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Abstract

The stability and dynamics of nonlinear Schrödinger superflows past a two-
dimensional disk are investigated using a specially adapted pseudo-spectral method
based on mapped Chebychev polynomials. This efficient numerical method allows
the imposition of both Dirichlet and Neumann boundary conditions at the disk bor-
der. Small coherence length boundary-layer approximations to stationary solutions
are obtained analytically. Newton branch-following is used to compute the complete
bifurcation diagram of stationary solutions. The dependence of the critical Mach
number on the coherence length is characterized. Above the critical Mach number,
at coherence length larger than fifteen times the diameter of the disk, rarefaction
pulses are dynamically nucleated, replacing the vortices that are nucleated at small
coherence length.

Key words: Superfluidity, critical speed, boundary layers, Bose-Einstein
condensates, saddle-node bifurcation, Gross-Pitaevskii equation
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1 Introduction

It is well known that, above a critical speed, superfluidity breaks down and dis-
sipation sets in [1]. Much work has been devoted to the understanding of this
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phenomenon within the mathematical description of superfluidity provided by
the nonlinear Schrödinger equation (NLSE) also called the Gross-Pitaevskii
equation [2,3,4].

The NLSE can be used to describe two quite different physical systems: su-
perfluid 4He and Bose-Einstein condensates of ultra-cold atomic vapor.

In the case of superfluid 4He, the NLSE can be considered as a valid math-
ematical model provided that the temperature is low enough for the normal
fluid to be negligible. This is clearly the case in recent experiments [5] that
are performed at temperatures below 130 mK. Note that the excitations of
superfluid 4He are accurately described by the famous Landau spectrum which
includes phonons in the low wave number range, and maxons and rotons in
the high (atomic-scale) wave number range. In contrast, the standard NLSE
(the equation used in the present article) only contains phonon excitations.
It therefore incompletely represents the atomic-scale excitations in superfluid
4He. However, there exist straightforward generalizations of the NLSE [6,7]
that do reproduce the correct excitation spectrum, at the cost of introducing
a spatially non-local interaction potential. For reasons of simplicity we shall
not use such generalizations in the present article.

Since Bose-Einstein condensation in dilute gases in traps was experimentally
observed [8,9,10], this field is in rapid evolution: recent results include the pro-
duction and detection of an isolated quantized vortex [11,12], the nucleation of
several vortices [13] and details of vortex dynamics [14]. The dynamics of these
compressible nonlinear quantum fluids is accurately described by the NLSE
allowing direct quantitative comparison between theory and experiment [15].

The stability of Bose-Einstein condensates (BEC) in the presence of a moving
obstacle can thus be studied in the framework of the NLSE. Raman et al.

have studied dissipation in a Bose-Einstein condensed gas by moving a blue
detuned laser beam through the condensate at different velocities [16]. In their
inhomogeneous condensate, they observed a critical Mach number for the onset
of dissipation that was compared with the NLSE predictions.

In their pioneer work, Frisch, Pomeau and Rica [17] performed direct nu-
merical simulations of the NLSE to study the stability of two-dimensional
superflows around a disk. They observed a transition to a dissipative regime
characterized by vortex nucleation that they interpreted in terms of a saddle-
node bifurcation of the stationary solutions of the NLSE. Later, using nu-
merical branch-following techniques, Huepe and Brachet [18,19] obtained the
complete bifurcation diagram in which the stable and unstable branches are
connected through a saddle-node bifurcation. Asymmetric solutions were also
found, generated by a secondary pitchfork bifurcation of the stable branch. The
symmetric and asymmetric unstable solutions correspond respectively to two
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and one vortices. The critical speed was shown to converge, for small coher-
ence length, to the Eulerian value computed by Rica [20]. Three-dimensional
effects leading to a lowering of the critical speed were also considered [21].

In all the above numerical studies, the effect of the two-dimensional disk was
represented in the NLSE by a simple repulsive potential. Thus no boundary
conditions were applied and the numerical results were (weakly) dependent on
the details of the repulsive potential.

One of the main motivations of the present paper is to obtain numerical results
that are reliable (i.e. do not depend on an ad hoc artificial repulsive poten-
tial) at finite value of the coherence length. We will thus consider the NLSE
as a partial differential equation with standard boundary conditions applied
on the disk. This mathematical problem will be studied by using an efficient
pseudo-spectral method, based on angular Fourier series and radially mapped
Chebychev polynomials, that was specifically designed for the present study.
The numerical solutions will be compared with analytic boundary layer ap-
proximations, that are valid for small velocity and coherence length. Similar
expansions were performed for a spherical obstacle in [22].

The paper is organized as follows: section 2 contains the governing equations;
section 3 is devoted to the derivation of the boundary layer analytical ex-
pressions for Dirichlet conditions; in section 4, we describe the new specially
designed pseudo-spectral method; section 5 contains validations of the nu-
merical procedure and new results on bifurcation diagrams and critical Mach
numbers; in section 6, our results on the dynamically emitted excitations are
reported, with emphasizing on the nucleation of rarefaction pulses; finally sec-
tion 7 is our conclusion. More details on the numerical method are found in
the appendix where the resolutions needed to obtain spectral convergence are
discussed.

2 Governing equations

In this section, we present the hydrodynamic form of the NLSE that models
the effect of a disk of radius unity (diameter D = 2), moving at constant speed
v = vex in a two-dimensional superfluid at rest. In the frame of the disk, the
system is equivalent to a superflow around a disk, with constant speed −v

at infinity. Let Ω be the plane C deprived of D the disk of radius unity and
∂Ω the boundary of the domain, that is the circle of radius unity. We will
naturally use the polar coordinates (r, θ) such that x = r cos θ and y = r sin θ
and the associated unit vectors are denoted by (er, eθ). The system can then
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be described with the following action functional

A[ψ, ψ̄] =
∫

dt
{√

2cξ
∫

Ω
d2x

i

2

[

ψ̄∂tψ − ψ∂tψ̄
]

− F0

}

(1)

where ψ is a complex field, ψ̄ its conjugate. The speed of sound c and the
so-called healing length ξ are the physical parameters of the system. F0 is the
energy of the system that reads

F0[ψ, ψ̄] = E − v · P (2)

with

E [ψ, ψ̄] = c2
∫

Ω
d2x

[

ξ2|∇ψ|2 +
1

2
(|ψ|2 − 1)2

]

(3)

P[ψ, ψ̄] =
√

2cξ
∫

Ω
d2x

i

2

[

(ψ − 1)∇ψ̄ − (ψ̄ − 1)∇ψ
]

. (4)

The presence of the constants −1 in Eq. (4) ensures the convergence of the
integral. The Euler-Lagrange equation corresponding to (1) provides the NLSE

i∂tψ =
c√
2ξ

[

−ξ2∆ψ − ψ + |ψ|2ψ
]

+ iv · ∇ψ , (5)

defined in the domain Ω. This equation can be mapped into two hydrodynam-
ical equations by applying Madelung’s transformation [1]

ψ =
√
ρ exp

(

iφ√
2cξ

)

, (6)

that defines a fluid of density ρ and velocity

U = ∇φ− v (7)

The real and imaginary parts of the NLSE yield the following equations of
motion

∂tρ+ ∇ · (ρU) = 0 (8)

∂tφ = −1

2
(∇φ)2 + c2(1 − ρ) + c2ξ2∆

√
ρ

√
ρ

+ v · ∇φ. (9)

These equations correspond respectively to the continuity and the Bernoulli
equations (with a supplementary quantum pressure term) for a barotropic
compressible and irrotational flow. Note that two non-dimensional parameters
control the system: the Mach number M = |v|/c (where v is the flow velocity
at infinity and c the sound speed) and the ratio of the healing length ξ to the
diameter of the disk D. In the limit ξ/D → 0, the quantum pressure term
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vanishes and we recover the system of equations describing an Eulerian flow.
We now investigate the problem of the boundary conditions on the obstacle.

