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Abstract

Analyzing the production of weakly relativistic plasma produced by mi-
crowave fields with circular polarization the electron distribution function is
obtained to be non-equilibrium and anisotropic. Furthermore, it is shown that
produced plasma is accelerated on the direction of propagation of microwave
electric fields. The electron velocity on this direction strongly depends on
electron origination phase, electric field phase, and amplitude of microwave
electric field. Making use of the dielectric tensor obtained for this plasma, it

is shown that the wiebel instability develops due to the anisotrpic property of
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distribution function. The dispersion equation is obtained for this instability

and the growth rate of it, is calculated.



[. INTRODUCTION

A microwave produced gas discharge is a rather complicated phenomenon ex-
hibiting a variety of features. Numerous theoretical and experimental studies have
been devoted to this phenomenon. The interaction between intense (MW) fields
and neutral gas open new possibilities for studying the fundamental property of this
produced plasma. In a plasma produced in the interaction of the MW field with a
gas, the electron distribution is non-equilibrium and may give rise to various plasma
instability.! The main features of this interaction is the gas ionization mechanism.
Furthermore, the key role in the plasma processes is played by the kinetic effects
associated with the specific features of the electron distribution. Due to the short
interaction times, these features are governed completely by the pulse parameter of
microwave field. In addition the interaction between intense MW fields with an inho-
mogeneous plasma results in variety of phenomena such as frequency up shift during
the propagation of a pulse microwave field through a plasma.? In such a strong wave
field the electron oscillatory energy e, is much higher than the ionization energy I;yp;.
of gas atoms

e’ E}
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where wy is the radiation frequency, m is electron mass,and Ej is the electric field
strength. When field amplitude is comparable to the atomic field strength E, &~
5.1 x 10° Vem™! the tunneling ionization becomes an important mechanism for di-
rect ionization of the gas atoms. This effect was completely studied in the different
papers.>*5 On the other hand relativistic effects come in to play when kinetic energy
of electron oscillation in an electromagnetic field is comparable with the electron rest
mass energy. Moreover, the microwave fields generated by the present day pulsed

duration sources are weaker than the atomic field and are capable of manifesting



weakly relativistic behavior of electron produced. On the oder side, the aforemen-
tioned effect can be easily manifested by intense laser pulse.%

In the previous paper we restricted our study to the non-relativistic regime but
here we consider weakly relativistic effects that occur during gas ionization by a
strong microwave field.” In the present paper we consider the interaction of circularly
polarized microwave pulse fields with frequency about wy ~ 2 x 101571 —2 x 101571
with a neutral gas taking into weakly relativistic effects. This pulsed radiation source
is capable of generating the radiation with an intensity of about 108Wem ™2, whose
electric field being Ey < 10°Vem™ is much weaker than the atomic field E,. In
weakly relativistic case vy < ¢, for example in the weak ionized gas at low plasma
density, the electron average drift velocity v.,, arises in the wave propagation direc-
tion. At wy ~ 2 x 101%™ and Ey ~ 10*Vem ™! we get vg ~ 0.9 x 10%cms~! and
Vsaw = 2.6 x 107cms~!. If plasma density could get its critical value the drift current
in plasma ought be j, ~ 0.54cm=2. 8

In this case, also we study the electron distribution function (EDF) and the
stability of the discharge plasma in the aforementioned frequency range at weakly
relativistic electron oscillation energy e, .

This work is organized in four section. In sec. II. we will obtain produced EDF
generated by the interaction of the circularly-polarized MW field with a neutral gas.
In sec.III. we will obtain the dielectric tensor element for this produced plasma. In
sec.IV. we will study the stability of produced plasma and find the wiebel instability
growth rate of wiebel instability caused by the anisotropic property of the electron

distribution function. Finally, a summary and conclusion is presented.

II. ELECTRON DISTRIBUTION FUNCTION



Under condition (1) the thermal velocity of the electrons in a discharge plasma can
be neglected in comparison to the electron oscillation velocity in the MW radiation
field. Since the collision frequency is much smaller than the MW field frequency, we
can ignore the collisional stochastization of the forced electron oscillation as well.
Furthermore, if plasma density n.(¢) produced by the field during gas breakdown, is
less than the critical density (that is w3 > w?, = 4mne?/m) we can neglect the effect
of the polarization field. Moreover, the plasma density is assumed to be less than the
neutral gas density ng so that the latter can be considered constant. We also suppose
that the field was adiabatically switched on in the infinite past. Furthermore, we
can assume that the MW radiation electric field amplitude Egq is constant during a
single field period. Therefore, the kinetic equation for the plasma electrons produced

