(4t) . This expression involves
the basic spherical function ϕ0 , which is a distinguished ground state of ∆ on X (the
unique K–invariant one, up to constants). Its exact behavior was determined in [A1],
improving slightly upon Harish–Chandra’s estimates :

(3.2) ϕ0(e
H) �

{
∏

α∈Σ+
0
( 1 + 〈α, H〉 )

}

e−〈%,H〉 ∀ H ∈ a+ .

The intermediate cases combine these two extreme cases. Assume that t is bounded
below and that { 〈α, H〉 ≤ t ∀ α ∈ I

〈α, H〉 ≥ t ∀ α ∈ Π r I

where I is a proper subset of Π . Then the right hand side of (3.1) is comparable to

t−
`
2−|Σ+

I,0|−mI

2 ϕI,0(e
H) JI(H)−

1
2 e−|%|2t− |H|2

4 t .

C Π Iβ

Cα I

<   ,   > = tHβ

<   ,   > = tα H)+( Ia

I

I

a

a

Let us give a hint of our notation, which is rather standard in this setting (except for a
possible interchange of the lower and the upper index I ) . Subsets I ⊂ Π are in 1–to–1
correspondence with Weyl chamber faces

(aI)+ = {H ∈ a+ | 〈α, H〉 = 0 ∀ α ∈ I , 〈β, H〉 > 0 ∀ β ∈ Π r I }
and with standard parabolic subgroups P I = GIA

IN I . As the reader may have guessed,
the lower index will be used for quantities attached to I and the upper index for com-
plementary quantities. For instance, ΣI denotes the root subsytem generated by I
and ϕI,0 the basic spherical function of the symmetric subspace XI = GI/KI , while

mI =
∑

α∈Σ+rΣ+
I

mα = dimN I and JI(H) = J(H)
JI(H) =

∏

α∈Σ+rΣ+
I

( sinh 〈α,H〉
〈α,H〉

)mα
.

Our proof of (3.1) may look involved, especially in higher rank, but the underlying idea
is quite simple. Let us denote by D = ∂

∂t − ∆x the heat operator on X × R . Since the
right hand side of (3.1) is comparable to a fundamental solution, it should be almost killed
by D on X × (0, +∞) . Appropriate corrections yield supersolutions, resp. subsolutions,
which satisfy the parabolic minimum, resp. maximum principle. Getting this way heat
kernel estimates is not a new idea. It was used for instance by Yau and his collaborators
in the Riemannian setting (see [C]) and must go back beyond.
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Proposition (weak parabolic minimum principle) : Let Ω be a domain (i.e. a
connected open subset with compact closure) in a Riemannian manifold X and let
t0 < t1 be two real numbers. Assume that u ∈ C2,1( Ω × (t0, t1] ) ∩ C0( Ω × [t0, t1] )
satisfies
(i) Du ≥ 0 in Ω × (t0, t1] (supersolution ) ,
(ii) u ≥ 0 on the boundary components Ω × {t0} and ∂Ω × [t0, t1] .
Then u ≥ 0 throughout Ω × [t0, t1] .

t0

t1

X

t

Ω

o

This principle holds actually for more general domains in X × R . We refer to [PW]
for a proof, which extends straightforwardly to our setting, as well as for the strong
parabolic minimum principle, which asserts that u = 0 throughout Ω× [t0, t∗] provided
u(x∗, t∗) = 0 at some point (x∗, t∗) ∈ Ω × (t0, t1] .

We shall now specialize our proof to the case X = Hn(R) and thus reprove differently
the estimate

(3.3) ht(r) � t−
n
2 ( 1 + r ) ( 1 + r + t )

n−3
2 e−( n−1

2 )2t−n−1
2 r − r2

4 t ∀ t > 0 , ∀ r ≥ 0 ,

which is due initially to Davies & Mandouvalos [DM] in this setting. As usual, r denotes
the geodesic distance to the origin. Although the argument will be always the same,
carrying out details requires to work separately in the following three regions

0

t=rt

r

1

1

2

Region 0 : Let us establish (3.3), assuming that t is bounded above, let say 0 < t ≤ 1 .

