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AUTOMORPHISMS OF FREE GROUPS HAVE
ASYMPTOTICALLY PERIODIC DYNAMICS

GILBERT LEVITT, MARTIN LUSTIG

ABSTRACT. We show that every automorphism « of a free group Fj of finite rank
k has asymptotically periodic dynamics on Fj and its boundary O0F}: there exists
a positive power a? such that every element of the compactum Fj U 0F} converges
to a fixed point under iteration of 9.

Further results about the dynamics of o as well as an extension from F} to
word-hyperbolic groups are given in the later sections.
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INTRODUCTION AND STATEMENT OF RESULTS

Let F} denote the free group of rank k£ > 2. Conjugation ¢, by an element u € Fj,
has very simple dynamics. If g € F}x commutes with u, then ¢ is a fixed point of
iy. If g does not commute with u, then the length of (i,,)"(g) = u"gu™" tends to
infinity as n — +o00, and u” gu™" converges to the infinite word > = lim,,_, y o u™.

On the space of infinite words (which may be viewed as the boundary 9Fy),
the action of i, is simply left-translation by w. It has North-South (loxodromic)
dynamics: u* is an attracting fixed point (a sink), u~° is a repelling fixed point
(a source), and lim,, 4, u"X = u® for every infinite word X #+ u*°. Similar
considerations apply to conjugation by any element of infinite order in a word
hyperbolic group.

We proved in [24] that “most automorphisms” (in a precise sense) of a given
hyperbolic group (e.g. Fi) have North-South dynamics on the boundary of the
group. But, of course, interesting automorphisms usually are not “generic”.

For instance, Nielsen studied mapping classes of surfaces by lifting them to
the universal covering, and considering the action of various lifts on the circle at
infinity S, (the boundary of the surface group). He used lifts with more than
two periodic points (see [30]), and one of his key results is that a lift f always has
periodic points on S, (equivalently, its rotation number on S, is rational).

Since f induces a homeomorphism Jf of the circle S, this obviously implies
that, for any X on the circle, the set of limit points of the sequence Jf™(X) as
n — +o0 is a periodic orbit of 0f: we will say that 0f has asymptotically periodic
dynamics.

Our main results may be viewed as a generalization of these facts to arbitrary
automorphisms of free (or hyperbolic) groups.

Let o be an automorphism of Fj. It induces canonically a homeomorphism O«
on the boundary 0F}. The latter, a Cantor set, can be identified with the set of
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reduced right-infinite words in an arbitrary basis of F}, or with the space of ends
of any simplicial tree on which Fj acts freely. As usual, we provide F} with the
discrete topology and use OF}, to compactify Fj,, thus obtaining Fj, = Fj, U 0F.
One obtains from « and Oa together a homeomorphism @ : Fj, — F}j of this
compactum. This paper studies the dynamics of this homeomorphism. Let us
first recall a few known results.

Theorem I [15, 25, 27]|. Let o € Aut (Fy).

(1) PEwvery periodic orbit of @ has order bounded by My, where My, depends only
on k, and My, ~ (klog(k))Y/? as k — oc.

(2) O« has at least two periodic points of period < 2k.

(3) A fized point of dav which does not belong to the boundary of the fized sub-
group Fixa is either attracting or repelling (sink or source). The number
a(a) of orbits of the action of Fixa on the set of attracting fixed points

1
satisfies the “index inequality” rk Fix o + ia(a) <k.
(4) Every attracting fized point of Oa is superattracting with respect to the
canonical Holder structure of OFy, with attraction rate \; > 1. If \; >

1, then \; s the exponential growth rate of some conjugacy class under
iteration of a. There are at most L;Q distinct such growth rates.

An element X € F}, is called asymptotically periodic (with respect to @) if the
set w(X) of accumulation points of the sequence @"(X) as n — o0 is finite. This
implies that w(X) is a periodic orbit of @.

The automorphism o € Aut (Fy) has asymptotically periodic dynamics (on Fy,)
if every X € F}, is asymptotically periodic. Equivalently, o has asymptotically
periodic dynamics if and only if there exists ¢ > 1 such that, for every X € F},
the sequence @?"(X) converges (see §1.b). Our main result can now be stated as
follows:

Theorem II. Every automorphism o € Aut (Fx) has asymptotically periodic dy-
namics on F,.

In particular, if g € Fj is not a-periodic, then the set of limit points of the
sequence a(g) as n — 400 is a periodic orbit of da. In other words, there exists
q such that, for any N, the sequence consisting of the initial segment of length N
of a™(g) is eventually periodic with period ¢ (the period ¢ may be bounded by
Mj,, independently of g or ).

As an illustration, define an automorphism on the free group of rank 3 by a(a) =
cb, a(b) = a, a(c) = ba. Applying powers of « to a gives a — cb — baa — acbch —
cbbaabaa — baaacbcbacheb — . .., showing that a™(a) limits onto an orbit of period
3. On the other hand a= ! — b~ le ! — a ta b7t = bl b leta! — ..
and a™(a~!) limits onto an orbit of period 2.

Other examples will be given in section 11. In particular, it is quite common
for a boundary point of an a-invariant free factor F' to be the limit of orbits well
outside F.

*
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For an orientation-preserving homeomorphism of the circle, all periodic points
have the same period, and existence of a periodic point is enough to imply asymp-
totically periodic dynamics. For automorphisms of free groups, there may be
periodic points with different periods on the boundary (as shown by the above ex-
ample). It is relatively easy to prove that periodic points exist, but much harder
to prove that all points of the boundary are asymptotically periodic.

The basic tool in our approach is an a-invariant R-tree, i.e. an R-tree T" with an
action of I} by isometries which is minimal, non-trivial, with trivial arc stabilizers,
and a-invariant: its length function ¢ satisfies £ o a = A« for some A\ > 1. The
automorphism « is then realized on 7T, in the sense that there is a homothety
H : T — T, with stretching factor A > 1, such that a(w)H = Hw : T — T for
all w € Fy. If A =1, the tree T is simplicial and H is an isometry. If A > 1, the
action of F} on T is non-discrete; in fact, every Fj-orbit is dense in T'.

In most cases, the map H has a fixed point @ (in T or in its metric completion
T). The stabilizer of Q is an a-invariant subgroup Stab Q C F}, which has rank
strictly smaller than k [16]. This allows us to set up the proof of our main result
as a proof by induction over the rank k.

For g € Fy, we study the behavior of the sequence a™(g) through that of the
sequence a"(g)Q = H"(gQ), where @ is a fixed point of H.

There are three main cases (see §3).

- If g@Q = @, we use the induction hypothesis.

-If A > 1 and H"(gQ) goes out to infinity in 7" in a definite direction, then
a™(g) converges to an attracting fixed point of da.

- If H"(¢9Q) “turns around @7, one shows that a™(g) accumulates onto a peri-
odic orbit contained in dStab @), using a cancellation argument given in §2.

Similar arguments (given in §4) make it possible to understand the behavior
of 0a™(X), for X € OF}), when there are simplicial invariant trees, in particular
when « is a polynomially growing automorphism.

The general case is dealt with in §§ 5 through 8. It makes use of the point Q(X)
introduced in [26], which reflects the dynamics of da on X and allows us to extend
the approach from the special cases dealt with previously. The proof consists of
geometric arguments on relative train tracks, and involves the asymptotic behavior
of four distinct ways of measuring length under iteration of o (and of a™1!). A
sketch of the proof will be given at the beginning of §5.

In §9, we prove a few more results about dynamics of automorphisms of free
groups. We show that Fj, acts discretely on a suitable product of trees (a result
proved in [2] and [28] for irreducible automorphisms). We study the bipartite
graph whose vertices are the attracting and repelling fixed points of da, for «
irreducible. We show that, for an arbitrary «, the number of different periods
appearing in the dynamics of @ is bounded by a number depending only on k and
growing roughly like eVE. We also give a short proof of a result of [5] constructing
automorphisms with many fixed points.

In § 10, we explain how to adapt the arguments of §§2, 3, 4 to hyperbolic groups.
Our main result is:
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Theorem III. Let o € Aut (I'), with I' a virtually torsion-free hyperbolic group.

(1) Periodic orbits of @ have at most M points, with M depending only on T'.

(2) Every g € T' is asymptotically periodic.

(3) If T' is one-ended, or « is polynomially growing, then every X € 0T is
asymptotically periodic.

It is not known whether all hyperbolic group are virtually torsion-free (see [22]).
In any case, it seems reasonable to conjecture that all automorphisms of hyperbolic
groups have asymptotically periodic dynamics.

We start §10 by giving a proof of an unpublished result by Shor [35]: Up to
isomorphism, there are only finitely many fixed subgroups in a given torsion-free
hyperbolic group. As in [35], we use results by Sela [34], Guirardel [17], Collins-
Turner [10], but we simplify the proof by using the fact (proved in [23]) that
Aut (T") contains only finitely many torsion conjugacy classes, for I' a torsion-free
hyperbolic group.

Theorem III is first proved for torsion-free groups. For one-ended groups, we
use the simplicial tree (with cyclic edge stabilizers) given by the JSJ splitting. For
free products, we use an R-tree constructed from the train tracks of [10]. Finally,
we extend our results to virtually torsion-free groups.

We conclude the paper by a section devoted to examples and questions.

1. PRELIMINARIES

l.a. Fj and its boundary.

Let Fj be a free group of rank & > 2. Its boundary (or space of ends) 0F}
is a Cantor set, upon which F} acts by left translations. It compactifies F} into
F), = F,UOF),. The boundary 0.J of a finitely generated subgroup J C F}, embeds
naturally into OF},. If g € F}, is nontrivial, we let g*>° € 9F}, be the limit of ¢" as
n — =£oo.

If we choose a free basis A of F}, we may view 0F} as the set of right-infinite
reduced words. The Gromov scalar product (X|Y) of two elements X,Y € F}
is the length of their maximal common initial subword. A sequence X,, in Fp
converges to X € 0F} if and only if (X,,|X) — oc.

An automorphism a € Aut (F}) is a quasi-isometry of Fj. It induces a homeo-
morphism da : OF), — 0F}, and also a homeomorphism @ = aUd« of the compact
space Fj,. The conjugation g — wgw ™' will be denoted by 4,,. Note that 0i,, is
left-translation by w.

1.b. Limit sets and asymptotic periodicity.

Let f be a homeomorphism of a compact space K (for instance dF) or F}).
A point = € K is periodic, with period ¢ > 1, if f9(z) = = and ¢ is the smallest
positive integer with this property. The set {z, f(x),..., f7(z)} is a periodic
orbit of order ¢q. Given y € K, the w-limit set w(y, f), or simply w(y), is the set
of limit points of the sequence f"(y) as n — 4o0. It is compact, and invariant
under f and f~'. We observe:
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Lemma 1.1. Let f be a homeomorphism of a compact space K. Giwen y € K
and g > 1, the following conditions are equivalent:

(1) w(y) is finite, and has q elements.
(2) w(y) is a periodic orbit of order q.
(3) The sequence f1"(y) converges as n — —+oo, and q is minimal for this
property.
Given p > 2, the set w(y, fP) is finite if and only if w(y, f) is finite. O

If these equivalent conditions hold, we say that y is asymptotically periodic. In
particular, we have defined asymptotically periodic elements of F;, (with respect
to @).

We say that o € Aut(F}) has asymptotically periodic dynamics (on Fy) if
every X € F}, is asymptotically periodic. By assertion (1) of Theorem I, this is
equivalent to the existence of ¢ > 1 such that, for every X € F}, the sequence
a?"(X) converges as n — +00.

1.c. Invariant trees.
As in [25], we will use as our basic tool an a-invariant R-tree T' with trivial arc
stabilizers. We summarize its main properties.

Theorem 1.2 [15, 16]. Given o € Aut (Fy), there exists an R-tree T such that:

(a) Fy acts on T isometrically, non-trivially, minimally, with trivial arc sta-
bilizers.

(b) There exist A\ > 1 and a homothety H: T — T with stretching factor A
such that

a(g)H = Hg

for all g € Fy, (viewing elements of Fy as isometries of T').

