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Abstract

Analytical calculations of the spectra obtained from first-order Fermi acceleration mech-
anism with oblique shocks are presented. They are a generalization of the quasiparallel
configuration, where the streaming instability modifies the acceleration process, and of the
quasiperpendicular configuration, where the magnetic pressure is significant. We show that
influence of the streaming instability on the compression ratio of the fluid is always negligi-
ble, it changes the spectal index only through the modification of the effective compression
ratio of the scattering centers. The observational constraints on the cut-off frequency im-
ply that the magnetic turbulence in extragalactic jets must be weak and most probably of
Kraichnan type. The application of our calculations to the jet of 3C 273 shows that the
theory of diffusive acceleration in oblique shocks works quite well with a non-relativistic
flow velocity, and yields narrow ranges for the different parameters.

Subject headings: galaxies: jets – particle acceleration – shock waves
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1. Introduction

Particle acceleration in astrophysics has been proved to be of extreme importance for
cosmic rays and extragalactic radio sources. The concept of diffusive shock acceleration,
invented twelve years ago by several authors (Axford et al. 1977, Krimsky 1977, Bell 1978
and Blandford and Ostriker 1978), has been widely used to explain the spectra of high
energy particles in supernovae remnants and radiosources. Although the simple linear
theory firstly proposed needs some extensions to become a realistic description, the basic
mechanism is still considered as the relevant process at work that accelerates efficiently
high energy particles.
Most of the published works deal with simplest configurations, namely parallel or quasi-
parallel and quasiperpendicular shocks; the theory of particle acceleration in perpendicular
shocks is different because the electric field cannot be removed by a de Hoffmann-Teller
transformation (Begelman and Kirk 1990). Unfortunately, the calculations are more com-
plex for oblique shocks, and thus it is more difficult to know the relative importance of
different parameters due to the lack of any analytical theory. Oblique shocks have been
considered only in recent years (Drury 1983, Webb 1983, Ostrowski 1988, Kirk and Heav-
ens 1989, Cawthorne and Cobb 1990). However, they probably play an important role to
make the bright jets shine (Norman et al. 1982).

In previous papers, Pelletier and Roland (1986, hereafter Paper 1; 1988, hereafter Paper
2) developed analytical calculations of the spectra obtained from the first-order Fermi
acceleration mechanism at work in magnetized mixed shocks for both quasiparallel and
quasiperpendicular configurations. The plasma is supposed to have two distinct compo-
nents, namely a nonrelativistic thermal one and an ultrarelativistic suprathermal one. The
upstream flow is assumed to have a nonrelativistic velocity. Analitycal results can be ob-
tained because the shock structure can be simply modeled owing to the great differences
between the three different scales involved in the problem: the synchrotron loss length,
the precursor length which is the typical scale of the diffusion of relativistic electrons, and
finally the width of the subshock, which is the shock of the thermal component. Pelletier
and Roland calculated the spectral index as a function of θ (ratio between the thermal
pressure and the relativistic plasma pressure, defined just downstream of the shock where
synchrotron losses are still not significant) first for infinite Alfven Mach number (MA) in
Paper 1, then for finite MA in Paper 2 taking account of the streaming instability.

In this Paper, we generalize these calculations to oblique shocks and follow very closely the
methods of the two previous Papers. We take into account both streaming instability and
magnetic pressure effects. The shapes of the precursor and of the subshock are described
at the lowest order in term of the small number M−1

A . The configuration of the shock is
defined in the reference frame where the shock front is at rest and the upstream speed of
the thermal plasma is perpendicular to it. The obliquity is then defined by the angle βu

between the magnetic field and the normal to the shock front, or the upstream plasma
speed (Fig. 1).