In previous studies [19], boundary conditions were applied by adding to the
NLSE a repulsive potential term strong enough to force the density to zero
inside the disk. In the present work, we consider the mathematically stan-
dard Dirichlet and Neumann boundary conditions that will both be directly
imposed at the border of the obstacle.

2.1 Dirichlet boundary conditions

The Dirichlet boundary conditions read ψ|r=1 = 0. They thus prescribe zero
density on the obstacle and correspond to the presence of an unpenetrable ob-
stacle (a laser in a BEC or a solid obstacle in superfluid 4He). They correspond
to the following conditions, in hydrodynamical variables: first, the condition
on ρ is obviously

ρ = 0 at r = 1 (10)

Second, the square root of the density R =
√
ρ being constant on the obstacle,

we have ∂tR|r=1 = 0 and ∂θR|r=1 = 0. The continuity equation (8) expressed
in term of R then yields ∂rR ·U⊥|r=1 = 0, so that the Dirichlet conditions also
imply

U⊥ = ∂rφ− v cos θ = 0 at r = 1 (11)

2.2 Neumann boundary conditions

The Neumann boundary, in hydrodynamical variables, read

∂rρ = 0 at r = 1 (12)

U⊥ = ∂rφ− v cos θ = 0 at r = 1 (13)

They correspond to the following conditions in term of the complex field ψ:

∂r(ψ exp
(

ivr2
0

cos θ√
2cξr

)

)|r=r0=1 = 0. Note that, compared to the Dirichlet condi-

tions, the Neumann conditions are more academic than physically realistic.
Nevertheless, it is interesting to study the influence of such boundary con-
ditions on the stationary solutions of the problem, especially their effects on
the boundary layer on the obstacle. For instance, one could think, that with
such conditions the stationary solution would be “closer” to that of the Eule-
rian flow than with Dirichlet conditions. We will see below that the situation is
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more complex. A more physical motivation to study such boundary conditions
is related to the problem of capillary-gravity free surface flows past a cylin-
drical obstacle, where the quantum pressure term is replaced by a capillary
term. In this related problem, the Neumann conditions are physical ones [23].

3 Boundary layer solutions – Analytical results

We now present calculations of the stationary solutions in the limit ξ/D → 0.
For non-zero Mach number,

M = |v|/c (14)

we define the new phase variable [20]

ϕ = −(φ− vr cos θ)/v. (15)

The Bernoulli (9) and continuity (8) equations then read

0 = ξ2∆
√
ρ

√
ρ

− ρ+ 1 +
M2

2
[1 − (∇ϕ)2] (16)

0 = ρ∆ϕ + ∇ρ · ∇ϕ. (17)

The Dirichlet boundary conditions now read

ρ|∂Ω = 0

∂rϕ|∂Ω = 0.

At finite but small Mach number, we expand ρ and ϕ as

ρ = ρ〈0〉 + M2ρ〈1〉 + · · · + M2kρ〈k〉 + · · · (18)

ϕ = ϕ〈0〉 + M2ϕ〈1〉 + · · ·+ M2kϕ〈k〉 + · · · . (19)

Note that if one knows ϕ at order M2k, on can formally deduce ρ at order
M2(k+1) by solving (16). The potential ϕ can then be computed at order
M2(k+1) by solving (17). In order to compute ϕ, we will have to solve equations
of the type

d2y

dr2
(r) +

1

r

dy

dr
(r) − 1

r2
y(r) = RHS(r) (20)

Solutions to the corresponding homogeneous equation are

y(r) = Ar +Br−1 (21)
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so that the general equation with nonzero righthandside RHS(r) can be com-
puted using the method of variation of parameter. Using the boundary con-
ditions limr→+∞ y(r) = 0 and dy/dr(r = 1) = 0 yields for the solution of the
inhomogeneous equation the explicit expression

y(r) = − 1

2r

∫ +∞

1
RHS(u)(1 + u2)du

− r

2

∫ +∞

r
RHS(u)du +

1

2r

∫ +∞

r
u2RHS(u)du (22)

provided that the function RHS decreases rapidly enough at infinity. Note that
the first term of y(r) yields a term of the type C/r. Due to the expressions
of RHS encountered in the following computations, the two last terms will
turn out to tend to zero exponentially (on a length scale of order ξ), so that
the behavior at infinity of the function y will be governed by a long-range
algebraic term that reads

y(r) ∼
r→+∞

− 1

2r

∫ +∞

1
RHS(u)(1 + u2)du (23)

We now turn to the computation of the stationary Dirichlet solution. Expres-
sions for ρ〈0〉 and ϕ〈0〉 are obviously needed to bootstrap the iteration. They
are obtained by the following considerations.

When the Mach number is zero, ϕ = 0 is solution of the stationary equations
and ρ satisfies

ξ2∆
√
ρ

√
ρ

− ρ+ 1 = 0 (24)

Writing ρ(r, θ) = R2(r) yields the equation

ξ2∆R +R −R3 = ξ2(∂rr +
1

r
∂r)R +R −R3 = 0 (25)

with boundary conditions R(1) = 0. A first approximation for the solution of
this equation, obtained by neglecting the term (ξ2/r)∂rR, reads

R
〈0〉
0 = tanh

(

r − 1√
2ξ

)

(26)

This result, valid up to order ξ, can be improved by setting R = R
〈0〉
0 + R

〈0〉
1 .

Inserting R in (24), collecting the terms of order ξ and solving the resulting
differential equation yields, after tedious computations,

R
〈0〉
1 =

ξ

6
√

2

[

−3 − cosh 2s+ (4 + 3s) sech2 s+ sinh 2s+ 3 tanh s
]

(27)
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where s = (r − 1)/
√

2ξ. Thus the explicit expression

ρ〈0〉 = ρ
〈0〉
0 + ρ

〈0〉
1 = (R

〈0〉
0 )2 + 2R

〈0〉
0 R

〈0〉
1 (28)

gives the correct approximation to the density, up to order ξ2 in the limit
ξ/D → 0.