We shall compare the hyperbolic heat kernel hhyp
t (r) = ht(r) with the Euclidean heat

kernel heucl
t (r) = (4πt)−

n
2 e−

r2

4 t . For this purpose, let us recall the expression of the
radial part of the Euclidean Laplacian and its hyperbolic counterpart :

rad ∆eucl = ∂2

∂r2 + n−1
r

∂
∂r

= ∂2

∂r2 +
δ ′
eucl

δeucl

∂
∂r

= δ
− 1

2

eucl ◦ ∂2

∂r2 ◦ δ
1
2

eucl − ωeucl ,

where δeucl = cn rn−1 is the volume density and ωeucl = δ
− 1

2

eucl
∂2

∂r2 δ
1
2

eucl = n−1
2

n−3
2

r−2 .
Similarly,

rad ∆hyp = ∂2

∂r2 + (n − 1) coth r ∂
∂r = ∂2

∂r2 +
δ ′
hyp

δhyp

∂
∂r = δ

− 1
2

hyp ◦ ∂2

∂r2 ◦ δ
1
2

hyp − ωhyp ,
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where δhyp = cn (sinh r)n−1 and ωhyp = δ
− 1

2

hyp
∂2

∂r2 δ
1
2

hyp = (n−1
2

)2 + n−1
2

n−3
2

(sinh r)−2 .

In the present region, (3.3) amounts to

(3.4) hhyp
t (r) � J(r)−

1
2 heucl

t (r) ,

where J =
δhyp

δeucl
=

(

sinh r
r

)n−1
is the Jacobian of the exponential map. Let us denote by

h0(r, t) the right hand side of (3.4) and let us compute

(3.5)
Dhyp h0

h0
=

Deucl heucl
t

heucl
t

+ ωhyp − ωeucl =
(

n−1
2

)2− n−1
2

n−3
2

(

1
r2 − 1

sinh2 r

)

.

This expression is clearly bounded. Consider the hyperbolic heat kernel hhyp
R,t (r) in the

ball ΩR ⊂ X of radius R > 0 centered at the origin, with Dirichlet boundary condition

hhyp
R,t (R) = 0 . It is well known that hhyp

R,t (r) ↗ hhyp
t (r) as R↗+∞ . Let us apply the

minimum principle in ΩR × [0, 1] to the expression

u(r, t) = e c t h0(r, t) − hhyp
R,t (r) .

Since {

Dhyp u
e ct h0

= c +
Dhyp h0

h0
≥ 0 provided c > 0 is large enough

u(r, 0) = δ0(r) − δ0(r) = 0 and u(R, t) = e c t h0(R, t) ≥ 0

we have u(r, t) ≥ 0 i.e. hhyp
R,t (r) ≤ ecth0(r, t) throughout ΩR × (0, 1] . One needs

actually to be more careful in order to ensure that the supersolution u is continuous
as t ↘ 0 . This can be achieved by considering initial datas which are nonnegative
continuous functions supported inside ΩR . Letting R↗+∞ , we obtain finally

hhyp
t (r) ≤ C h0(r, t) ∀ (r, t) ∈ [0, +∞) × (0, 1] .

By interchanging the Euclidean and the hyperbolic roles, one obtains the converse esti-
mate

heucl
t (r) ≤ C J(r)

1
2 hhyp

t (r)

in the same way. This trick was pointed out to us by Gilles Carron.

Region 1 : Let us analyze the right hand side of (3.3), assuming that t is bounded
below and that t = O(r), let say 1 ≤ t ≤ r .

In this range, (3.3) amounts to

(3.6) hhyp
t (r) � J(r)−

1
2 e−( n−1

2 )2t heucl
t (r) .

Denoting by h1(r, t) the right hand side of (3.6) and resuming the computation (3.5),
we see that the expression

Dhyp h1

h1
= − n−1

2
n−3

2

(

1
r2 − 1

sinh2 r

)

is O
(

1
r2

)

, hence O
(

1
t2

)

.

The rest of the proof of (3.3) takes place in the hyperbolic setting exclusively. We
may therefore drop the index hyp.

Region 2 : Let us analyze the right hand side of (3.3), assuming that t is bounded
below and that r = O(t), let say t ≥ max {1, r

2 } .

In this range, (3.3) amounts to

(3.7) ht(r) � t−
3
2 ϕ0(r) e−( n−1

2 )2t− r2

4 t .

Here we have used (3.2), which reads

(3.8) ϕ0(r) � (1 + r) e−
n−1

2 r

in the case X = Hn(R) . We shall need another estimate for the basic spherical function
ϕ0 , which played already a key role in [ABJ].