(c) If A\ =1, then T may (and always will) be assumed to be simplicial (whereas
all Fy-orbits are dense when A\ > 1).

(d) Given Q € T, its stabilizer Stab @ has rank < k — 1, and the action of
Stab @ on mo(T'\ {Q}) has at most 2k orbits. The number of Fy-orbits of
branch points of T is at most 2k — 2. O

A tree with these properties will simply be called an a-invariant R-tree (with
trivial arc stabilizers). Its length function is denoted by ¢ : Fj, — [0, 00), it satisfies
loa = M. An element g € Fy, is elliptic if £(g) = 0 (i.e. if g has a fixed point),
hyperbolic if £(g) > 0.

If a point () € T with nontrivial stabilizer is fixed by H, the subgroup Stab @
is a-invariant. Since it has rank less that k£, and dStab () embeds into 0F}%, this
will allow us to use induction on k.

A ray is (the image of) an isometric map p from [0, 00) or (0,00) to T. It is an
eigenray of H if p(At) = Hp(t), a periodic ray if it is an eigenray of some power of
H. As usual, the boundary 0T is the set of equivalence classes of rays. The action
of Fj, and the map H, extend to 97T
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We also consider the action of F}, on the metric completion T of T' (when A = 1,
the tree T is simplicial, so T = T'). Note that points of T'\ T have trivial stabilizer.
Suppose A > 1. The homothety H has a canonical extension to T, with a unique
fixed point Q € T. All eigenrays have origin Q. If a component of T\ {Q} is fixed
by H (in particular if Q ¢ T'), that component contains a unique eigenray.

1.d. Bounded backtracking and Q(X).

Let T be an a-invariant R-tree with trivial arc stabilizers. Fix Q € T. When
A > 1, we always choose @) to be the fixed point of H.

Let Z be a geodesic metric space. We say that a map f : Z — T has bounded
backtracking if there exists C' > 0 such that the image of any geodesic segment
[P, P'] is contained in the C-neighborhood of the segment [f(P), f(P')] C T. The
smallest such C' is the BBT-constant of f, denoted BBT'(f).

When Z is a simplicial tree, we only consider maps which are linear on each
edge. If Z is a simplicial tree with a minimal free action of F}, every Fj-equivariant
f: Z — T has bounded backtracking (see [2], [12], [15]).

In particular, let Z4 be the Cayley graph of Fj relative to a free basis A =
{a1,...,ar}. The map f4 : Z4 — T sending the vertex g to gQ has bounded
backtracking, with BBT(f4) < Zle d(Q, a;Q).

If w,w" € Fj, and v is their longest common initial subword (in the basis A),
then v@Q is BBT(fa)-close to the segment [w@,w'Q] (property BBT2 of [15]).
This is often used as follows: if [Q, wQ] N [Q,w'Q)] is long, then vQ is far from @
and therefore v is long.

Let p be aray in T. By [15, Lemma 3.4], there is a unique X = j(p) € 0F}) with
the property that a sequence w,, € F}, converges to X if and only if the projection
of w,,Q onto p goes off to infinity. The map j is an Fj-equivariant injection from
0T to OF} satisfying O o j = jo H. If p is an eigenray, then j(p) is a fixed point
of da. When A > 1, every fixed point of d« in j(0T) is the image of an eigenray
p.

The rest of this section will not be needed until §5.

We suppose A > 1. Then orbits are dense in T' (see [33, Proposition 3.10]),
and because d(Q, o (a;)Q) = \71d(Q, a;Q) there exist bases A with BBT(f4)
arbitrarily small (this is a special case of [26, Corollary 2.3]).

In [26], we have associated a point Q(X) € T U T to every X € OF. It may
be thought of as the limit of g,Q as g, — X. Here we shall mostly be concerned
with whether Q(X) equals the fixed point @ or not, and we will work with the
following alternative definition of Q(X).

Given X € 0F}, consider the set Bx consisting of points R € T" which belong
to the segment [Q, wQ)] for all w € Fj, close enough to X (in other words, R € By
if and only if there exists a neighborhood V of X in F}, such that R € [Q, wQ]
for all w € V N Fy). It is a connected subtree containing no tripod, and there are
three possibilities.

If Bx ={Q}, we define Q(X) = Q.

If Bx is unbounded, it is an infinite ray p with origin @ and j(p) = X. We
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define Q(X) as the point of 0T represented by p.

The remaining possibility is that Bx is a closed or half-closed segment with
origin Q. We then define Q(X) as the other endpoint of this segment in T’ (it may
happen that Q(X) ¢ Bx).

It is easy to check that this definition of (X)) coincides with that of [26]. This
implies that the assignment X +— Q(X) is Fi-equivariant. Note that in all cases
Q0a(X)) = H(Q(X)). In particular, if Q(X) = @, then Q(0a™(X)) = Q for
every n € Z.

Lemma 1.3. Let T be an a-invariant R-tree as in Theorem 1.2, with X\ > 1. Let
Q €T be the fized point of H. Let A be a basis of Fy,, and let f4: Z4 — T be as
above (sending g to gQ). Given X € OFy, let X; be its initial segment of length i
in the basis A.

(1) d(X,Q, Bx) < BBT(f.) for all .
(2) If Q(X) €T, then d(X;Q,Q(X)) < 2BBT(f4) for i large enough.
(3) If Q(X) € 9T, the projection of X;Q onto the ray Bx goes to infinity as

7 — 00.

Proof. Suppose d(X;Q,Q) > BBT(f4). The point located on the segment [Q), X;Q)]
at distance BBT(f4) from X;@ belongs to [Q, wQ)] provided w starts with X;, so
isin Bx.

Suppose Q(X) € T. Fix ¢ > 0. For i large, the point Q(X) is e-close to
@, X;Q], and therefore d(X;Q,Q(X)) < d(X;Q,Bx) + ¢. Assertion (2) then
follows from (1). Assertion (3) is clear. O

2. A LEMMA ON ASYMPTOTIC PERIODICITY

Given o € Aut (Fy) and w € F, we define w, = o’ H(w)...a(w)w for p > 1

(with w; = w). Note that w, = w, implies wj,_, = 1, and that w, = 1 implies

of (w) = (e~ H(w).. .Oz(w))_1 = w.

Recall that X,, € F} converges to X € 9F} if and only if (X,|X) — oc.

The relation (X,|Y,) — oo, between sequences in F, is transitive (and does not
depend on the basis A).

Lemma 2.1. Let o € Aut (Fy) and w € Fj,. Assume that for every p > 1 the
elements w, and wp_1 are nontrivial and asymptotically periodic. Then any x € F),
such that
lim (@"(wz)[@"(z)) = +o0
n— 400

15 asymptotically periodic.

Proof. First suppose that w is not a-periodic. Then there exist ¢ > 1 and X,Y €

OFy, such that a?(w) — X and a9 (w™!) — Y as n — +oo. Write a?"(wx) =

a9 (w)a?™(x). Since w is not periodic, a?™(w) gets long as n — oo, and therefore

the maximum of (4" (w)[@?"(wz)) and (a?"(w™')[@?"(z)) goes to infinity with n.

This implies that the maximum of (X |[@?"™!(z)) and (Y[@?"(x)) goes to infinity.
8



It follows that the limit set of the sequence @?™(xz) is contained in {da~1(X),Y}.
Thus x is asymptotically periodic.

Now suppose a(w) = w. Then (wa"(z)[@"(z)) goes to infinity with n. Fix
an integer N. An easy induction shows lim,_ 4 (wNa" (z)[@" ™ (z)) = +oc0. As
above, we deduce that for n large at least one of (w [@" "V (z)), (w=V|a"(z)) is
large. It follows that the limit set of @"(x) is contained in {w™°°, w>}.

The last case is when w is a-periodic with period p > 2. Then (wa*™(z)[a?" ! (z))
goes to infinity with n, and our definition of w,, guarantees (w,a?" (z)[a?" ™V (z)) —
oo. Since aP(w,) = w,,, we reduce to the previous case (replacing o by o). O

Remark 2.2. Suppose w belongs to a finitely generated a-invariant subgroup
J C F},. If z is as in Lemma 2.1, we have w(z) C d.J (because all points X, Y, w™>
used in the proof belong to 0.J).

3. LIMIT SETS OF INTERIOR POINTS
We first show:

Theorem 3.1. Let a € Aut (Fy). If g € Fy is not a-periodic, the set of limit
points of the sequence a™(g) as n — 400 is a periodic orbit of Da.

Proof. We consider an a-invariant R-tree 71" as in Theorem 1.2. Because of Lemma
1.1, we are free to replace o by a positive power a” whenever convenient. This
has the effect of replacing H by H".

The proof is by induction on k. If g € Stab @, with @ a fixed point of H, we
may use the induction hypothesis (recall that Stab @ is a-invariant and has rank
< k).

We distinguish two cases.

e First suppose A > 1. Let Q € T be the fixed point of H. If gQ = Q, we use
induction on k. If gQ # @, and the component C of T\ {Q} containing ¢Q is fixed
by H (in particular if @ ¢ T'), that component contains an eigenray p (see §1.c).
Writing a™(¢9)Q = a™(g)H"Q = H"gQ, we see that a™(g) converges to j(p), a
fixed point of da (see §1.d). Similarly, a™(g) accumulates onto a periodic orbit of
O« if the component C is H-periodic.

Assume therefore that g@QQ # @ and C is not H-periodic. We will apply Lemma
2.1. Recall that the action of Stab@ on mo(7 \ {®@}) has finitely many orbits.
Replacing o by a power, we may assume that there exists w € Stab @ with wC =
HC. Define w, = o’ H(w)...a(w)w as in §2. The elements w, are all nontrivial,
because w, takes C onto HPC (as checked by induction on p, using the equation
a(w)H = Hw). Using induction on k, we may assume that wi-' is asymptotically
periodic.

Now we argue as in [15, p. 439]. The segments [Q, wgQ] and [Q, H gQ)] intersect
along a nondegenerate segment. Because A > 1, the segments [H"Q, H"wgQ)| =
[Q,a™(wg)Q] and [H"Q, H"gQ] = [Q,a"!(g)Q] intersect along a segment
whose length goes to infinity with n. By bounded backtracking (property BBT2
of [15], see §1.d), this implies that the scalar product (a™(wg)|a™(g)) goes to
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infinity with n. Lemma 2.1 now concludes the proof (with w(g) C 9Stab@ by
Remark 2.2).

e When A = 1, we view g and H as isometries of the simplicial tree T'. Note
that ¢ has at most one fixed point (because arc stabilizers are trivial). If g is
hyperbolic (i.e. it has no fixed point), its translation axis has compact intersection
with the axis of H (if H is hyperbolic), or with the set of periodic points of H (if H
is elliptic). Otherwise g would commute with some power H” on a nondegenerate
segment, implying a"(g) = g.

First suppose that H is hyperbolic, with axis A. Orient A by the action of
H, and consider its two ends A=, AT. Choose Q € A. As n goes to infinity, the
projection of gH ") onto A remains far from A~ (because g does not fix A7).
It follows that the projection of a™(¢)Q = H"gH "Q onto A goes off to A*, and
a™(g) converges to the fixed point j(A™) of da.

If H is elliptic, let P be the subtree consisting of all H-periodic points. There
exists a (unique) point @ of P such that [Q,gQ] NP = {Q} (it is the point of P
closest to the fixed point of g if g is elliptic, to the positive end of the axis of g if
g is hyperbolic). Replacing a by a power, we may assume HQ = Q.

If gQ = @, we use induction on k. If not, we let C be the component of 7'\ {Q}
containing g@, and we find w € Stab @) with wC = HC, as in the proof when A > 1.
The components C,, = H"C = w,,C are all distinct, because () was chosen so that
the germ of [@Q, gQ] at @ is not H-periodic. Since both points o (wg)Q = H"wgQ
and o™ (g)Q = H""'gQ belong to Cy41, the scalar product (a™(wg)|a™*(g))
goes to infinity and Lemma 2.1 applies. g

The argument that concludes this proof will be used again. We may state it as
follows.