The velocity potential ϕ〈0〉 satisfies

∆ϕ〈0〉 = −∇ρ〈0〉 · ∇ϕ〈0〉 + (1 − ρ〈0〉)∆ϕ〈0〉. (29)

We write ϕ〈0〉 = ϕ
〈0〉
Euler + ϕ̃〈0〉 where ϕ

〈0〉
Euler = (r + 1/r) cos θ is the solution at

order 0 in M2 of the Eulerian flow. Using the relation ∆ϕ
〈0〉
Euler = 0, equation

(29) yields the following equation for ϕ̃〈0〉

∆ϕ̃〈0〉 = −∇ρ〈0〉 · ∇ϕ〈0〉
Euler −∇ρ〈0〉 · ∇ϕ̃〈0〉 + (1 − ρ〈0〉)∆ϕ̃〈0〉 (30)

This equation cannot be solved directly. We thus proceed to a perturbative
development by writing ϕ̃〈0〉 = ϕ̃

〈0〉
1 + ϕ̃

〈0〉
2 where ϕ̃

〈0〉
1 is of order ξ and ϕ̃

〈0〉
2 of

order ξ2. In the right hand side of equation (30), one can keep at the dominant
order of our computations the first term and drop the two others. The function
ϕ̃
〈0〉
1 is then solution of the equation

∆ϕ̃
〈0〉
1 = −∇ρ〈0〉0 · ∇ϕ〈0〉

Euler (31)

The expression of ϕ̃
〈0〉
1 can be computed using Eq. (22). Eq. (23) yields [24]

ϕ̃
〈0〉
1 ∼

r→+∞
2
√

2ξ − 4(log 2)ξ2

r
cos θ (32)

In order to obtain the full correction at order ξ2 of the 1/r-algebraic term we

also need to compute ϕ̃
〈0〉
2 which verifies

∆ϕ̃
〈0〉
2 = −∇ρ〈0〉1 · ∇ϕ〈0〉

Euler −∇ρ〈0〉0 · ∇ϕ̃〈0〉
1 + (1 − ρ

〈0〉
0 )∆ϕ̃

〈0〉
1 (33)

Using again Eq. (23), a lengthy computation yields

ϕ̃
〈0〉
2 ∼

r→+∞
ξ210 − 4 log 2

3r
cos θ (34)

The velocity potential ϕ〈0〉 thus reads

ϕ〈0〉 =

[

r +

(

1 + 2
√

2ξ +
10 − 16 log 2

3
ξ2 +O(ξ3)

)

1

r
+ ϕ

〈0〉
loc(r)

]

cos θ (35)

where ϕ
〈0〉
loc exponentially vanishes at infinity.
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Note that the compressible Eulerian flow around a disk of radius r1 admits at
order zero in M2 the following solution

ϕ
〈0〉
Euler,r1

=

(

r +
r2
1

r

)

cos θ (36)

in order to satisfy the boundary condition ∂rϕ|r=r1 = 0. Thus, the correction

to ϕ
〈0〉
Euler is a long-range term that can be physically interpreted as a renor-

malization of the diameter of the disk : at large distances the superflow is
equivalent to an Eulerian flow around a disk of radius reff given by

(

reff
r0

)2

= 1 + 2
√

2

(

ξ

r0

)

+
10 − 16 log 2

3

(

ξ

r0

)2

+O(ξ3). (37)

The order ξ term was first computed in [24]. Similar results were obtained
directly, using matched expansions, for a spherical obstacle in [22]. This ref-
erence also includes the governing matched expansion equations for the case
of a 2D disk, however the authors did not solve these equations.

The same procedure with Neumann boundary conditions can be shown to lead
to a renormalized radius [23]

(

reff
r0

)2

= 1 − 3

2
M2

(

ξ

r0

)2

(38)

Note that contrary to the case of Dirichlet conditions, this effective size is de-
pendent on the Mach number, which was not the case for Dirichlet conditions.
It is also smaller than the corresponding Dirichlet effective value.

4 Specially adapted pseudo-spectral method

We have specifically developed a code that can accurately accommodate both
large-r asymptotic behavior and thin boundary layers near the obstacle at
r = 1. It is based on a Chebychev decomposition using an adequate mapping.
It allows us to consider a unique obstacle in contrast with periodic pseudo-
spectral methods [19] which in fact model a network of obstacles.

4.1 Mapping for a unique obstacle

Using standard polar coordinates {θ, r}, together with the relation

r(z) = z−1 (39)
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the domain {0 6 θ < 2π,−1 6 z 6 1}, can be mapped into the physical
domain {x, y}, with x2 + y2 > 1.

The basic mapping is

x = z−1 cos θ y = z−1 sin θ (40)

and the inverse transformation reads

z = ± 1√
x2 + y2

θ = arctan(y/x) +
π ∓ π

2
(41)

Any generic real field Ψ(x, y) (Ψ stands for Reφ, Imψ, etc.) appearing in the
encountered equations of motion is expressed in the {θ, z} domain as

Ψ(θ, z) = Ψ(x(θ, z), y(θ, z)) (42)

with x(θ, z) and y(θ, z) defined in (40).

As x(θ, z) = x(θ + π,−z) and y(θ, z) = y(θ + π,−z), the {x, y} domain is
mapped twice unto the {θ, z} domain. A mapped field must therefore satisfy

Ψ(θ, z) = Ψ(θ + π,−z) (43)

The equations of motion are expressed as partial differential equations in the
{θ, z} domain by writing the differential operators ∇ and ∆ in terms of θ and

z derivatives that are polynomial in z, e.g. ∆ψ = z2 ∂2ψ
∂θ2

+ z4 ∂2ψ
∂z2

+ z3 ∂ψ
∂z

.

4.2 Generalization of the mapping

In the special case where ξ/D is large, we found useful to generalize the r(z) =
1/z mapping to

rλ(zλ) =
λ

zλ
+ (1 − λ)zλ (44)

This mapping has the same overall characteristics than 1/z and reduces to
it for λ = 1. For λ > 1 it stretches the coordinate, thereby increasing the
resolution at large distance by moving the collocation points away from the
r = 1 disk. Generalizations to expressions (40) and (41) are easily derived.
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4.3 Spatial discretization

The field ψ is spatially discretized, in the (θ, z) domain, using a standard
Chebychev-Fourier pseudo-spectral method [25], based on the expansion

ψ(θ, z) =
Nθ/2
∑

n=1−Nθ/2







Nr
∑

p=0

ψn,p Tp(z)







exp inθ (45)

where Tp(z) = cos (p arccos z) is the order-p Chebychev polynomial and Nθ

and Nr represent resolutions.

The pseudo-spectral method calls for using fast Fourier transforms to evaluate
(45) on the collocation points grid (θm, zk) with

θm =
2πm

Nθ

; 0 6 m < Nθ (46)

zk = cos
πk

Nr
; 0 6 k 6 Nr (47)

The relation Tn(cos x) = cosnx reduces the Chebychev transform appearing in
(45) to a (fast) Fourier cosine transform. Thus, the evaluation of (45) (and its
inverse) only requires a time proportional to NθNr log(NθNr). Computations
of nonlinear terms are carried out on the grid representations, while θ and z
derivatives are carried out on the Chebychev-Fourier representations.

