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AUTOMORPHISMS OF FREE GROUPS HAVE

ASYMPTOTICALLY PERIODIC DYNAMICS

Gilbert Levitt, Martin Lustig

Abstract. We show that every automorphism α of a free group Fk of finite rank
k has asymptotically periodic dynamics on Fk and its boundary ∂Fk: there exists

a positive power αq such that every element of the compactum Fk ∪ ∂Fk converges

to a fixed point under iteration of αq .
Further results about the dynamics of α as well as an extension from Fk to

word-hyperbolic groups are given in the later sections.

Contents

Introduction and statement of results
1. Preliminaries

1.a. Fk and its boundary
1.b. Limit sets and asymptotic periodicity
1.c. Invariant trees
1.d. Bounded backtracking and Q(X)

2. A lemma on asymptotic periodicity
3. Limit sets of interior points
4. The simplicial case
5. A reduction
6. The train track and the tree

Creating a shortcut
Legal paths
The PF-metric and the invariant tree
Elliptic elements

7. Geometry on the train track
Spaces quasi-isometric to trees
K-PF-geodesics
An inequality

8. Proof of Theorem 5.1
Paired train tracks
Creating a fixed point
The main argument

9. More on the dynamics

Typeset by AMS-TEX

1



Products of trees
Dynamics of irreducible automorphisms
The number of periods
Automorphisms with many fixed points

10. Hyperbolic groups
Bounding periods
One-ended groups
Free products
Groups with torsion

11. Examples and questions
Examples
Free groups
Hyperbolic groups
Actions with finite limit sets

References

Introduction and statement of results

Let Fk denote the free group of rank k ≥ 2. Conjugation iu by an element u ∈ Fk

has very simple dynamics. If g ∈ Fk commutes with u, then g is a fixed point of
iu. If g does not commute with u, then the length of (iu)n(g) = ungu−n tends to
infinity as n→ +∞, and ungu−n converges to the infinite word u∞ = limn→+∞ un.

On the space of infinite words (which may be viewed as the boundary ∂Fk),
the action of iu is simply left-translation by u. It has North-South (loxodromic)
dynamics: u∞ is an attracting fixed point (a sink), u−∞ is a repelling fixed point
(a source), and limn→±∞ unX = u±∞ for every infinite word X 6= u±∞. Similar
considerations apply to conjugation by any element of infinite order in a word
hyperbolic group.

We proved in [24] that “most automorphisms” (in a precise sense) of a given
hyperbolic group (e.g. Fk) have North-South dynamics on the boundary of the
group. But, of course, interesting automorphisms usually are not “generic”.

For instance, Nielsen studied mapping classes of surfaces by lifting them to
the universal covering, and considering the action of various lifts on the circle at
infinity S∞ (the boundary of the surface group). He used lifts with more than
two periodic points (see [30]), and one of his key results is that a lift f always has
periodic points on S∞ (equivalently, its rotation number on S∞ is rational).

Since f induces a homeomorphism ∂f of the circle S∞, this obviously implies
that, for any X on the circle, the set of limit points of the sequence ∂fn(X) as
n→ +∞ is a periodic orbit of ∂f : we will say that ∂f has asymptotically periodic
dynamics.

Our main results may be viewed as a generalization of these facts to arbitrary
automorphisms of free (or hyperbolic) groups.

Let α be an automorphism of Fk. It induces canonically a homeomorphism ∂α
on the boundary ∂Fk. The latter, a Cantor set, can be identified with the set of
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reduced right-infinite words in an arbitrary basis of Fk, or with the space of ends
of any simplicial tree on which Fk acts freely. As usual, we provide Fk with the
discrete topology and use ∂Fk to compactify Fk, thus obtaining F k = Fk ∪ ∂Fk.
One obtains from α and ∂α together a homeomorphism α : F k → F k of this
compactum. This paper studies the dynamics of this homeomorphism. Let us
first recall a few known results.

Theorem I [15, 25, 27]. Let α ∈ Aut (Fk).

(1) Every periodic orbit of α has order bounded by Mk, where Mk depends only
on k, and Mk ∼ (k log(k))1/2 as k → ∞.

(2) ∂α has at least two periodic points of period ≤ 2k.
(3) A fixed point of ∂α which does not belong to the boundary of the fixed sub-

group Fixα is either attracting or repelling (sink or source). The number
a(α) of orbits of the action of Fixα on the set of attracting fixed points

satisfies the “index inequality” rkFixα+
1

2
a(α) ≤ k.

(4) Every attracting fixed point of ∂α is superattracting with respect to the
canonical Hölder structure of ∂Fk, with attraction rate λi ≥ 1. If λi >
1, then λi is the exponential growth rate of some conjugacy class under
iteration of α. There are at most 3k−2

4
distinct such growth rates.

An element X ∈ F k is called asymptotically periodic (with respect to α) if the
set ω(X) of accumulation points of the sequence αn(X) as n→ +∞ is finite. This
implies that ω(X) is a periodic orbit of α.

The automorphism α ∈ Aut (Fk) has asymptotically periodic dynamics (on F k)
if every X ∈ F k is asymptotically periodic. Equivalently, α has asymptotically
periodic dynamics if and only if there exists q ≥ 1 such that, for every X ∈ F k,
the sequence αqn(X) converges (see §1.b). Our main result can now be stated as
follows:

Theorem II. Every automorphism α ∈ Aut (Fk) has asymptotically periodic dy-
namics on F k.

In particular, if g ∈ Fk is not α-periodic, then the set of limit points of the
sequence αn(g) as n→ +∞ is a periodic orbit of ∂α. In other words, there exists
q such that, for any N , the sequence consisting of the initial segment of length N
of αn(g) is eventually periodic with period q (the period q may be bounded by
Mk, independently of g or α).

As an illustration, define an automorphism on the free group of rank 3 by α(a) =
cb, α(b) = a, α(c) = ba. Applying powers of α to a gives a 7→ cb 7→ baa 7→ acbcb 7→
cbbaabaa 7→ baaacbcbacbcb 7→ . . . , showing that αn(a) limits onto an orbit of period
3. On the other hand a−1 7→ b−1c−1 7→ a−1a−1b−1 7→ b−1c−1b−1c−1a−1 7→ . . . ,
and αn(a−1) limits onto an orbit of period 2.

Other examples will be given in section 11. In particular, it is quite common
for a boundary point of an α-invariant free factor F to be the limit of orbits well
outside F .
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For an orientation-preserving homeomorphism of the circle, all periodic points
have the same period, and existence of a periodic point is enough to imply asymp-
totically periodic dynamics. For automorphisms of free groups, there may be
periodic points with different periods on the boundary (as shown by the above ex-
ample). It is relatively easy to prove that periodic points exist, but much harder
to prove that all points of the boundary are asymptotically periodic.

The basic tool in our approach is an α-invariant R-tree, i.e. an R-tree T with an
action of Fk by isometries which is minimal, non-trivial, with trivial arc stabilizers,
and α-invariant: its length function ℓ satisfies ℓ ◦ α = λα for some λ ≥ 1. The
automorphism α is then realized on T , in the sense that there is a homothety
H : T → T , with stretching factor λ ≥ 1, such that α(w)H = Hw : T → T for
all w ∈ Fk. If λ = 1, the tree T is simplicial and H is an isometry. If λ > 1, the
action of Fk on T is non-discrete; in fact, every Fk-orbit is dense in T .

In most cases, the map H has a fixed point Q (in T or in its metric completion
T ). The stabilizer of Q is an α-invariant subgroup StabQ ⊂ Fk, which has rank
strictly smaller than k [16]. This allows us to set up the proof of our main result
as a proof by induction over the rank k.

For g ∈ Fk, we study the behavior of the sequence αn(g) through that of the
sequence αn(g)Q = Hn(gQ), where Q is a fixed point of H.

There are three main cases (see §3).
- If gQ = Q, we use the induction hypothesis.
- If λ > 1 and Hn(gQ) goes out to infinity in T in a definite direction, then

αn(g) converges to an attracting fixed point of ∂α.
- If Hn(gQ) “turns around Q”, one shows that αn(g) accumulates onto a peri-

odic orbit contained in ∂StabQ, using a cancellation argument given in § 2.
Similar arguments (given in § 4) make it possible to understand the behavior

of ∂αn(X), for X ∈ ∂Fk, when there are simplicial invariant trees, in particular
when α is a polynomially growing automorphism.

The general case is dealt with in §§ 5 through 8. It makes use of the point Q(X)
introduced in [26], which reflects the dynamics of ∂α on X and allows us to extend
the approach from the special cases dealt with previously. The proof consists of
geometric arguments on relative train tracks, and involves the asymptotic behavior
of four distinct ways of measuring length under iteration of α (and of α−1). A
sketch of the proof will be given at the beginning of § 5.

In §9, we prove a few more results about dynamics of automorphisms of free
groups. We show that Fk acts discretely on a suitable product of trees (a result
proved in [2] and [28] for irreducible automorphisms). We study the bipartite
graph whose vertices are the attracting and repelling fixed points of ∂α, for α
irreducible. We show that, for an arbitrary α, the number of different periods
appearing in the dynamics of α is bounded by a number depending only on k and

growing roughly like e
√

k. We also give a short proof of a result of [5] constructing
automorphisms with many fixed points.

In §10, we explain how to adapt the arguments of §§2, 3, 4 to hyperbolic groups.
Our main result is:
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Theorem III. Let α ∈ Aut (Γ), with Γ a virtually torsion-free hyperbolic group.

(1) Periodic orbits of α have at most M points, with M depending only on Γ.
(2) Every g ∈ Γ is asymptotically periodic.
(3) If Γ is one-ended, or α is polynomially growing, then every X ∈ ∂Γ is

asymptotically periodic.

It is not known whether all hyperbolic group are virtually torsion-free (see [22]).
In any case, it seems reasonable to conjecture that all automorphisms of hyperbolic
groups have asymptotically periodic dynamics.

We start § 10 by giving a proof of an unpublished result by Shor [35]: Up to
isomorphism, there are only finitely many fixed subgroups in a given torsion-free
hyperbolic group. As in [35], we use results by Sela [34], Guirardel [17], Collins-
Turner [10], but we simplify the proof by using the fact (proved in [23]) that
Aut (Γ) contains only finitely many torsion conjugacy classes, for Γ a torsion-free
hyperbolic group.

Theorem III is first proved for torsion-free groups. For one-ended groups, we
use the simplicial tree (with cyclic edge stabilizers) given by the JSJ splitting. For
free products, we use an R-tree constructed from the train tracks of [10]. Finally,
we extend our results to virtually torsion-free groups.

We conclude the paper by a section devoted to examples and questions.

1. Preliminaries

1.a. Fk and its boundary.
Let Fk be a free group of rank k ≥ 2. Its boundary (or space of ends) ∂Fk

is a Cantor set, upon which Fk acts by left translations. It compactifies Fk into
F k = Fk∪∂Fk. The boundary ∂J of a finitely generated subgroup J ⊂ Fk embeds
naturally into ∂Fk. If g ∈ Fk is nontrivial, we let g±∞ ∈ ∂Fk be the limit of gn as
n→ ±∞.

If we choose a free basis A of Fk, we may view ∂Fk as the set of right-infinite
reduced words. The Gromov scalar product (X |Y ) of two elements X, Y ∈ F k

is the length of their maximal common initial subword. A sequence Xn in F k

converges to X ∈ ∂Fk if and only if (Xn|X) → ∞.
An automorphism α ∈ Aut (Fk) is a quasi-isometry of Fk. It induces a homeo-

morphism ∂α : ∂Fk → ∂Fk, and also a homeomorphism α = α∪∂α of the compact
space F k. The conjugation g 7→ wgw−1 will be denoted by iw. Note that ∂iw is
left-translation by w.

1.b. Limit sets and asymptotic periodicity.
Let f be a homeomorphism of a compact space K (for instance ∂Fk or F k).

A point x ∈ K is periodic, with period q ≥ 1, if f q(x) = x and q is the smallest
positive integer with this property. The set {x, f(x), . . . , f q−1(x)} is a periodic
orbit of order q. Given y ∈ K, the ω-limit set ω(y, f), or simply ω(y), is the set
of limit points of the sequence fn(y) as n → +∞. It is compact, and invariant
under f and f−1. We observe:

5



Lemma 1.1. Let f be a homeomorphism of a compact space K. Given y ∈ K
and q ≥ 1, the following conditions are equivalent:

(1) ω(y) is finite, and has q elements.
(2) ω(y) is a periodic orbit of order q.
(3) The sequence f qn(y) converges as n → +∞, and q is minimal for this

property.