Lemma 3.2. Let T be a minimal simplicial Fy-tree with trivial edge stabilizers.
Given Q € T and distinct components C,, of T \ {Q}, there exists a sequence of
numbers m, — oo such that, if a,, b, are elements of F} with a,,Q and b,,Q) both
belonging to C,, then (a,|by,) > m,,. O

From Theorem 3.1 we deduce:

Corollary 3.3. Leta € Aut (Fy) andw € Fy. If the sequence w,, = o™ 1 (w) . ..a(w)w
is not periodic (in particular if w is not a-periodic), its limit set is a periodic orbit

of Oav.

Proof. Extend « to 8 € Aut (F), * Z) by sending a generator t of Z to wt. Then
g"(t) = wypt. The map n — w, is injective, because otherwise w, would be
periodic. Thus the length of w, goes to infinity, implying that the sequences w,,
and " (t) have the same limit set in 9(F}) * Z). That set is contained in dF}, and
is a periodic orbit of 08 by Theorem 3.1. It is therefore a periodic orbit of da. O

The following observation will be useful in §9.

Proposition 3.4. Let T be an a-invariant R-tree. Suppose that A > 1 and the
fixed point QQ € T of H has trivial stabilizer. Then « has no nontrivial periodic
10



element in Fy. There is a bijection T from mo(T \ {Q}) to the set of attracting
periodic points of O, with T o H = daoT.

Proof. If a4(g) = g, then H1gQ = a%(g)HIQ = gQ, so g € Stab@Q = {1}. This
proves the first assertion. By [15], da has finitely many periodic points, each of
them attracting or repelling.

Since Stab Q is trivial, T \ {Q} has finitely many components, each of them
H-periodic. As seen in the proof of Theorem 3.1, the asymptotic behavior of a
sequence a"(g) depends only on the component C containing g@). The attracting
periodic point of da associated to C is 7(C) = j(p), where p is the H-periodic ray
contained in C. O

Remark 3.5. Suppose A > 1, but don’t assume that Stab ) is trivial. The proof
of Theorem 3.1 shows that either w(g) C Stab(@, or a™(g) accumulates onto a
periodic orbit of da associated to H-periodic rays.

4. THE SIMPLICIAL CASE
This section is devoted to the proof of the following result.

Theorem 4.1. Assume that Theorem II is true for free groups of rank < k. Let
a € Aut (Fy). If there exists a simplicial a-invariant tree T as in Theorem 1.2,
then every X € OFy is asymptotically periodic for c.

Corollary 4.2. Theorem II is true for polynomially growing automorphisms of
Fy.

Proof of Corollary 4.2. It is proved by induction on k. Given o € Aut (Fy),
consider T as in Theorem 1.2, with length function ¢. Choose w € Fj with
(w) > 0. If a is polynomially growing, then /(o (w)) has subexponential growth
(as translation length is bounded from above by a constant times word length).
Since /(o™ (w)) = A™¢(w), we have A = 1 and Theorem 4.1 applies. O

To prove Theorem 4.1, we argue as in the proof of Theorem 3.1 when A = 1
(keeping the same notations). If the isometry H is hyperbolic, then da™(X)
converges to the fixed point j(A™1) for every X # j(A™), so we assume that H is
elliptic.

First suppose that X belongs to dStab R for a (unique) point R € T. Let @ be
the point of P closest to R. Replacing o by a power, we may assume H(Q) = Q.
If R =@ (i.e. if R is fixed by H), we use induction on k. If R # @, we let C be
the component of 7'\ {@Q} containing R and we choose w € Stab Q) with wC = HC
(replacing « by a power if needed).

Let g, be a sequence in Stab R converging to X. Since g,@ € C, we can apply
Lemma 3.2 for each value of p, with C,, = H"C, a,, = a"(wg,), b, = a"(g,).
We find (a”(wgp)|a"(gy)) > m,, and therefore (9o (wX)|0a" (X)) tends
to infinity as n — +o0o. Lemma 2.1 concludes the proof, since w belongs to an
a-invariant subgroup of rank < k.

11



If X does not belong to any dStab R, then, since T is simplicial and arc sta-
bilizers are trivial, X = j(e) for some end e of T. We may assume that e is not
H-periodic. We apply Lemmas 3.2 and 2.1 as above, using the point ) € P closest
to e and the component C of T'\ {@Q} containing e. The existence of this point @
is not obvious, however, because e could be a limit of periodic points of H whose
period tends to infinity. But this is ruled out by the following fact, and the proof
of Theorem 4.1 is complete.

Lemma 4.3. Let o, T, H be as in Theorem 1.2. Assume A\ = 1. There exists M
(depending only on k) such that all periodic points of H have period less than M.

Proof. 1f the action of Fj on T is free, some fixed power of H is hyperbolic or
is the identity (because H lifts an automorphism of the finite graph 7'/F}). We
assume from now on that the action is not free.

Suppose that a vertex @, with Stab () nontrivial, is H-periodic with period gq.
Since Stab @ is invariant under a?, we know that dStab () contains a periodic point
X of 0al. Viewed as a periodic point of da, the point X has period divisible by ¢
(because stabilizers of distinct vertices H'Q, 1 < i < g, have disjoint boundaries),
and this forces ¢ < My, by [25] (see Theorem I in the introduction).

We have now obtained a bound for periods (under H) of vertices with nontrivial
stabilizer. Since the action of F} on 7' is minimal and not free, any vertex () with
trivial stabilizer belongs to a segment [Q1, Q2], with Stab @1 and Stab Q2 nontriv-
ial but Stab R trivial for every interior point R of [Q1, Q2. If Q is H-periodic, so
are (Q1 and Q2 because vertices with trivial stabilizer have finite valence in T'. We
know how to bound the period of @)1 and )2, and this leads to a bound for the
period of Q). O

5. A REDUCTION

From now on we will consider an a-invariant R-tree 7" with A > 1, as in Theorem
1.2. We always denote by Q the fixed point of H (in T)). We fix X € 9F}, and we
study the sequence da™(X).

For the reader’s convenience, we now give a quick overview of §§5-8.

In § 3, we studied the sequence a™(g) by applying powers of H to the point g@.
Instead of g, we now consider the point Q(X) introduced in [26] (see §1.d). It
is either a point of the metric completion T, or an end of T. It may be thought of
as the limit of g,Q as g, — X.

When Q(X) # @, a naive argument works: the behavior of 0o’ (X) is the same
as that of a"(g) for g € Fj close to X. If X € 0Stab(@, we use induction on
k. The hard case is when Q(X) = @ but X does not belong to dStab@. This
happens when X is a repelling fixed point of da, and the task here is indeed to
show that this is essentially the only possibility (Theorem 5.1).

The difficulty lies in the fact that cancellation within the infinite word X due
to the contracting nature of the combinatorics of a repelling X can be mixed
with cancellation in the initial subword of X coming from accumulations of finite
elements from Stab Q).

12



We consider an improved relative train track map fy : G — G representing «
(in the sense of [3]), with an exponential top stratum. If there is an indivisible
Nielsen path 1 meeting the top stratum, then for each lift [a, b] of 7 in the universal
covering G we create a new edge between a and b (this is similar to the addition
of Nielsen faces in [29]). The resulting space Gisa cocompact Fy-space, but we
also consider the non-proper space Gpr obtained from G by contracting all edges
not in the top stratum (it resembles the coned-off Cayley graph of [13]). We show
that, when Q(X) = @, the point at infinity X behaves like a repelling point for
the train track map acting on Gpp (Lemma 8.2).

We also consider a train track map f} : G’ — G’ representing a1, which is
paired with fp in the sense of [3, §3.2]. Because of the pairing, the spaces Gpr
and G/ b are quasi-isometric. It follows that X behaves like an attracting point in

QPF, and there is a legal ray going out towards X in G’ (Lemma 8.4). We then
conclude by applying these facts to all points da~"(X).

We now proceed to reduce Theorem II to the following result, whose proof will
be completed in §8.

Theorem 5.1. Let a € Aut (Fy). If there is no simplicial a-invariant tree (with
trivial arc stabilizers), there is an a-invariant R-tree T" with A > 1 such that, for
every X € OF}, at least one of the following holds:

(1) X € 0Stab@.

(2) QX) #Q.

(3) There exist ¢ > 1 and w € Stab @ such that X is a fixed point of wOa? =
(i 0 a?).

See §1.d for the definition of Q(X) € T U 0T, and recall that i, (g) = wgw™!.

Assuming this theorem, we prove Theorem II by induction on k. Consider
a € Aut (F). If there is a simplicial a-invariant tree, we apply Theorem 4.1. If
not, we fix X € 0F}) and we consider the three possibilities of Theorem 5.1.

o If X € OStab (@, we use the induction hypothesis (recall that Stab@ is a-
invariant, with rank < k).

o If Q(X) # Q, let C be the component of T'\ {Q} containing Bx \ {Q}. Choose
a basis A of F}, with BBT(f ) small with respect to d(Q(X), Q). By Lemma 1.3,
we have X;(Q € C for ¢ large. Replacing o by a power if necessary, we may assume
(as done in the previous sections) that there exists w € Stab @) such that HC = wC.
We argue as in the proof of Theorem 3.1, “uniformly”. There are two cases.

If w =1, let p be the eigenray of H contained in C. The element j(p) € OF}, is
a fixed point of da, and we show lim,,_, 4 0a™(X) = j(p).

The distance from @) to the projection of X;(Q onto p is greater than some ¢ > 0
for i large. It follows that the distance from @ to the projection of o™ (X;)Q =
H™(X;Q) onto p is greater than A\"e, independently of i. By bounded backtracking,
as in the proof of Lemma 3.4 in [15], we obtain that (j(p)|a"(X;)) goes to infinity
as n — +o00, uniformly in ¢. This shows lim,_, 1~ 0a™(X) = j(p), as required.
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If w # 1, we observe that the length of [Q, wX;Q]N[Q, HX;Q] is bounded away
from 0, so that lim,_ 4o (@"(wX;)[@" ! (X;)) = 400 uniformly in i. Therefore
(@ (wX)[a"* (X)) goes to infinity and Lemma 2.1 applies.

e Replacing a by a4, we may assume that X is a fixed point of 93, with
B = iyoa. Write 9a™(X) = w, X withw, = o™ 1(w™!)...a(wH)w™! € StabQ.
If there exist r # s with w,. = w;, then X is da-periodic and we are done. We
therefore assume |w,; | — 0o. We may also assume that the cancellation in the
product w; X is bounded, since otherwise X € JStab(@. It follows that the
sequence da™(X) has the same limit points as the sequence w,, , and we conclude
by Corollary 3.3.

6. THE TRAIN TRACK AND THE TREE

In this section we let the map fy : G — G be an improved relative train track
representative for (a power of) «, in the sense of [3, 5.1.5]. Basic references are [6]
and §§2.5, 5.1 of [3].

We assume that the top stratum G; is exponentially growing. Edges in G, are
called top edges, edges in the other strata are called zero edges. An illegal turn in
G is a turn between two top edges where folding occurs when some power of fj is
applied (see [6]).

There is at most one indivisible Nielsen path (INP) 7 in G meeting the top
stratum (see [3, 5.1.5 and 5.1.7] for its properties). It has precisely one illegal turn
(its tip), and fo(n) is homotopic to n relative to its endpoints (which are fixed by
fo). If n is a loop, there is no cancellation in n? and the turn at the midpoint of
n? is legal.

We start by changing G into a “train track with shortcut” G, by adding a new
zero edge if needed. This is a very special case of the “train tracks with Nielsen
faces” introduced in [29].

Creating a shortcut.

If there is no INP 7 as above, we let G = G. If there is one, we first subdivide G
(if needed) to ensure that the endpoints of 7 are vertices. Then we enlarge G into
G by adding a new zero edge e with the same endpoints as 1 (these endpoints are
equal if the stratum is geometric). The map fo, originally defined on G, extends
to G (it is defined as the identity on e).

We fix a retraction rog : G — G mapping e onto 7 in a locally injective way.
It induces a homomorphism (o), : 71(G) — m(G) ~ Fy, and we let G be the
corresponding Fj-covering (it consists of the universal covering G of G, together
with lifts of e; if a 2-cell is attached to G along nUe, then C: becomes the 1-skeleton
of the universal covering).