The main virtue of mapping (40) together with expansion (45) is its ability to
accurately accommodate both large-r asymptotic behavior and thin boundary
layers near r = 1. Indeed, on the one hand, (45) is an expansion in product
of polynomials in r−1 with functions cosnθ and sinnθ, precisely the type of
functions needed to capture large-r behavior (see section 5.2 and [20]). On the
other hand, the accumulation of collocation points zp (see equation (47)) and
the regularity of (40) near z = ±1 allows expansion (45) to simultaneously
resolve boundary layers at r = 1 with thickness of order 1/N2

r [25].

4.4 Spectral symmetries of the fields

As ψ is real, the coefficients ψn,p in (45) are complex conjugate

ψ−n,p = ψ̄n,p (48)

They obey an additional relation, stemming from (43). Setting z = cos(θ′),
the fields must be invariant under the transformation θ 7→ θ+ π, θ′ 7→ θ′ + π.
In spectral space, this transformation reads ψn,p 7→ (−1)n(−1)pψn,p, implying
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ψn,p = (−1)n+pψn,p (49)

Thus the ψn,p coefficients are non-zero only when (n, p) are jointly even or
jointly odd. This relation, similar to that found in the Taylor-Green vortex
[26], is used to speed-up the evaluation of (45) by a factor 2, using specially
designed even-odd Fast Fourier transforms.

Integral of mapped fields are performed on the collocation points using the
discrete formula

∫

Ω
rdrdθψ(r, θ) = −2π

Nθ

π

Nr

Nθ−1
∑

n=0

Nr/2−1
∑

p=0

ψ(θm, zk)
√

1 − z2
p

dr

dz
(zp)r(zp) (50)

5 Stationary solutions – Numerical results

This section is devoted to the numerical determination of stationary solutions
using the branch-following method detailed in the appendix. We first focus on
the particular case of the Eulerian flow (that is when ξ/D = 0). This case has
been previously investigated using methods based on series in Mach number
by Rica [20], and the critical Mach number is known with great precision.
We next compare analytical results of section 3 with numerically obtained
profiles of boundary layers with Dirichlet conditions. It is thus a good test of
the numerical precision and efficiency of our new method, presented above in
section 4.

The rest of the section contains the numerical results on the bifurcation dia-
grams and the stationary solutions of the NLSE at small and large coherence
lengths, for the two types of boundary conditions: Dirichlet and Neumann.
We discuss the dependence on ξ/D of the critical Mach number.

5.1 Eulerian limit

In the limit ξ/D → 0, the NLSE turns into the equations of an Eulerian
compressible flow

∂tφ = −1

2
(∇φ)2 + c2(1 − ρ) + v · ∇φ (51)

∂tρ = −ρ∆φ−∇ρ · ∇φ+ v · ∇ρ (52)

that are respectively the Bernoulli and continuity equations. We now search
for their stationary solutions. Note that, knowing the stationary field φ, the
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Bernoulli equation yields explicitly an expression of ρ that reads

ρ = 1 − 1

2c2
(∇φ)2 +

1

c2
v · ∇φ (53)

Therefore, φ is solution to the following equation

0 = −ρ∆φ−∇ρ · ∇φ+ v · ∇ρ (54)

with density ρ given by Eq. (53) and a unique boundary condition on the disk
(instead of two in the NLSE case)

U⊥ = ∂rφ− v cos θ = 0 at r =1 (55)

Using the branch following method presented in the appendix yields the nu-
merical stationary solutions of the two-dimensional Eulerian flow with respect
to the Mach number. The critical Mach number is then the one at which the
local Mach number

Mloc =
|U|
cloc

=
|∇φ− v|√

ρ
. (56)

reaches 1, at (x = 0, y = ±1)[20].

The value of the computed critical Mach number determined in this way de-
pends on the resolution. It is found to decrease when the resolutions in θ
and r increase. In order to obtain 11 significant digits, the (minimum) needed
resolution is Nθ × Nr = 512 × 32. The critical Mach number then found is
Mc = 0.36969705259(9). In order to obtain the same precision as that of se-
ries methods [20] (MRica

c = 0.36969(7)), it is sufficient to use the resolution
Nθ ×Nr = 128 × 16, that is only 8 radial grid points in physical space.

5.2 Comparison with analytical boundary layer results for Dirichlet condtions

We now compare the analytical results of section 3 with numerically obtained
profiles of boundary layers with Dirichlet conditions. Figure 1(a) displays
boundary layer profiles of the density square-root (R =

√
ρ) computed at

ξ/D = 1/200 and M = 0.

To stress the agreement between analytical and numerical results, it is more
convenient to substract the term (26) R

〈0〉
0 = tanh((r − 1)/

√
2ξ) in the nu-

merical profiles and compare the higher order terms thus obtained with the
analytical expression.

In the same way, Figure 1(b) presents the order ξ2 variation of the effective
radius as the following combination δeff = ((reff/r0)

2 − 1)/(ξ/r0)). The line
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2
√

2+[10−16 log 2)/3](ξ/r0) is shown on the same graph since expression (37)
predicts that

δeff = 2
√

2 +
10 − 16 log 2

3

(

ξ

r0

)

+O(ξ2). (57)

The value of (reff/r0)
2 was extracted from the numerical results by calculat-

ing the coefficient in cos θ/r of the velocity potential of the stationary state
substracted by the corresponding Eulerian flow coefficient (see Eq. (36)).

The agreement between analytical and numerical results is very good for small
ξ/D emphasizing the ability of our method to compute thin boundary layers.
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Fig. 1. (a) Plot of R
〈0〉
1 (s(r)) with s(r) = (r − 1)/

√
2ξ (see Eq. (27) and below)

together with the function Rnum(r) − tanh((r − 1)/
√

2ξ) where Rnum(r) is the nu-
merical result obtained with our numerical method for ξ/D = 1/200 and M = 0.
The agreement is excellent. (b) Calculation of δeff as a function of ξ together with
the curve 2

√
2 + (10 − 16 log 2)(ξ/r0)/3 (see text). The difference between the two

curves is due to the term in δeff of higher order in ξ. Note that the agreement is
very good for small ξ/r0.

5.3 Bifurcation diagrams and stationary states at small coherence length

We present the bifurcation diagrams and the stationary solutions of the NLSE
at small coherence length, for the two types of boundary conditions: Dirichlet
and Neumann.

The numerical methods presented in section 4 and the appendix also converge
very well in the NLSE case. For instance for Dirichlet conditions, the resolution
needed to compute a whole bifurcation diagram is lower than in previous
studies by Huepe and Brachet [19]. With the present method, the resolution
needed in the case ξ/D = 1/20 is Nθ × Nr = 64 × 64 whereas Huepe et al.
needed a spatial (rectangular) resolution Nx × Ny = 256 × 128 for the same
ratio ξ/D. The gain in resolution is then of a factor 8. This factor increases
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for smaller ξ/D. These excellent convergence properties are detailed in the
appendix, section A.4.2.