Given p ≥ 2, the set ω(y, fp) is finite if and only if ω(y, f) is finite. ⊔⊓

If these equivalent conditions hold, we say that y is asymptotically periodic. In
particular, we have defined asymptotically periodic elements of F k (with respect
to α).

We say that α ∈ Aut (Fk) has asymptotically periodic dynamics (on F k) if
every X ∈ F k is asymptotically periodic. By assertion (1) of Theorem I, this is
equivalent to the existence of q ≥ 1 such that, for every X ∈ F k, the sequence
αqn(X) converges as n→ +∞.

1.c. Invariant trees.
As in [25], we will use as our basic tool an α-invariant R-tree T with trivial arc

stabilizers. We summarize its main properties.

Theorem 1.2 [15, 16]. Given α ∈ Aut (Fk), there exists an R-tree T such that:

(a) Fk acts on T isometrically, non-trivially, minimally, with trivial arc sta-
bilizers.

(b) There exist λ ≥ 1 and a homothety H: T → T with stretching factor λ
such that

α(g)H = Hg

for all g ∈ Fk (viewing elements of Fk as isometries of T ).
(c) If λ = 1, then T may (and always will) be assumed to be simplicial (whereas

all Fk-orbits are dense when λ > 1).
(d) Given Q ∈ T , its stabilizer StabQ has rank ≤ k − 1, and the action of

StabQ on π0(T \ {Q}) has at most 2k orbits. The number of Fk-orbits of
branch points of T is at most 2k − 2. ⊔⊓

A tree with these properties will simply be called an α-invariant R-tree (with
trivial arc stabilizers). Its length function is denoted by ℓ : Fk → [0,∞), it satisfies
ℓ ◦ α = λℓ. An element g ∈ Fk is elliptic if ℓ(g) = 0 (i.e. if g has a fixed point),
hyperbolic if ℓ(g) > 0.

If a point Q ∈ T with nontrivial stabilizer is fixed by H, the subgroup StabQ
is α-invariant. Since it has rank less that k, and ∂StabQ embeds into ∂Fk, this
will allow us to use induction on k.

A ray is (the image of) an isometric map ρ from [0,∞) or (0,∞) to T . It is an
eigenray of H if ρ(λt) = Hρ(t), a periodic ray if it is an eigenray of some power of
H. As usual, the boundary ∂T is the set of equivalence classes of rays. The action
of Fk, and the map H, extend to ∂T .

6



We also consider the action of Fk on the metric completion T of T (when λ = 1,
the tree T is simplicial, so T = T ). Note that points of T \T have trivial stabilizer.
Suppose λ > 1. The homothety H has a canonical extension to T , with a unique
fixed point Q ∈ T . All eigenrays have origin Q. If a component of T \ {Q} is fixed
by H (in particular if Q /∈ T ), that component contains a unique eigenray.

1.d. Bounded backtracking and Q(X).

Let T be an α-invariant R-tree with trivial arc stabilizers. Fix Q ∈ T . When
λ > 1, we always choose Q to be the fixed point of H.

Let Z be a geodesic metric space. We say that a map f : Z → T has bounded
backtracking if there exists C > 0 such that the image of any geodesic segment
[P, P ′] is contained in the C-neighborhood of the segment [f(P ), f(P ′)] ⊂ T . The
smallest such C is the BBT-constant of f , denoted BBT (f).

When Z is a simplicial tree, we only consider maps which are linear on each
edge. If Z is a simplicial tree with a minimal free action of Fk, every Fk-equivariant
f : Z → T has bounded backtracking (see [2], [12], [15]).

In particular, let ZA be the Cayley graph of Fk relative to a free basis A =
{a1, . . . , ak}. The map fA : ZA → T sending the vertex g to gQ has bounded

backtracking, with BBT (fA) ≤
∑k

i=1 d(Q, aiQ).

If w,w′ ∈ Fk and v is their longest common initial subword (in the basis A),
then vQ is BBT (fA)-close to the segment [wQ,w′Q] (property BBT2 of [15]).
This is often used as follows: if [Q,wQ] ∩ [Q,w′Q] is long, then vQ is far from Q
and therefore v is long.

Let ρ be a ray in T . By [15, Lemma 3.4], there is a unique X = j(ρ) ∈ ∂Fk with
the property that a sequence wn ∈ Fk converges to X if and only if the projection
of wnQ onto ρ goes off to infinity. The map j is an Fk-equivariant injection from
∂T to ∂Fk satisfying ∂α ◦ j = j ◦H. If ρ is an eigenray, then j(ρ) is a fixed point
of ∂α. When λ > 1, every fixed point of ∂α in j(∂T ) is the image of an eigenray
ρ.

The rest of this section will not be needed until §5.

We suppose λ > 1. Then orbits are dense in T (see [33, Proposition 3.10]),
and because d(Q,α−1(ai)Q) = λ−1d(Q, aiQ) there exist bases A with BBT (fA)
arbitrarily small (this is a special case of [26, Corollary 2.3]).

In [26], we have associated a point Q(X) ∈ T ∪ ∂T to every X ∈ ∂Fk. It may
be thought of as the limit of gpQ as gp → X . Here we shall mostly be concerned
with whether Q(X) equals the fixed point Q or not, and we will work with the
following alternative definition of Q(X).

Given X ∈ ∂Fk, consider the set BX consisting of points R ∈ T which belong
to the segment [Q,wQ] for all w ∈ Fk close enough to X (in other words, R ∈ BX

if and only if there exists a neighborhood V of X in F k such that R ∈ [Q,wQ]
for all w ∈ V ∩ Fk). It is a connected subtree containing no tripod, and there are
three possibilities.

If BX = {Q}, we define Q(X) = Q.

If BX is unbounded, it is an infinite ray ρ with origin Q and j(ρ) = X . We
7



define Q(X) as the point of ∂T represented by ρ.
The remaining possibility is that BX is a closed or half-closed segment with

origin Q. We then define Q(X) as the other endpoint of this segment in T (it may
happen that Q(X) /∈ BX).

It is easy to check that this definition of Q(X) coincides with that of [26]. This
implies that the assignment X 7→ Q(X) is Fk-equivariant. Note that in all cases
Q(∂α(X)) = H(Q(X)). In particular, if Q(X) = Q, then Q(∂αn(X)) = Q for
every n ∈ Z.

Lemma 1.3. Let T be an α-invariant R-tree as in Theorem 1.2, with λ > 1. Let
Q ∈ T be the fixed point of H. Let A be a basis of Fk, and let fA : ZA → T be as
above (sending g to gQ). Given X ∈ ∂Fk, let Xi be its initial segment of length i
in the basis A.

(1) d(XiQ,BX) ≤ BBT (fA) for all i.
(2) If Q(X) ∈ T , then d(XiQ,Q(X)) ≤ 2BBT (fA) for i large enough.
(3) If Q(X) ∈ ∂T , the projection of XiQ onto the ray BX goes to infinity as

i→ ∞.

Proof. Suppose d(XiQ,Q) > BBT (fA). The point located on the segment [Q,XiQ]
at distance BBT (fA) from XiQ belongs to [Q,wQ] provided w starts with Xi, so
is in BX .

Suppose Q(X) ∈ T . Fix ε > 0. For i large, the point Q(X) is ε-close to
[Q,XiQ], and therefore d(XiQ,Q(X)) ≤ d(XiQ,BX) + ε. Assertion (2) then
follows from (1). Assertion (3) is clear. ⊔⊓

2. A lemma on asymptotic periodicity

Given α ∈ Aut (Fk) and w ∈ Fk, we define wp = αp−1(w) . . . α(w)w for p ≥ 1
(with w1 = w). Note that wr = ws implies w|r−s| = 1, and that wp = 1 implies

αp(w) =
(
αp−1(w) . . . α(w)

)−1
= w.

Recall that Xn ∈ F k converges to X ∈ ∂Fk if and only if (Xn|X) → ∞.
The relation (Xn|Yn) → ∞, between sequences in F k, is transitive (and does not
depend on the basis A).

Lemma 2.1. Let α ∈ Aut (Fk) and w ∈ Fk. Assume that for every p ≥ 1 the
elements wp and w−1

p are nontrivial and asymptotically periodic. Then any x ∈ F k

such that
lim

n→+∞

(
αn(wx)|αn+1(x)

)
= +∞

is asymptotically periodic.

Proof. First suppose that w is not α-periodic. Then there exist q ≥ 1 and X, Y ∈
∂Fk such that αqn(w) → X and αqn(w−1) → Y as n → +∞. Write αqn(wx) =
αqn(w)αqn(x). Since w is not periodic, αqn(w) gets long as n→ ∞, and therefore
the maximum of

(
αqn(w)|αqn(wx)

)
and

(
αqn(w−1)|αqn(x)

)
goes to infinity with n.

This implies that the maximum of
(
X |αqn+1(x)

)
and

(
Y |αqn(x)

)
goes to infinity.
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It follows that the limit set of the sequence αqn(x) is contained in {∂α−1(X), Y }.
Thus x is asymptotically periodic.

Now suppose α(w) = w. Then
(
wαn(x)|αn+1(x)

)
goes to infinity with n. Fix

an integer N . An easy induction shows limn→+∞
(
wNαn(x)|αn+N (x)

)
= +∞. As

above, we deduce that for n large at least one of
(
wN |αn+N (x)

)
,
(
w−N |αn(x)

)
is

large. It follows that the limit set of αn(x) is contained in {w−∞, w∞}.
The last case is when w is α-periodic with period p ≥ 2. Then

(
wαpn(x)|αpn+1(x)

)

goes to infinity with n, and our definition ofwp guarantees
(
wpα

pn(x)|αp(n+1)(x)
)
→

∞. Since αp(wp) = wp, we reduce to the previous case (replacing α by αp). ⊔⊓
Remark 2.2. Suppose w belongs to a finitely generated α-invariant subgroup
J ⊂ Fk. If x is as in Lemma 2.1, we have ω(x) ⊂ ∂J (because all points X, Y, w±∞

used in the proof belong to ∂J).

3. Limit sets of interior points

We first show:

Theorem 3.1. Let α ∈ Aut (Fk). If g ∈ Fk is not α-periodic, the set of limit
points of the sequence αn(g) as n→ +∞ is a periodic orbit of ∂α.

Proof. We consider an α-invariant R-tree T as in Theorem 1.2. Because of Lemma
1.1, we are free to replace α by a positive power αr whenever convenient. This
has the effect of replacing H by Hr.

The proof is by induction on k. If g ∈ StabQ, with Q a fixed point of H, we
may use the induction hypothesis (recall that StabQ is α-invariant and has rank
< k).

We distinguish two cases.
• First suppose λ > 1. Let Q ∈ T be the fixed point of H. If gQ = Q, we use

induction on k. If gQ 6= Q, and the component C of T \{Q} containing gQ is fixed
by H (in particular if Q /∈ T ), that component contains an eigenray ρ (see § 1.c).
Writing αn(g)Q = αn(g)HnQ = HngQ, we see that αn(g) converges to j(ρ), a
fixed point of ∂α (see §1.d). Similarly, αn(g) accumulates onto a periodic orbit of
∂α if the component C is H-periodic.

Assume therefore that gQ 6= Q and C is not H-periodic. We will apply Lemma
2.1. Recall that the action of StabQ on π0(T \ {Q}) has finitely many orbits.
Replacing α by a power, we may assume that there exists w ∈ StabQ with wC =
HC. Define wp = αp−1(w) . . . α(w)w as in §2. The elements wp are all nontrivial,
because wp takes C onto HpC (as checked by induction on p, using the equation
α(w)H = Hw). Using induction on k, we may assume that w±1

p is asymptotically
periodic.

Now we argue as in [15, p. 439]. The segments [Q,wgQ] and [Q,HgQ] intersect
along a nondegenerate segment. Because λ > 1, the segments [HnQ,HnwgQ] =
[Q,αn(wg)Q] and [HnQ,Hn+1gQ] = [Q,αn+1(g)Q] intersect along a segment
whose length goes to infinity with n. By bounded backtracking (property BBT2
of [15], see §1.d), this implies that the scalar product

(
αn(wg)|αn+1(g)

)
goes to

9



infinity with n. Lemma 2.1 now concludes the proof (with ω(g) ⊂ ∂StabQ by
Remark 2.2).