Lemma : r d
dr log

(

δ
1
2 ϕ0

)

(r) = 1 + O
(

1
1+ r

)

∀ r ≥ 0 .
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Let us sketch a proof, for the sake of completeness. Since

r d
dr log

(

δ
1
2 ϕ0

)

(r) = n−1
2 r coth r + r

ϕ′
0(r)

ϕ0(r)

is smooth, the problem lies at infinity. In order to handle it, let us recall Harish–Chandra’s
expansion

(3.9) 2
n−1

2 δ(r)
1
2 ϕλ(r) = c(λ) Φλ(r) + c(−λ) Φ−λ(r)

for spherical functions, which holds for r > 0 and for generic λ ∈ C , in particular for
λ ∈ R∗ ( but not for λ = 0 ) . Here

c(λ) =
Γ( n−1

2 )

Γ(n−1)

Γ(iλ)

Γ(iλ+ n−1
2 )

and
Φλ(r) =

∑+∞
j=0 γj(λ) e (iλ−2j ) r

is a converging series for r > 0 and for λ ∈ R , with γ0 ≡ 1 . In rank one, this is actually
part of special function theory, specifically Jacobi function theory (see for instance [Ko2]).
In the limit case λ = 0 , we obtain the converging expansion

δ(r)
1
2 ϕ0(r) =

∑+∞
j=0 (aj r + bj ) e−2j r ∀ r > 0 ,

with a0 > 0 , after multiplying (3.9) by λ and applying ∂
∂λ

∣

∣

λ=0
. Consequently

d
dr

log
(

δ
1
2 ϕ0

)

(r) =
d

dr {δ(r)1/2ϕ0(r)}
δ(r)1/2 ϕ0(r)

= 1
r

+ O
(

1
r2

)

as r → +∞ .

This concludes the proof of the lemma.

Let us turn to the analysis of the right hand side h2(r, t) of (3.7) in Region 2. We get

(3.10) Dh2

h2
= 1

t

{

r ∂
∂r log

(

δ
1
2 ϕ0

)

(r) − 1
}

= O
(

1
t (1+r)

)

by the lemma. Let us replace h2 by

h±
2 (r, t) = e∓c

√
1+r2

t h2(t, r) ,

where the sign and the size of the constant c > 0 will be chosen appropriately. This
modification is harmless for the right hand side of (3.3) and it will improve (3.10). Indeed,
let us compute Dh±

2 / h±
2 = I + II , where

I = 1
t

{

r ∂
∂r

log
(

δ
1
2 ϕ0

)

(r) − 1
}

± c
t
√

1+r2

{

2 r ∂
∂r

log
(

δ
1
2 ϕ0

)

(r) + 1
1+r2

}

and
II = ± c

t2
√

1+r2
− c2r2

t2 (1+r2)

According to the lemma, the expression I has the same sign as ± , provided c is large
enough. Once c is fixed, the expression II is O

(

1
t2

)

.

Region 3= 1+2 : Let us establish (3.3), assuming that t is bounded below, let say
t ≥ 1 .

Let χ : R → [ 0, 1 ] be a smooth cut off function such that
{

χ ≡ 1 on (−∞, 1 ]

χ ≡ 0 on [ 2, +∞)

and set h±
3 (r, t) = { 1 − χ( r

t ) }h1(r, t) + χ( r
t ) h±

2 (r, t) . Notice that the expressions

h1(r, t) , h2(r, t) , h±
2 (r, t) , h±

3 (r, t) are all comparable when r � t . Let us compute

Dh±
3 (r, t) = { 1 − χ( r

t
) }Dh1(r, t) + χ( r

t
) Dh±

2 (r, t)

+ χ ′( r
t ) { n−1

t r h1(r, t) − 2
t

∂
∂r log

(

δ
1
2 ϕ0

)

(r) h±
2 ± 2 c r

t2
√

1+r2
h±

2

}

+ χ ′′( r
t ) 1

t2 {h1(r, t) − h±
2 (r, t) }

It follows from previous considerations that all expressions occuring in Dh±
3 / h±

3 either
have the same sign as ± or are O

(

1
t2

)

. Let us come to the upper heat kernel estimate.
Fix temporarily R > 0 and T > 1 . As for small t , we consider the heat kernel hR,t(r)
in the ball ΩR , with Dirichlet boundary condition hR,t(R) = 0 , and apply the minimum
principle in ΩR × [1, T ] to the function
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u(r, t) = C e−
c′

t h+
3 (r, t) − hR,t(r) .