in the gas breakdown by a strong pulsed field can be written as follows

afo 8f0 1 afO o o
ot + V.ar+€[ EO_'_C(VX BO)]ﬁp —nowmmz5< p), (2)

where Eg(§) and Bg(€) are electric and magnetic fields of a wave propagating along
the Z-axis, respectively; & = wot —kor = wo(t —2/¢), and wjen;. is the ionization prob-
ability of the gas atoms. Here d( p) is the delta function of the electron momentum.
In the weakly-relativistic limit, we can assuming that the electric field depends only
on time. In the case of MW breakdown, electron-impact ionization is governed by
the ionization probability wjeni.. For a MW discharge Eq. (2) for fo( p,t) is a homo-
geneous integro-differential equation whose positive eigenvalue ~( Eg) determines
the avalanche ionization constant. However, we can neglect the right-hand side of
Eq. (2) in the first approximation and calculate the EDF directly by solving the

Vlasov equation under the following condition,

wg > ’Y( E0)7 Wioniz (3)



where the avalanche ionization constant v( Eg) is to be determined.® In this case,
the condition (3) depends strongly on the neutral gas density and is well satisfied
at gas pressures of py >~ 10 — 100 Torr. In this approximation, to calculate the
electron energy distribution function, we assume the field components to be circularly

polarized
E, = Egsinwqt, Ey = Egcoswyt, E,=0, (4)

where, wg is the frequency of MW field. Moreover, electric field amplitude Eq
describes the slowly varying (over the field period) microwave pulsed envelope. con-
sider the condition (3) and solving Eq. (2) by characteristic method the equation of

motion for electrons can be obtained as follows

du,
Y, = Exa
m o e
dv
md—ty =eFE,, (5)
dv, e
m pr E(vxEx + v, E,),

from this we find solution of the vlasov kinetic equation-characteristics

v, = —vg(cos p — cos py),
v, = vp(sin ¢ — sin ¢y), (6)

v, = E(1 — cos(p — o)),

where, ¢ = wpt is the MW electric field phase and pg = wgtg is the MW electric field
phase when the electron originates with zero momentum at time to, vy = eEy/mwy
is the electron oscillatory velocity in an alternating electric field. For the solution of

the form fo(v,t) = ne(t) fo(v) we obtain”



folvg, Uy, ;) = 6(vy + vp(cos p — cos pg))d(v, — vg(sin g —singy)) (7)
02
X (vz — £[1 — cos(p — @0)]> :
c
The function fo(v,, vy, v.) satisfies the normalization condition [d v fo( v) = 1.

One can show the product of the two last J-functions in the distribution function (7)

is independent of g. For this reason, by introducing the following notation

Ve = —vy +vgsinwgt , Vy = vy +vg coswpl
we obtain
. . 1
d(vy + vE(coswot — cos ¢g))d(vy — ve(sinwet — singg)) = 5 (VL —wvg),
TUE
where
Vi=V24 Vy2 = v% +v% + 2vp(v, coswet — v, sin wpt), v =vi 4 vZ :

Therefore, Eq. (7) is reduced to

fo(VL,Uz) =

QWE(S(VL —vg)d (vz - %[1 — cos(p — m}) , (8)

We can see that, the electron distribution function depends on phase field ¢ and
electron origination phase ¢g. Therefore, we must average of electron distribution
function over the phase field period and origination phase. The projection of the
phase portrait of the electrons onto the (v,,v,) plane is as follows. The electron
trajectories uniformly cover a circle of radius vg, whose center precesses about the
origin of the coordinates and describes a circumference of the same radius at a
rate equal to the microwave frequency. Consequently, the averaging procedure can

be performed separately for the longitudinal and transverse velocity components.



Averaging over the transverse component we obtain
2
6 (v = (1 - cos(ip — g0

fo y Uz - - 9
fO('UL v (90 300)) QWQUL\/m ( )

II1. DIELECTRIC TENSOR

In the previous section we found the distribution function (9) for electrons in
a discharge plasma is highly anisotropic with respect to the direction of the MW
radiation field, which, first of all, should result in the onset of the well-known wiebel
instability.” In order to convince ourselves that this conclusion is valid and to find
the instability growth rate, we turn to the adiabatic approximation, assuming that
the instability grows faster than the plasma density.> In this approximation, we can

use the following dispersion relation for small perturbation
2

w
| k’QCSZ‘j — k?lk’j — C—2€Z‘j(w, k) |: 0. (10)