2. The derivation of the spectral index
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2.1 The continuity of ~v and ~B

First we have to address the behavior of the flow speed (~v) and the magnetic field ( ~B)
across the shock. The normal to the shock front defines the x-axis, and the vectors ~v and
~B are in the plane x − y. The equation for the conservation of momentum reads:











ρvx
∂vx

∂x
= −

∂p

∂x
−

1

4π
By

∂By

∂x

ρvx
∂vy

∂x
=

1

4π
Bx

∂By

∂x

. (1)

The conservation of mass implies that ρvx = J where J is a constant, and the equations
(1) can be integrated into:







Jvx + p + pm = Cst

Jvy −
BxBy

4π
= Cst

, (2)

where pm =
B2

y

8π is the magnetic pressure and
BxBy

4π the magnetic stress. Bx is the compo-
nent of the magnetic field normal to the shock front (Bu

x = Bd
x = Bx: the upperscripts u

and d mean respectively upstream and downstream quantities). With the conservation of

the electric field parallel to the shock front ( ~E = −~v ∧ ~B), equation (2) yields:







Bd
y = rsBu

y

vd
y = (s − 1)

Bu
y

Bx
vu

(3)

with s =

(

1 − B2

x

4πJvu

1 − r
B2

x

4πJvu

)

where r is the global compression ratio r = vu
x/vd

x = vu/vd
x.

We then see that:

pd
m = r2pu

ms2 . (4)

Defining MA as the Alfvenic Mach number upstream MA = vu/VA, where V 2
A = Bu2

4πρu , we
have:

B2
x

4πJvu
=

cos2 βuBu2

4πρuvu2
=

cos2 βu

M2
A

, (5)

and s = (M2
A − cos2 βu)/(M2

A − r cos2 βu).
This means that the magnetic stress induces an effect of the second order in M−1

A . Hence,
to the first order (MA ≫ 1), we find: s = 1 + o(M−1

A ), so that we can write:











Bd
y = rBu

y

vd
y = vu

y = 0

pd
m = r2pu

m

(6)
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which is the result of the parallel and perpendicular cases where the magnetic stress van-
ishes. In the following, we consider only the x-component of the speed downstream, thus
omitting the corresponding subscript (vd

x = vd), but we limit the calculation to the first
order in M−1

A only at the end (Sect. 2.4).

2.2 The basic equations

The streaming instability induces upstream a difference between the speeds of the thermal
plasma (vu) and the scattering centers (uu; Skilling 1975, Mc Kenzie and Volk 1982):

uu = vu − VA cos βu . (7)

We assume that the streaming instability drives an intense spectrum of Alfven waves
that propagate backwards in the precursor and that the power supply to the waves by
the instability is balanced, via a transfer, by some absorption mechanism that heats the
thermal plasma at a rate VA

∂pr

∂x
(Völk, Drury, McKenzie, 1984).

The basic equations, which express respectively the momentum flux conservation, the
thermal component heating and the relativistic pressure growth, are thus (see Paper 1):























J(u + V ) + pg + pr + pm = F

γgpg
d(u + V )

du
+ (u + V )

dpg

du
= δ

d

du
φ

dpg

du
+ (γg − 1)V

dpr

du

γrpr + u
dpr

du
=

d

du
φ

dpr

du

(8)

where V = VA cos βu upstream and V = 0 downstream. The structure function φ was the
key to solve this system of equations in Paper 1 and Paper 2 and is defined by φ(u) = κr

∂u
∂x

where κr is the diffusivity of the relativistic particles. In equation (8), pg and pr are
respectively the pressures of the thermal plasma (γg = 5/3) and of the relativistic particles
for which the adiabatic index will be kept constant throughout the shock region (γr = 4/3).

2.3 Relation between b and MA in the strong shock limit

We define b as in Paper 2 by: b = (pd
g +pd

r)/pd
m. In the strong shock limit (pu

g +pu
r ≪ Jvu),

the momentum conservation reads:

Jvu + pu
m = pd

r + pd
g + pd

m + Jvd , (9)

which implies using (4):

M2
A ≃

r3 sin2 βu

2(r − 1)
(b + 1)s2 . (10)

2.4 Derivation of the compression ratio

We use the same method as described in Appendix A of Paper 2, but we take the magnetic
pressure pm into account:
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d(pg + pr + pm) + Jdv = 0 (11)

∫ vu

vd

(γgpgdv + vdpg) = (γg − 1)

∫ vu

vd

V dpr (12)

∫ vu

vd

(γrprdu + vdpr) =

∫ vu

vd

V dpr . (13)

(Note that there is an error in Appendix A of Paper 2 in the third equation where the
term γrprdu had been replaced by γrprdv, yielding an overestimation of the streaming
instability.)
From equations (12) and (13), we obtain:

[(

γgpg

γg − 1
+

γrpr

γr − 1

)

v

]vu

vd

−
∫ vu

vd

v(dpg + dpr) =
γr

γr − 1
pu

r VA cos βu . (14)