• When λ = 1, we view g and H as isometries of the simplicial tree T . Note
that g has at most one fixed point (because arc stabilizers are trivial). If g is
hyperbolic (i.e. it has no fixed point), its translation axis has compact intersection
with the axis of H (if H is hyperbolic), or with the set of periodic points of H (if H
is elliptic). Otherwise g would commute with some power Hr on a nondegenerate
segment, implying αr(g) = g.

First suppose that H is hyperbolic, with axis A. Orient A by the action of
H, and consider its two ends A−, A+. Choose Q ∈ A. As n goes to infinity, the
projection of gH−nQ onto A remains far from A− (because g does not fix A−).
It follows that the projection of αn(g)Q = HngH−nQ onto A goes off to A+, and
αn(g) converges to the fixed point j(A+) of ∂α.

If H is elliptic, let P be the subtree consisting of all H-periodic points. There
exists a (unique) point Q of P such that [Q, gQ] ∩ P = {Q} (it is the point of P
closest to the fixed point of g if g is elliptic, to the positive end of the axis of g if
g is hyperbolic). Replacing α by a power, we may assume HQ = Q.

If gQ = Q, we use induction on k. If not, we let C be the component of T \ {Q}
containing gQ, and we find w ∈ StabQ with wC = HC, as in the proof when λ > 1.
The components Cn = HnC = wnC are all distinct, because Q was chosen so that
the germ of [Q, gQ] at Q is not H-periodic. Since both points αn(wg)Q = HnwgQ
and αn+1(g)Q = Hn+1gQ belong to Cn+1, the scalar product

(
αn(wg)|αn+1(g)

)

goes to infinity and Lemma 2.1 applies. ⊔⊓
The argument that concludes this proof will be used again. We may state it as

follows.

Lemma 3.2. Let T be a minimal simplicial Fk-tree with trivial edge stabilizers.
Given Q ∈ T and distinct components Cn of T \ {Q}, there exists a sequence of
numbers mn → ∞ such that, if an, bn are elements of Fk with anQ and bnQ both
belonging to Cn, then (an|bn) ≥ mn. ⊔⊓

From Theorem 3.1 we deduce:

Corollary 3.3. Let α ∈ Aut (Fk) and w ∈ Fk. If the sequence wn = αn−1(w) . . . α(w)w
is not periodic (in particular if w is not α-periodic), its limit set is a periodic orbit
of ∂α.

Proof. Extend α to β ∈ Aut (Fk ∗ Z) by sending a generator t of Z to wt. Then
βn(t) = wnt. The map n 7→ wn is injective, because otherwise wn would be
periodic. Thus the length of wn goes to infinity, implying that the sequences wn

and βn(t) have the same limit set in ∂(Fk ∗Z). That set is contained in ∂Fk, and
is a periodic orbit of ∂β by Theorem 3.1. It is therefore a periodic orbit of ∂α. ⊔⊓

The following observation will be useful in § 9.

Proposition 3.4. Let T be an α-invariant R-tree. Suppose that λ > 1 and the
fixed point Q ∈ T of H has trivial stabilizer. Then α has no nontrivial periodic
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element in Fk. There is a bijection τ from π0(T \ {Q}) to the set of attracting
periodic points of ∂α, with τ ◦H = ∂α ◦ τ .

Proof. If αq(g) = g, then HqgQ = αq(g)HqQ = gQ, so g ∈ StabQ = {1}. This
proves the first assertion. By [15], ∂α has finitely many periodic points, each of
them attracting or repelling.

Since StabQ is trivial, T \ {Q} has finitely many components, each of them
H-periodic. As seen in the proof of Theorem 3.1, the asymptotic behavior of a
sequence αn(g) depends only on the component C containing gQ. The attracting
periodic point of ∂α associated to C is τ(C) = j(ρ), where ρ is the H-periodic ray
contained in C. ⊔⊓

Remark 3.5. Suppose λ > 1, but don’t assume that StabQ is trivial. The proof
of Theorem 3.1 shows that either ω(g) ⊂ StabQ, or αn(g) accumulates onto a
periodic orbit of ∂α associated to H-periodic rays.

4. The simplicial case

This section is devoted to the proof of the following result.

Theorem 4.1. Assume that Theorem II is true for free groups of rank < k. Let
α ∈ Aut (Fk). If there exists a simplicial α-invariant tree T as in Theorem 1.2,
then every X ∈ ∂Fk is asymptotically periodic for α.

Corollary 4.2. Theorem II is true for polynomially growing automorphisms of
Fk.

Proof of Corollary 4.2. It is proved by induction on k. Given α ∈ Aut (Fk),
consider T as in Theorem 1.2, with length function ℓ. Choose w ∈ Fk with
ℓ(w) > 0. If α is polynomially growing, then ℓ(αn(w)) has subexponential growth
(as translation length is bounded from above by a constant times word length).
Since ℓ(αn(w)) = λnℓ(w), we have λ = 1 and Theorem 4.1 applies. ⊔⊓

To prove Theorem 4.1, we argue as in the proof of Theorem 3.1 when λ = 1
(keeping the same notations). If the isometry H is hyperbolic, then ∂αn(X)
converges to the fixed point j(A+) for every X 6= j(A−), so we assume that H is
elliptic.

First suppose that X belongs to ∂StabR for a (unique) point R ∈ T . Let Q be
the point of P closest to R. Replacing α by a power, we may assume HQ = Q.
If R = Q (i.e. if R is fixed by H), we use induction on k. If R 6= Q, we let C be
the component of T \ {Q} containing R and we choose w ∈ StabQ with wC = HC
(replacing α by a power if needed).

Let gp be a sequence in StabR converging to X . Since gpQ ∈ C, we can apply
Lemma 3.2 for each value of p, with Cn = HnC, an = αn(wgp), bn = αn+1(gp).
We find

(
αn(wgp)|αn+1(gp)

)
≥ mn, and therefore

(
∂αn(wX)|∂αn+1(X)

)
tends

to infinity as n → +∞. Lemma 2.1 concludes the proof, since w belongs to an
α-invariant subgroup of rank < k.
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If X does not belong to any ∂StabR, then, since T is simplicial and arc sta-
bilizers are trivial, X = j(e) for some end e of T . We may assume that e is not
H-periodic. We apply Lemmas 3.2 and 2.1 as above, using the point Q ∈ P closest
to e and the component C of T \ {Q} containing e. The existence of this point Q
is not obvious, however, because e could be a limit of periodic points of H whose
period tends to infinity. But this is ruled out by the following fact, and the proof
of Theorem 4.1 is complete.

Lemma 4.3. Let α, T,H be as in Theorem 1.2. Assume λ = 1. There exists M
(depending only on k) such that all periodic points of H have period less than M .

Proof. If the action of Fk on T is free, some fixed power of H is hyperbolic or
is the identity (because H lifts an automorphism of the finite graph T/Fk). We
assume from now on that the action is not free.

Suppose that a vertex Q, with StabQ nontrivial, is H-periodic with period q.
Since StabQ is invariant under αq, we know that ∂StabQ contains a periodic point
X of ∂αq. Viewed as a periodic point of ∂α, the point X has period divisible by q
(because stabilizers of distinct vertices HiQ, 1 ≤ i ≤ q, have disjoint boundaries),
and this forces q ≤Mk by [25] (see Theorem I in the introduction).

We have now obtained a bound for periods (under H) of vertices with nontrivial
stabilizer. Since the action of Fk on T is minimal and not free, any vertex Q with
trivial stabilizer belongs to a segment [Q1, Q2], with StabQ1 and StabQ2 nontriv-
ial but StabR trivial for every interior point R of [Q1, Q2]. If Q is H-periodic, so
are Q1 and Q2 because vertices with trivial stabilizer have finite valence in T . We
know how to bound the period of Q1 and Q2, and this leads to a bound for the
period of Q. ⊔⊓

5. A reduction

From now on we will consider an α-invariant R-tree T with λ > 1, as in Theorem
1.2. We always denote by Q the fixed point of H (in T ). We fix X ∈ ∂Fk, and we
study the sequence ∂αn(X).

For the reader’s convenience, we now give a quick overview of §§5-8.
In §3, we studied the sequence αn(g) by applying powers of H to the point gQ.

Instead of gQ, we now consider the point Q(X) introduced in [26] (see § 1.d). It
is either a point of the metric completion T , or an end of T . It may be thought of
as the limit of gpQ as gp → X .

When Q(X) 6= Q, a naive argument works: the behavior of ∂αn(X) is the same
as that of αn(g) for g ∈ Fk close to X . If X ∈ ∂StabQ, we use induction on
k. The hard case is when Q(X) = Q but X does not belong to ∂StabQ. This
happens when X is a repelling fixed point of ∂α, and the task here is indeed to
show that this is essentially the only possibility (Theorem 5.1).

The difficulty lies in the fact that cancellation within the infinite word X due
to the contracting nature of the combinatorics of a repelling X can be mixed
with cancellation in the initial subword of X coming from accumulations of finite
elements from StabQ.
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We consider an improved relative train track map f0 : G → G representing α
(in the sense of [3]), with an exponential top stratum. If there is an indivisible
Nielsen path η meeting the top stratum, then for each lift [a, b] of η in the universal

covering G̃ we create a new edge between a and b (this is similar to the addition

of Nielsen faces in [29]). The resulting space G̃ is a cocompact Fk-space, but we

also consider the non-proper space G̃PF obtained from G̃ by contracting all edges
not in the top stratum (it resembles the coned-off Cayley graph of [13]). We show
that, when Q(X) = Q, the point at infinity X behaves like a repelling point for

the train track map acting on G̃PF (Lemma 8.2).

We also consider a train track map f ′
0 : G′ → G′ representing α−1, which is

paired with f0 in the sense of [3, §3.2]. Because of the pairing, the spaces G̃PF

and G̃′
PF are quasi-isometric. It follows that X behaves like an attracting point in

G̃′
PF , and there is a legal ray going out towards X in G̃′ (Lemma 8.4). We then

conclude by applying these facts to all points ∂α−n(X).

We now proceed to reduce Theorem II to the following result, whose proof will
be completed in §8.

Theorem 5.1. Let α ∈ Aut (Fk). If there is no simplicial α-invariant tree (with
trivial arc stabilizers), there is an α-invariant R-tree T with λ > 1 such that, for
every X ∈ ∂Fk, at least one of the following holds:

(1) X ∈ ∂StabQ.
(2) Q(X) 6= Q.
(3) There exist q ≥ 1 and w ∈ StabQ such that X is a fixed point of w∂αq =

∂(iw ◦ αq).

See §1.d for the definition of Q(X) ∈ T ∪ ∂T , and recall that iw(g) = wgw−1.

Assuming this theorem, we prove Theorem II by induction on k. Consider
α ∈ Aut (Fk). If there is a simplicial α-invariant tree, we apply Theorem 4.1. If
not, we fix X ∈ ∂Fk and we consider the three possibilities of Theorem 5.1.

• If X ∈ ∂StabQ, we use the induction hypothesis (recall that StabQ is α-
invariant, with rank < k).

• If Q(X) 6= Q, let C be the component of T \{Q} containing BX \{Q}. Choose
a basis A of Fk with BBT (fA) small with respect to d(Q(X), Q). By Lemma 1.3,
we have XiQ ∈ C for i large. Replacing α by a power if necessary, we may assume
(as done in the previous sections) that there exists w ∈ StabQ such that HC = wC.
We argue as in the proof of Theorem 3.1, “uniformly”. There are two cases.

If w = 1, let ρ be the eigenray of H contained in C. The element j(ρ) ∈ ∂Fk is
a fixed point of ∂α, and we show limn→+∞ ∂αn(X) = j(ρ).

The distance from Q to the projection of XiQ onto ρ is greater than some ε > 0
for i large. It follows that the distance from Q to the projection of αn(Xi)Q =
Hn(XiQ) onto ρ is greater than λnε, independently of i. By bounded backtracking,
as in the proof of Lemma 3.4 in [15], we obtain that

(
j(ρ)|αn(Xi)

)
goes to infinity

as n→ +∞, uniformly in i. This shows limn→+∞ ∂αn(X) = j(ρ), as required.
13



If w 6= 1, we observe that the length of [Q,wXiQ]∩ [Q,HXiQ] is bounded away
from 0, so that limn→+∞

(
αn(wXi)|αn+1(Xi)

)
= +∞ uniformly in i. Therefore(

αn(wX)|αn+1(X)
)

goes to infinity and Lemma 2.1 applies.
• Replacing α by αq, we may assume that X is a fixed point of ∂β, with

β = iw◦α. Write ∂αn(X) = w−
nX with w−

n = αn−1(w−1) . . . α(w−1)w−1 ∈ StabQ.
If there exist r 6= s with w−

r = w−
s , then X is ∂α-periodic and we are done. We

therefore assume |w−
n | → ∞. We may also assume that the cancellation in the

product w−
nX is bounded, since otherwise X ∈ ∂StabQ. It follows that the

sequence ∂αn(X) has the same limit points as the sequence w−
n , and we conclude

by Corollary 3.3.

