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Abstract: In a famous paper where he introduces the A and B coefficients,
Einstein considered that atomic decays of excited atoms can be stimulated by
light waves. Here we consider that atomic decays can also be stimulated by
atomic waves. It is however necessary to change the Maxwell-Boltzmann statis-
tics of thermal equilibrium into Bose-Einstein statistics and to introduce a coef-
ficient C which complements the list of the coefficients introduced by Einstein.

Stimulated emission of light can be considered as the first step towards the
laser. Similarly, stimulated production of matter waves can be considered as
the basic phenomenon for an atom-laser.

Most of the results that we obtain here are not new. However, the method
that we use remains very close to elementary classical physics and emphasizes
the symmetry between electromagnetic and matter waves from various points
of view.

1 Introduction

In 1916 and 1917, Einstein introduced the well known A and B coefficients
[1]. For the first time the stimulated emission of photons by electromagnetic
radiation was suggested. In the present paper we generalize the argument of
Einstein. We consider that an atom displays an internal structure and that a
matter wave describes its space-time behavior. The decay of an atom towards
its fundamental state can happen spontaneously. It can also be stimulated by
the electromagnetic waves or the matter waves which bathe the atom. The
latter (decay stimulated by matter waves) has been ”forgotten” until the 1990s
when it appeared in the context of Bose Einstein Condensation (BEC) and the
atom laser [2, 3, 4, 5].

In his papers, Einstein put forward ”a derivation of Planck’s formula [...]
closely related to Wien’s original argument”. Our goal is different: we want to
emphasize the symmetry between electromagnetic and matter waves. However,
we will follow Einstein in the sense that we will use arguments close to his
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own within our specific framework, for our specific purpose. We thereby derive
a simple description of the ”forgotten” process via the introduction of a new
coefficient C in addition to the Einstein coefficients A and B.

We first summarize the usual approach describing atom-photon interactions
using Maxwell-Boltzmann statistics and the Einstein A and B coefficients. This
is followed by a short summary of matter waves and their properties that are
relevant to our purpose. In section 4 we restore the symmetry between electro-
magnetic and matter waves, which we then apply to the thermal equilibrium
(section 5) leading to the derivation of transition probabilities for all processes.
We obtain the usual Einstein coefficients and a ”forgotten” coefficient from these
probabilities in section 6 and conclude in section 7.

2 The usual approach

We consider two level atoms where E1 and E2 are the energy of the atom in each
level (with E2−E1 = h̄ω0 > 0). The atoms are in an ideal electromagnetic cavity
where they are interacting with the electromagnetic radiation. The thermal
equilibrium, at temperature T, is achieved. The case of atoms in free space is
obtained when the volume V of the cavity becomes infinite.

The electromagnetic energy is distributed among the different modes of the
cavity. It is described by Planck’s energy spectral density

ρϕ (ω, T ) = dϕ × 4πν2

c3
× h̄ω × 1

eh̄ω/kBT − 1
(1)

where kB is the Boltzmann constant.

Each term in ρϕ (ω, T ) has a precise meaning.

• The electromagnetic wave is characterized by a wave vector
−→
k . We de-

fine 2π ν = c
∥

∥

∥

−→
k

∥

∥

∥
. The electromagnetic waves in an ideal cavity must satisfy

boundary conditions. As a consequence, ν can take only resonant values: the

number of possible values between ν and ν + dν is dNν = 4πν2

c3 dν × V where c
is the speed of light in vacuum and V the volume of the cavity.

• The energy of a photon is h̄ω, where ω is the angular frequency. For an
electomagnetic field the relation ω = 2πν holds true.

• Once
−→
k is given, ω is known. There remain however dϕ = 2 polarizations.

The first factor, dϕ in relation (1), is precisely the number of polarizations
(the degeneracy of photonic states) of the electromagnetic waves. Therefore the
number of modes in the interval [ν, ν + dν] is

dNm = dϕ × 4πν2

c3
dν × V (2)

• Finally, following the Bose-Einstein statistics, the mean number of photons
in a mode at thermal equilibrium is 1

eh̄ω/kBT −1
.
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The spectral energy density (1) represents the energy density per interval dν.
It is sometimes useful to define a quantity ρ̃ϕ(ω, T ) that represents the energy
density per corresponding interval dω, i.e.

ρ̃ϕ(ω, T ) = ρϕ(ω, T )
dν

dω
. (3)

For electromagnetic waves we have ρ̃ϕ(ω, T ) = ρϕ(ω, T )/2π.

The thermal equilibrium in the cavity is secured by a connection to a thermal
reservoir at temperature T. We assume the following properties:

A1 First we assume that the reservoir can exchange some energy with the
atoms in order that the Maxwell-Boltzmann equilibrium law is fulfilled:

N2

N1
=

d2

d1
e−h̄ω0/kBT (4)

where N1 (or N2) is the number of atoms with energy E1 (or E2) and d1 (or
d2) the degeneracy of level E1 (or E2).

A2 Second we consider that photons can be either absorbed or emitted by
the reservoir, in order to achieve the equilibrium spectral density, ρϕ (ω, T ) ,
above.

A3 Finally we admit that once the thermal equilibrium is achieved, it re-
mains without the help of the reservoir although it is a statistical equilibrium
where absorption and emission of photons, excitation and decay of atoms, hap-
pen permanently.

Assuming conservation of energy, two kinds of effects are possible:
1. Spontaneous mechanisms happen even when no radiation is present

in the cavity. This is the case of a spontaneous decay of an atom from energy
E2 to energy E1 with the emission of a photon whose angular frequency is ω0.
The number of spontaneous decays per unit time is A × N2. In a large enough
cavity two neighboring modes have very close properties and their frequencies
can be considered to belong to a continuum. In such a case, A is a characteristic
of the atom alone, independently of the cavity. We do not consider spontaneous
excitation where energy would be created from nothing.