Here C and c ′ are appropriate positive constants, which depend neither on R nor on T .
First, Du

e−c′/t h+
3

= c′

t2 +
Dh+

3

h+
3

turns positive by choosing c ′ sufficiently large. Secondly, since (3.3) holds for small time,

u(r, 1) = C e−c′ h+
3 (r, 1) − hR,1(r) ≥ C e−c′ h+

3 (r, 1) − h1(r)

is positive provided C is large enough. Thirdly,

u(R, t) = C e−c′/t h+
3 (R, t)

is obviously positive. It follows from the minimum principle that

u(r, t) ≥ 0 i.e. hR,t(r) ≤ C e−c′/t h+
3 (r, t)

throughout ΩR × [1, T ] . Letting R↗+∞ and T ↗+∞ , we conclude that

ht(r) ≤ C h+
3 (r, t) ∀ (r, t) ∈ [0, +∞) × [1, +∞) .

Let us turn to the lower estimate. We apply now the minimum principle in ΩR × [1, T ]
to u(r, t) = ht(r) − C e

c′

t h−
3 (r, t) .

Arguying as before, we choose first c ′ > 0 large enough and next C > 0 small enough
so that Du

C ec′/t h−
3

= c′

t2 − Dh−
3

h−
3

and u(r, 1) = h1(r) − C e c′h−
3 (r, 1)

are positive. This can be achieved independently of R > 2 T > 2 . Moreover,

u(R, t) = ht(R) − C e
c′

t h1(R, t) ≥ −C ′ J(R)−
1
2 ,

where C ′ = C ec′(4π)−n/2 . It follows from the minimum principle that
u(r, t) + C ′ J(R)−1/2 ≥ 0

throughout ΩR × [1, T ] . Letting R↗+∞ and T ↗+∞ , we get u(r, t) ≥ 0 hence
ht(r) ≥ C h−

3 (r, t) ∀ (r, t) ∈ [0, +∞) × [1, +∞) .
This concludes the proof of (3.3).

Our proof works the same in higher rank. It is just technically more involved. One
deals separately with the cases t ≤ 1 and t ≥ 1 , the first one being easiest. In the
case t ≥ 1 , we split a+ according to Arthur into 2` regions depending on t , estimate
the heat kernel in each region and glue the bounds together using a smooth partition of
unity.

+a

.

.

.

. .

α

β

.

Λt
.
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Compared to the previous approach in [AJ1], which consisted in analyzing carefully
the inverse spherical transform (1.6), the present approach is more elementary and more
flexible – it is likely to apply to other settings as well. On the other hand, to our
knowledge it is limited to heat kernel bounds and yields neither asymptotics nor estimates
of derivatives.

4. Related results

In this section we review some results which are connected with our main theorem.
Most of them relied on previous heat kernel estimates and may be obtained more directly
using the present ones.

4.1. Heat propagation.

The heat kernel ht(x) on X concentrates asymptotically in an annulus

{x ∈ X | 2 |%| t− r(t) ≤ |x| ≤ 2 |%| t + r(t) }
of width r(t), growing any faster than

√
t . In higher rank, it concentrates more precisely

in the bi–K– orbit of the ball B(2t%, r(t)) in a :

(4.1)

∫

K{exp B(2t%,r(t))}K

dx ht(x) → 1 as t → +∞ .

This striking non Euclidean phenomenon has been observed by several authors. From a
probabilistic point of view (see [ABJ] and notably [B] among the references cited therein),

it follows from a central limit theorem for the radial part Ht ∈ a+ of the Brownian motion
in the Cartan decomposition. Specifically, (Ht−2 t%)/

√
t converges in distribution to a

centered normal law. From an analytic point of view (see [AS]), (4.1) follows from sharp
upper heat kernel estimates such as (3.1) and reflects a balance between the volume
growth on one hand and the heat kernel decay on the other hand. One way to make
this interplay more visible is to consider the Lp counterpart of (4.1) that we recall from
[AJ1]. The asymptotic behavior remains the same as long as 1 ≤ p < 2 :

∫

K{exp B(4(1/p−1/2)t%,r(t))}K

dx ht(x) ∼ ‖ht‖Lp .

It is similar to the Euclidean case when p = 2 :
{

∫

r1(t)≤|x|≤r2(t)

dx ht(x)2
}1/2

∼ ‖ht‖L2

if r1(t)/
√

t → 0 and if r2(t)/
√

t → +∞ . Finally the heat kernel concentrates around
the origin when 2 < p ≤ +∞ :

‖ht‖Lp(B(eK,r(t))) ∼ ‖ht‖Lp

provided r(t) → +∞ . Let us specify that the symbol ∼ between two positive expressions
means that their ratio tends to 1.

