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EXTREMALITY FOR THE VAFA–WITTEN BOUND

ON THE SPHERE

MARC HERZLICH

Abstract. We prove that the round metric on the sphere has the largest first
eigenvalue of the Dirac operator among all metrics that are larger than it. As a
corollary, this gives an alternative proof of an extremality result for scalar curva-
ture due to M. Llarull.

1. Introduction

C. Vafa and E. Witten have shown [17] that there exists a common upper bound
for the smallest eigenvalue of all twisted Dirac operators on a given Riemannian
manifold. The common upper bound they found depends strongly on the choice of
the metric on the base. Using an analogous method, H. Baum [3] exhibited later an
explicit upper bound for the first eigenvalue of the (untwisted) Dirac operator on
an even-dimensional Riemannian manifold that can be sent on a sphere by a map
of (high) non-zero degree. This bound depends on the Lipschitz norm of the map
from the manifold to the round sphere.

The goal of this short note is to elaborate further on H. Baum’s results [3]. Inded,
we prove below that some optimal upper bound can be obtained for the bottom of
the spectrum of the (untwisted) Dirac operator of a large class of metrics on the
sphere. This extends [3] in two different ways, first by providing an optimal bound,
and secondly by extending it to odd dimensions.

Theorem 1. Let g be any Riemannian metric and b be the round metric on the

sphere Sn. If g > b, then there is a eigenvalue of the Dirac operator of g in [−n
2
, n

2
].

Moreover, if no eigenvalue lies in the open interval ] − n
2
, n

2
[, then g is isometric to

the round metric b.

As an interesting corollary, one gets an alternative proof of M. Llarull’s extremality
result for scalar curvature on the sphere [13]. Indeed, the classical first eigenvalue
estimate for the Dirac operator due to Th. Friedrich [7] states that the smallest
eigenvalue λ1(g) (in absolute value) of the Dirac operator satisfies:

|λ1(g)|
2 >

n

4(n− 1)
inf Scalg .
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Hence one concludes:

Theorem 2 (Llarull [13]). Let g be any metric and b the round metric on the sphere

Sn such that g > b. Then

inf Scalg 6 n(n− 1),

with strict inequalities if g is distinct from b.

The proof of Theorem 1 is close to the original approach of Vafa and Witten, see
also M. Atiyah [1] and H. Baum [3]. Since we look for optimal bounds, we have
however to pay a special attention to all the estimates. Especially, this implies to
have two different proofs in the even- and odd-dimensional cases (see [6] for another
occurrence of this problem in a related context). The first one is obtained from
an index argument, whereas the second needs a slightly more delicate proof using
spectral flow considerations.

Acknowledgements. It was Maung Min-Oo who pointed out during a lecture in July
2001 [15] that Vafa–Witten was optimal on a round sphere and that a strong link
might exist with Llarull extremality. This idea appears (in a somewhat more hidden
way) on pages 84–85 in M. Gromov’s long and rich paper [10]. The author is then
happy to acknowledge the origin of the ideas behind this note. He also thanks Hélène
Davaux, Maung Min-Oo again, Andrei Moroianu and Uwe Semmelmann for useful
comments on a first draft of this paper.

2. Background material

For any metric g on Sn, we let Σg be its spin bundle. Using the idea introduced
by J. P. Bourguignon and P. Gauduchon [4], one may identify the spin bundle Σg

with the spin bundle Σb through a lift of the principal oriented orthonormal frame
bundles isomorphism

H : PSOS
n(g) −→ PSOS

n(b)

induced by the unique symmetric positive definite map H such that

g(H·, H·) = b(·, ·).

This allows to transfer the Clifford action relative to g on the bundle Σb. Denoting
by ℓb (resp. ℓg) : TSn → End(Σb) the Clifford actions for b and g, they are related
as:

ℓb(·) = ℓg(H·)

The Levi-Civita connection for any metric g can be transferred in the same way on
Σb as a metric connection (but with torsion). In what follows, we will always assume
that all spinor bundles on the sphere have been identified to those relative to b, as
above.