6. The train track and the tree

In this section we let the map f0 : G → G be an improved relative train track
representative for (a power of) α, in the sense of [3, 5.1.5]. Basic references are [6]
and §§ 2.5, 5.1 of [3].

We assume that the top stratum Gt is exponentially growing. Edges in Gt are
called top edges, edges in the other strata are called zero edges. An illegal turn in
G is a turn between two top edges where folding occurs when some power of f0 is
applied (see [6]).

There is at most one indivisible Nielsen path (INP) η in G meeting the top
stratum (see [3, 5.1.5 and 5.1.7] for its properties). It has precisely one illegal turn
(its tip), and f0(η) is homotopic to η relative to its endpoints (which are fixed by
f0). If η is a loop, there is no cancellation in η2 and the turn at the midpoint of
η2 is legal.

We start by changing G into a “train track with shortcut” G, by adding a new
zero edge if needed. This is a very special case of the “train tracks with Nielsen
faces” introduced in [29].

Creating a shortcut.
If there is no INP η as above, we let G = G. If there is one, we first subdivide G

(if needed) to ensure that the endpoints of η are vertices. Then we enlarge G into
G by adding a new zero edge e with the same endpoints as η (these endpoints are
equal if the stratum is geometric). The map f0, originally defined on G, extends
to G (it is defined as the identity on e).

We fix a retraction r0 : G → G mapping e onto η in a locally injective way.

It induces a homomorphism (r0)∗ : π1(G) → π1(G) ≃ Fk, and we let G̃ be the

corresponding Fk-covering (it consists of the universal covering G̃ of G, together

with lifts of e; if a 2-cell is attached to G along η∪e, then G̃ becomes the 1-skeleton
of the universal covering).

We define top and zero edges on G̃ as on G, we lift r0 to a retraction r, and

we define f to be the lift of f0 to G̃ that satisfies α(w)f = fw for every deck
transformation w ∈ Fk.

Legal paths.
14



We define an illegal turn in G as either an illegal turn in G, or a turn between
e and a top edge which becomes degenerate or illegal in G when e is replaced by
η (recall that η starts and ends with segments contained in the top stratum Gt; if
an endpoint x of η lies in the interior of a top edge of G, exactly one of the turns

at the corresponding end of e is illegal). A turn in G̃ is illegal if it projects onto
an illegal turn.

Paths will always be assumed to start and end at vertices. A legal path, in G
or in G̃, is a path with no illegal turn. Note that r0 maps a legal path locally
injectively, and the image has illegal turns only at the tip of η. Given vertices

x, y ∈ G̃, we let ILT (x, y) be the minimum number of illegal turns on paths from

x to y in G̃.

Now consider the action of f0 on a legal path γ ⊂ G. Write γ as a concatenation
of copies of e and legal paths in G. When f0 is applied, the paths in G remain
legal and nontrivial (after reduction), by property (RTT-ii) of [6], and the turns
at the endpoints of e remain legal. It follows that f0 and f map legal paths to
legal paths. In particular, we have ILT (f(x), f(y)) ≤ ILT (x, y).

Lemma 6.1 [3, 29]. Let x, y be vertices of G̃. For p large enough, there is a legal
path joining fp(x) to fp(y). More precisely, given δ > 0, there exists p such that

ILT (fp(x), fp(y)) ≤ δILT (x, y) for all vertices x, y ∈ G̃.

Proof. The first assertion is Lemma 3.2 of [29], or Lemma 4.2.6 of [3] (note that
the definition of a legal path used here is slightly stronger than the one used in
[29], but it is easy to make the path legal in the stronger sense).

By Remark 3.3 of [29], there exists p such that ILT (fp(x), fp(y)) = 0 if
ILT (x, y) = 1. This easily implies ILT (fp(x), fp(y)) ≤ 1

2 ILT (x, y) for all x, y.
The extension to an arbitrary δ is immediate. ⊔⊓

The PF-metric and the invariant tree.

Since the top stratum Gt is assumed to be exponentially growing, the transition
matrix associated to Gt has a Perron-Frobenius eigenvalue λ > 1. Using compo-
nents of an eigenvector, one assigns a PF-length |E|PF to each top edge E ⊂ G,
with the property that the total PF-length of f0(E) is λ|E|PF . More generally, f0
multiplies the PF-length of legal paths by λ.

On each of the spaces G̃ and G̃, we define a PF-pseudo-distance dPF by giving
top edges their PF-length and assigning length 0 to the zero edges (as usual, the
distance between two points is the length of the shortest path joining them). Note

that these two distances differ on G̃: the endpoints of a lift of η have PF-distance

0 in G̃ but not in G̃. The associated metric spaces G̃PF and G̃PF are geodesic
(because there is a positive lower bound for the PF-length of top edges), but in
general not proper.

We also define the simplicial distance d, for which top edges have their PF-

length and zero edges have length 1. This makes G̃ and G̃ into proper geodesic
spaces, with cocompact actions of Fk. Note that dPF ≤ d.
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Now recall the construction of an α-invariant R-tree T with trivial arc stabilizers
given in [15]. The pseudo-distance dPF on the tree G̃ satisfies dPF (f(x), f(y)) ≤
λdPF (x, y), with equality if x and y are joined by a legal path. We define

d∞(x, y) = lim
p→∞

λ−pdPF (fp(x), fp(y))

and we let T be the metric space associated to this pseudo-distance. We denote

by π the quotient map π : G̃ → T . The map f induces a homothety H : T → T ,
with π ◦ f = H ◦ π. It is proved in [15] that T and H satisfy the conditions of
Theorem 1.2.

Note that the endpoints of a given lift of η have the same image in T , since
their images by f also bound a lift of η. This implies that, if we apply the above

construction to dPF on G̃ rather than on G̃, we get the same space T , and the

quotient map i : G̃ → T extends π.

The maps i : G̃ → T and π : G̃→ T are Fk-equivariant, and 1-Lipschitz for the
respective dPF (hence also for the simplicial metrics). Also note that i and π ◦ r
are uniformly close.

The map π, defined on the tree G̃, sends legal paths PF-isometrically into T ,
and (see §1.d) it has bounded backtracking (the image of a geodesic segment [x, y]

is close to [π(x), π(y)]). We show that i : G̃PF → T has similar properties. This is

a quite different statement, because geodesics in G̃PF can be very different from
simplicial geodesics.

Lemma 6.2 [29, Lemma 3.9 and Proposition 4.2]. A legal path γ ⊂ G̃ is

PF-geodesic and maps to T PF-isometrically. The map i : G̃PF → T has bounded
backtracking.

Proof. Let x, y ∈ G̃ be the endpoints of γ. Let L be the PF-length of γ, and m the
number of lifts of e contained in γ. Then fp(γ) is a legal path with PF-length λpL,

containing only m lifts of e. Its image by r is embedded in G̃ and has PF-length
λpL + m|η|PF . Letting p → ∞ shows that i(x) and i(y) have distance L in T .
Since i is 1-Lipschitz for the PF-metric, we see that γ is PF-geodesic and i|γ is
isometric for the PF-metric.

To prove bounded backtracking, it suffices to consider a PF-geodesic γ = [x, y]

in G̃ with i(x) = i(y), and to bound the diameter of i(γ). We may assume x, y ∈
G̃. Let δ be the geodesic [x, y] in the tree G̃. We know that π has bounded
backtracking, so π(δ) is close to i(x). Consider z ∈ γ with i(z) far from i(x).

Since i and π ◦ r are close, we have r(z) /∈ δ. Because G̃ is a tree, z belongs to

a subarc [x′, y′] ⊂ γ with r(x′) = r(y′) ∈ δ. The points x′ and y′ are close in G̃
for the simplicial distance, hence also for the PF-distance. Since γ is PF-geodesic
(and i is 1-Lipschitz for the PF-metric), i(z) is close to i(x′), hence to π(r(x′)),
hence to i(x). ⊔⊓
Elliptic elements.

A loop in G represents a conjugacy class in π1(G) ≃ Fk. So does a loop in G,
through the homomorphism (r0)∗ : π1(G) → π1(G) ≃ Fk.

16



Lemma 6.3. Given a conjugacy class [u] in Fk, the following are equivalent:

(1) [u] may be represented by a loop in the zero part of G;
(2) [u] may be represented by a loop in the zero part of G, or [u] is α-invariant

(i.e. α(u) is conjugate to u);
(3) [u] is elliptic in T (i.e. u fixes a point in T ).

Proof. For p > 0, each of the three conditions holds for [u] if and only if it holds
for αp([u]) (for the first two conditions, use Scott’s lemma [3, 6.0.6] to argue that
[u] may be represented by a loop in the zero part if αp([u]) does). By Lemma 6.1
we may assume that [u] is represented by a legal loop γ in G. By Lemma 6.2, the
translation length ℓ(u) of [u] in T is then the PF-length of γ.

If this length is positive, then u is hyperbolic in T . It cannot be represented
by a loop in a zero part, or be α-invariant (since ℓ(α(u)) = λℓ(u)). If the length
is 0, then [u] is elliptic and γ is contained in the zero part of G. If [u] cannot be
represented by a loop in the zero part of G, then by [3, 6.0.2] u is (conjugate to)
a power of η (which is a loop). It follows that [u] is α-invariant. ⊔⊓

We may be more specific, working with elements of Fk rather than with con-
jugacy classes. Let Zi be the non-contractible components of the zero part of G.
Images of π1(Zi) in Fk are free factors. By [3, 5.1.5], these factors are α-invariant
(up to conjugacy). Not much changes when we pass from G to G. If Gt is not
geometric, zero components of G yield the same subgroups [3, 5.1.7]. In the geo-
metric case, there is one more component, whose image in Fk is the cyclic group
generated by the loop η (which runs once around the closed INP).

If Z is a non-contractible zero component of G, and Ẑ is a component of its

preimage in G̃, the image of Ẑ in T is a point i(Ẑ). By Lemma 6.3 the image of

π1(Z) in Fk is the full stabilizer of i(Ẑ), and every non-trivial stabilizer arises in
this way: non-trivial stabilizers of points of T are precisely conjugates of funda-
mental groups of non-contractible zero components of G.

7. Geometry on the train track

Spaces quasi-isometric to trees.
If c is a continuous map from [0, 1] to a tree, the image of c contains the geodesic

segment between c(0) and c(1). Spaces quasi-isometric to a tree have a similar
property.

Lemma 7.1. Let Y be a geodesic metric space quasi-isometric to a tree. There
exists C such that, if γ is a geodesic segment and γ′ is any path with the same
endpoints, then every P ∈ γ is C-close to some Q ∈ γ′.

Proof. Let f : Y → S be a quasi-isometry to a tree. Since f(γ) is a quasi-geodesic,
f(P ) is close to some R on the geodesic γ0 joining the f -images of the endpoints
of γ, and R is close to the image of some Q ∈ γ′. The distance from P to this
point Q is bounded. ⊔⊓

This basic fact may be extended in several ways.
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If the endpoints of γ′ are only C-close to those of γ, then every P ∈ γ at distance
at least 2C from the endpoints is C-close to γ′. If points P1, P2, . . . appear in this
order on γ, each at distance at least 2C from the previous one, we may assume that
the associated points Qi appear in the same order on γ′ (construct Qi inductively).

Lemma 7.1 also holds if γ, γ′ are (possibly infinite) quasi-geodesics with the
same endpoints, with C depending only on the quasi-geodesy constants of γ.

K-PF-geodesics.

Let G̃ be as above. It is equipped with the simplicial distance d, the PF-distance

dPF , and the distance d∞. Recall that d∞ ≤ dPF ≤ d. The space (G̃, d) is proper

and quasi-isometric to Fk, hence to a tree. We identify ∂G̃ with ∂Fk. We fix C as
in Lemma 7.1.