Defining µ in the same way as in Paper 2:

µ =

γg

γg−1pg + γr

γr−1pr + 2pm

p
(15)

with p = pg + pr + pm, we derive:

J(vu2 − vd2)

2
+µupuvu−µdpdvd−2(pu

mvu−pd
mvd)+

∫ vu

vd

vdpm =
γr

γr − 1
pu

r VA cos βu . (16)

There are two additive terms which are functions of the magnetic pressure. For the first
term we have:

−2(pu
mvu − pd

mvd) = −2pu
m

(

vu − r2s2vd
)

. (17)

For the second term, equation (4) yields a relation across the shock between the magnetic
pressure pm and the thermal plasma speed v:

pm = pu
m

(

vu − B2

x

4πJ

v − B2
x

4πJ

)2

. (18)

Hence, we can integrate vdpm by parts with v as variable to find:

∫ vu

vd

vdpm = 2pu
m

(

vu − r2s2vd −
B2

x

8πJ

(

1 − r2s2
)

)

, (19)

and the sum of equations (17) and (19) yields:

−pu
m

B2
x

4πJ

(

1 − r2s2
)

. (20)
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Equation (16) can then be transformed into:

2µd − 1

r
= 1 +

rµu − µd

r − 1

2pu

Jvu
−

2r

r − 1

γr

γr − 1

pu
r VA cos βu

Jvu2
− 2

r

r − 1

pu
m

Jvu

B2
x

4πJvu

(

1 − r2s2
)

.

(21)
In the strong shock limit, we have pu ≃ pu

m, so that:

2pu

Jvu
≃

2pu
m

Jvu
=

sin2 βu

M2
A

, (22)

and

µu ≃ 2 . (23)

The last term of the right hand side of equation (21) is proportional to M−4
A (see Sect.

2.1) and

pu
r VA

Jvu2
<

pu

Jvu

VA

vu
≃

sin2 βu

2M2
A

1

MA
(24)

so that the third term on the right hand side of equation (21) is at most of the third order
in M−1

A . This means that the streaming instability has a negligible effect on the global
compression ratio of the thermal plasma.

Like in Paper 2, we can calculate µd by using

r0 =
7 + 4θ

1 + θ
(25)

where θ = pg/pr, together with equations (10) and (15). Then, if we neglect terms that
are o(M−2

A ), equation (21) becomes:

r0 −
r0 − 3

2

r3

r − 1

sin2 βu

M2
A

= r

(

1 +
4r − r0 − 1

r − 1

sin2 βu

2M2
A

)

, (26)

that can be rewritten as:

r =
r0

1 + r(r0−3)+r0+1
2

sin2 βu

M2

A

. (27)

The compression ratio r as a function of the obliquity βu is plotted in Fig. 2 for different
values of θ and MA. It can be seen that the effect of the magnetic pressure on the
compression ratio is visible at obliquities as low as 10◦ and is important at high obliquities
for moderate MA.

2.5 Derivation of the spectral index

Like in Paper 2, we obtain a simple law for the low frequency radio spectral index valid
for a wide parameter range provided that there is enough thermal pressure, precisely more
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than only a tenth of the relativistic pressure. Indeed the energy spectral index is related
to r in the case θ > 10−1 by:

η =
3rs

rs − 1
− 2 (28a)

where rs is the compression ratio experienced by the scattering centers which, according
to equation (7), reads

rs = r

(

1 −
cos βu

MA

)

. (28b)

Equation (28b) provides the main influence of the streaming instability on the spectral
index. In that range, the energy spectral index depends on the main control parameters
of the shock structure and is not sensitive to the diffusion coefficients.
At very low frequency, the synchrotron radiation spectral index is related to the energy
spectrum index by:

α =
η − 1

2
. (29)

The curves α(θ) and α(βu) are plotted in Fig. 3. We have limited the computation to
θ > θlim where θlim is given by the condition rg = u0/ud ≥ 1.5 (u0 is the speed of the
scattering centers at the limit between the precursor and the classical subshock). We have
also assumed that rg is given by the parallel case (see Paper 2) and it can be checked on
Fig. 2 and 3 of Paper 2 that this assumption does not change the result very much.