The following facts are extracted from classical texts on spinor geometry, see also
[2, 3] which are useful references.
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In even dimensions n = 2m, the spin bundle Σg splits into two half-spin bundles
Σ+

g and Σ−
g ; on the sphere S

2m, the whole spin bundle, or equivalently the sum of
both half-spin bundles, is a trivial bundle obtained by restricting the spinor bundle
of R2m+1 to the sphere; namely:

T := Σb = Σ+

b ⊕ Σ−
b = S

2m × C
2m

.

Moreover, projections on each factor Σ±
b can be explicitly described at a point x on

the sphere as:

Π±(x) =
1

2
(1 ± iℓ0(x))

where ℓ0 is the algebraic Clifford action of Cl2m+1 on C
2m

(as a result, none of
the half-spin bundles is trivial). Using this expresion, it is easy to relate the trivial
connection ∇0 (of flat space) acting on T with the Levi-Civita connection of b acting
on Σ±

b . If ψ is any spinor field in Σ±
b , then:

∇±
Xψ = Π±∇

0

XΠ±ψ = ∇0

Xψ −
1

2
ℓ0(x)ℓ0(X)ψ

and the full Levi-Civita connection for b on Σb = Σ+

b ⊕ Σ−
b is ∇b = ∇+ ⊕∇− (note

that actions ℓ0 on vectors tangent to Sn and ℓb may be identified).
Moreover, the bundle T ⊗ T = Σb ⊗ Σb is the (complex) differential form bundle

Λ•Sn ⊗ C of the sphere. On this bundle, two different Clifford actions exist. The
first is the usual one for twisted spinor bundles, with the Clifford algebra acting on
the left factor of the tensor product; we will continue to denote this one below by ℓ,
as it is defined on a decomposed element σ ⊗ τ of Σb ⊗ Σb by:

ℓb(X) (σ ⊗ τ) = (ℓb(X)σ) ⊗ τ.

But there is another, right-handed, one that we shall denote by r and which is
defined by:

rb(X) (σ ⊗ τ) = σ ⊗ (ℓb(X)τ).

Both Clifford actions can be explicitely described when one identifies Σb ⊗ Σb with
Λ•

S
2m as follows: for any p-form ω, and any 1-form α

ℓb(α
♯)ω = α ∧ ω − iα♯ω, rb(α

♯)ω = (−1)p (α ∧ ω + iα♯ω)

(musical isomorphism ♯ referring, as always, to b). For more information on these
points, the reader is referred to the book [12] (see also the paper [16] where a concise
account of these facts is given). The reader should also be careful about tensor
product connections, as they might not coincide: for instance, ∇b⊗1+1⊗∇b is the
Levi-Civita connection on differential forms on the sphere whereas ∇0 ⊗ 1 + 1⊗∇0

is the trivial connection induced from R
2m+1.

In odd dimensions n = 2m − 1, the Clifford algebra is isomorphic to the sum
of two copies of the matrix algebra End(C2m−1

). Hence it has two inequivalent
representations which lead to two different Clifford bundles Σb and Σ′

b on the sphere
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S2m−1. They are equivalent as bundles with structure group Spin(2m − 1) but the
Clifford actions differ. Their sum is again a trivial bundle:

T := Σb ⊕ Σ′
b = S

2m−1 × C
2m

;

as above, it is the restriction to the sphere of the full spinor bundle of flat space
R2m. This bundle itself splits in two trivial subbundles of rank 2m−1

T = T
+ ⊕ T

−.

Here we have to take care that these bundles are different from the bundles Σb and
Σ′

b on the sphere already alluded to a few lines above: for instance, T+ and T− are
exchanged when Clifford multiplied by vectors, whereas Σb and Σ′

b are preserved by
the Clifford action. Notice that, contrarily to what happens if n = 2m, the bundles
T± are preserved by the flat connection ∇0. As final remark, we recall that T ⊗ T

is again isomorphic to the full differential form bundle of R2m.