5.3.1 Bifurcation diagrams

In order to study bifurcation diagrams, we define a new free energy by:

F [ψ, ψ̄] = F0[ψ, ψ̄] − v ·
√

2cξ
∮

∂Ω
dℓn

1

2i
(ψ − ψ̄), (58)

with n = −er the unit vector normal to the boundary. The rightmost term
in (58) does not affect the equation of motion and is always zero for the
ψ|∂Ω = 0 Dirichlet boundary. For Neumann conditions, this term ensures that
a stationary solution ψ0 is an actual extremum of the functional F , i.e., F
satisfies F [ψ0 + δψ, ψ̄0 + δ̄ψ]−F [ψ0, ψ̄0] = 0 at first order in δψ. This property
implies the existence of a generic cusp in F at the bifurcation point (see
figure 2).

For simplicity, we will use the notation F(M) = F [ψ0(M), ψ̄0(M)]. The
values of F(M)−F(0) (the change of energy F , relative to zero Mach number)
is displayed in figure 2 as a function of the Mach number M for various values
of ξ/D and the two types of boundary conditions. As can be seen by inspection
of the figure, for each ξ/D, the stable branch (solid line) disappears with the
unstable solution (dashed line) at a saddle-node bifurcation when M = Mc.
There are no stationary solutions beyond this point. This qualitative behavior
is the signature of a Hamiltonian saddle node bifurcation.

By inspection of figure 2(b), we can see that the stable stationary branches
for Neumann conditions are almost superimposed on the Euler branch which
is not the case for Dirichlet conditions. This is due to the fact that Dirichlet
conditions impose a zero of the density at the border of the disk, contrary to
Neumann conditions and Eulerian flow.

In Fig. 2(a), at a Mach number smaller than Mc, the unstable symmetric
branch (dashed line, circle, ξ/D = 1/20) bifurcates at a pitchfork to a pair of
asymmetric branches (dotted line, ξ/D = 1/20) [18]. It can be directly checked
on our results (see figure 3, middle) that the secondary pitchfork bifurcation
breaks the y 7→ −y symmetry of the flow for both boundary conditions.

At a fixed Mach number, the energy difference between a stable and an un-
stable solution corresponds to the energy barrier necessary to dynamically
nucleate an excitation. Note that this barrier for a symmetric unstable solu-
tion is about twice that of an asymmetric unstable solution.
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Fig. 2. Bifurcation diagrams for small coherence lengths. Energy functional
F(M) − F(0) versus Mach number. (a) Dirichlet conditions; (b) Neumann con-
ditions. For ξ/D = 1/20, the asymmetric unstable solution branch is represented (it
stands for a one-vortex branch stemming from a pitchfork bifurcation). At a fixed
Mach number, the energy difference between a stable and an asymmetric unstable
solution is roughly half the energy difference between a stable and a symmetric
unstable solution.

5.3.2 Stationary solutions

By visualizing the stationary solutions of the NLSE, the branches of Fig. 2 can
be related to the presence of vortices. Figure 3 shows the density ρ = |ψ|2 of
typical stationary solutions for M = 0.3 and ξ/D = 1/20 for the two types of
boundary conditions. It is apparent by inspection of the figure that the stable
branch is irrotational (figure 3, top) while the asymmetric unstable branch
corresponds to a one-vortex solution (figure 3, middle) and the symmetric
unstable branch, to a two-vortex solution (figure 3, bottom).

For Dirichlet boundary conditions, similar results were found with periodic
pseudo-spectral codes [19]. However, our method directly imposes the cor-
rect boundary conditions without resorting to an artificial repulsive potential.
Also note that the critical Mach number is here determined for a single obsta-
cle, whereas a periodic array of obstacles was used in previous study. Huepe
et al. [19] find for ratio ξ/D = 1/40, MHuepe

c ≃ 0.3817 whereas we obtain
Mc ≃ 0.3941. A single obstacle perturbs less the flow than an infinite ar-
ray of obstacles (even with large separation), it is therefore natural to find a
higher critical Mach number in our simulations. As M is increased, the dis-
tance between the vortices and the obstacle for the unstable branches (figures
3, middle, bottom, Dirichlet) decreases. At a certain Mnv <Mc, the vortices
disappear on the surface on the cylinder, generating an irrotational flow (see
[18] for a detailed study of the Mach number at which one or two vortices
emerge from the disk).

Note that the branch following procedure used to compute the unstable branches
bifurcating from the stable branch conserves the velocity circulation. The total
velocity circulation around the disk is null. The two-vortex solution conserves
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Fig. 3. Density ρ = |ψ|2 of stationary solutions for ξ/D = 1/20 and M = 0.3 far
from the bifurcation threshold: (top) stable solution, (middle) asymmetric unstable
solution and (bottom) symmetric unstable solution. Left : Dirichlet conditions; right:
Neumann conditions.

the total circulation since the two vortices are counter-rotating. For the one-
vortex solution, an image vortex located at the middle of the obstacle has to
be invoked. This point will be reconsidered in section 5.4.
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5.3.3 Variation of critical Mach number with ξ/D

We now study the dependence on ξ/D of the critical Mach number Mc.

Our numerical method needs a slight modification to allow us to explore the
large ξ/D regime. The transformation r(z) is modified such that mesh-points
situated near the obstacle are stretched (see section 4, equation (44)). This
procedure avoids wasting resolution close to the cylinder.
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0.7

0.8
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1

0.01 0.1 1 10 100

 

 M

�=D

DirihletNeumann
MEuler ' 0:369797

Fig. 4. Critical Mach number Mc versus ξ/D. Note that Dirichlet boundary con-
dition solutions admit a smaller Mc than Neumann boundary condition solutions.
They both tend to the Euler critical Mach number as ξ/D decreases.

Results are displayed in figure 4. For a given type of boundary conditions,
the Mach number decreases with ξ/D and, for both boundary conditions, it
converges towards the Euler limit for small ξ/D.

First note that the value of the critical Mach number is lower than 1. As we
are interested in stationary solutions with density approaching 1 at infinity
like polynomials in 1/r (see sections 3 and 4), the speed of the obstacle v has
to remain below the speed of sound c. Otherwise radiation of sound waves
would occur in the same way as discussed in [27,28].

We now discuss the case of Dirichlet boundary conditions and will extend the
argument to Neumann conditions at the end of this section.

For Dirichlet conditions, we have seen in section 3 and in section 5.2 that,
in the case of small ξ/D, the boundary layer has a thickness of order ξ. The
situation at large ξ/D is quite different.