Here ¢;;(w, k), the dielectric permitivity tensor of the plasma, is obtained by lineariz-

ing Vlasov equation for the electrons

of.  of.
o Vor

1 Ofe
+6(EO+E(VX Bo))afp:

0, (11)

and considering self-consistency effect and Maxwell equations and cold ions approx-

imations as follows

2 2 af’“ k a_fb
e Wpi Wpe 0 ’
€ij<w, k) = 1+5€z‘lj+55¢j =1- —WPQ 5ij + wPQ /d A" Uia—vj + Uﬂ)jﬁ . (12)

Here, the second term, i.e., 552% shows the ion contribution of the plasma dielectric
permitivity tensor and the third term, i.e., def; is related to the electron contribu-

tion of the plasma dielectric permitivity tensor. The latter kinetic equation for the
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perturbed EDF is valid in the adiabatic approximation when short-wavelength limit
is justified, i.e., wp; < kv < wp,. To solve Eq. (12) by using EDF (9) we introduce

the following system of coordinate in which k lies only in the XZ plan

k = (k.,0,k,) |, k, = \/k2 + k2.

Under this condition the non zero contributions of the electrons in the dielectric

tensor (12) are

k2 k2
IS OB Ut 2o G- 2
= —"5 [~ -
ol BN IICT N (oL
_ wh, 2k vE(1 — cos ¢)? ik vps _ Klop(1 = cos¢)?

5633 = — (
2 2 2,2 4k2 02\ 3
2w we2f 23 Il 4%;2,5 2c232(1 w2L62E>2

_ 2k.vE(1 — cos @)s N k2v%(1 — cos ¢)?s

13)
4k2 v2, | 3 (
gl T el - SR
w2, | kivE(1 — cos¢)s k? 1 1
Oers = 2::2 E<wcﬁ ) (1+ /{;_2) N 4k% 02\ 3
+ (1- wQL,BQE) (1~ w232 )?
k., s
+—(1-
kJ_ 1— 4kiv2E
w262
w?, W UE
de1g = d€g = 0, degg = ——— dezg = ———=—(1 — cos @) + deqs,
w? 2w?c
where
2 for Rew # 0 ;
when 4;%55 <1
1 for Rew =0
5= 0 for Imw=20 (14)
4k2 v2
2 for Imw # 0 ¢ when ot > 1
1 for Rew =0




andﬁ:(l—%—%cosqﬁ),(b:go—goo also, i = v/—1.

wc

IV. STABILITY OF THE PRODUCED PLASMA

As known the process of the gas breakdown by the MW fields is unstable with
respect to the excitation of longitudinal electric fields and transverse magnetic fields.
The former is caused due to the positive derivative of the EDF and the latter, treated
below, is related to the anisotropy of the EDF.? In this step we study the weibel in-
stability, by analyzing electron perturbations propagate across the microwave field.
Therefore, by averaging dielectric tensor (13) over the ¢ between [0,27] and sub-
stituting into the dispersion equation (10) by assuming 2kv%/we < 1 yields the
dispersion relation for electron perturbations propagating across the MW radiation

field (k, = 0)
ot w3 k2viw 2w K3
(k22 +wd,) (k2?2 4+ w?,)

—0. (15)

With assumption k*v% < w3, < k?c? and Solving Eq. (15) we obtain the following

expression, which characterize the growth rate of the weibel instability as follow

/{Z22 k . 3]€22
W= VB PUBYP <1+ UE) (16)

VR +wh, (k2 +wh, 2wpe

V. CONCLUSION

Using a simplest model, we are calculated the weakly-relativistic EDF for plasma
produced by the interaction of an intense microwave pulse field with a neutral gas.
The resulting EDF, which can be drive analytically for circularly polarized MW field,
is highly anisotropic, which indicates that microwave driven plasmas are subject

to weibel instability. In the non-relativistic produced plasma’ the electrons only



oscillate on the MW field direction but on the weakly-relativistic produced plasma
the electrons have velocity perpendicular the radiation field. In this case the electrons
originating with zero energy are entrained by MW field in a certain phase and are
accelerated to weakly-relativistic velocities, so that the accelerated electrons move
essentially in phase with the MW field. Then, this process might be repeated for the
electrons originating over the next time interval, and so on. Analyzing the dispersion
equation and obtaining the growth rate of the instability produced we found that
the growth rate modified by an exceed positive term with respect to non-relativistic
case. Also the instability frequency has a very small real part that can be represent

the entrain of electrons in MW fields.
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