We define top and zero edges on G as on G, we lift vy to a retraction r, and
we define f to be the lift of fy to G that satisfies a(w)f = fw for every deck
transformation w € F,.

Legal paths.
14



We define an illegal turn in G as either an illegal turn in G, or a turn between
e and a top edge which becomes degenerate or illegal in G when e is replaced by
n (recall that n starts and ends with segments contained in the top stratum G; if
an endpoint x of 7 lies in the interior of a top edge of G, exactly one of the turns
at the corresponding end of e is illegal). A turn in G is illegal if it projects onto
an illegal turn.

Paths will always be assumed to start and end at vertices. A legal path, in G
or in é, is a path with no illegal turn. Note that ro maps a legal path locally
injectively, and the image has illegal turns only at the tip of . Given vertices
T,y € é, we let ILT(x,y) be the minimum number of illegal turns on paths from
z to y in G’ .

Now consider the action of fy on a legal path v C G. Write v as a concatenation
of copies of e and legal paths in G. When f; is applied, the paths in G remain
legal and nontrivial (after reduction), by property (RTT-ii) of [6], and the turns
at the endpoints of e remain legal. It follows that fy and f map legal paths to
legal paths. In particular, we have ILT(f(z), f(y)) < ILT(x,y).

Lemma 6.1 [3, 29]. Let x,y be vertices of G. For p large enough, there is a legal
path joining fP(x) to fP(y). More precisely, given § > 0, there exists p such that
ILT(fP(x), fP(y)) < OILT(x,y) for all vertices x,y € G.

Proof. The first assertion is Lemma 3.2 of [29], or Lemma 4.2.6 of [3] (note that
the definition of a legal path used here is slightly stronger than the one used in
[29], but it is easy to make the path legal in the stronger sense).

By Remark 3.3 of [29], there exists p such that ILT(fP(x), fP(y)) = 0 if
ILT(z,y) = 1. This easily implies ILT(f?(z), fP(y)) < 2 ILT(z,y) for all z,y.
The extension to an arbitrary ¢ is immediate. U

The PF-metric and the invariant tree.

Since the top stratum G, is assumed to be exponentially growing, the transition
matrix associated to G; has a Perron-Frobenius eigenvalue A > 1. Using compo-
nents of an eigenvector, one assigns a PF-length |F|pr to each top edge E C G,
with the property that the total PF-length of fo(F) is A\|E|pr. More generally, f
multiplies the PF-length of legal paths by A.

On each of the spaces G and 5, we define a PF-pseudo-distance dpp by giving
top edges their PF-length and assigning length 0 to the zero edges (as usual, the
distance between two points is the length of the shortest path joining them). Note
that these two distances differ on G: the endpoints of a lift of n have PF-distance
0 in g but not in G. The associated metric spaces G pr and gpp are geodesic
(because there is a positive lower bound for the PF-length of top edges), but in
general not proper.

We also define the simplicial distance d, for which top edges have their PF-
length and zero edges have length 1. This makes G and G into proper geodesic
spaces, with cocompact actions of F}. Note that dpp < d.
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Now recall the construction of an a-invariant R-tree T' with trivial arc stabilizers
given in [15]. The pseudo-distance dpp on the tree G satisfies dpp(f(z), f(y)) <
Mpr(z,y), with equality if z and y are joined by a legal path. We define

dOO(x7 y) = pli>n010 )‘_deF(fp(x)7 fp(y))

and we let T be the metric space associated to this pseudo-distance. We denote
by 7 the quotient map = : G — T. The map f induces a homothety H : T" — T,
with mo f = H om. It is proved in [15] that T and H satisfy the conditions of
Theorem 1.2.

Note that the endpoints of a given lift of n have the same image in T, since
their images by f also bound a lift of . This implies that, if we apply the above
construction to dpr on G rather than on é, we get the same space T', and the
quotient map 7 : G — T extends 7.

The maps i : G—>Tandnm:G — T are Fi-equivariant, and 1-Lipschitz for the
respective dpp (hence also for the simplicial metrics). Also note that i and wor
are uniformly close.

The map m, defined on the tree é, sends legal paths PF-isometrically into T,
and (see §1.d) it has bounded backtracking (the image of a geodesic segment [z, y]
is close to [r(z), 7(y)]). We show that i : Gpr — T has similar properties. This is
a quite different statement, because geodesics in G pr can be very different from
simplicial geodesics.

Lemma 6.2 [29, Lemma 3.9 and Proposition 4.2]. A legal path v C G is
PF-geodesic and maps to T PF-isometrically. The map i : Gprp — T has bounded
backtracking.

Proof. Let x,y € G be the endpoints of 7. Let L be the PF-length of v, and m the
number of lifts of e contained in . Then fP(7) is a legal path with PF-length AP L,
containing only m lifts of e. Its image by r is embedded in G and has PF-length
APL 4+ m|n|pp. Letting p — oo shows that i(z) and i(y) have distance L in 7.
Since ¢ is 1-Lipschitz for the PF-metric, we see that v is PF-geodesic and i, is
isometric for the PF-metric.

To prove bounded backtracking, it suffices to consider a PF-geodesic v = [z, y]
in G with i(z) = i(y), and to bound the diameter of i(y). We may assume z,7y €
G. Let 0 be the geodesic [z,y] in the tree G. We know that 7 has bounded
backtracking, so 7(d) is close to i(x). Consider z € v with i(z) far from i(z).
Since ¢ and 7w o r are close, we have r(z) ¢ §. Because G is a tree, 2 belongs to
a subarc [#/,y'] C v with 7(z/) = 7(y') € 6. The points &’ and 3’ are close in G
for the simplicial distance, hence also for the PF-distance. Since 7 is PF-geodesic
(and i is 1-Lipschitz for the PF-metric), i(z) is close to i(z’), hence to m(r(z’)),
hence to i(x). 0

Elliptic elements.
A loop in G represents a conjugacy class in 71(G) ~ Fj. So does a loop in G,
through the homomorphism (rg). : m1(G) — ™1 (G) ~ F.
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Lemma 6.3. Given a conjugacy class [u] in Fy, the following are equivalent:

(1) [u] may be represented by a loop in the zero part of G;

(2) [u] may be represented by a loop in the zero part of G, or [u] is a-invariant
(i.e. a(u) is conjugate to u);

(3) [u] is elliptic in T (i.e. u fixes a point in T ).

Proof. For p > 0, each of the three conditions holds for [u] if and only if it holds
for a?([u]) (for the first two conditions, use Scott’s lemma [3, 6.0.6] to argue that
[u] may be represented by a loop in the zero part if a?([u]) does). By Lemma 6.1
we may assume that [u] is represented by a legal loop 7 in G. By Lemma 6.2, the
translation length ¢(u) of [u] in T is then the PF-length of ~.

If this length is positive, then u is hyperbolic in 7. It cannot be represented
by a loop in a zero part, or be a-invariant (since £(a(u)) = M(u)). If the length
is 0, then [u] is elliptic and ~ is contained in the zero part of G. If [u] cannot be
represented by a loop in the zero part of G, then by [3, 6.0.2] u is (conjugate to)
a power of n (which is a loop). It follows that [u] is a-invariant. O

We may be more specific, working with elements of Fj rather than with con-
jugacy classes. Let Z; be the non-contractible components of the zero part of G.
Images of m1(Z;) in F}, are free factors. By [3, 5.1.5], these factors are a-invariant
(up to conjugacy). Not much changes when we pass from G to G. If Gy is not
geometric, zero components of G yield the same subgroups [3, 5.1.7]. In the geo-
metric case, there is one more component, whose image in F}, is the cyclic group
generated by the loop 1 (which runs once around the closed INP).

If Z is a non-contractible zero component of G, and Zis a component of its
preimage in 5, the image of ZinTisa point 2(2) By Lemma 6.3 the image of
71(Z) in Fy, is the full stabilizer of (Z), and every non-trivial stabilizer arises in
this way: non-trivial stabilizers of points of T are precisely conjugates of funda-
mental groups of non-contractible zero components of G.

7. GEOMETRY ON THE TRAIN TRACK

Spaces quasi-isometric to trees.

If ¢ is a continuous map from [0, 1] to a tree, the image of ¢ contains the geodesic
segment between ¢(0) and ¢(1). Spaces quasi-isometric to a tree have a similar
property.

Lemma 7.1. Let Y be a geodesic metric space quasi-isometric to a tree. There
exists C' such that, if v is a geodesic segment and ~' is any path with the same
endpoints, then every P € v is C-close to some Q € 7.

Proof. Let f : Y — S be a quasi-isometry to a tree. Since f(7) is a quasi-geodesic,
f(P) is close to some R on the geodesic 7 joining the f-images of the endpoints
of v, and R is close to the image of some Q € 4'. The distance from P to this
point () is bounded. O

This basic fact may be extended in several ways.
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If the endpoints of 7/ are only C-close to those of «y, then every P € ~ at distance
at least 2C' from the endpoints is C-close to . If points Py, P, ... appear in this
order on 7, each at distance at least 2C' from the previous one, we may assume that
the associated points @); appear in the same order on ' (construct @; inductively).

Lemma 7.1 also holds if «,~’ are (possibly infinite) quasi-geodesics with the
same endpoints, with C' depending only on the quasi-geodesy constants of ~.

K-PF-geodesics.

Let G be as above. It is equipped with the simplicial distance d, the PF-distance
dpr, and the distance d.. Recall that doo < dpp < d. The space (G, d) is proper
and quasi-isometric to F}, hence to a tree. We identify dG with OF, k. We fix C as
in Lemma 7.1.

The words “geodesic” and “quasi-geodesic” will always refer to the simplicial
metric. We write K-quasi-geodesic instead of (K, K)-quasi-geodesic. A geodesic
relative to dpp will be called a PF-geodesic. If a PF-geodesic is also K-quasi-
geodesic (with respect to d), we call it a K-PF-geodesic. Recall that legal paths
are PF-geodesics.

Lemma 7.2. If K is large enough, the following properties hold:

(1) There exists a K-PF-geodesic between any two points oféu aG.

(2) If there exists a legal path between two points of G, there exists a legal
K-quasi-geodesic between them.

Proof. Given a geodesic segment ~, first choose a PF-geodesic 7/ with the same
endpoints. Place points P;, @); as above (after Lemma 7.1), with d(P;, P;41) = 2C
(we assume that the points @); are vertices). Replace the segment of 7' between
@; and @;+1 by another PF-geodesic segment, with simplicial length as small as
possible. The resulting curve is a PF-geodesic, and it is uniformly quasi-geodesic
because the set of pairs (Q;, Q;11) is finite up to deck transformations (G is a

locally finite graph). If v is infinite, we apply the usual diagonal argument.
If there is a legal 7/, we choose the replacement of [@;, @;1+1] among legal paths
with the same initial and final edges (so that the turns at the @;’s remain legal).
O

Lemma 7.3. Let v C G be a quasi-geodesic ray, with point at infinity X. If
Q(X) € T, then Q(X) belongs to the closure of i(y). If Q(X) € 9T, then i(7)
contains a ray going out to Q(X).

Proof. Fix e > 0. Choose a basis A such that f4 : Z4 — T has backtracking less

than € (see §1.d). As in [26, proof of 3.1], subdivide G to get edges all of simplicial

length < e and construct an equivariant map ¢ : G — Z4 such that f4 0 ( is
2e-close to i. As Z 4 is a tree, the image of v in Z 4 contains a ray p going out to

X. If Q(X) €T, it is 2e-close to fa(p) by Lemma 1.3, hence 4e-close to i(7y). If
Q(X) € 9T, then f4(p) contains a ray going out to Q(X) by Lemma 1.3. O

Let BBT (i) denote the backtracking constant of 4 : Gpp — T (see Lemma 6.2).
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Corollary 7.4. If v C G isa K-PF-geodesic ray, with point at infinity X, and
i maps the origin of v to Q(X) € T, then i(y) is contained in the BBT(i)-ball
centered at Q(X).