3. Evolution of the cut-off with obliquity

The cut-off is defined by the balance of energy gain through the acceleration process with
the synchrotron losses. We consider here a mean cut-off averaged over space on a scale
larger than the synchrotron loss characteristic length. To derive the cut-off frequency, we
set:

λacc ≃ λloss , (30)

where

λacc =
D

uu
(31)

and

λloss = uuτsyn = uu 6πmc

σT γB2
(32)

(Rybicki and Lightman 1979). σT is the Thomson cross section and D the diffusion
coefficient. In the case of an oblique shock, this coefficient is given by (Jokipii 1966;
Melrose 1980):

D = D// cos2 βu + D⊥ sin2 βu (33)
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with

D// =
1

3

c2

νs
(34)

and

D⊥ =
1

3
νsr

2
gr =

νs

3

(γ2 − 1)m2c4

e2B2
(35)

where

νs = ηturb
νA − 1

νA(νA + 2)

3π

2

c

l0

(

rgr

l0

)νA−2

(36)

is the pitch angle scattering frequency. ηturb is the degree of magnetic turbulence <(δB)2>
<B>2 ,

l0 the long spatial wavelength cut-off of the spectrum, νA is the power law of the spectrum
of the Alfven waves (ω−νA) and rgr = mc2/eB.
We then obtain a relation between βu and γ from equations (30) through (36):

cos2 βu =

18πm
σT c

K
γ(γ2−1)1−νA/2

uu2

B2 −
(

Kmc
eB

)2 (
γ2 − 1

)νA−1

1 −
(

Kmc
eB

)2
(γ2 − 1)

νA−1
(37)

where

K = ηturb
νA − 1

νA(νA + 2)

3π

2

c

l0

(

mc2

l0eB

)νA−2

.

The synchrotron theory provides a relation between the frequency and γ with νc =
1.2 106Bγ2 where B is in Gauss. In Fig. 4 is plotted βu(νc) given by equation (37).

4. Discussion

4.1 The spectral index

The evolution of the low frequency radio spectral index α as a function of the obliquity βu

is represented on Fig. 3a. It shows clearly that the variations of α with MA are roughly
constant but are higher at βu ≃ 60 − 70◦. This shows that the magnetic pressure has
a relatively weak influence on α. Fig. 3a also reveals that the obliquity is not a crucial
parameter to determine the spectral index. Fig. 3b is a generalization of the curves
presented in Paper 1 and Paper 2. It shows that the variations of α with MA are roughly
constant when θ varies.

The different parameters can be estimated by comparison with observed spectral indices.
Unfortunately, the spectrum must be precisely known in order to avoid the uncertainty
of 0.5 near the break frequency. The spectral index used here is the index when the
synchrotron losses are not significant, it is to say for low energy electrons. Above the
energy corresponding to the break frequency, the synchrotron spectrum steepens by 0.5
because of the synchrotron energy losses of the electrons. This break frequency is different
for each radio jet and can be between 109 and 1011 Hz approximatively. As it is not known
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for all the sources, use of an observed distribution of spectral indices (see for example
Bridle and Perley 1984) would probably lead to uncorrect results. We thus prefer to study
few sources for which both the break and the cut-off frequencies are known.

4.2 The cut-off frequency

The importance of all the parameters intervening in the determination of the cut-off fre-
quency is shown in Fig. 4. We have chosen the most reasonable parameters and considered
some variations:

–The index νA of the Alfven wave spectrum is in principle either 5/3 (Kolmogorov spec-
trum) or 3/2 (Kraichnan spectrum). Fig. 4a shows that this parameter is the most
important one and that the Kolmogorov spectrum does not allow optical emission
except for very high obliquities which are excluded in this paper (the calculations are
limited to the quasi-perpendicular case).

–The second important parameter is the turbulence rate which is totally unknown in
extragalactic jets. Fritz (1989) find ηturb < 3 10−2 in 3C 111 and 0235+164. Roland
et al. (1988) estimated that ηturb ≃ 5 10−4 in the hotspot of Cygnus A. We thus
choose 10−3 as a typical value and Fig. 4b reveals that only greater turbulence rates
can explain optical emission. As only very few extragalactic optical jets exist, we
conclude that ηturb must be as low as 10−3 in most cases.