The words “geodesic” and “quasi-geodesic” will always refer to the simplicial
metric. We write K-quasi-geodesic instead of (K,K)-quasi-geodesic. A geodesic
relative to dPF will be called a PF-geodesic. If a PF-geodesic is also K-quasi-
geodesic (with respect to d), we call it a K-PF-geodesic. Recall that legal paths
are PF-geodesics.

Lemma 7.2. If K is large enough, the following properties hold:

(1) There exists a K-PF-geodesic between any two points of G̃ ∪ ∂G̃.

(2) If there exists a legal path between two points of G̃, there exists a legal
K-quasi-geodesic between them.

Proof. Given a geodesic segment γ, first choose a PF-geodesic γ′ with the same
endpoints. Place points Pi, Qi as above (after Lemma 7.1), with d(Pi, Pi+1) = 2C
(we assume that the points Qi are vertices). Replace the segment of γ′ between
Qi and Qi+1 by another PF-geodesic segment, with simplicial length as small as
possible. The resulting curve is a PF-geodesic, and it is uniformly quasi-geodesic

because the set of pairs (Qi, Qi+1) is finite up to deck transformations (G̃ is a
locally finite graph). If γ is infinite, we apply the usual diagonal argument.

If there is a legal γ′, we choose the replacement of [Qi, Qi+1] among legal paths
with the same initial and final edges (so that the turns at the Qi’s remain legal).

⊔⊓
Lemma 7.3. Let γ ⊂ G̃ be a quasi-geodesic ray, with point at infinity X. If
Q(X) ∈ T , then Q(X) belongs to the closure of i(γ). If Q(X) ∈ ∂T , then i(γ)
contains a ray going out to Q(X).

Proof. Fix ε > 0. Choose a basis A such that fA : ZA → T has backtracking less

than ε (see §1.d). As in [26, proof of 3.1], subdivide G̃ to get edges all of simplicial

length < ε and construct an equivariant map ζ : G̃ → ZA such that fA ◦ ζ is
2ε-close to i. As ZA is a tree, the image of γ in ZA contains a ray ρ going out to
X . If Q(X) ∈ T , it is 2ε-close to fA(ρ) by Lemma 1.3, hence 4ε-close to i(γ). If
Q(X) ∈ ∂T , then fA(ρ) contains a ray going out to Q(X) by Lemma 1.3. ⊔⊓

Let BBT (i) denote the backtracking constant of i : G̃PF → T (see Lemma 6.2).
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Corollary 7.4. If γ ⊂ G̃ is a K-PF-geodesic ray, with point at infinity X, and
i maps the origin of γ to Q(X) ∈ T , then i(γ) is contained in the BBT (i)-ball
centered at Q(X).

Proof. Suppose a point x ∈ γ is mapped by i at distance > BBT (i) from Q(X).
Since γ is PF-geodesic, the point at distance BBT (i) from i(x) on the segment
[Q(X), i(x)] separates Q(X) from i(y) for y ∈ γ closer to X than x. This contra-
dicts Lemma 7.3. ⊔⊓

An inequality.

Recall that ILT (x, y) is the minimum number of illegal turns in any path from

x to y in G̃.

Lemma 7.5. There exist constants C1, C2 such that

C1ILT (x, y) ≤ dPF (x, y) ≤ (ILT (x, y) + 1)(d∞(x, y) + C2)

for all vertices x, y ∈ G̃.

Proof. The first inequality is clear, since an illegal turn involves at least one top
edge. For the other, choose a path γ from x to y with minimal number of illegal
turns and divide it into legal subpaths γj. We define a subset J ⊂ γ in the following
way: the intersection of J with γj is the maximal subpath Jj ⊂ γj bounded by
points of the full preimage r−1([x, y]) (where [x, y] denotes the segment joining x

and y in the tree G̃). Note that γ \ J consists of at most ILT (x, y) intervals.

If u, v bound a component of γ \ J , they have the same image in G̃. Therefore
their simplicial distance (hence also their PF-distance) is bounded. We complete
the proof by showing that the PF-length of a Jj is bounded by the sum of d∞(x, y)
and a constant.

Recall that π : G̃ → T has backtracking bounded by some C′, and that i and
π ◦ r are C′′-close for some C′′. If u, v ∈ r−1([x, y]), then in T we have

dT (πr(u), πr(v)) ≤ dT (π(x), π(y)) + 2C′

and therefore

d∞(u, v) ≤ d∞(x, y) + 2C′ + 4C′′.

This bounds the PF-length of a Jj , because dPF (u, v) = d∞(u, v) if u, v are joined
by a legal path. ⊔⊓

8. Proof of Theorem 5.1

We fix α ∈ Aut (Fk), and we assume that there is no simplicial α-invariant tree
with trivial arc stabilizers.
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Paired train tracks.
We need to consider both a train track G for α and a train track G′ for α−1.

We want them to be “paired”, in particular we want the corresponding trees T
and T ′ to have the same elliptic elements.

Let G be given by [3, 5.1.5]. We may assume that the top stratum Gt is expo-
nentially growing, since otherwise there is a simplicial α-invariant tree (obtained

from G̃ by collapsing all zero edges).

Now apply [3, 5.1.5] to α−1 and the free factor system F = F(G \Gt) (consist-
ing of fundamental groups of noncontractible components of the zero part of G),
obtaining a train track G′ for α−1. We may assume that the top stratum of G′ is
also exponentially growing (otherwise there is a simplicial invariant tree). Since
the train track maps given by [3, 5.1.5] are reduced, the free factor systems F and
F ′ (associated to the zero parts of G and G′) are equal.

All the constructions of §6 may be applied to G′. We use ′ to denote the
corresponding objects. In particular, we have a graph G′ (obtained from G′ by

adding a shortcut if needed), a map f ′ : G̃′ → G̃′, a PF metric on G̃′, and an R-tree
T ′.

Since F = F ′, the set of conjugacy classes of Fk represented by loops in the
zero part is the same for G and G′. Furthermore, the fundamental groups of non-
contractible components of the zero parts of G and G′ map onto the same subgroups
in Fk (this follows from Lemma 6.3 and the remarks following it, noting that α
and α−1 have the same invariant conjugacy classes). This implies that T , T ′ have
the same elliptic elements, and also:

Lemma 8.1. The spaces G̃PF and G̃′
PF are Fk-equivariantly quasi-isometric.

Note that, of course, any equivariant map from G̃ to G̃′ is a quasi-isometry for
the simplicial metrics.

Proof. This is standard, and we only sketch an argument (compare Proposition 3.1

of [13]). Without changing the quasi-isometry type of G̃PF , or images of the zero
parts in Fk, we may contract to a point a zero edge of G with distinct endpoints,
or contract a top edge if its endpoints are distinct and at most one touches the
zero part.Using these operations and their inverses, we may assume that G has the
following standard form: it has one central vertex v, with top loops θi attached,
and top edges vvj with a zero component Zj attached at each vj .

The space G̃PF is then quasiisometric to the Cayley graph of Fk with respect to
the infinite generating system consisting of (the images in Fk of) the θi’s and the

whole fundamental groups π1(Zj, vj). The space G̃′
PF has a similar structure, and

the two Cayley graphs are quasi-isometric because one can express each element
of one generating system as a word of bounded length in the other system. ⊔⊓

Creating a fixed point.

We want f to have a fixed point R in G̃. To achieve this, we may have to add
an edge to G (compare [29, §6]).
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If the fixed point Q of H is in T \ T , there is an eigenray ρ (see §1). Choose

x ∈ G̃ with i(x) ∈ ρ. By Lemma 6.1, there is a legal path between fp(x) and
fp+1(x) for p large. Recall that legal paths map PF-isometrically into T . We may
assume that y = fp(x) and all its further images by f are interior points of top
edges (this rules out countably many choices for the image of x on ρ).

We now attach an extra edge [R, y] to G̃ (or rather an edge [wR,wy] for every
w ∈ Fk). We extend f by mapping [R, y] to the segment [R, f(y)] (which contains
y), keeping the relation α(w)f = fw satisfied. The new edge is a top edge, with
PF-length chosen so that dPF (R, f(y)) = λdPF (R, y). One of the new turns at y
is legal, the other is not.

Everything said above extends to this enlarged space, still denoted G̃. In par-
ticular, Lemmas 6.1 and 6.2 still hold. The associated R-tree (still denoted by T )
consists of the previous T together with the orbit of Q. The image of the new
edge [R, y] in the tree is the initial segment [Q, i(y)] of the eigenray.

If H has a fixed point in T , lift it to x ∈ G̃ and choose p so that there is a
legal path between y = fp(x) and f(y) = fp+1(x). Since legal paths map PF-
isometrically into T , and i ◦ f = H ◦ i, this path contains only zero edges. If
f(y) 6= y, we attach an edge [R, y] as above, but now the new edge is a zero edge.

The main argument.

We fix G̃ and G̃′, paired as above. Adding an edge if needed, we may assume

that there are points R,R′ in G̃, G̃′ fixed by f, f ′. They project to the fixed points

Q, Q′ of H and H ′. We denote by C, C′ the zero components of G̃, G̃′ containing

R,R′. Recall that ∂G̃ and ∂G̃′ are identified to ∂Fk.
The stabilizer of C in Fk is StabQ (see §6). It may be characterized as the only

stabilizer which is invariant under α as a subgroup (not just up to conjugacy). In
particular, StabQ = StabQ′.

We always assume that the numbers C,K,C1, C2 introduced in §7 work for both

G̃ and G̃′. Unless mentioned otherwise, distance refers to the simplicial metric.
We consider X ∈ ∂Fk with Q(X) = Q. The numbers p, µ, ν introduced in the

next lemmas will not depend on X . These lemmas apply to the whole ∂α-orbit of
X since Q(∂αn(X)) = Q for every n ∈ Z.

Lemma 8.2. Given ε > 0, and K sufficiently large, there exist p = p(ε) and
µ = µ(ε,K) such that

dPF (R, fp(P )) ≤ ε dPF (R,P ) + µ

for all points P on a K-quasi-geodesic ray γ = [R,X) ⊂ G̃ with Q(X) = Q.

Proof. Choose δ with δ(BBT (i) + C2) < C1ε, where C1, C2 come from Lemma
7.5. Fix p as in Lemma 6.1 (depending on δ).

Let γp be a K-PF-geodesic from R to ∂αp(X). We claim that fp(P ) is D-close
to some S ∈ γp, with D depending only on K and p (but not on P or X). This
is because fp is a quasi-isometry, so fp(γ) is a quasi-geodesic from R to ∂αp(X)
with quasi-geodesy constants depending only on K and p.
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We may assume that D also bounds ILT (fp(P ), S) and dPF (fp(P ), S). Then

ILT (R, S)−D ≤ ILT (R, fp(P )) ≤ δILT (R,P ) ≤ δ/C1 dPF (R,P )

by 6.1 and 7.5, and

dPF (R, fp(P )) ≤ dPF (R, S) +D ≤ (ILT (R, S) + 1)(d∞(R, S) + C2) +D

by 7.5.

Note that d∞(R, S) is the distance between Q = i(R) and i(S) in T . Since
γp is a K-PF-geodesic with origin R, and its point at infinity ∂αp(X) satisfies
Q(∂αp(X)) = Q, Corollary 7.4 yields d∞(R, S) ≤ BBT (i). We obtain an up-
per bound for dPF (R, fp(P )), which is a linear function of dPF (R,P ) with slope
(δ/C1)(BBT (i) + C2). The lemma follows. ⊔⊓

Lemma 8.1 yields an Fk-equivariant map ϕ : G̃ → G̃′ which is a quasi-isometry
for the PF-metrics. It is also a quasi-isometry for the simplicial metrics. Similarly,

choose ψ : G̃′ → G̃. Let L be an upper bound for all quasi-isometry constants. Fix
ε with 2L2ε < 1 and choose p as in Lemma 8.2.

Lemma 8.3. Given K ′ ≥ 0, there exists ν ≥ 0 such that

dPF (R′, f ′p(P ′)) ≥ 2dPF (R′, P ′) − ν

for all points P ′ on a K’-quasi-geodesic ray γ′ = [R′, X) ⊂ G̃′ with Q(X) = Q ∈ T .

Note that the equality Q(X) = Q does take place in T (not in T ′).

Proof. Like ν, the numbers D1, D2, D3 introduced later in this proof will depend on
the choices made above, and on K ′, but not on P ′ or X . There exists D1 such that
ψ(P ′) belongs to a D1-quasi-geodesic θ from R to X . Choose a K-quasi-geodesic γ
from R to α−p(X). Since θ and fp(γ) are quasi-geodesics with the same endpoints,
ψ(P ′) is D2-close to a point of the form fp(P1), with P1 ∈ γ. Finally, we observe
that ϕ(P1) is D3-close to f ′p(P ′), because f ′p ◦ ϕ ◦ fp is Fk-equivariant, hence at
a bounded distance from ϕ.