Proof. Suppose a point = € « is mapped by i at distance > BBT (i) from Q(X).
Since ~ is PF-geodesic, the point at distance BBT(¢) from i(z) on the segment
[Q(X),i(x)] separates Q(X) from i(y) for y € v closer to X than z. This contra-
dicts Lemma 7.3. O

An inequality.
Recall that I LT (x,y) is the minimum number of illegal turns in any path from
r toyinG.

Lemma 7.5. There exist constants C, Cy such that

for all vertices x,y € G.

Proof. The first inequality is clear, since an illegal turn involves at least one top
edge. For the other, choose a path v from z to y with minimal number of illegal
turns and divide it into legal subpaths v;. We define a subset J C « in the following
way: the intersection of J with 7; is the maximal subpath J; C v; bounded by
points of the full preimage r»~!([z,y]) (where [z, y] denotes the segment joining
and y in the tree G). Note that ~\ J consists of at most LT (x,y) intervals.

If u,v bound a component of v\ J, they have the same image in G. Therefore
their simplicial distance (hence also their PF-distance) is bounded. We complete
the proof by showing that the PF-length of a J; is bounded by the sum of d(z, y)
and a constant.

Recall that 7 : G — T has backtracking bounded by some C’, and that i and
mor are C”-close for some C”. If u,v € r~*([z,y]), then in T we have

dr(mr(u), mr(v)) < dr(n(z), 7(y)) +2C"
and therefore
doo(u,v) < doo(z,y) + 2C" + 4C".
This bounds the PF-length of a J;, because dpp(u,v) = doo(u, v) if u, v are joined

by a legal path. O

8. PrROOF OF THEOREM 5.1

We fix o € Aut (Fy), and we assume that there is no simplicial a-invariant tree
with trivial arc stabilizers.
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Paired train tracks.

We need to consider both a train track G for o and a train track G’ for a~!.
We want them to be “paired”, in particular we want the corresponding trees T’
and T” to have the same elliptic elements.

Let G be given by [3, 5.1.5]. We may assume that the top stratum G is expo-
nentially growing, since otherwise there is a simplicial a-invariant tree (obtained
from G by collapsing all zero edges).

Now apply [3, 5.1.5] to a~! and the free factor system F = F(G \ G;) (consist-
ing of fundamental groups of noncontractible components of the zero part of G),
obtaining a train track G’ for a~!. We may assume that the top stratum of G’ is
also exponentially growing (otherwise there is a simplicial invariant tree). Since
the train track maps given by [3, 5.1.5] are reduced, the free factor systems F and
F’ (associated to the zero parts of G and G’) are equal.

All the constructions of §6 may be applied to G’. We use ' to denote the
corresponding objects. In particular, we have a graph G’ (obtained from G’ by
adding a shortcut if needed), a map f” : G' — G', a PF metric on G, and an R-tree
T.

Since F = F’, the set of conjugacy classes of F) represented by loops in the
zero part is the same for G and G’. Furthermore, the fundamental groups of non-
contractible components of the zero parts of G and G’ map onto the same subgroups
in Fj, (this follows from Lemma 6.3 and the remarks following it, noting that «
and o~ ! have the same invariant conjugacy classes). This implies that 7', 7" have
the same elliptic elements, and also:

Lemma 8.1. The spaces GPF and G}F are Fy-equivariantly quasi-isometric.

Note that, of course, any equivariant map from GtoG isa quasi-isometry for
the simplicial metrics.

Proof. This is standard, and we only sketch an argument (compare Proposition 3.1
of [13]). Without changing the quasi-isometry type of Gp r, or images of the zero
parts in Fj, we may contract to a point a zero edge of G with distinct endpoints,
or contract a top edge if its endpoints are distinct and at most one touches the
zero part.Using these operations and their inverses, we may assume that G has the
following standard form: it has one central vertex v, with top loops 6; attached,
and top edges vv; with a zero component Z; attached at each v;.

The space Gpr is then quasiisometric to the Cayley graph of Fj with respect to
the infinite generating system consisting of (the images in F}, of) the 6;’s and the
whole fundamental groups m1(Z;,v;). The space é}; r has a similar structure, and
the two Cayley graphs are quasi-isometric because one can express each element
of one generating system as a word of bounded length in the other system. a

Creating a fixed point.
We want f to have a fixed point R in G. To achieve this, we may have to add
an edge to G (compare [29, §6]).
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If the fixed point Q of H is in T \ T, there is an eigenray p (see §1). Choose
z € G with i(z) € p. By Lemma 6.1, there is a legal path between fP(z) and
fP+i(z) for p large. Recall that legal paths map PF-isometrically into 7. We may
assume that y = fP(z) and all its further images by f are interior points of top
edges (this rules out countably many choices for the image of x on p).

We now attach an extra edge [R,y] to G (or rather an edge [wR,wy] for every
w € Fy). We extend f by mapping [R, y| to the segment [R, f(y)] (which contains
y), keeping the relation a(w)f = fw satisfied. The new edge is a top edge, with
PF-length chosen so that dpp(R, f(y)) = Adpr(R,y). One of the new turns at y
is legal, the other is not.

Everything said above extends to this enlarged space, still denoted G. In par-
ticular, Lemmas 6.1 and 6.2 still hold. The associated R-tree (still denoted by T')
consists of the previous T' together with the orbit of ). The image of the new
edge [R,y| in the tree is the initial segment [Q, i(y)] of the eigenray.

If H has a fixed point in T, lift it to x € G and choose p so that there is a
legal path between y = fP(x) and f(y) = fP*!(z). Since legal paths map PF-
isometrically into 7', and 7 o f = H o4, this path contains only zero edges. If
f(y) # y, we attach an edge [R,y| as above, but now the new edge is a zero edge.

The main argument.

We fix G and G/ , paired as above. Adding an edge if needed, we may assume
that there are points R, R in G, G’ fixed by f, f’. They project to the fixed points
Q, Q' of H and H'. We denote by C, C’ the zero components of G, G’ containing
R, R'. Recall that 0G and 9G' are identified to OF k-

The stabilizer of C in F}, is Stab @) (see §6). It may be characterized as the only
stabilizer which is invariant under « as a subgroup (not just up to conjugacy). In
particular, Stab @ = Stab Q’.

We always assume that the numbers C, K, C', C5 introduced in § 7 work for both
G and G'. Unless mentioned otherwise, distance refers to the simplicial metric.

We consider X € 0F), with Q(X) = @. The numbers p, i, v introduced in the
next lemmas will not depend on X. These lemmas apply to the whole da-orbit of
X since Q(0a" (X)) = Q for every n € Z.

Lemma 8.2. Given € > 0, and K sufficiently large, there exist p = p(e) and
= p(e, K) such that

dpp(R, fP(P)) <€ dpr(R,P)+ p

for all points P on a K-quasi-geodesic ray v = [R, X ) C G with QX)=Q.

Proof. Choose ¢ with §(BBT (i) + C3) < Cie, where C1,Cy come from Lemma
7.5. Fix p as in Lemma 6.1 (depending on 9).

Let v, be a K-PF-geodesic from R to daP(X). We claim that fP(P) is D-close
to some S € 7, with D depending only on K and p (but not on P or X). This
is because fP is a quasi-isometry, so fP() is a quasi-geodesic from R to daP(X)

with quasi-geodesy constants depending only on K and p.
21



We may assume that D also bounds ILT(f?(P),S) and dpp(fP(P),S). Then
ILT(R,S)— D < ILT(R, f?(P)) < 6ILT(R, P) < §/Cy dpp(R, P)
by 6.1 and 7.5, and
dpr(R, fP(P)) <dpr(R,S)+ D < (ILT(R,S) + 1)(ds(R, S) + C3) + D

by 7.5.

Note that d(R,S) is the distance between Q = i(R) and i(S) in T. Since
vp is a K-PF-geodesic with origin R, and its point at infinity daP(X) satisfies
Q(0a? (X)) = @, Corollary 7.4 yields do (R, S) < BBT(i). We obtain an up-
per bound for dpp (R, fP(P)), which is a linear function of dpr(R, P) with slope
(6/C1)(BBT(i) + C3). The lemma follows. O

Lemma 8.1 yields an Fj-equivariant map ¢ : G — G’ which is a quasi-isometry
for the PF-metrics. It is also a quasi-isometry for the simplicial metrics. Similarly,
choose v : G’ — G. Let L be an upper bound for all quasi-isometry constants. Fix
e with 2L2%¢ < 1 and choose p as in Lemma 8.2.

Lemma 8.3. Given K' > 0, there exists v > 0 such that
dpF(R/, f/p(P/)) Z 2dpF(R/, P/) — UV

for all points P' on a K -quasi-geodesic ray v’ = [R', X) C G withQ(X)=Q € T
Note that the equality Q(X) = @ does take place in T' (not in T").

Proof. Like v, the numbers Dy, Dy, D3 introduced later in this proof will depend on
the choices made above, and on K’, but not on P’ or X. There exists D; such that
1 (P’) belongs to a Dy-quasi-geodesic 6 from R to X. Choose a K-quasi-geodesic 7y
from R to a™P(X). Since # and fP(v) are quasi-geodesics with the same endpoints,
(P") is Da-close to a point of the form fP(P;), with P; € ~. Finally, we observe
that ¢(Py) is Ds-close to f'P(P’), because f'P o p o fP is Fi-equivariant, hence at
a bounded distance from .
Now we consider PF-distance. Working modulo additive constants, we have

dpr(R',P'") < Ldpr(R, fP(P)) < Ledpp(R, P1) < L*edpp(R', f'(P"))

(the second inequality comes from Lemma 8.2, the other two from the quasi-

isometry properties of ¢ and ¢). Lemma 8.3 follows since we have chosen L?e < %
O

Fix K’ so that Lemma 7.2 applies in G'.
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Lemma 8.4. If Q(X) = Q, there exists a legal K’ -quasi-geodesic between R’ and
X indg.

Proof. Let 7' be a K’-PF-geodesic ray between R’ and X. Fix P € 4/. By 7.1 (and
its extension to quasi-geodesic rays), it is C-close to all quasi-geodesics between
R’ and X. We apply this to f'"P(y/,), where n is a large integer and v/, is a K’-
PF-geodesic between R’ and 0a™P(X). We see that P is C-close to f'"P(P,) for
some P, € v/.

By 8.3 applied to ~/, we have

dpF(R/,f/np(Pn>) — VUV Z Qn(dpF(R/,Pn> — V),

so dpp(R', P,) < v+ 1 for n large since the left hand side is bounded. This gives
a uniform bound for ILT(R’, P,), and by 6.1 we deduce ILT(R', f'"?(P,)) = 0
for n large.

By 7.2, there exists a legal K’-quasi-geodesic between R’ and f'"P(P,). Since
f'"P(P,) is C-close to P, we conclude by a diagonal argument, letting P go to
infinity on +’. O

Since Q(0a™(X)) = @, we get:

Corollary 8.5. If Q(X) = Q, then for every n € Z there exists a legal K’-quasi-
geodesic between R and 0a™(X) in G'. O

For notational simplicity we state the next results in G , even though we will
apply them in G’.

Remark 8.6. If p is an eigenray of H (so that X = j(p) is a fixed point of d«),
there exists a legal quasi-geodesic v between R and X in G (take x € G mapping
into p; then f"(z) — X € 86, and for n large there is a legal K-quasi-geodesic
between R and f"(z) by 6.1 and 7.2; in fact, v consists of an initial segment
contained in the zero part, followed by a legal ray in é) More generally, there is
a legal quasi-geodesic between R and wX for w € Stab Q.

The following lemma is a converse to this remark.

Lemma 8.7. Let X € 0Fy. Suppose that for every n € N there exists a legal
quasi-geodesic ray between R and da~"(X) in G. If X ¢ OStabQ@, there exist
q > 1 and w € Stab @ such that X is a fized point of (i, o a?).

Proof. Let E, E' be oriented top edges with origin in C, the zero component of G
containing R. Their images in T" are non-degenerate arcs with origin (). In the
special situation that E, E' are in the same Fj-orbit, but distinct, i(E) and i(E’)
don’t overlap (because arc stabilizers of T are trivial). When E, E’ are arbitrary
(but distinct), we get a positive lower bound for possible overlaps between i(E')
and i(E’), hence also for possible overlaps of images of legal quasi-geodesics with
origin in C.
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Let v be a legal quasi-geodesic from R to X. If it contains only zero edges,
then X € 9Stab@. From now on we assume that v has positive PF-length. Its
image in T is a non-degenerate (possibly open) segment s(X ) with origin @), which
depends only on X (Lemma 7.3 implies that s(X) is the set Bx defined in §1,
possibly with Q(X) added or removed). Note that s(0a(X)) = H(s(X)).