From now on and to avoid confusion, we will use notations T, Σb and Σg in the
following sense : they will always denote the corresponding bundle relative to the
metric b, but endowed either with the trivial connection ∇0, or the Levi-Civita
connection ∇b, or ∇±, of b on spinors, or the Levi-Civita connection ∇g of g on
spinors.

3. The proof: even-dimensional case

We consider the bundle S = Σg ⊗Σ+

b ; as spin bundles for different metrics always
are identified, this means that we take the tensor product of the whole spin bundle Σb

with the half-spin Σ+

b , but endowed with the non-trivial tensor product connection
∇g ⊗ 1 + 1 ⊗∇+.

We now apply Atitah-Singer index theorem to the twisted Dirac operator

(3.1) Dg+ : Σ+

g ⊗ Σ+

b −→ Σ−
g ⊗ Σ+

b .

One of the most important consequences of index theory is the topological invariance
of the index. An easy computation yields the index of the following model (‘round’)
Dirac operator:

ind
(

Db+ : Σ+

b ⊗ Σ+

b 7−→ Σ−
b ⊗ Σ+

b

)

= 2

(up to orientation reversing), so that the index of the Dirac operator Dg+ built with
the connection ∇g ⊗ 1 + 1 ⊗∇+ on the twisted spin bundle S = Σg ⊗ Σ+

b is also 2.
Its kernel is then non-zero.

Let us now consider the tensor product bundle Σg ⊗ T, endowed this time with
the connection ∇g ⊗ 1 + 1 ⊗∇0. As the pair (T,∇0) is a trivial flat bundle on the
sphere, the spectrum of the twisted Dirac operator attached to this connection is
the same as the spectrum of the Dirac operator on Σg, but with each eigenvalue
repeated 2m times its multiplicity. Applying standard perturbation theory, one gets
the first part of the statement of Theorem 1 if one is able to bound the difference

L̄ := Dg0 −Dg+.
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This is easily computed on a decomposed section σ⊗τ . If {ei} is any g-orthonormal
basis on the sphere,

L̄(σ ⊗ τ) =
n
∑

i=1

ℓg(ei)
(

∇g
ei
σ ⊗ τ + σ ⊗∇0

ei
τ −∇g

ei
σ ⊗ τ − σ ⊗∇+

ei
τ
)

=
1

2

∑

i

ℓg(ei)σ ⊗ ℓb(x)ℓb(ei)τ

=
1

2
rb(x)L(σ ⊗ τ),

where L is the (pointwise) linear map of vector bundles given on a spinor field ψ in
Σg ⊗ Σ+

b by

Lψ =
∑

i

ℓg(ei)rb(ei)ψ.

We now choose a b-orthonormal basis {εi} that diagonalizes H . Eigenvalues µi live
in ]0, 1] and {ei = µiεi} is a g-orthonormal basis, and moreover,

Lψ =
∑

i

µ−1

i ℓb(ei)rb(ei)ψ =
∑

i

µi ℓb(εi)rb(εi)ψ.

Using the explicit expressions of ℓb and rb on differential forms, one gets

ℓb(εk)rb(εk) (εi1 ∧ · · · ∧ εip) =

{

(−1)p εi1 ∧ · · · ∧ εip if k ∈ {i1, . . . , ip},

(−1)p+1 εi1 ∧ · · · ∧ εip if not,

and this eventually leads to

L(εi1 ∧ · · · ∧ εip) = (−1)p





∑

j∈{i1,...,ip}

µj −
∑

j 6∈{i1,...,ip}

µj



 ε1 ∧ · · · ∧ εp

for p between 0 and n. Ordering the eigenvalues in decreasing order µ1 > · · · > µn,
the maximal absolute value of the eigenvalues of L at fixed p is obviously achieved
by