4.2. Green function

The Green function

(4.2) gζ(x) =

∫ +∞

0

dt e (|%|2−ζ2) t ht(x)

is the convolution kernel of the resolvent

(−∆ − |%|2 + ζ2)−1 =

∫ +∞

0

dt e (|%|2−ζ2) t et∆ .

According to (3.1), the subordination formula (4.2) makes sense for every ζ ∈ [ 0, +∞)
and yields the following estimates :
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gζ(x) �
{

|x|2−n if n ≥ 3

log 1
|x| if n = 2

near the origin,

gζ(x) �
{

|x| 1−`
2 −|Σ+

0 | ϕ0(x) e−ζ |x| if ζ > 0

|x|2−`−2|Σ+
0 | ϕ0(x) if ζ = 0

away from the origin.

Similar results, as well as asymptotics, hold more generally for the kernels of fractional
powers (−∆ − |%|2 + ζ2)−σ/2 (see [AJ1]).

4.3. Martin compactification.

The behavior at infinity of the Green function gζ(x) plays a key role in the determination

of the Martin compactification X M
ζ of X = G/K , at least when ζ > 0 . Recall that

XM
ζ comes from potential theory and consists of positive solutions to

(−∆ − |%|2 + ζ2) u = 0 .

More precisely, interior points yK ∈ G/K are identified with functions

xK 7−→ kζ(xK, yK) =
gζ(y−1x)
gζ(y−1)

and boundary points are all possible limits of the Martin kernel kζ( . , yK) as |y| → +∞ .
Dynkin [D] initiated the investigation of the Martin compactification of symmetric spaces
with the example G = SL(n, C) . Extremal points of ∂M

ζ X, which constitute the so–

called minimal Martin boundary, were determined by Karpelevič [Ka]. After a failed
attempt by Olshanetsky (see [Ol1] for the announcement and [Ol2] for details), the
full Martin compactification X M

ζ was eventually determined by Guivarc’h, Ji & Taylor

([GJT], [Gu]). Let us recall their main result :

(i) Assume that ζ = 0 . Then XM
ζ coincides with the maximal Furstenberg–Satake

compactification XFS of X.
(ii) Assume that ζ > 0 . Then XM

ζ is the smallest compactification of X which

dominates both XFS and the geometric compactification X geom of X by means
of geodesic rays (also called conic or visual compactification). In other words, X M

ζ

coincides with the closure of X diagonally embedded into X FS× X geom .

4.4. Stable processes.

The Poisson semigroup e−t
√
−∆ is subordinated to the heat semigroup e t∆ by

e−t
√
−∆ = t

2
√

π

∫ +∞

0

ds s−
3
2 e−

t2

4s e s∆ .

The corresponding formula at the kernel level yields the following global bounds

pt(x) �
{

t ( t + |x| )−n−1 if t + |x| ≤ 1

t ( t + |x| )− `
2−|Σ+

0 |−1 ϕ0(x) e−|%|
√

t2+|x|2 if t + |x| ≥ 1

for the Poisson kernel, as well as full asymptotics when t + |x| → ∞ (see [AJ1]). More

generally one may consider the family of semigroups t 7−→ e−t (−∆)α/2

with 0 < α < 2 .
They are still subordinated to the heat semigroup, but the formula is no more explicit.
Graczyk and Stós [GS] have nevertheless managed to establish global bounds similar to
the above ones.
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4.5. Heat kernel estimates for a distinguished Laplacian on NA.

According to the Iwasawa decomposition G = NA K, the symmetric space X = G/K
can be identified with the solvable Lie group S = NA = A N . The Laplace–Beltrami
operator on X writes

∆f (x) = f (x :
∑

j H2
j − 2% + 2

∑

k X2
k )

on S, where (Hj) and (Xk) are orthonormal bases of a and n respectively. It is closely
connected with the following Laplacian on S

Lf (x) =
{

a−%◦ (∆ + |%|2) ◦ a %
}

f (x) = f (x :
∑

j H2
j + 2

∑

k X2
k ) ,

where a±% denotes the multiplicative character x 7→ a(x)±% = e±〈%,A(x)〉 of S. This
operator has been considered by several authors, with a possible side exchange (see for
instance [GM], [AJ1], [HS] and the references cited therein). Here it is left–invariant and
self–adjoint with respect to the right–invariant Haar measure drx = dn da = e2% da dn .
Notice that a% is a ground state of ∆ and that L is the generator of the associated
relativized process. The corresponding heat kernels are related by

hS
t (x) = e |%|2t a(x)−% hX

t (xK) ∀ t > 0 , ∀ x ∈ S .