We claim that there exist ¢ > 1 and w € Stab @ such that s(X) and s(wda4(X))
have nontrivial overlap.

There is an action of fy on the (finite) set of oriented top edges of G (associate
to each top edge the first top edge of the image edge path), so there exists r
such that fj of every element is periodic. Considering the image by f" of a legal
quasi-geodesic from R to da~"(X) in 5, we see that there exists a legal quasi-
geodesic v from R to X such that the initial top edges of v and some f?(y) are in
the same Fj-orbit (hence in the same Stab Q-orbit since Stab @ is the set of deck
transformations mapping C to itself). This proves the claim.

Let =i, 0al, so wdal(X) = 9JB(X). Since 7" (X) is in the same Stab Q-
orbit as da~"4(X), there is a legal quasi-geodesic y_,, from R to 957" (X). If the
overlap between s(X) and s(93(X)) is finite, then the overlap between i(y_(,41))
and i(y_,) is finite and proportional to A~"¢. This is a contradiction since we
have seen that it cannot be arbitrarily small.

It follows that s(X) equals s(03(X)) and has infinite length, so that it is an
eigenray of the homothety wH? associated to 3. We conclude that X = j(s(X))
is a fixed point of J0. O

We can now conclude.

Proof of Theorem 5.1. Recall that Stab @ = Stab@’. If Q(X) = @, we may apply
8.7 in G/ (thanks to 8.5). If X ¢ OStab@, we obtain that X is a fixed point of
O(iy o @™9) (the exponent is negative because G’ is a train track for a=!). Of
course this implies that X is a fixed point of 9(iq(w-a) © @), as required. a

9. MORE ON THE DYNAMICS

Products of trees.
The techniques used in the previous sections also give:

Theorem 9.1. Given o € Aut (Fy), there exist an a-invariant R-tree T' and an
a~l-invariant R-tree T', as in Theorem 1.2, and there exists € > 0, such that for

every g € Fy, one of the following holds:
(1) g is elliptic in T and T";
(2) g is hyperbolic in T and T', and has translation length > ¢ in T or in T’
(or in both).

This theorem was proved in [2] and [28] for « irreducible with irreducible powers
(no proper free factor of Fj is a-periodic, up to conjugacy). It means that the
diagonal action of Fj on T' x T" is discrete. See [18] for further results about such
actions.
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Proof. The result is clear if there exists a simplicial a-invariant tree T, with 7" =
T. If not, we let T, T” be as in §8. We use the same notations.

We already know that T and T” have the same elliptic elements. We assume
that there is a sequence g, with ¢(g,) and ¢'(g,) positive and going to 0, and we
argue towards a contradiction.

If 2,y € G satisfy doo(z,y) < 1 and ILT(xz,y) > 1, then by 7.5 the ratio
between dpr(z,y) and I LT (z,y) lies between C~! and C for some C > 1. Similar
considerations apply to G’, we fix C' working for both G and G'.

Represent (the conjugacy class of) g, by a PF-geodesic loop v, C G. We write
ILT(vy,) for the number of illegal turns of ,,. If ILT(v,) remains bounded, then
by 6.1 there exists r such that a"(g,) is represented by a legal loop. The PF-
length of that loop is bounded away from 0, and so is £(g,) = A™"¢(a"(gn)) by
6.2. Assume therefore that ILT(7,) goes to infinity.

Let L be as above (quasi-isometry constant). Fix § > 0 with LC?§ < 1. Let p
be given by 6.1 (applied to d in both G and é’) Choose z € G projecting into v,
in G and into the axis of g, in T, and let y = g,z. Note that do(z,y) = ¢(gn)
and doo (fP(x), fP(y)) = NPdoo(z,y) go to 0 as n — oo.

For n large we have

dPF(fp(x>7 fp(y>) S C- ILT(fp(LE‘), fp(y>) S 05 : ILT(CE, y) S CQ(SdPF(ma y)?

showing that h,, = oP(g,) may be represented in G by a loop of PF-length less
than C?6|y,|pr, hence in G’ by a loop of PF-length less than LC?5|v,|pr + L.
Since ¢'(hy) goes to 0, we may apply the same argument to h,, in é’, and we
get |ynlpr < (LC%6)%|vn|pr + D for some constant D = D(L,C,§). This shows
that |v,|pr, hence ILT(7,), is bounded, a contradiction. 0

Dynamics of irreducible automorphisms.

Consider a € Aut (Fy). For simplicity assume that all periodic points of @ are
fixed points (this may be achieved by raising a to some power). Recall [15] that
fixed points of da not in JFix « are either attracting or repelling, and the action
of Fix @ on Fix da \ OFix o has finitely many orbits.

When Fix « is trivial, Fix O« is the vertex set of a finite bipartite graph I', with
an edge from a repelling point X; to an attracting point X5 if and only if there
exists X € OFy, with lim,, 4 da™"(X) = X; and lim,,_, ; o 02" (X) = X5. Note
that every component of I' contains at least two vertices.

Recall that an automorphism « is irreducible with irreducible powers (iwip) if
no proper free factor of Fj is a-periodic (up to conjugacy).

Dynamics of geometric iwip automorphisms (induced by a pseudo-Anosov home-
omorphism of a compact surface with one boundary component) is well-understood.
Because there is an invariant cyclic ordering on 0Fj, the graph I' (defined when
Fix «v is trivial) is either a single edge or it is homeomorphic to a circle (the second
author has conjectured that this property leads to a characterization of geometric
automorphisms).
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We focus on non-geometric iwip automorphisms (in this case, Fix « is always
trivial [6]). We do not know which graphs I' may appear in this context. We only
prove:

Theorem 9.2. Let o € Aut (Fy) be irreducible with irreducible powers, not geo-
metric. Assume that all periodic points of Oa are fived points. Then either the
graph T has exactly two vertices, or every component of I' contains strictly more
than two vertices.

Proof. Let T be an invariant R-tree as in Theorem 1.2 (it is unique up to rescaling
in this case, see [26]). It is well-known that Fix « is trivial, and the action of Fj
on T is free (this may be deduced from [6] and Lemma 6.3). We have A > 1, and
we let Q be the fixed point of H (in T).

By Proposition 3.4, all components of T \ {Q} are fixed by H. If g € Fy, is
nontrivial, then a™(g) converges to the attracting fixed point j(p), where p is the
eigenray of H contained in the component containing g@ (see the proof of Theorem
3.1). There is a similar relation between the o~ !-invariant tree T’ and repelling
fixed points of da.

We may assume that da has at least two attracting fixed points, and two
repelling ones (otherwise, the result is trivial). By 3.4 this implies that T \ {Q}
has at least two components, so @ belongs to T' (not just to T'). Similarly Q' € T".
We now argue by way of contradiction, assuming that some component of I' has
only two vertices, an attracting fixed point X and a repelling point X’. Let C,C’
be the corresponding components of 7'\ {Q}, TV \ {Q’} respectively, and p the
eigenray of H contained in C.

Viewing nontrivial elements of F}, as hyperbolic isometries of T', we claim that
there exists g € I}, whose translation azis A, passes through @ and intersects p
in a segment strictly longer than the translation length ¢(g) (i.e. gQ is an interior
point of AgNp).

Assuming this claim temporarily, we complete the proof as follows. The point
g7 1Q belongs to a component C; of T\ {Q} distinct from C. Since the edge
X'X of I is isolated, the point g71Q’" € T' belongs to a component C; of T\ {Q’}
distinct from C" (otherwise I would contain an edge between X’ and the attracting
fixed point corresponding to C;). Now consider g~ 'aP(g), for p large. The point
g 1aP(9)Q = g HP(gQ) € T belongs to C because of our choice of g. In T', on
the other hand, the point ¢~ ta?(¢)Q’" = ¢ 1(H')"P(g9Q’) is close to g~1Q’ and
therefore belongs to C;. It follows that X is joined to two distinct vertices of T', a
contradiction.

There remains to prove the claim. We use the terminology of §6. Since d«
has at least two attracting fixed points, it follows from [15, p. 431] that f has a
fixed point R € G. By Remark 8.6, there exists a legal quasi-geodesic v between
R and X = j(p). By irreducibility of a, the projection of v onto G passes again
over its initial top edge (with the same orientation). This defines a loop in G,
and a nontrivial g € Fj, mapping an initial segment of 7 into « (in an orientation-
preserving way). This is the required g. O
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The number of periods.

Given a € Aut (F},), recall [25] that periods of elements of F}; for o are bounded
by A, the maximum order of torsion elements in Aut (F}), and periods of elements
of OF} are bounded by My = 2kAj. For k large, one has log Ap ~ log M}, ~
VEklogk.

Examples of automorphisms with many periods may be constructed as follows.
Let p be a prime number. Let o be a permutation consisting of one cycle of order
p’ for each prime number p’ < p. It defines a periodic automorphism « of Fj, with
k=2+3+---+p. The periods of @ are exactly the divisors of 2-3---p. A simple
computation (based on the prime number theorem) shows that, for p large, the

k
logk*

logarithm of the number of periods of @ is asymptotic to 2log?2 -

Theorem 9.3. Given o € Aut (Fy), the number of periods of periodic points of

o is bounded by Ny, with log N ~ 2log?2 - ,/ﬁ.

Proof. First consider periods of elements of Fj. Let P(a) be the periodic sub-
group (consisting of all a-periodic ¢ € Fj). Since P(«a) is the fixed subgroup
of some power of «, it has rank at most k& by [6]. The number of periods of
« is bounded by the number of divisors of o(«), where o(«) is the order of «
in Aut (P(a)). Now o(a) < Ag, and the number d(n) of divisors of n satisfies

logd(n) logl
og d(n) loglog n = log 2 (see [19, Theorem 317]). Replacing n by Ay with

lim sup
n—+o00 logn

log A ~ v/klogk gives Ni as in the theorem.

If X € OF}, is periodic, and no g € F} has the same period, the proof of Theorem
2.1 of [25] shows that the period of X divides rs, where r < 2k and s is the period
of some g € Fj. The estimate therefore also holds for the periods of da since
log 2k Ny, ~ log Nj. O

Automorphisms with many fixed points.
We give a short proof of a result due to Bestvina, Feighn, Handel [5], improving
their lower bound from 3 to 4.

Proposition 9.4. For any outer automorphism ® of Fy, k > 2, there exist ¢ > 1
and B € Aut (Fy) representing ®? such that 08 has at least four fized points. If
u € Fy is fized by some a € Aut (Fy) representing ®, we may require 3(u) = u.

Remark. With the terminology of [15, §6], we shall prove that any ® € Out Fj
has a power with positive index. It is not always possible to take ¢ = 1: if « € ®

cyclically permutes the elements of a free basis of Fy, it follows from [8] that ¢ has
to be divisible by k.

Proof. Starting with a € ®, we will keep replacing it by a power o, or by ., o «,
so as to finally obtain an automorphism (still denoted by «) with at least four
fixed points on OF}.
Let T be an a-invariant R-tree as in Theorem 1.2. Replacing a by o or by
14 © v amounts to replacing H by H® or wH.
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By assertion (d) of Theorem 1.2, we may assume that H fixes a branch point
@ € T and acts trivially on the set of Stab Q-orbits in mo(7'\{Q}). We distinguish
several cases.

If A > 1 and Stab @ is trivial, then O« has at least three attracting fixed points
(see Proposition 3.4). There is a fourth, repelling, point. If A > 1 and Stab@ = Z,
some wH with w € Stab () has an eigenray and there are infinitely many attracting
periodic points (because Fix da? is invariant under the action of Stab@). If A > 1
and Stab () has rank > 2, we use induction on k.

If A =1, we may assume that H fixes an edge e = [@, R], and we collapse every
edge not in the orbit of e. In the new tree, Stab () and Stab R are non-trivial and
a-invariant. This proves the first part of the proposition.