Now we consider PF-distance. Working modulo additive constants, we have

dPF (R′, P ′) ≤ LdPF (R, fp(P1)) ≤ LεdPF (R,P1) ≤ L2εdPF (R′, f ′p(P ′))

(the second inequality comes from Lemma 8.2, the other two from the quasi-
isometry properties of ϕ and ψ). Lemma 8.3 follows since we have chosen L2ε < 1

2 .
⊔⊓

Fix K ′ so that Lemma 7.2 applies in G̃′.
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Lemma 8.4. If Q(X) = Q, there exists a legal K’-quasi-geodesic between R′ and

X in G̃′.

Proof. Let γ′ be a K’-PF-geodesic ray between R′ and X . Fix P ∈ γ′. By 7.1 (and
its extension to quasi-geodesic rays), it is C-close to all quasi-geodesics between
R′ and X . We apply this to f ′np(γ′n), where n is a large integer and γ′n is a K’-
PF-geodesic between R′ and ∂αnp(X). We see that P is C-close to f ′np(Pn) for
some Pn ∈ γ′n.

By 8.3 applied to γ′n we have

dPF (R′, f ′np(Pn)) − ν ≥ 2n(dPF (R′, Pn) − ν),

so dPF (R′, Pn) ≤ ν + 1 for n large since the left hand side is bounded. This gives
a uniform bound for ILT (R′, Pn), and by 6.1 we deduce ILT (R′, f ′np(Pn)) = 0
for n large.

By 7.2, there exists a legal K’-quasi-geodesic between R′ and f ′np(Pn). Since
f ′np(Pn) is C-close to P , we conclude by a diagonal argument, letting P go to
infinity on γ′. ⊔⊓

Since Q(∂αn(X)) = Q, we get:

Corollary 8.5. If Q(X) = Q, then for every n ∈ Z there exists a legal K’-quasi-

geodesic between R′ and ∂αn(X) in G̃′. ⊔⊓

For notational simplicity we state the next results in G̃, even though we will

apply them in G̃′.

Remark 8.6. If ρ is an eigenray of H (so that X = j(ρ) is a fixed point of ∂α),

there exists a legal quasi-geodesic γ between R and X in G̃ (take x ∈ G̃ mapping

into ρ; then fn(x) → X ∈ ∂G̃, and for n large there is a legal K-quasi-geodesic
between R and fn(x) by 6.1 and 7.2; in fact, γ consists of an initial segment

contained in the zero part, followed by a legal ray in G̃). More generally, there is
a legal quasi-geodesic between R and wX for w ∈ StabQ.

The following lemma is a converse to this remark.

Lemma 8.7. Let X ∈ ∂Fk. Suppose that for every n ∈ N there exists a legal

quasi-geodesic ray between R and ∂α−n(X) in G̃. If X /∈ ∂StabQ, there exist
q ≥ 1 and w ∈ StabQ such that X is a fixed point of ∂(iw ◦ αq).

Proof. Let E,E′ be oriented top edges with origin in C, the zero component of G̃
containing R. Their images in T are non-degenerate arcs with origin Q. In the
special situation that E,E′ are in the same Fk-orbit, but distinct, i(E) and i(E′)
don’t overlap (because arc stabilizers of T are trivial). When E,E′ are arbitrary
(but distinct), we get a positive lower bound for possible overlaps between i(E)
and i(E′), hence also for possible overlaps of images of legal quasi-geodesics with
origin in C.
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Let γ be a legal quasi-geodesic from R to X . If it contains only zero edges,
then X ∈ ∂StabQ. From now on we assume that γ has positive PF-length. Its
image in T is a non-degenerate (possibly open) segment s(X) with origin Q, which
depends only on X (Lemma 7.3 implies that s(X) is the set BX defined in §1,
possibly with Q(X) added or removed). Note that s(∂α(X)) = H(s(X)).

We claim that there exist q ≥ 1 and w ∈ StabQ such that s(X) and s(w∂αq(X))
have nontrivial overlap.

There is an action of f0 on the (finite) set of oriented top edges of G (associate
to each top edge the first top edge of the image edge path), so there exists r
such that f r

0 of every element is periodic. Considering the image by f r of a legal

quasi-geodesic from R to ∂α−r(X) in G̃, we see that there exists a legal quasi-
geodesic γ from R to X such that the initial top edges of γ and some f q(γ) are in
the same Fk-orbit (hence in the same StabQ-orbit since StabQ is the set of deck
transformations mapping C to itself). This proves the claim.

Let β = iw ◦ αq , so w∂αq(X) = ∂β(X). Since ∂β−n(X) is in the same StabQ-
orbit as ∂α−nq(X), there is a legal quasi-geodesic γ−n from R to ∂β−n(X). If the
overlap between s(X) and s(∂β(X)) is finite, then the overlap between i(γ−(n+1))

and i(γ−n) is finite and proportional to λ−nq. This is a contradiction since we
have seen that it cannot be arbitrarily small.

It follows that s(X) equals s(∂β(X)) and has infinite length, so that it is an
eigenray of the homothety wHq associated to β. We conclude that X = j(s(X))
is a fixed point of ∂β. ⊔⊓

We can now conclude.

Proof of Theorem 5.1. Recall that StabQ = StabQ′. If Q(X) = Q, we may apply

8.7 in G̃′ (thanks to 8.5). If X /∈ ∂StabQ, we obtain that X is a fixed point of
∂(iw ◦ α−q) (the exponent is negative because G′ is a train track for α−1). Of
course this implies that X is a fixed point of ∂(iα(w−q) ◦ αq), as required. ⊔⊓

9. More on the dynamics

Products of trees.
The techniques used in the previous sections also give:

Theorem 9.1. Given α ∈ Aut (Fk), there exist an α-invariant R-tree T and an
α−1-invariant R-tree T ′, as in Theorem 1.2, and there exists ε > 0, such that for
every g ∈ Fk one of the following holds:

(1) g is elliptic in T and T ′;
(2) g is hyperbolic in T and T ′, and has translation length > ε in T or in T ′

(or in both).

This theorem was proved in [2] and [28] for α irreducible with irreducible powers
(no proper free factor of Fk is α-periodic, up to conjugacy). It means that the
diagonal action of Fk on T × T ′ is discrete. See [18] for further results about such
actions.
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Proof. The result is clear if there exists a simplicial α-invariant tree T , with T ′ =
T . If not, we let T , T ′ be as in §8. We use the same notations.

We already know that T and T ′ have the same elliptic elements. We assume
that there is a sequence gn with ℓ(gn) and ℓ′(gn) positive and going to 0, and we
argue towards a contradiction.

If x, y ∈ G̃ satisfy d∞(x, y) ≤ 1 and ILT (x, y) ≥ 1, then by 7.5 the ratio
between dPF (x, y) and ILT (x, y) lies between C−1 and C for some C > 1. Similar
considerations apply to G′, we fix C working for both G and G′.

Represent (the conjugacy class of) gn by a PF-geodesic loop γn ⊂ G. We write
ILT (γn) for the number of illegal turns of γn. If ILT (γn) remains bounded, then
by 6.1 there exists r such that αr(gn) is represented by a legal loop. The PF-
length of that loop is bounded away from 0, and so is ℓ(gn) = λ−rℓ(αr(gn)) by
6.2. Assume therefore that ILT (γn) goes to infinity.

Let L be as above (quasi-isometry constant). Fix δ > 0 with LC2δ < 1. Let p

be given by 6.1 (applied to δ in both G̃ and G̃′). Choose x ∈ G̃ projecting into γn

in G and into the axis of gn in T , and let y = gnx. Note that d∞(x, y) = ℓ(gn)
and d∞(fp(x), fp(y)) = λpd∞(x, y) go to 0 as n→ ∞.

For n large we have

dPF (fp(x), fp(y)) ≤ C · ILT (fp(x), fp(y)) ≤ Cδ · ILT (x, y) ≤ C2δdPF (x, y),

showing that hn = αp(gn) may be represented in G by a loop of PF-length less
than C2δ|γn|PF , hence in G′ by a loop of PF-length less than LC2δ|γn|PF + L.

Since ℓ′(hn) goes to 0, we may apply the same argument to hn in G̃′, and we
get |γn|PF ≤ (LC2δ)2|γn|PF +D for some constant D = D(L,C, δ). This shows
that |γn|PF , hence ILT (γn), is bounded, a contradiction. ⊔⊓

Dynamics of irreducible automorphisms.
Consider α ∈ Aut (Fk). For simplicity assume that all periodic points of α are

fixed points (this may be achieved by raising α to some power). Recall [15] that
fixed points of ∂α not in ∂Fixα are either attracting or repelling, and the action
of Fixα on Fix ∂α \ ∂Fixα has finitely many orbits.

When Fixα is trivial, Fix ∂α is the vertex set of a finite bipartite graph Γ, with
an edge from a repelling point X1 to an attracting point X2 if and only if there
exists X ∈ ∂Fk with limn→+∞ ∂α−n(X) = X1 and limn→+∞ ∂αn(X) = X2. Note
that every component of Γ contains at least two vertices.

Recall that an automorphism α is irreducible with irreducible powers (iwip) if
no proper free factor of Fk is α-periodic (up to conjugacy).

Dynamics of geometric iwip automorphisms (induced by a pseudo-Anosov home-
omorphism of a compact surface with one boundary component) is well-understood.
Because there is an invariant cyclic ordering on ∂Fk, the graph Γ (defined when
Fixα is trivial) is either a single edge or it is homeomorphic to a circle (the second
author has conjectured that this property leads to a characterization of geometric
automorphisms).
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We focus on non-geometric iwip automorphisms (in this case, Fixα is always
trivial [6]). We do not know which graphs Γ may appear in this context. We only
prove:

Theorem 9.2. Let α ∈ Aut (Fk) be irreducible with irreducible powers, not geo-
metric. Assume that all periodic points of ∂α are fixed points. Then either the
graph Γ has exactly two vertices, or every component of Γ contains strictly more
than two vertices.

Proof. Let T be an invariant R-tree as in Theorem 1.2 (it is unique up to rescaling
in this case, see [26]). It is well-known that Fixα is trivial, and the action of Fk

on T is free (this may be deduced from [6] and Lemma 6.3). We have λ > 1, and
we let Q be the fixed point of H (in T ).

By Proposition 3.4, all components of T \ {Q} are fixed by H. If g ∈ Fk is
nontrivial, then αn(g) converges to the attracting fixed point j(ρ), where ρ is the
eigenray ofH contained in the component containing gQ (see the proof of Theorem
3.1). There is a similar relation between the α−1-invariant tree T ′ and repelling
fixed points of ∂α.

We may assume that ∂α has at least two attracting fixed points, and two
repelling ones (otherwise, the result is trivial). By 3.4 this implies that T \ {Q}
has at least two components, so Q belongs to T (not just to T ). Similarly Q′ ∈ T ′.
We now argue by way of contradiction, assuming that some component of Γ has
only two vertices, an attracting fixed point X and a repelling point X ′. Let C, C′

be the corresponding components of T \ {Q}, T ′ \ {Q′} respectively, and ρ the
eigenray of H contained in C.

Viewing nontrivial elements of Fk as hyperbolic isometries of T , we claim that
there exists g ∈ Fk whose translation axis Ag passes through Q and intersects ρ
in a segment strictly longer than the translation length ℓ(g) (i.e. gQ is an interior
point of Ag ∩ ρ).