–The calculations developed in Paper 1, in Paper 2 and here assume non relativistic
transport equations, i.e. uu < c/

√
3 = 0.58c. In addition, Fig. 4c shows that the

influence of the plasma speed on the cut-off frequency is weak for uu > 0.3c.
–The influence of the largest scale of the magnetic turbulences is not important. We

adopted a typical value of 100 pc, corresponding to the knot size in the M87 jet and
to the value found by Roland et al. (1988) in the hotspot of Cygnus A.

–The equipartition magnetic field is in general about 10−4 G and does probably not
differ dramatically from this value. Its influence on the cut-off frequency is thus
relatively weak (Fig. 4e).

Regarding to the two first points, it could seem paradoxical that a weak turbulence spec-
trum of Kraichnan type is a better explaination of the optical cut-off than the strong
turbulence spectrum of Kolmogorov type. The reason is that the cut-off frequency is pro-

portional to (l0/rgr)
2(2−νA)/(3−νA) η

2/(3−νA)
turb . The first factor is a very large number, very

sensitive to the exponent, whereas the second factor, that shows the increase of the cut-off
with the turbulence level, is less sensitive.

4.3 Validity of the theory

The low level of the MHD turbulence insures the validity of the formulae used for the
diffusion coefficients derived from quasilinear theory (Jokipii 1966) and the pitch angle
diffusion frequency is much smaller than the Larmor frequency. However the pitch angle
frequency cannot be too small because the diffusive acceleration works only if the diffusion
length is smaller than the size of the shock region. The largest diffusion length is reached
by particles having an energy corresponding to the cut-off frequency (their Lorentz factor
is about few 106). That maximum diffusion length is about 10 pc for ηturb equal to 10−3.
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We note that the isotropization process is always faster than the homogeneization process
in non relativistic flow. Indeed the requirement that uu/νs be smaller than the diffusion
length is equivalent to uu << c.
We considered a quasi-adiabatic shock. Is it consistent with the energy spectral index
that turns out to be smaller than 2 just behind the shock? The answer is yes for three
reasons. First, after the shock the integrated energy distribution undergoes a change of
index due to synchrotron losses leading to the usual increase of the synchrotron index of
0.5. Second, except for particles having an energy close to the cut-off, the diffusion length
is much smaller than the characteristic length of synchrotron loss. Third, because of the
cut-off, the integrated luminosity is much smaller than the flux of kinetic energy in the jet,
by a factor of few percent (see Roland et al. 1988).

5. Application to the “hot-spot” of the 3C 273 jet

Instead of deriving general properties for the jets with the uncertainties on the spectral
index and the often unknown cut-off frequency, we illustrate the calculations of this paper
with one well studied object. The best candidates are certainly the optical jets whose
spectrum is also known toward very low radio-frequency in order to determine its spectral
index below the break frequency. The cut-off frequency, the equipartition magnetic field
and an estimation of the maximum scale of turbulences (l0) are determined from the
observations. For illustration, we consider the “hot-spot” of the jet of 3C 273 whose
detailed optical photometry (Fraix-Burnet and Nieto 1988) provides a magnetic field at
equipartition of about 10−3 G and precise the shape of the cut-off with a cut-off frequency
at about 1015 Hz. The whole spectrum of this “hot-spot” (see Meisenheimer and Heavens
1986) yields a low-frequency spectral index of 0.5. From the observations (notably Foley
and Davis 1985, and Fraix-Burnet et al. 1989b) we estimated the maximum scale length
of the turbulence to be about 1 kpc.

We are thus able to present the result of Section 3 in a different way, i.e. with two plots:
MA vs θ and ηturb vs uu. Obliquities of 40, 60 and 80◦ were choosen in Fig. 5 and
the second plot is shown for both Kolmogorov and Kraichnan turbulence spectra. Our
calculations have two limitations which are constraints on some parameters: the use of
classical transport equations implies uu < c/

√
3 ≃ 0.6c, and because we have considered

only quasi-perpendicular shocks we have: (uu + VA cos βu) tanβu < c. With the ηturb(u
u)

plot, the second condition gives:

ηturb >0.15 for νA = 1.7

ηturb >2.5 10−3 for νA = 1.5
(38)

On one hand, the Kolmogorov turbulence spectrum requires quite high degrees of magnetic
turbulence, but on the other hand, if such high degrees are to be present, the Kraichnan
spectrum would require quite low speed of less than about 0.1c. We tend to believe that
the most plausible configuration is a Kraichnan spectrum with a midly relativistic speed
(0.3c) and a low degree of turbulences (10−3 − 10−2).