∣

∣

∣

∣

∣

∑

16j6p

µj −
∑

j>p+1

µj

∣

∣

∣

∣

∣

for each p. Since 0 < µj 6 1 for each j, it is obvious that the suprema of all such
expressions for any p is bounded by n and that equality is achieved if and only if
µj = 1 for each j. This concludes the proof of Theorem 1. �
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4. The proof: odd-dimensional case

Our treatment of the odd-dimensional case is much inspired by [1, 6]. Starting
from the Dirac operator on the spin bundle Σg, our goal is to find a flat twisting
bundle endowed with a non-flat connection whose associated twisted Dirac operator
has a non-zero kernel. As index considerations are useless in odd dimensions, we
have to rely on a spectral flow argument.

Our choice of bundle is

Σg ⊗ T
+ = Σ ⊗ C

2m−1

(notations as in section 2), so that, as above, the Dirac operator Dg0 associated to
∇g ⊗1+1⊗∇0 on Σg ⊗T

+ has the same spectrum as Dg on Σg (up to multiplicity).
Fix e unit in R2m and let for each x in S2m−1:

u(x) = the projection of e · x· ∈ Cl2m in End(T+) = End(C2m−1

).

As each x is skew-hermitian and of square −1, u(x) is unitary for each x and one
can define the unitarily (gauge) equivalent connection

∇u = u−1 ◦ ∇0 ◦ u

on T+. The path of connections

t ∈ [0, 1] 7−→ ∇g ⊗ 1 + 1 ⊗
(

t∇0 + (1 − t)∇u
)

gives rise to a path of Dirac operators Dt on Σg ⊗ T+ with unitarily equivalent
operators at {t = 0} and {t = 1}. The spectral flow of this family can be computed
using the index theorem on S2m−1 × S1, applied to the Dirac operator acting on the
spinor bundle Σb twisted by the bundle obtained by identifying T+ at {t = 0} and
{t = 1} through u, and is non-zero (see [5] for instance).

As a result, there exists a value of t in [0, 1] for which the kernel of Dt is non-zero.
Suppose t 6 1/2, then, as in the previous section, what is needed to conclude is an
estimate of the difference

Dt −Dg0

(in case t > 1/2, on should use u−1 ◦Dg0 ◦u rather than Dg0). An easy computation
shows that this difference of operators acts as the following linear map on Σg ⊗ T

seen as a sub-bundle of the whole differential form bundle T ⊗ T of R2m:

Lt = rb(t x) ◦

(

2m−1
∑

i=1

µi ℓb(εi) rb(εi)

)

(same notations as in the previous section). The end of the proof is then entirely
analogous to that in even dimensions. �
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5. Final comments

It is known that scalar curvature extremality extends to a large family of Riemann-
ian manifolds; among these, one can find complex projective spaces, Kähler man-
ifolds of positive Ricci curvature, non-negatively curved locally symmetric spaces
(see the foundational [10, §6] and [8, 9, 11, 13, 14]). In view of Theorem 2, it seems
then natural to ask the following obvious questions:

Question 1. Can one find other examples of eigenvalue-extremal metrics ?

Question 2. In particular, if g is a metric on CPm (with m odd, so that it is spin)
that is larger than the Fubini-Study metric f , does one have |λ1(g)| 6 |λ1(f)| with
equality if and only if g is isometric to f ?
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Commun. Math. Phys. 144 (1992), 581–599.
5. H. Davaux, K-aire et courbure scalaire des variétés riemanniennes, Ph.D. thesis, Univ. Mont-

pellier II, 2002.
6. , An optimal inequality between scalar curvature and spectrum of the laplacian, Math.

Ann. 327 (2003), 271–292.
7. T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Man-
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87.



8 MARC HERZLICH

16. I. Prokhorenkov and K. Richardson, Perturbation of Dirac operators, preprint (2003), available
as math.DG/0307251.

17. C. Vafa and E. Witten, Eigenvalue inequalities for fermions in gauge theories, Commun. Math.
Phys. 95 (1984), 257–276.
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