By transferring the estimate (3.1) for hX
t , one gets

(4.3) hS
t (x) � t−

`
2−|Σ+

0 | a(x)−% ϕ0(x) ω(x, t) e−
|x|2

4 t ∀ t > 0 , ∀ x ∈ S,

where ω(x, t) =
∏

α∈Σ+
0

(

1 + 〈α,H〉
t

)

mα+m2α
2 −1

if x = k1e
Hk2 in the Cartan decompo-

sition. Asymptotics, as well as estimates of derivatives, can be deduced similarly from
[AJ1], provided |x| = O(1 + t).

4.6. Heat kernel estimates for subLaplacians on G.

Instead of a specific Laplacian, consider now a general left–invariant subLaplacian

Lf (x) = f (x :
∑

j X2
j )

on G. The only requirement is Hörmander’s condition, stipulating that the Xj ’s gene-
rate g as a Lie algebra. In this general setting, Lohoué and Alexopoulos [LA] have
recently established the following heat kernel estimate (their restriction |x| = O(

√
t ) for

the lower estimate can be easily removed [AG]). Assume that t is bounded below, let
say t ≥ 1 . Then there exist positive constants C1, c1, C2, c2 such that

(4.4) C1 t−
`
2−|Σ+

0 | e−σ t ϕ0(x) e−c1
‖x‖2

t ≤ hG
t (x) ≤ C2 t−

`
2−|Σ+

0 | e−σ t ϕ0(x) e−c2
‖x‖2

t

for every x ∈ G. Here σ > 0 denotes the spectral gap and ‖ . ‖ the Carnot–Carathéo-
dory distance to the origin. It is remarkable that this estimate is almost uniform in L.
It depends indeed only on the spectral gap and not on the actual distance considered,
since all reasonable left–invariant distances are comparable at large scale (see for instance
Proposition III.4.2 in [VSC]).

The estimate (4.4) can be sharpened for a class of subLaplacians resembling the Laplace–
Beltrami operator ∆ on X = G/K . More precisely, assume that

Lf (x) = f (x : Ωp +
∑

k Z2
k )

where (Yj) is an orthonormal basis of p, so that Ωp =
∑

j Y 2
j is the p–component of

the Casimir element Ω, and (Zk) is any family in k. For instance, Lf (x) = f (x : Ωp )
or Lf (x) = f (x : Ωp + Ωk ). Then, following a suggestion of Lohoué, the second author
shows in [Os] that

(i) L and ∆ have the same spectral gap : σ = |%|2 ,
(ii) the Carnot–Carathéodory distance ‖ . ‖ is equal to | . |, up to an additive constant :

|x| ≤ ‖x‖ ≤ |x| + c ∀ x ∈ G .
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Moreover, if t is bounded below, let say t ≥ 1 ,

(iii) there exists a constant C > 0 such that

C−1 hX
t− 1

4

(x) ≤ hG
t (x) ≤ C h X

t+ 1
4

(x) ∀ x ∈ G .

By using the estimate (3.1) for h X
t±1/4(x) , one gets

C1 t−
`
2−|Σ+

0 | e−|%|2t ϕ0(x) ω(x, t) e−
‖x‖2

4(t−1/2) ≤
≤ hG

t (x) ≤ C2 t−
`
2−|Σ+

0 | e−|%|2t ϕ0(x) ω(x, t) e−
‖x‖2

4(t+1/2)

for every t ≥ 1 and x ∈ G. Here C1 and C2 are positive constants and ω(x, t) has
the same meaning as in (4.3). In particular,

ht(x) � t−
`
2−|Σ+

0 | e−|%|2t ϕ0(x) e−
‖x‖2

4 t

if t ≥ 1 and |x| = O(t)

Remark : For lack of space and competence, we have not been able to cover several
topics such as probabilistic aspects of heat diffusion on symmetric spaces (see [ABJ] and
the references therein), heat kernels on Lie groups with exponential growth [VM] or on
Cartan–Hadamard manifolds, and discrete analogs (random walks as far as processes are
concerned, trees or buildings as far as spaces are concerned).
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[GS] P. Graczyk & A. Stós, Transition density estimates for stable processes on symmetric spaces,

Preprint (2002).
[Gr] J.–C. Gruet, Semi–groupe du mouvement brownien hyperbolique, Stochastics and Stochastic

Reports 56 (1996), 53–61.
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