Now assume « fixes some nontrivial u € Fj, (and therefore da has two fixed
points u*°°). Note that H commutes with u. If u fixes a (unique) point Q € T (in
particular if A > 1), this point is also fixed by H and we argue as before. Finally,
suppose A = 1 and w is hyperbolic. In this case we may assume that H equals the
identity on the axis A of u (replace H by some u" H®). After possibly collapsing
we get () € A with nontrivial stabilizer and we consider as¢ap - O

10. HYPERBOLIC GROUPS

Bounding periods.

Let T' be a torsion-free hyperbolic group. Given o € Aut (I'), let Fixa be its
fixed subgroup, and P(«a) = U,Fixa™ be its periodic subgroup. A subgroup of I'
is a fized subgroup (resp. a periodic subgroup) if it equals Fixa (resp. P(«)) for
some « € Aut ().

Proposition 10.1. FEvery periodic subgroup is hyperbolic. Up to isomorphism,
there are only finitely many periodic subgroups in a given I'.

Proof. Most arguments come from [35]. There are two cases.

e Suppose T is one-ended (= freely indecomposable). By [34, Theorems 3.2 and
4.1], the group P(«), if not trivial or cyclic, is a vertex group in some splitting of T’
with cyclic edge groups. By [17], such a splitting is obtained from the JSJ splitting
constructed in [7] by blowing up vertices with group equal to Z, blowing up surface
vertices along disjoint simple closed curves, and then collapsing edges. Finiteness
of the set of curves on a compact surface (up to homeomorphism) implies that
there are only finitely many possibilities for P(a)) (up to an automorphism of T).
Furthermore, P(«) is hyperbolic because it is a vertex group in a splitting with
quasiconvex edge groups [7].

e Now suppose that I' is the free product of cyclic groups and one-ended groups
I';. By the Kurosh subgroup theorem, P(«) is the free product of cyclic groups and
subgroups H; of conjugates K; of the I';’'s. The number of factors is the Kurosh
rank of P(a). It is finite because P(a) is the increasing uni on of the Fix (a™'),
whose Kurosh rank is uniformly bounded [10].

If oP(I';) meets I'; non-trivially, then o?(I';) = I';. It follows that each K
is a-periodic, and therefore H; = P(«) N K; is the periodic subgroup of some
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automorphism of K;. By the first case, H; is hyperbolic and has only finitely
many possibilities (up to isomorphism). The same is therefore true of P(«). O

Since P(«) is finitely generated, the restriction of o to P(«) has finite order.
In particular, every periodic subgroup is a fixed subgroup and is quasiconvex [31].

Recall [23] that for P torsion-free hyperbolic there are only finitely many con-
jugacy classes of torsion elements in Aut (P). Conjugate automorphisms having
isomorphic fixed subgroups, we deduce:

Corollary 10.2 (Shor [35]). Up to isomorphism, there are only finitely many
fixed subgroups in a given torsion-free hyperbolic group I g

We have also proved part of assertion (1) of Theorem III:

Corollary 10.3. Given a torsion-free hyperbolic group T, there exists M such
that, if g € T is periodic under o € Aut (T'), then the period of g is at most M.

Proof. The period of g divides the order of a in Aut (P(«)). 0

One-ended groups.

Theorem IIT will first be proved for torsion-free groups, in this subsection (one-
ended groups) and in the next (groups with infinitely many ends). Groups with
torsion will then be considered.

Let T be a torsion-free one-ended hyperbolic group, and o € Aut (I'). Using
Corollary 10.3, we shall prove that every X € 0" is asymptotically periodic, with
a uniform bound (depending only on I') for the period of the limiting orbit. This
will prove assertions (1) and (3) of Theorem III for I'. Assertion (2) is proved by
similar arguments, or deduced from (3) since the sequences a™(g) and da™(g)
have the same limit points when ¢ is not a-periodic (see [24, proof of 2.3]).

We use the JSJ-splitting of I', first introduced by Sela. We prefer to follow
Bowditch’s approach [7] because of its strong uniqueness properties. The JSJ-
splitting decomposes I' as the fundamental group of a finite graph of groups, with
associated Bass-Serre tree 1. Since T is constructed purely from the topology of
JI', the group Aut (I') acts on 7" in the same way as on JI'. In particular, there is
an isometry H : T'— T as in Theorem 1.2.

Edge stabilizers are cyclic. Vertex stabilizers Stab @) are quasiconvex [7], hence
hyperbolic. Furthermore the boundary of I' is the disjoint union of the set of ends
of T' (embedded into OI' by a map j as in §1.d) and the (non-disjoint) union of
the boundaries OStab @ of the vertex stabilizers (see [7]).

A vertex stabilizer Stab @ is cyclic, or free (“hanging fuchsian”), or “relatively
rigid” (the subgroup of Out (Stab @) consisting of outer automorphisms fixing
stabilizers of edges incident to @ (up to conjugacy) is finite; as explained in [23],
this follows from [1] and [32]).

If an edge e of T is fixed by H, its stabilizer is an a-invariant cyclic subgroup
of I'. By Corollary 10.3, we may raise « to a fixed power (depending only on I')
to ensure that any H-periodic edge is in fact fixed.

Suppose that a vertex Q € T is fixed by H. Then Stab () is a-invariant, and
the induced automorphism has finite order in Out (Stab@) (if Stab@ is cyclic
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or relatively rigid) or is a geometric automorphism of a free group (if Stab @ is
hanging fuchsian). It follows that any X € 9(Stab @) is asymptotically periodic,
with a uniform bound on the period.

The proof for arbitrary X now is fairly similar to the proof of Theorem 4.1.
Lemma 3.2 extends to actions of torsion-free hyperbolic groups with trivial or
cyclic edge stabilizers (compare [11, 21]). Lemma 2.1 also extends to torsion-free
hyperbolic groups.

Let X € OI'. If the isometry H : T'— T is hyperbolic, with axis A, then either
X = j(A7) is fixed by da, or da™(X) converges to j(AT) as n — +oo. If H is
elliptic, let P be its fixed subtree (equal to the set of periodic points).

First suppose X € dStab R for some vertex R. Using remarks made above, we
may assume that R cannot be chosen in P. Let ) be the point of P closest to R.
Let C be the component of 7'\ {Q} containing R. If g, € Stab R converges to X,
we have g,@) € C for p large, because otherwise g, € Stab (@) and we could have
chosen R in P. Now apply Lemmas 3.2 and 2.1 as in the proof of Theorem 4.1.
Note that Remark 2.2 provides a uniform bound for the cardinality of w(X).

If X = j(p) for some end p of T, then either p is an end of P (and X is fixed
by da), or we apply Lemmas 3.2 and 2.1 using the point @) € P closest to p and
the component C of T\ {@Q} containing p.

Free products.

Let I" be torsion-free, with infinitely many ends. We write I' = Fjx 'y %-- -,
with each I'; one-ended. We will use the invariant R-tree given by the following
result.

Theorem 10.4. Given o € Aut(I'), there exist an R-tree T and a homothety
H satisfying conditions (a), (b), (¢) of Theorem 1.2. Furthermore each T'; (1 <
i < m) fizes a point of T, and there exists a I'-equivariant injection j : 0T — OT
satisfying Oavo j = jo H.

Proof. The construction of T" in the case of F; has been sketched in §6 (see [15] for
details): equip G with the PF-metric d pr, and consider the metric space associated
to doo (Wwhen A = 1, simply collapse components of the zero set of G to points). The
proof in the general case is similar, using the “efficient representatives” constructed
by Collins-Turner in [10]. The only difference is that the zero set is a 2-complex
(not necessarily a graph), but this difference is irrelevant as each component gets
collapsed to a point.

Conditions (a) and (b) of Theorem 1.2 are proved as in [15] (Lemmas 2.7 and
2.8), and T'; fixes a point in T" because it fixes a component of the zero set in G.
The map j is constructed as in [15, Lemmas 3.4 and 3.5], but we need to show
that equivariant maps from Cayley graphs of I" to T" have bounded backtracking
(in the sense of §1.d).

This is true for maps to G (equipped with a simplicial metric), because G is
quasi-isometric to I'. Therefore it is also true for maps to the tree Ty obtained from
(é, dpr) by collapsing the zero set. When A > 1, we further observe that the map
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f : Ty — Tp induced by f is A-Lipschitz for the PF-metric, and has backtracking
bounded by some constant K. Letting d,,(z,y) = A Pdpp (F(x), 7' (1)), we deduce
that the identity map from (Ty,dpr) to (1p,d,) has backtracking bounded by
KA\ '+ -+ A7P). The canonical map from (Tp,dpr) to T = (Tp,dw) is 1-
Lipschitz, and has bounded backtracking because the series A= +--- + \7P 4 ...
converges. It follows that equivariant maps from Cayley graphs of I' to 1" have
bounded backtracking. O

Recall that the rank rk (J) of a group J is the minimum cardinality of a gener-
ating set (not to be confused with the Kurosh rank used in [10]).

Theorem 10.5 (Gaboriau [14]). Let " and T be as above. For any Q € T, the
stabilizer Stab @ has rank vk (Stab@) < rk (I') — 1, and the action of Stab@ on
mo(T \{Q}) has at most 2rk (I') orbits. 0

We can now prove Theorem III for I'. Let T" be as in Theorem 10.4. Note that
for Q@ € T the intersection of Stab @ with a conjugate gI';g~*! is either trivial or
the whole of gI';g~! (because arc stabilizers are trivial and T'; fixes a point). Thus
vertex stabilizers are free products, with each factor free or isomorphic to some
[';. They are “simpler” than T' by Theorem 10.5, quasiconvex (see e.g. [21, 36]),
and up to isomorphism they belong to some finite set depending only on T'.

The proof of assertion (2) of Theorem III now proceeds exactly as in the case
of F}, (Theorem 3.1), by induction on rank, since the result is already known for
one-ended groups.

To prove assertion (1), we need to bound the period of a da-periodic X € IT.
If X € OP(«), the period is bounded by the order of a in Aut (P(«)). If not, then
X is attracting or repelling, hence belongs to the w-limit set (for o or a™1) of
every g € T close enough to X in T (see the discussion in §4 of [25]). We therefore
reduce to controlling the cardinality of w(g).

The arguments from the proof of Theorem 3.1 do not provide uniform bounds,
for two reasons. If A > 1 and the component C is H-periodic, we do not have a
bound for the period. If A = 1 and the isometry H is elliptic, we do not have a
bound for the period of its periodic points.

We first show that, if Q is a fixed point of H, there is a bound depending only
on I for the period p of an H -periodic component C of T\ {Q}. By Theorem 10.5
we may assume that H acts trivially on the set of orbits of the action of Stab Q)
on mo(T"\ {Q}). We then have HC = wC for some w € Stab (), and H?C = w,C
with w, = a?~H(w) ... a(w)w. From w, =1 we get o (w) = w, hence o’ (w) = w
for some r depending only on I' by Corollary 10.3, and finally w, = 1 because
(wy)? = wp, = 1. This implies p < r.

Recall that we want to bound the period of X € w(g). If A > 1, the arguments
from the proof of Theorem 3.1 show that either X = j(p) for some H-periodic ray,
and we are done, or w(g) C dStab @ and we can use induction on the rank of T'.

Now suppose A = 1. There is a problem only if H is elliptic and has periodic
points with large periods. It then has a fixed point @), and using the fact proved
above about periodic components of T'\ {@} we may assume that H fixes an edge
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e (this involves raising a and H to some power depending only on I'). Consider
the tree T” obtained by collapsing all edges of T' not in the I'-orbit of e.

It satisfies the conditions of Theorem 10.4, and the quotient graph 7”/T" has
exactly one edge (it is a segment or a loop). We can now complete the proof by
induction, using the special form of « as in [15, pp. 442-443] (if for instance T”/T
is a segment, then a preserves a nontrivial decomposition of I' as a free product,
and any attracting periodic point X may be written X = gX’ where g € T is
a-periodic and X’ is contained in the boundary of a free factor). This completes
the proof of assertion (1) of Theorem III.