The MA(θ) plot clearly shows that MA > 5 whatever the obliquity is. Using uu < 0.6c,
this yields VA < 0.15c, or:
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n > 2 10−3 cm−3 (39)

where n is the density of the thermal plasma. The upper limit on uu provides also an
upper limit on MA which can be written as:

5 < MA
<∼ 80n+1/2 (40)

A lower limit on θ can be derived from Fig. 5a: θ > 0.3.

Whereas it is difficult to go further on in the determination of the parameters of the model
for 3C 273 at the present time, it appears that the estimation of the thermal plasma density
should bring interesting results. This estimation can be made essentially in two ways: from
the X-ray emission of the insterstellar medium with an assumption of some equilibrium
between this medium and the jet, and also from internal Faraday depolarization when this
effect can be measured. Both method are possible in the jet of M87 (Schreier et al. 1982,
Fraix-Burnet et al. 1989a) and we intend to publish in a subsequent paper a thorough
study of this jet in the frame of the present model and considering all the data available
at all wavelengths.

Any further constraint on the thermal plasma density are lacking in the case of 3C 273,
but for illustration we use the value derived by Fraix-Burnet et al. (1989a) in the jet of
M87. For n = 2 10−2 cm−3, we derive for a Kraichnan spectrum (νA = 1.5):

0.2 < uu/c < 0.6
5 < MA < 11

0◦ < βu < 78◦

0.3 < θ < 10
3 10−3 < ηturb < 4 10−2

6. Conclusion

This analysis of oblique shocks, that takes into account magnetic effects in the shock stuc-
ture, leads us to emphasize the following concluding points. i) The most sensitive effect
of the ordered magnetic field on the shock structure and the resulting energy spectrum
is due to the magnetic pressure. ii) The high energy cut-off is so sensitive to the Alfven
spectral index νA that we can conclude that the MHD turbulence is more likely of Kraich-
nan rather than Kolmogorov type . iii) The degree ηturb of magnetic turbulence is the
other sensitive parameter, however less sensitive than the turbulence spectral index. We
found that it is of order 10−3 for most jets, except for those which radiate an optical
synchrotron emission which requires a larger degree ηturb but smaller than 10−1. Thus, in
any case, the MHD turbulence is fairly weak and could not be of Kolmogorov type, which
is in agreement with polarization data and the ordered character of the magnetic maps.
iv) The theory of diffusive acceleration in oblique shocks works quite well to explain the
synchrotron spectrum of extragalactic jets. All the assumptions of the theory turn out
to be consistent in the sense that the parameters deduced from the shock theory lead to
justify the a priori assumptions. Especially three main assumptions are proposed: most
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of the mass is in a thermal plasma, the flow speed is not relativistic (precisely, below the
relativistic sound speed c/

√
3), the MHD turbulence that causes the diffusion is weak. We

showed that these assumptions are valid and found estimates of these quantities. For the
particular exemple of 3C273, we determined the parameters in rather narrow intervals.
And although this source is a powerful quasar, the radiation of its jet is explained with a
nonrelativistic flow speed in the “hot spot” region, the relativistic particles being advected
by a thermal plasma of few 10−3 part/cm3.
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Figure captions

Figure 1: Reference frame of the shock front considered in this paper.

Figure 2: Evolution of the compression ratio r as a function of the obliquity βu for
different values of θ. The curves correspond upward to MA = 4, 5, 7, 10, 30,∞.

Figure 3: Evolution of the spectral index α with (a) the obliquity βu and (b) θ. The
curves correspond downward to MA = 4, 5, 7, 10, 30,∞.

Figure 4: Obliquity βu (in degrees) as a function of the cut-off frequency νc (in Hz) for
various values of the parameters. The speeds are in unit of c.

Figure 5: For the “hot-spot” of the 3C 273 jet, these curves represent (a) the Alfvenic
Mach number MA as a function of θ, and the degree of turbulence ηturb as a function of
the flow speed uu for (b) a Kolmogorov spectrum and (c) a Kraichnan spectrum. The
speeds are in unit of c.
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