Assuming this claim temporarily, we complete the proof as follows. The point
g−1Q belongs to a component C1 of T \ {Q} distinct from C. Since the edge
X ′X of Γ is isolated, the point g−1Q′ ∈ T ′ belongs to a component C′

1 of T ′ \{Q′}
distinct from C′ (otherwise Γ would contain an edge between X ′ and the attracting
fixed point corresponding to C1). Now consider g−1αp(g), for p large. The point
g−1αp(g)Q = g−1Hp(gQ) ∈ T belongs to C because of our choice of g. In T ′, on
the other hand, the point g−1αp(g)Q′ = g−1(H ′)−p(gQ′) is close to g−1Q′ and
therefore belongs to C′

1. It follows that X is joined to two distinct vertices of Γ, a
contradiction.

There remains to prove the claim. We use the terminology of §6. Since ∂α
has at least two attracting fixed points, it follows from [15, p. 431] that f has a

fixed point R ∈ G̃. By Remark 8.6, there exists a legal quasi-geodesic γ between
R and X = j(ρ). By irreducibility of α, the projection of γ onto G passes again
over its initial top edge (with the same orientation). This defines a loop in G,
and a nontrivial g ∈ Fk mapping an initial segment of γ into γ (in an orientation-
preserving way). This is the required g. ⊔⊓

26



The number of periods.
Given α ∈ Aut (Fk), recall [25] that periods of elements of Fk for α are bounded

by Ak, the maximum order of torsion elements in Aut (Fk), and periods of elements
of ∂Fk are bounded by Mk = 2kAk. For k large, one has logAk ∼ logMk ∼√
k log k.
Examples of automorphisms with many periods may be constructed as follows.

Let p be a prime number. Let σ be a permutation consisting of one cycle of order
p′ for each prime number p′ ≤ p. It defines a periodic automorphism α of Fk, with
k = 2+3+ · · ·+p. The periods of α are exactly the divisors of 2 · 3 · · ·p. A simple
computation (based on the prime number theorem) shows that, for p large, the

logarithm of the number of periods of α is asymptotic to 2 log 2 ·
√

k
log k .

Theorem 9.3. Given α ∈ Aut (Fk), the number of periods of periodic points of

α is bounded by Nk, with logNk ∼ 2 log 2 ·
√

k
log k

.

Proof. First consider periods of elements of Fk. Let P (α) be the periodic sub-
group (consisting of all α-periodic g ∈ Fk). Since P (α) is the fixed subgroup
of some power of α, it has rank at most k by [6]. The number of periods of
α is bounded by the number of divisors of o(α), where o(α) is the order of α
in Aut (P (α)). Now o(α) ≤ Ak, and the number d(n) of divisors of n satisfies

lim sup
n→+∞

log d(n) log log n

logn
= log 2 (see [19, Theorem 317]). Replacing n by Ak with

logAk ∼
√
k log k gives Nk as in the theorem.

IfX ∈ ∂Fk is periodic, and no g ∈ Fk has the same period, the proof of Theorem
2.1 of [25] shows that the period of X divides rs, where r ≤ 2k and s is the period
of some g ∈ Fk. The estimate therefore also holds for the periods of ∂α since
log 2kNk ∼ logNk. ⊔⊓
Automorphisms with many fixed points.

We give a short proof of a result due to Bestvina, Feighn, Handel [5], improving
their lower bound from 3 to 4.

Proposition 9.4. For any outer automorphism Φ of Fk, k ≥ 2, there exist q ≥ 1
and β ∈ Aut (Fk) representing Φq such that ∂β has at least four fixed points. If
u ∈ Fk is fixed by some α ∈ Aut (Fk) representing Φ, we may require β(u) = u.

Remark. With the terminology of [15, §6], we shall prove that any Φ ∈ OutFk

has a power with positive index. It is not always possible to take q = 1: if α ∈ Φ
cyclically permutes the elements of a free basis of Fk, it follows from [8] that q has
to be divisible by k.

Proof. Starting with α ∈ Φ, we will keep replacing it by a power αs, or by iw ◦ α,
so as to finally obtain an automorphism (still denoted by α) with at least four
fixed points on ∂Fk.

Let T be an α-invariant R-tree as in Theorem 1.2. Replacing α by αs or by
iw ◦ α amounts to replacing H by Hs or wH.
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By assertion (d) of Theorem 1.2, we may assume that H fixes a branch point
Q ∈ T and acts trivially on the set of StabQ-orbits in π0(T \{Q}). We distinguish
several cases.

If λ > 1 and StabQ is trivial, then ∂α has at least three attracting fixed points
(see Proposition 3.4). There is a fourth, repelling, point. If λ > 1 and StabQ = Z,
some wH with w ∈ StabQ has an eigenray and there are infinitely many attracting
periodic points (because Fix ∂α2 is invariant under the action of StabQ). If λ > 1
and StabQ has rank ≥ 2, we use induction on k.

If λ = 1, we may assume that H fixes an edge e = [Q,R], and we collapse every
edge not in the orbit of e. In the new tree, StabQ and StabR are non-trivial and
α-invariant. This proves the first part of the proposition.

Now assume α fixes some nontrivial u ∈ Fk (and therefore ∂α has two fixed
points u±∞). Note that H commutes with u. If u fixes a (unique) point Q ∈ T (in
particular if λ > 1), this point is also fixed by H and we argue as before. Finally,
suppose λ = 1 and u is hyperbolic. In this case we may assume that H equals the
identity on the axis A of u (replace H by some urHs). After possibly collapsing
we get Q ∈ A with nontrivial stabilizer and we consider α|Stab Q. ⊔⊓

10. Hyperbolic groups

Bounding periods.
Let Γ be a torsion-free hyperbolic group. Given α ∈ Aut (Γ), let Fixα be its

fixed subgroup, and P (α) = ∪nFixαn be its periodic subgroup. A subgroup of Γ
is a fixed subgroup (resp. a periodic subgroup) if it equals Fixα (resp. P (α)) for
some α ∈ Aut (Γ).

Proposition 10.1. Every periodic subgroup is hyperbolic. Up to isomorphism,
there are only finitely many periodic subgroups in a given Γ.

Proof. Most arguments come from [35]. There are two cases.
• Suppose Γ is one-ended (= freely indecomposable). By [34, Theorems 3.2 and

4.1], the group P (α), if not trivial or cyclic, is a vertex group in some splitting of Γ
with cyclic edge groups. By [17], such a splitting is obtained from the JSJ splitting
constructed in [7] by blowing up vertices with group equal to Z, blowing up surface
vertices along disjoint simple closed curves, and then collapsing edges. Finiteness
of the set of curves on a compact surface (up to homeomorphism) implies that
there are only finitely many possibilities for P (α) (up to an automorphism of Γ).
Furthermore, P (α) is hyperbolic because it is a vertex group in a splitting with
quasiconvex edge groups [7].

• Now suppose that Γ is the free product of cyclic groups and one-ended groups
Γi. By the Kurosh subgroup theorem, P (α) is the free product of cyclic groups and
subgroups Hj of conjugates Kj of the Γi’s. The number of factors is the Kurosh
rank of P (α). It is finite because P (α) is the increasing uni on of the Fix (αn!),
whose Kurosh rank is uniformly bounded [10].

If αp(Γi) meets Γi non-trivially, then αp(Γi) = Γi. It follows that each Kj

is α-periodic, and therefore Hj = P (α) ∩ Kj is the periodic subgroup of some
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automorphism of Kj. By the first case, Hj is hyperbolic and has only finitely
many possibilities (up to isomorphism). The same is therefore true of P (α). ⊔⊓

Since P (α) is finitely generated, the restriction of α to P (α) has finite order.
In particular, every periodic subgroup is a fixed subgroup and is quasiconvex [31].

Recall [23] that for P torsion-free hyperbolic there are only finitely many con-
jugacy classes of torsion elements in Aut (P ). Conjugate automorphisms having
isomorphic fixed subgroups, we deduce:

Corollary 10.2 (Shor [35]). Up to isomorphism, there are only finitely many
fixed subgroups in a given torsion-free hyperbolic group Γ. ⊔⊓

We have also proved part of assertion (1) of Theorem III:

Corollary 10.3. Given a torsion-free hyperbolic group Γ, there exists M such
that, if g ∈ Γ is periodic under α ∈ Aut (Γ), then the period of g is at most M .

Proof. The period of g divides the order of α in Aut (P (α)). ⊔⊓
One-ended groups.

Theorem III will first be proved for torsion-free groups, in this subsection (one-
ended groups) and in the next (groups with infinitely many ends). Groups with
torsion will then be considered.

Let Γ be a torsion-free one-ended hyperbolic group, and α ∈ Aut (Γ). Using
Corollary 10.3, we shall prove that every X ∈ ∂Γ is asymptotically periodic, with
a uniform bound (depending only on Γ) for the period of the limiting orbit. This
will prove assertions (1) and (3) of Theorem III for Γ. Assertion (2) is proved by
similar arguments, or deduced from (3) since the sequences αn(g) and ∂αn(g∞)
have the same limit points when g is not α-periodic (see [24, proof of 2.3]).

We use the JSJ-splitting of Γ, first introduced by Sela. We prefer to follow
Bowditch’s approach [7] because of its strong uniqueness properties. The JSJ-
splitting decomposes Γ as the fundamental group of a finite graph of groups, with
associated Bass-Serre tree T . Since T is constructed purely from the topology of
∂Γ, the group Aut (Γ) acts on T in the same way as on ∂Γ. In particular, there is
an isometry H : T → T as in Theorem 1.2.

Edge stabilizers are cyclic. Vertex stabilizers StabQ are quasiconvex [7], hence
hyperbolic. Furthermore the boundary of Γ is the disjoint union of the set of ends
of T (embedded into ∂Γ by a map j as in §1.d) and the (non-disjoint) union of
the boundaries ∂StabQ of the vertex stabilizers (see [7]).

A vertex stabilizer StabQ is cyclic, or free (“hanging fuchsian”), or “relatively
rigid” (the subgroup of Out (StabQ) consisting of outer automorphisms fixing
stabilizers of edges incident to Q (up to conjugacy) is finite; as explained in [23],
this follows from [1] and [32]).

If an edge e of T is fixed by H, its stabilizer is an α-invariant cyclic subgroup
of Γ. By Corollary 10.3, we may raise α to a fixed power (depending only on Γ)
to ensure that any H-periodic edge is in fact fixed.

Suppose that a vertex Q ∈ T is fixed by H. Then StabQ is α-invariant, and
the induced automorphism has finite order in Out (StabQ) (if StabQ is cyclic
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or relatively rigid) or is a geometric automorphism of a free group (if StabQ is
hanging fuchsian). It follows that any X ∈ ∂(StabQ) is asymptotically periodic,
with a uniform bound on the period.

The proof for arbitrary X now is fairly similar to the proof of Theorem 4.1.
Lemma 3.2 extends to actions of torsion-free hyperbolic groups with trivial or
cyclic edge stabilizers (compare [11, 21]). Lemma 2.1 also extends to torsion-free
hyperbolic groups.

Let X ∈ ∂Γ. If the isometry H : T → T is hyperbolic, with axis A, then either
X = j(A−) is fixed by ∂α, or ∂αn(X) converges to j(A+) as n → +∞. If H is
elliptic, let P be its fixed subtree (equal to the set of periodic points).

First suppose X ∈ ∂StabR for some vertex R. Using remarks made above, we
may assume that R cannot be chosen in P. Let Q be the point of P closest to R.
Let C be the component of T \ {Q} containing R. If gp ∈ StabR converges to X ,
we have gpQ ∈ C for p large, because otherwise gp ∈ StabQ and we could have
chosen R in P. Now apply Lemmas 3.2 and 2.1 as in the proof of Theorem 4.1.
Note that Remark 2.2 provides a uniform bound for the cardinality of ω(X).

If X = j(ρ) for some end ρ of T , then either ρ is an end of P (and X is fixed
by ∂α), or we apply Lemmas 3.2 and 2.1 using the point Q ∈ P closest to ρ and
the component C of T \ {Q} containing ρ.

Free products.
Let Γ be torsion-free, with infinitely many ends. We write Γ = Fk ∗Γ1 ∗· · ·∗Γm,

with each Γi one-ended. We will use the invariant R-tree given by the following
result.

Theorem 10.4. Given α ∈ Aut (Γ), there exist an R-tree T and a homothety
H satisfying conditions (a), (b), (c) of Theorem 1.2. Furthermore each Γi (1 ≤
i ≤ m) fixes a point of T , and there exists a Γ-equivariant injection j : ∂T → ∂Γ
satisfying ∂α ◦ j = j ◦H.

Proof. The construction of T in the case of Fk has been sketched in §6 (see [15] for

details): equip G̃ with the PF-metric dPF , and consider the metric space associated

to d∞ (when λ = 1, simply collapse components of the zero set of G̃ to points). The
proof in the general case is similar, using the “efficient representatives” constructed
by Collins-Turner in [10]. The only difference is that the zero set is a 2-complex
(not necessarily a graph), but this difference is irrelevant as each component gets
collapsed to a point.