We now show that the effect of the cylinder on the flow at r > 1 is vanishingly
small when ξ → ∞. At zero Mach number, the density ρξ(r) = R2

ξ(r) satisfies
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ξ2
(

∂rrRξ +
1

r
∂rRξ

)

− R3
ξ +Rξ = 0 (59)

with Rξ(1) = 0 and Rξ(+∞) = 1. For large r/ξ, R̃ξ = Rξ − 1 satisfies after
linearization of (59)

ξ2
(

∂rrR̃ξ +
1

r
∂rR̃ξ

)

− 2R̃ξ = 0 (60)

Asymptotically for large r/ξ, we have Rξ(r) ≃ 1 + R̃approx
ξ with

R̃approx
ξ = −µξ

K0(
√

2r
ξ

)

K0(
√

2
ξ

)
(61)

for a given constant µξ.

Using a shooting method, we have numerically solved Eq. (59) starting from
r = Bξ (B is a sufficiently large constant) with initial conditions Rnum(Bξ) =
1 + R̃approx

ξ (Bξ) and ∂rR
num(Bξ) = ∂rR̃

approx
ξ (Bξ) and adjusting the constant

µξ so that Rnum(1) = 0.

Our shooting method indicates that

lim
ξ→+∞

µξ = 1+ (62)

s
1 + ~Rapprox�Rnum�
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Fig. 5. Plot of the function Rξ ≃ 1 + R̃approx
ξ together with Rnum

ξ both expressed in
the variable s = (r − 1)/ξ for ξ/D = 2500 (in this case, µξ ≃ 1.057). The function
1 + R̃approx

ξ is a very good approximation of the solution of equation (59) except
close to the cylinder (s = 0).

Figure 5 displays the function 1 + R̃approx
ξ together with the numerical solu-

tion of Eq. (59) calculated by the shooting method, expressed in term of the
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rescaled variable s = (r−1)/ξ. Thus, at large ξ/D and for s > 0, 1+R̃approx
ξ is

a very good approximation of the solution of Eq. (59). Points close to the cylin-
der differ, which is obvious since 1 + R̃approx

ξ does not vanish at the cylinder.
Therefore we have for fixed s > 0

Rξ(1 + ξs) − 1 ≃ µξ
K0(

√
2
ξ

+
√

2s)

K0(
√

2
ξ

)
∼

ξ→+∞
−K0(

√
2s)

log ξ
(63)

In this sense, the square-root of the density Rξ approaches logarithmically
the uniform state. Then the effects of the obstacle on the flow at large ξ/D
for Dirichlet conditions are very small. Thus the critical velocity is expected
to increase with ξ/D and the larger ξ/D, the closer to 1 the critical Mach
number.

As the Neumann conditions perturb even less the fluid than the Dirichlet con-
ditions, one can easily understand why the critical Mach number for Neumann
conditions increases faster at large ξ/D than for Dirichlet conditions.

Turning now to the small ξ/D regime, the critical Mach number for Neumann
conditions is also found to be larger than that of Dirichlet conditions. This
point is quite surprizing since, at small Mach number, stationary solutions
for Neumann conditions approach the Euler stationary states better than the
stationary solutions for Dirichlet conditions (see the bifurcation diagrams on
figure 2). However, we can offer the following semi-quantitative argument.
The critical Mach number decreases with decreasing ξ/D. We have shown in
section 3 that the effective radius reff(ξ) of stationary NLS flows at small Mach
numbers was bigger for Dirichlet conditions than for Neumann conditions.
Assuming that this result holds for bigger Mach numbers (of order MEuler

c ),
one can consider that the Neumann conditions stationary solutions have the
same critical Mach number as the Dirichlet stationary solutions when they
reach the same ratio ξ/Deff(ξ), imposing therefore smaller values of ξ/D in
the Neumann case.

Finally, note that we have found no numerical indication showing that
Mc(Dirichlet) could become bigger that Mc(Neumann), for very small values
of ξ/D.

5.4 Bifurcation diagrams and stationary states at large coherence length

The large ξ/D regime could be reached experimentally by considering BEC
with large coherence lengths perturbed by a sharply focused detuned laser.
As seen in the previous section, the critical Mach number tends very quickly
towards 1 for Neumann boundary conditions. Furthermore, these conditions
are academic and have no experimental equivalent in BEC. Thus, we will
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study the limit of large ξ/D only for Dirichlet conditions, the experimentally
realistic ones.

The bifurcation diagram, computed for Dirichlet boundary conditions and
different ξ/D, is displayed on figure 6(a). Just like in the small ξ/D case,
a branch of stable solutions is connected to a branch of unstable solutions
through a saddle-node bifurcation at a critical Mach number Mc. The values of
Mc are seen to approach 1 when ξ/D increases. The corresponding stationary
solutions are also displayed on figure 6. The stable solution (b) is irrotational
while the two unstable solutions contain respectively one (d) or two vortices (c)
far from the critical Mach number. However, close enough to the bifurcation
tip, the unstable stationary solution shows no 2π phase jump and therefore
no vortices are present. We will come back to this point in the next section.

As already pointed in section 5.3.2, the one-vortex solution that breaks the
symmetry y 7→ −y associates a vortex located outside the obstacle to an
image vortex situated inside the obstacle. The image vortex is clearly visible
on figure 6(d) because its core is larger than the obstacle itself (compare
with figure 6b or c). Note that the large ξ/D energy difference between the
stable and the asymmetric solution branches is not half the energy difference
between the stable and the symmetric solution branches, contrary to the small
ξ/D case. This stems from the fact that, for large ξ/D, the energy of the
asymmetric branch also includes the additional contribution of the now visible
image vortex.

6 Dynamical results

Solutions of the NLSE (in the absence of an obstacle) in dimension 2, moving
at constant speed while preserving their shape, have been exhibited by Roberts
et al. [29,30]. These solutions are pairs of counterrotating vortices but also
what they called rarefaction pulse (depletion pulse with non zero density and
therefore no vorticity).

A natural question is then to know which kind of excitations can be nucleated
past a disk.

6.1 Nucleation of vortices

The stationary solutions obtained numerically provide us with adequate initial
data for the study of dynamical solutions. Indeed, after a small perturbation,
their integration in time will generate a dynamical evolution with very small
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Fig. 6. (a) Bifurcation diagram for large ξ/D for Dirichlet conditions. Density of
stationary solutions for ξ/D = 20 and M = 0.25 far from the bifurcation threshold
(Mc ≃ 0.86): (b) stable solution, (c) symmetric unstable solution and (d) asym-
metric unstable solution.

acoustic emission. This procedure also provides an efficient way to start vor-
tical dynamics in a controlled manner.

It is already known from studies performed using a repulsive potential (see
figure 6 of [19]) that, at small values of ξ/D, vortex pairs are dynamically
nucleated. The same behavior is obtained using the present numerical method
with Dirichlet boundary conditions (data not shown). This behavior persists
when using Neumann boundary conditions, as shown on figure 7 that displays
the nucleation of a + and − vortex pair (which will be followed by a periodic
emission of other pairs). The phase of the complex field exhibits a 2π jump
for each vortex (see figure 7(d)).