The proof of assertion (3) is the same as for free groups (proof of Theorem 4.1).
Lemma 4.3 extends, replacing M} by the bound obtained above. This completes
the proof of Theorem III for torsion-free groups.

Groups with torsion.

The goal of this subsection is to extend Theorem III to virtually torsion-free
groups. We start with general considerations.

Suppose A has finite index in a group I'. Then there exists k such that, for every
a € Aut (T), every coset of I' modulo A is mapped to itself by o*. In particular,
o (A) = A for every a € Aut (I'). Of course o |5 is polynomially growing if c is.

Suppose furthermore that there is a bound for the order of torsion in A. Then
there is a bound for periods of elements of I' under automorphisms of I' if there
is one for periods of elements of A under automorphisms of A. To prove this,
suppose a”(g) = g with ¢ € T' and a € Aut (T'). Replacing o by of, we may
assume a(g) = wg with w € A. Then aP(g) = wpg with w, = a?~H(w) ... a(w)w.
As in the previous section, w, = 1 implies o (w) = w, and therefore a" (w) = w
for some r which can be bounded in terms of I' and A only. We then write
(wy)P = wp, = 1, and we bound the period of g by r times the order of w,.

Now suppose that I' is hyperbolic and A is a torsion-free subgroup of finite
index. We have just proved assertion (1) of Theorem III for periodic orbits of a.
Since A and I" have the same boundary, assertions (1) (for orbits of da) and (3)
hold.

To prove assertion (2), consider g € I' and o € Aut (I'). Replacing a by o,
we may assume «(A) = A and «(g) = hg with h € A. Then o"(g) = h,g with
hp, = a™1(h)...a(h)h, and we conclude by Corollary 3.3 (proved in A just like
in Fk>

We also show:

Proposition 10.6. If o € Aut (T'), with ' an infinite, virtually torsion-free, hy-
perbolic group, then Oa has at least two periodic points. If Oa has only one periodic
orbit, then this orbit is the boundary of an a-invariant virtually cyclic subgroup.

Proof. As in [25, proof of 1.1]. If P(«) is finite, assertion (2) of Theorem III
provides both an attracting periodic orbit and a repelling one. If P(«a) is virtually
Z, its boundary gives two fixed points, or an orbit of order 2. If P(«) is non-

elementary, there are uncountably many periodic orbits. 0
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11. EXAMPLES AND QUESTIONS

Examples.

Fixed points of da not in OFix « are either attracting or repelling. Now consider
the automorphism « of F» mapping a to a and b to aba. The group Fixa = (a) is
infinite cyclic, and its two limit points a*°° are isolated fixed points of da which are
half-attracting and half-repelling: if X € OFy is not a™>°, then the limit of da™(X)
as n — +oo is either a® or a~>°, depending on whether the first occurrence of b*1
in X is b or b=!. The automorphism « is the square of 8 :a v+ a=1,b+s a=1b~1.
The set {a®,a >} is a half-attracting, half-repelling orbit of period two of 9/.

The following example of a parabolic orbit is due to A. Hilion [20]. Define v on
Fy by a — a, b — ba, ¢ — ca?, d — dca. For g = bad—!, both sequences v"(g)
and 77" (g) converge to ba=*° as n — +oo.

When Fix « is cyclic, it may happen that its limit points are not isolated as
fixed points of da. Consider a homeomorphism h of a compact surface ¥ fixing
a separating simple closed curve C' pointwise. Assume that h induces a pseudo-
Anosov homeomorphism on each of the complementary subsurfaces ¥y and ¥,., and
h twists non-trivially around C' in ¥y (but not in X,.). Let a be the automorphism
induced on 7 (X) (with basepoint on C'), and da the homeomorphism induced on
its boundary. Note that the boundary is a circle (if ¥ is closed) or a cyclically
ordered Cantor set (if ¥ has a boundary). The map da has two fixed points
associated to the invariant cyclic subgroup m1(C'). They divide the boundary into
two intervals Iy and I,.. On I;, the map da has no fixed point (because of the
non-trivial twist). On I, there are infinitely many attracting fixed points, and
infinitely many repelling ones (but only finitely many orbits under the action of
71(C'); they correspond to singular leaves of the invariant foliations of by, issuing
from singularities belonging to C'). They alternate on I,., and accumulate onto
both endpoints of I,.

Free groups.

Consider a € Aut (F}). For simplicity we assume in this discussion that all
periodic points of @ are fixed points.

Theorem II asserts that, as n — +00, the sequence da™(X) converges to some
ho(X) € Fixda C OFy, for every X € 0F. Let U be the open set 9F;, — Fix da.
Is the function h, locally constant on U? Is the convergence of da™ to h, locally
uniform on U?

Elements of h,(U) not in OFix «v are attracting fixed points. The action of Fix «
on the set of attracting fixed points has at most 2k orbits [15]. It is proved in [20]
that the action of Fixa on h,(U) N OFix « also has finitely many orbits.

Hyperbolic groups.

As shown in § 10, some of our results about automorphisms of free groups may be
extended to hyperbolic groups. Another example is Proposition 9.4, which readily
extends to non-elementary, virtually torsion-free, hyperbolic groups. On the other

hand, we do not know how to prove that exponentially growing automorphisms of
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an infinitely-ended hyperbolic group I' have asymptotically periodic dynamics on
or.

Let o € Aut (I"), with T hyperbolic. Is there a bound depending only on I' for
the number of (Fix a)-orbits of attracting fixed points of da? Can one associate a
set of growth rates A(®) C (1,400) to ® € Out (') as in [25]7 As when T' = F},
elements A\ € A(®) should be the growth rates of conjugacy classes under iteration
of ®, and also the rates of convergence towards fixed points with respect to the
canonical Holder structure on OI" (see [25]). They should be either dilation factors
of pseudo-Anosov homeomorphisms associated to hanging Fuchsian subgroups, or
eigenvalues of a transition matrix associated to a (relative) train track coming
from a free product structure. In particular, there should be an upper bound to
the cardinality of A(®) that only depends on I' (not on ®).

Actions with finite limit sets.

There are many examples of actions of a group I' on a compact space X with
the following property: There exists ¢ > 1 such that, for every x € X and g € T,
the sequence g7"(x) converges as n — +o0o. For instance:

e The action of Aut (F}) on OF, and F}. Conjecturally, the action of Aut (T')
on T, for an arbitrary hyperbolic group I.

e Convergence actions of virtually torsion-free groups.

e The action of the mapping class group of a closed surface on the Thurston
boundary of Teichmiiller space (this follows from Nielsen-Thurston theory). By
analogy, one may ask about the action of Out (F}) on the boundary of Culler-
Vogtmann’s outer space (see [4], [9], [26] for partial results).

e The action of m; M on the sphere at infinity of M , where M is a closed
Riemannian manifold (or orbifold) with negative curvature and M is the universal
covering. Flat manifolds also provide examples, because of Bieberbach’s theorem.
To what extent may this be extended to arbitrary non-positively curved manifolds,
or even to arbitrary CAT(0) spaces?

Knowing that a group I' acts on X with the above property gives a lot of infor-
mation about dynamics of individual elements of I'. The only global information,
however, is the fact that ¢ does not depend on g. There may exist a stronger
property, that would be weaker than the convergence property but strong enough
to contain more global information on T.

REFERENCES

1. M. Bestvina, M. Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995),
287-321.

2. M. Bestvina, M. Feighn, M. Handel, Laminations, trees, and irreducible automorphisms of
free groups, GAFA 7 (1997), 215-244.

3. M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out (Fy), I, Dynamics of
exponentially-growing automorphisms, Ann. of Math. 151 (2000), 517-623.

4. M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out (Fy,) II: a Kolchin theorem,
preprint (1996).

5. M. Bestvina, M. Feighn, M. Handel, Solvable subgroups of Out (Fy) are virtually abelian,
Geometriae Dedicata 104 (2004), 71-96.

34



10.

11.
12.

13.
14.
15.

16.
17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.

32.

33.

34.

35

. M. Bestvina, M. Handel, Train tracks for automorphisms of the free group, Ann. Math. 135
(1992), 1-51.

B. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180
(1998), 145-186.

M.M. Cohen, M. Lustig, On the dynamics and the fized subgroup of a free group automor-
phism, Inv. Math. 96 (1989), 613-638.

M.M. Cohen, M. Lustig, Very small group actions on R-trees and Dehn twist automorphisms,
Topology 34 (1995), 575-617.

D.J. Collins, E.C. Turner, Efficient representatives for automorphisms of free products,
Michigan Math. Jour. 41 (1994), 443-464.

F. Dahmani, Combination of convergence groups, Geom. & Top. 7 (2003), 933-963.

W. Dicks, E. Ventura, The group fized by a family of injective endomorphisms of a free
group, Contemp. Math. 195 (1996).

B. Farb, Relatively hyperbolic groups, GAFA 8 (1998), 1-31.

D. Gaboriau, in preparation.

D. Gaboriau, A. Jaeger, G. Levitt, M. Lustig, An index for counting fized points of auto-
morphisms of free groups, Duke Math. Jour. 93 (1998), 425-452.

D. Gaboriau, G. Levitt, The rank of actions on R-trees, Ann. Sc. ENS 28 (1995), 549-570.

V. Guirardel, Reading small actions of a one-ended hyperbolic group on R-trees from its
JSJ splitting, Amer. J. Math. 122 (2000), 667—688.

V. Guirardel, Core and intersection number for group actions on trees, preprint.

G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Oxford Univ. Press.
A. Hilion, Dynamique des automorphismes des groupes libres, in preparation.

1. Kapovich, Quasiconvezity and amalgams, Int. Jour. Alg. Comp. 7 (1997), 771-811.

I. Kapovich, D. Wise, The equivalence of some residual properties of word-hyperbolic groups,
J. Algebra 223 (2000), 562-583.

G. Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geometriae Dedicata
(to appear), ArXiv math.GR/0212088.

G. Levitt, M. Lustig, Most automorphisms of a hyperbolic group have very simple dynamics,
Ann. Sc. ENS 33 (2000), 507-517.

G. Levitt, M. Lustig, Periodic ends, growth rates, Holder dynamics for automorphisms of
free groups, Comm. Math. Helv. 75 (2000), 415-430.

G. Levitt, M. Lustig, Irreducible automorphisms of Fy, have North-South dynamics on com-
pactified outer space, Jour. Inst. Math. Jussieu 2 (2003), 59-72.

G. Levitt, M. Lustig, Growth rates for automorphisms of free groups, in preparation.

M. Lustig, A discrete action on the product of two non-simplicial R-trees, preprint.

M. Lustig, Structure and conjugacy for automorphisms of free groups I, II, MPI-Preprint
Series 130 (2000), 4 (2001).

R.T. Miller, Geodesic laminations from Nielsen’s viewpoint, Adv. in Math. 45 (1982), 189—
212.

W.D. Neumann, The fixed subgroup of an automorphism of a word hyperbolic group is ra-
tional, Inv. Math. 110 (1992), 147-150.

F. Paulin, Outer automorphisms of hyperbolic groups and small actions on R-trees, pp.
331-343 in “Arboreal group theory (R.C. Alperin, ed.)”, MSRI Publ. 19 (1991), Springer
Verlag.

F. Paulin, Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Scient. Ec.
Norm. Sup. 30 (1997), 147-167.

Z. Sela, The Nielsen-Thurston classification and automorphisms of a free group I, Duke
Math. Jour. 84 (1996), 379-397.

. J. Shor, A Scott conjecture for hyperbolic groups, preprint.

35



36. G.A. Swarup, Proof of a weak hyperbolization theorem, Q. J. Math. 51 (2000), 529-533.

G.L.: LMNO, UMR CNRS 6139, BP 5186, UNIVERSITE DE CAEN, 14032 CAEN CEDEX,
FRANCE.
E-mail address: levitt@math.unicaen.fr

M.L.: LABORATOIRE DE MATHEMATIQUES FONDAMENTALES ET APPLIQUEES, UNIVERSITE
D’AIX-MARSEILLE ITI, 13397 MARSEILLE CEDEX 20, FRANCE.
E-mail address: Martin.Lustig@math.u-3mrs.fr

36