Conditions (a) and (b) of Theorem 1.2 are proved as in [15] (Lemmas 2.7 and

2.8), and Γi fixes a point in T because it fixes a component of the zero set in G̃.
The map j is constructed as in [15, Lemmas 3.4 and 3.5], but we need to show
that equivariant maps from Cayley graphs of Γ to T have bounded backtracking
(in the sense of §1.d).

This is true for maps to G̃ (equipped with a simplicial metric), because G̃ is
quasi-isometric to Γ. Therefore it is also true for maps to the tree T0 obtained from

(G̃, dPF ) by collapsing the zero set. When λ > 1, we further observe that the map
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f : T0 → T0 induced by f is λ-Lipschitz for the PF-metric, and has backtracking
bounded by some constantK. Letting dp(x, y) = λ−pdPF (f

p
(x), f

p
(y)), we deduce

that the identity map from (T0, dPF ) to (T0, dp) has backtracking bounded by
K(λ−1 + · · · + λ−p). The canonical map from (T0, dPF ) to T = (T0, d∞) is 1-
Lipschitz, and has bounded backtracking because the series λ−1 + · · ·+ λ−p + . . .
converges. It follows that equivariant maps from Cayley graphs of Γ to T have
bounded backtracking. ⊔⊓

Recall that the rank rk (J) of a group J is the minimum cardinality of a gener-
ating set (not to be confused with the Kurosh rank used in [10]).

Theorem 10.5 (Gaboriau [14]). Let Γ and T be as above. For any Q ∈ T , the
stabilizer StabQ has rank rk (StabQ) ≤ rk (Γ) − 1, and the action of StabQ on
π0(T \ {Q}) has at most 2rk (Γ) orbits. ⊔⊓

We can now prove Theorem III for Γ. Let T be as in Theorem 10.4. Note that
for Q ∈ T the intersection of StabQ with a conjugate gΓig

−1 is either trivial or
the whole of gΓig

−1 (because arc stabilizers are trivial and Γi fixes a point). Thus
vertex stabilizers are free products, with each factor free or isomorphic to some
Γi. They are “simpler” than Γ by Theorem 10.5, quasiconvex (see e.g. [21, 36]),
and up to isomorphism they belong to some finite set depending only on Γ.

The proof of assertion (2) of Theorem III now proceeds exactly as in the case
of Fk (Theorem 3.1), by induction on rank, since the result is already known for
one-ended groups.

To prove assertion (1), we need to bound the period of a ∂α-periodic X ∈ ∂Γ.
If X ∈ ∂P (α), the period is bounded by the order of α in Aut (P (α)). If not, then
X is attracting or repelling, hence belongs to the ω-limit set (for α or α−1) of
every g ∈ Γ close enough to X in Γ (see the discussion in § 4 of [25]). We therefore
reduce to controlling the cardinality of ω(g).

The arguments from the proof of Theorem 3.1 do not provide uniform bounds,
for two reasons. If λ > 1 and the component C is H-periodic, we do not have a
bound for the period. If λ = 1 and the isometry H is elliptic, we do not have a
bound for the period of its periodic points.

We first show that, if Q is a fixed point of H, there is a bound depending only
on Γ for the period p of an H-periodic component C of T \ {Q}. By Theorem 10.5
we may assume that H acts trivially on the set of orbits of the action of StabQ
on π0(T \ {Q}). We then have HC = wC for some w ∈ StabQ, and HpC = wpC
with wp = αp−1(w) . . . α(w)w. From wp = 1 we get αp(w) = w, hence αr(w) = w
for some r depending only on Γ by Corollary 10.3, and finally wr = 1 because
(wr)

p = wpr = 1. This implies p ≤ r.
Recall that we want to bound the period of X ∈ ω(g). If λ > 1, the arguments

from the proof of Theorem 3.1 show that either X = j(ρ) for some H-periodic ray,
and we are done, or ω(g) ⊂ ∂StabQ and we can use induction on the rank of Γ.

Now suppose λ = 1. There is a problem only if H is elliptic and has periodic
points with large periods. It then has a fixed point Q, and using the fact proved
above about periodic components of T \ {Q} we may assume that H fixes an edge
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e (this involves raising α and H to some power depending only on Γ). Consider
the tree T ′ obtained by collapsing all edges of T not in the Γ-orbit of e.

It satisfies the conditions of Theorem 10.4, and the quotient graph T ′/Γ has
exactly one edge (it is a segment or a loop). We can now complete the proof by
induction, using the special form of α as in [15, pp. 442-443] (if for instance T ′/Γ
is a segment, then α preserves a nontrivial decomposition of Γ as a free product,
and any attracting periodic point X may be written X = gX ′ where g ∈ Γ is
α-periodic and X ′ is contained in the boundary of a free factor). This completes
the proof of assertion (1) of Theorem III.

The proof of assertion (3) is the same as for free groups (proof of Theorem 4.1).
Lemma 4.3 extends, replacing Mk by the bound obtained above. This completes
the proof of Theorem III for torsion-free groups.

Groups with torsion.

The goal of this subsection is to extend Theorem III to virtually torsion-free
groups. We start with general considerations.

Suppose ∆ has finite index in a group Γ. Then there exists k such that, for every
α ∈ Aut (Γ), every coset of Γ modulo ∆ is mapped to itself by αk. In particular,
αk(∆) = ∆ for every α ∈ Aut (Γ). Of course αk

|∆ is polynomially growing if α is.

Suppose furthermore that there is a bound for the order of torsion in ∆. Then
there is a bound for periods of elements of Γ under automorphisms of Γ if there
is one for periods of elements of ∆ under automorphisms of ∆. To prove this,
suppose αp(g) = g with g ∈ Γ and α ∈ Aut (Γ). Replacing α by αk, we may
assume α(g) = wg with w ∈ ∆. Then αp(g) = wpg with wp = αp−1(w) . . . α(w)w.
As in the previous section, wp = 1 implies αp(w) = w, and therefore αr(w) = w
for some r which can be bounded in terms of Γ and ∆ only. We then write
(wr)

p = wpr = 1, and we bound the period of g by r times the order of wr.

Now suppose that Γ is hyperbolic and ∆ is a torsion-free subgroup of finite
index. We have just proved assertion (1) of Theorem III for periodic orbits of α.
Since ∆ and Γ have the same boundary, assertions (1) (for orbits of ∂α) and (3)
hold.

To prove assertion (2), consider g ∈ Γ and α ∈ Aut (Γ). Replacing α by αk,
we may assume α(∆) = ∆ and α(g) = hg with h ∈ ∆. Then αn(g) = hng with
hn = αn−1(h) . . . α(h)h, and we conclude by Corollary 3.3 (proved in ∆ just like
in Fk).

We also show:

Proposition 10.6. If α ∈ Aut (Γ), with Γ an infinite, virtually torsion-free, hy-
perbolic group, then ∂α has at least two periodic points. If ∂α has only one periodic
orbit, then this orbit is the boundary of an α-invariant virtually cyclic subgroup.

Proof. As in [25, proof of 1.1]. If P (α) is finite, assertion (2) of Theorem III
provides both an attracting periodic orbit and a repelling one. If P (α) is virtually
Z, its boundary gives two fixed points, or an orbit of order 2. If P (α) is non-
elementary, there are uncountably many periodic orbits. ⊔⊓
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11. Examples and questions

Examples.

Fixed points of ∂α not in ∂Fixα are either attracting or repelling. Now consider
the automorphism α of F2 mapping a to a and b to aba. The group Fixα = 〈a〉 is
infinite cyclic, and its two limit points a±∞ are isolated fixed points of ∂α which are
half-attracting and half-repelling: if X ∈ ∂F2 is not a±∞, then the limit of ∂αn(X)
as n→ +∞ is either a∞ or a−∞, depending on whether the first occurrence of b±1

in X is b or b−1. The automorphism α is the square of β : a 7→ a−1, b 7→ a−1b−1.
The set {a∞, a−∞} is a half-attracting, half-repelling orbit of period two of ∂β.

The following example of a parabolic orbit is due to A. Hilion [20]. Define γ on
F4 by a 7→ a, b 7→ ba, c 7→ ca2, d 7→ dca. For g = bad−1, both sequences γn(g)
and γ−n(g) converge to ba−∞ as n→ +∞.

When Fixα is cyclic, it may happen that its limit points are not isolated as
fixed points of ∂α. Consider a homeomorphism h of a compact surface Σ fixing
a separating simple closed curve C pointwise. Assume that h induces a pseudo-
Anosov homeomorphism on each of the complementary subsurfaces Σℓ and Σr, and
h twists non-trivially around C in Σℓ (but not in Σr). Let α be the automorphism
induced on π1(Σ) (with basepoint on C), and ∂α the homeomorphism induced on
its boundary. Note that the boundary is a circle (if Σ is closed) or a cyclically
ordered Cantor set (if Σ has a boundary). The map ∂α has two fixed points
associated to the invariant cyclic subgroup π1(C). They divide the boundary into
two intervals Iℓ and Ir. On Iℓ, the map ∂α has no fixed point (because of the
non-trivial twist). On Ir, there are infinitely many attracting fixed points, and
infinitely many repelling ones (but only finitely many orbits under the action of
π1(C); they correspond to singular leaves of the invariant foliations of h|Σr

issuing
from singularities belonging to C). They alternate on Ir, and accumulate onto
both endpoints of Ir.

Free groups.

Consider α ∈ Aut (Fk). For simplicity we assume in this discussion that all
periodic points of α are fixed points.

Theorem II asserts that, as n→ +∞, the sequence ∂αn(X) converges to some
hα(X) ∈ Fix ∂α ⊂ ∂Fk for every X ∈ ∂Fk. Let U be the open set ∂Fk − Fix∂α.
Is the function hα locally constant on U? Is the convergence of ∂αn to hα locally
uniform on U?

Elements of hα(U) not in ∂Fixα are attracting fixed points. The action of Fixα
on the set of attracting fixed points has at most 2k orbits [15]. It is proved in [20]
that the action of Fixα on hα(U) ∩ ∂Fixα also has finitely many orbits.

Hyperbolic groups.

As shown in §10, some of our results about automorphisms of free groups may be
extended to hyperbolic groups. Another example is Proposition 9.4, which readily
extends to non-elementary, virtually torsion-free, hyperbolic groups. On the other
hand, we do not know how to prove that exponentially growing automorphisms of
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an infinitely-ended hyperbolic group Γ have asymptotically periodic dynamics on
∂Γ.

Let α ∈ Aut (Γ), with Γ hyperbolic. Is there a bound depending only on Γ for
the number of (Fixα)-orbits of attracting fixed points of ∂α? Can one associate a
set of growth rates Λ(Φ) ⊂ (1,+∞) to Φ ∈ Out (Γ) as in [25]? As when Γ = Fk,
elements λ ∈ Λ(Φ) should be the growth rates of conjugacy classes under iteration
of Φ, and also the rates of convergence towards fixed points with respect to the
canonical Hölder structure on ∂Γ (see [25]). They should be either dilation factors
of pseudo-Anosov homeomorphisms associated to hanging Fuchsian subgroups, or
eigenvalues of a transition matrix associated to a (relative) train track coming
from a free product structure. In particular, there should be an upper bound to
the cardinality of Λ(Φ) that only depends on Γ (not on Φ).

Actions with finite limit sets.
There are many examples of actions of a group Γ on a compact space X with

the following property: There exists q ≥ 1 such that, for every x ∈ X and g ∈ Γ,
the sequence gqn(x) converges as n→ +∞. For instance:

• The action of Aut (Fk) on ∂Fk and F k. Conjecturally, the action of Aut (Γ)
on Γ, for an arbitrary hyperbolic group Γ.

• Convergence actions of virtually torsion-free groups.
• The action of the mapping class group of a closed surface on the Thurston

boundary of Teichmüller space (this follows from Nielsen-Thurston theory). By
analogy, one may ask about the action of Out (Fk) on the boundary of Culler-
Vogtmann’s outer space (see [4], [9], [26] for partial results).

• The action of π1M on the sphere at infinity of M̃ , where M is a closed

Riemannian manifold (or orbifold) with negative curvature and M̃ is the universal
covering. Flat manifolds also provide examples, because of Bieberbach’s theorem.
To what extent may this be extended to arbitrary non-positively curved manifolds,
or even to arbitrary CAT(0) spaces?

Knowing that a group Γ acts on X with the above property gives a lot of infor-
mation about dynamics of individual elements of Γ. The only global information,
however, is the fact that q does not depend on g. There may exist a stronger
property, that would be weaker than the convergence property but strong enough
to contain more global information on Γ.
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