6.2 Nucleation of rarefaction pulse

For large ξ/D, using Dirichlet boundary conditions, we have proceeded in the
same way as in the previous subsection by perturbing an unstable symmetric
solution at Mach number M > Mc to observe the nature of the nucleated
excitations. The behavior is somewhat more complicated. We show on Table 1
the nature of the emitted excitations as a function of ξ/D and M/Mc. For
ξ/D > 15, and obstacle speed above Mc, a rarefaction pulse (RP) is dynam-
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Fig. 7. Typical vortex nucleation in the case of Neumann boundary conditions, for
ξ/D = 1/20. (a,b,c) Plot of the density at different times (in arbitrary unit t = 0,
t = 230, t = 260 respectively). (d) At t = 260, phase of the system. Note the
2π-phase jumps around the two points where the density vanishes: iso-phase lines
emerge from these two points.

ically obtained; for ξ/D < 15, there exists a threshold in M under which
vortex pair rather than a rarefaction pulse emerges. In some cases (BL for
border line), it is unclear whether we have an emitted rarefaction pulse or
a vortex pair (the density minimum in such limit cases approaches zero and
there is a strong variation of the phase). By measuring the borderline speed
of translation υ (in the frame at rest) of the emitted excitation (see Table 2),
we found that it is very close to the known limit speed of translation υV at
which occurs the change in the nature of excitations in 2D superflow in the
absence of an obstacle: υV/c = 0.43

√
2 ≃ 0.61 [30].

A desexcitation of an unstable stationary solution at ξ/D = 17.5 creates a
rarefaction pulse as shown in figure 8. The minimum of density of such a pulse
is non zero (here the minimum equals approximately 0.081), and no phase
jump is present (see figure 8(d)).

The change in the nature of the excitation can be understood by the following
qualitative argument. A rarefaction pulse can be seen as the superposition of
a pair of vortices so close to each other that the minimum density is non zero.
Close to the critical Mach number, no vortex is detached from the disk. When
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nucleated, these vortices follow the boundary of the obstacle and then leave it
separated by a distance of order D. For large ξ, the vortices are so close that
they give rise to a rarefaction pulse.

We did not study the periodic emission of rarefaction pulses at supercritical
regime as done in previous studies [19]. Our numerical method is not adapted
for such problems: the mesh is more and more stretched far from the obstacle so
that one lacks resolution at long distance to resolve the nucleated excitations.

ξ/D

7.5 10 12.5 15 17.5

1.2 BL RP RP RP RP

1.15 VP RP RP RP RP

M
Mc

1.1 VP BL RP RP RP

1.05 VP VP VP RP RP

1.01 VP VP VP BL RP

Table 1
Phase diagram of the nature of emitted excitations as a function of the ratio ξ/D and
the Mach number normalized by the critical Mach number. VP and RP respectively
stand for vortex pair and rarefaction pulse. BL stands for limit cases where it is
hard to distinguish the exact nature of the excitation (the density minimum is very
close to zero and the phase has a strong variation).

ξ/D 7.5 10 12.5 15 17.5

υ/c 0.56 0.59 0.77 0.70 0.80

Table 2
Speed of translation υ/c of the nucleated excitations at M/Mc = 1.1 as a function
of ξ/D. For the limit case ξ/D = 10, we find υ ≃ 0.59; the change in the nature
of excitation in a 2D superflow without obstacle appears at speed equal to υV/c ≃
0.61 [30].

7 Conclusion

The main virtue of the pseudo-spectral method that we have used in the
present study is its ability to accurately accommodate both large-r asymp-
totic behavior and thin boundary layers near the cylindrical obstacle, at r = 1.
Indeed, using modest resolutions, we were able to obtain the Eulerian critical
Mach number with 11 significant digits. In the NLSE case, spectral conver-
gence was obtained on the whole bifurcation diagram for values of ξ/D as low
as 1/120.
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Fig. 8. Nucleation of a rarefaction pulse with Dirichlet boundary conditions for
ξ/D = 17.5 and M/Mc = 1.1: density at different times (in arbitrary unit) (a)
t = 0, (b) t = 150, (c) t = 220. (d) Plot of the phase at t = 220. There is no phase
jump, hence no vorticity. The speed of translation of this rarefaction pulse in frame
at rest is 0.80 and its minimum of density is approximately 0.081.

Small coherence length boundary-layer approximations to the stationary solu-
tions were calculated. These analytical results were found to be in very good
agreement with the numerical results. The long-range contribution was phys-
ically interpreted as a renormalization of the diameter of the disk.

As a by product of our new method, we were able to investigate not only the
physically realistic case of Dirichlet boundary conditions but also the more
academic case of Neuman conditions. The influence of the boundary condi-
tions on the stationary solutions of the problem, especially their effects on the
boundary layer and on the critical Mach number, were investigated.

For Dirichlet boundary conditions the qualitative results previously obtained,
using periodic pseudo-spectral codes [19], were recovered. However, our new
method directly imposes the correct boundary conditions, without resorting to
an artificial repulsive potential. Also, the newly obtained critical Mach number
is here determined for a single obstacle, whereas a periodic array of obstacles
was considered in previous studies. Thus, the present article presents the first
precise quantitative determination of the critical Mach number as a function
of ξ/D in this reference problem.
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Finally we were able to show that a transition occurs in the nature of the
emitted excitation at large coherence length. For ξ/D > 15, the nucleated
excitations are rarefaction pulses whereas, at ξ/D < 15, both vortices and
rarefaction pulses can be obtained.
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A Numerical Methods

We detail here the numerical procedures used in the simulations together
with the numerical convergences with spatial resolutions for the critical Mach
number and the stationary solutions.

A.1 Spectra

In this article, we define the r-spectrum and θ-spectrum of a field ψ spectrally
represented by ψn,p as the respective sequence of numbers

Spr(p) =

Nθ

2
∑

n=−Nθ

2
+1

|ψn,p|2 0 6 p 6 Nr (A.1)

Spθ(n) =
Nr
∑

p=0

|ψn,p|2 0 6 n 6
Nθ

2
(A.2)

Only half the θ-spectrum is considered for the θ-representation is complex-
conjugated.

A.2 Implementation of the boundary conditions

Contrary to the analytical computations, we work with the complex variable
ψ in order to take account of the possible presence of vortices. In order to
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impose the boundary conditions, we set

Φ0(θ, r) = v
r2
0 cos θ√
2cξr

(A.3)

ψm = ψeiΦ0 (A.4)

Note that this change of variables does not affect the Dirichlet conditions that
still read

ψm|∂Ω = 0 (A.5)

With these new variables, Neumann conditions read

∂rψm|∂Ω = 0 (A.6)

and the NLSE turns into

i∂tψm =
c√
2ξ

[

−ξ2∆ψm + (|ψm|2 − 1)ψm

]

+ iv · ∇ψm

+
c√
2ξ

[

ξ2(∇Φ0)
2ψm + ξ22i(∇Φ0)∇ψm

]

− v · (∇Φ0)ψm (A.7)

with ψm|r=1 = 0 (Dirichlet) or ∂rψm|r=1 = 0 (Neumann).

A.3 Time steppings

A.3.1 Stationary States

We search for stationary solutions of the dynamics equations (5) or Eq. (51–
52). Note that stationary solutions are those of the equivalent diffusive equa-
tions that read in the abbreviated form

∂Ψ

∂t
= LΨ + W(Ψ) (A.8)

In the general case (ξ 6= 0), we have

Ψ ≡ ψm L ≡ ∆ (A.9)

W(ψm) ≡
{

− c√
2ξ

(|ψn|2 − 1)ψn − iv · ∇ψn

− c√
2ξ

[

ξ2(∇Φ0)
2ψn + ξ22i(∇Φ0)∇ψn

]

+ v · (∇Φ0)ψn

} (A.10)

In the Eulerian case (ξ = 0), as discussed in section 5.1, these definitions
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reduce to

Ψ ≡ φ L ≡ ∆ W ≡ ∇(̺∇φ) − v · ∇φ (A.11)

with

̺ = −1

2
(∇φ)2 + v · ∇φ (A.12)

To integrate (A.8) a mixed implicit-explicit first-order time stepping scheme
is used:

Ψ(t+ τ) = (I − τL)−1(I + τW)Ψ(t) (A.13)

where I is the identity operator and τ the time step.

The Helmholtz operator (I−τL), block-diagonal with respect to Fourier modes,
is easily inverted in the Fourier–Chebychev representation using the LU algo-
rithm [31].

As called for the τ method [25] the boundary conditions (55), (A.5) or (A.6)
are substituted to the equations (A.8) for the highest Chebychev modes TNr−1

and TNr
. The operator (I − τL) is thus modified before inversion.

This relaxation method can only reach stable stationary solutions of (A.8).
In order to also capture unstable stationary solutions [32] we use the Newton
branch-following method detailed in [33], [18], [19].

A.3.2 Branch following procedure

We search for fixed points of (A.13), a condition strictly equivalent to the
stationarity of (A.8). Each Newton step requires solving a linear system for
the decrement ψ to be subtracted from Ψ:

[

(I − τL)−1 (I + τDW) − I]ψ

=
[

(I − τL)−1(I + τW) − I
]

Ψ (A.14)

where DW(Ψ) is the Fréchet derivative, or Jacobian matrix, of W evaluated
at Ψ. Equation (A.14) is equivalent to:

(I − τL)−1τ(L + DW)ψ = (I − τL)−1τ(L + W)Ψ (A.15)

The role of τ is formally that of the time step in (A.13), but in (A.14) or
(A.15), its value can be taken to be arbitrarily large. For τ → ∞, (A.15)
becomes:

L−1(L + DW)ψ = L−1(L + W)Ψ (A.16)
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In order to solve the linearized systems stemming from the Newton method, we
use BiCGSTAB [34]. We vary τ empirically to optimize the preconditioning
and convergence of BiCGSTAB. A few hundred BiCGSTAB iterations are
usually required to solve the linear system.

A.3.3 Dynamics

We write Eq. (5) in the abbreviated form:

∂Ψ

∂t
= L′Ψ + W′(Ψ) (A.17)

where

Ψ ≡ ψm L′ ≡ −iL W′ ≡ −iW(ψm) (A.18)

with W defined in equation (A.10)

Equation (A.17) is time stepped using the implicit Euler scheme

Ψn+1 = (1 − τL)−1 [Ψn + τWn] (A.19)

The boundary conditions (55), (A.5) or (A.6) are imposed by modifying the op-
erator (I−τL)−1, as done for the relaxation time stepping algorithm (A.8) [25].

A.4 Numerical convergence

A.4.1 Euler

Table A.1 shows the error on our reference Mach number versus Nθ and Nr.
Note that the errors are mainly due to a lack of Fourier modes in θ. Thus,
when a sufficient number of Fourier modes is reached, increasing the resolution
in r yields a better precision.

Nθ

16 32 64 128 256 512

16 4.45 × 10−3 3.72 × 10−4 1.02 × 10−5 2.59 × 10−7 2.27 × 10−7 2.27 × 10−7

Nr 24 4.45 × 10−3 3.72 × 10−4 9.97 × 10−6 3.34 × 10−8 5.87 × 10−10 2.22 × 10−10

32 4.45 × 10−3 3.72 × 10−4 9.97 × 10−6 3.32 × 10−8 2.70 × 10−12 0

Table A.1
Relative error versus resolution on the critical Mach number calculated by taking
as a reference Mc = 0.36969705259(9) calculated at (512 × 32).
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Due to the use of Chebychev polynomials, the boundary layers of the NLS flow
computed at low Mach number are well resolved thanks to the large number of
collocation points at the vicinity of the obstacle, as we will see in next section.

A.4.2 Small coherence length solutions

Our numerical method based on Chebychev polynomial expansions allows to
solve the boundary layer of order ξ by refining the collocation points near the
boundary conditions. The smaller ξ, the larger the radial resolution Nr must
be. The azimuthal resolution Nθ depends also on the value of ξ through the
multiplication of complex fields with a phase term such that Φ0(θ, r) = v cos θ√

2cξr

and ψm = ψeiΦ0 . The phase term Φ0 is inversely proportional to ξ and needs
sufficient Nθ points in order to be resolved. Table A.2 lists the resolutions used
for computing the bifurcation diagram for each ξ/D. Spectral convergence is
achieved for all stationary solutions as shown in figure A.1.

ξ/D 1/2 1/20 1/40 1/80 1/120

Nθ ×Nr 64 × 64 64 × 64 128 × 128 128 × 128 256 × 128

Table A.2
Azimuthal and radial resolutions used for computing the bifurcation diagram for
different ξ/D for the two types of boundary conditions.
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Fig. A.1. Stationary solution spectra with ξ/D = 1/20, Nθ × Nr = 64 × 64, and
Neumann boundary conditions: (a) θ spectra and (b) r spectra for a stable solution
far from the bifurcation, for the solution at the bifurcation, and for a one vortex and
a two vortex unstable solutions. Spectral convergence is achieved for all stationary
solutions.

A.4.3 Large coherence length solutions

For large ratio ξ/D, we have modified the mapping in order to stretch in the
radial direction the collocation points next to the obstacle (see equation (44)).
The choice of the value of λ depends on the value of ξ/D and the resolution
Nθ ×Nr of the system.
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Figure A.2 shows azimuthal and radial spectra for a symmetric unstable sta-
tionary solution at ξ/D = 20 with a dilatation parameter λ = 80 for two
different resolutions. Spectral convergence is achieved for all stationary solu-
tions.
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Fig. A.2. Symmetric unstable stationary solution spectra with ξ/D = 20, for two
resolutions (Nθ ×Nr = 128 × 128 et 128 × 512) and Dirichlet boundary conditions:
(a) θ spectra and (b) r spectra. Spectral convergence is achieved for all stationary
solutions.
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