2. Stimulated mechanisms happen only because some radiation is al-
ready present. Two mechanisms are actually possible: i) the absorption of a
photon with energy h̄ω0 by an atom which is therefore excited from energy E1

to energy E2 and ii) the emission of a photon with energy h̄ω0 by an atom
which decays from energy E2 to energy E1. The number of events per unit time
of each mechanism is B(abs) × ρϕ (ω0, T )N1 and B(em) × ρϕ (ω0, T )N2, where
ω0 = 2πν0.

The equilibrium condition is

AN2 + B(em)ρϕ (ω0, T )N2 = B(abs)ρϕ (ω0, T )N1. (5)
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Within the preceding theoretical framework, one finds that the thermal equi-
librium ((5) with (1) and (4)) is possible at any temperature T if and only if

B(abs) =
d2

d1
B(em) and A =

8πν2
0

c3
h̄ω0B(em) (6)

Therefore the existence of spontaneous emission (i.e. A 6= 0), implies that
absorption and stimulated emission also exist (i.e. A 6= 0 ⇒ B(em) 6= 0 and
B(abs) 6= 0).

These results are well known and can be found in many textbooks [6, 7, 8].

3 Matter waves

Matter waves were introduced in de Broglie’s thesis in 1924. At this time the
photoelectric effect had already been interpreted (Einstein 1905) and the Comp-
ton effect observed (Compton 1923). Thus, it was already known that light could
behave as a flow of particles called photons1. The merit of Louis de Broglie was
to reverse the proposition and to claim that particles, e.g. electrons, could
behave like waves.

Since these early days, the similarity between light waves and matter waves
never ceased to be emphasized, from the first observation of electronic inter-
ferences by Davisson and Germer in 1927 to atom interferometry, and recently
Bose-Einstein condensation of atoms, first achieved in 1995.

Several examples can be given of matter waves and their applications: the
electronic microscope and the Collela-Overhauser-Werner experiment with neu-
trons [9] are well known. More recently laser cooling of atoms has lead to the
development of atom interferometry used, for example, for ultra precise inertial
sensors such as gravimeters [10], gradiometers [11] and gyroscopes [12]. Ulti-
mately the use of the forgotten process to produce Bose-Einstein condensates,
i.e. coherent beams of matter waves with all atoms in the same mode, should
result in atom lasers based on amplification of the matter fields via the forgotten
process. These are expected to lead to significant improvements in matter wave
interferometry and to new applications. Presently, what is often called an atom
laser is a Bose-Einstein condensate which has been produced by other means.

Despite its complex structure, an atom can be considered as a particle with
a mass M depending on its internal energy : M = M0 + E/c2 where E is the
internal energy and M0 the mass of the atom in its fundamental level. The total
energy of the atom is then

h̄ω =

√

(Mc2)
2
+

(

ch̄
−→
k

)2

≈ Mc2 +
h̄2−→k 2

2M
(7)

where ω is its angular frequency, h̄
−→
k its momentum and the non-relativistic

approximation holds for h̄‖−→k ‖/M ≪ c.

1The word ”photon” was invented several years later but the concept of photon was already
there.
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An atom is generally characterized by its angular momentum,
−→
J which plays

the role of some intrinsic spin. The value of
−→
J

2
is h̄2j (j + 1). General results in

quantum mechanics lead to the conclusion that 2j is an integer which depends
on the internal state of the atom, and that the atom is a boson when j itself is
an integer. This is the only case that we consider in the sequel.2

The energy can be degenerate. Therefore, for a given mass, the internal
state is a multi-component vector which belongs to a da dimensional space.

Keeping the definition 2π ν = c
∥

∥

∥

−→
k

∥

∥

∥
, the fundamental difference with re-

spect to photons is that now the relation between ω and ν is the dispersion
relation obtained from (7)

h̄ω =

√

(Mc2)
2

+ (2πh̄ν)
2
. (8)

Let us imagine that matter waves can be trapped in an ideal cavity where
they appear as a superposition of the resonant modes of the cavity. The number
of resonance values of ν in the interval [ν, ν + dν] is

dNν =
4πν2

c3
dν × V (9)

and the number of modes dNm = da × dNν .
As we consider bosons only, the mean number of particles per mode at

thermal equilibrium is given by Bose-Einstein statistics

n =
1

e(h̄ω)/(kBT ) − 1
. (10)

Therefore, the spectral energy density is

ρa (ω, T ) = da × 4πν2

c3
× h̄ω × 1

e(h̄ω)/(kBT ) − 1
. (11)

Analogously to the electromagnetic case one can introduce a corresponding
energy density per interval of angular frequency ρ̃a (ω, T ) defined by equation
(3). But now dν/dω is obtained from the dispersion relation (8) and therefore

ρ̃a (ω, T ) =
ρa (ω, T )

2π

h̄ω
√

(h̄ω)
2 − (Mc2)

2
=

ρa (ω, T )

2π

ω

2πν
. (12)

One can check that the relations (8) to (12) are the same for matter waves
and for light waves when setting M = 0 and da = dϕ = 2 for the photon.

2The sensitivity of atom interferometers is directly related to the number of atoms
(presently of order of 105). Therefore, because of the Pauli exclusion principle, the use of
fermions is of less interest and not considered here.
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4 Restoring the symmetry between electromag-

netic and matter waves

In section 2, the atoms and the photons have been considered from two very
different points of view. For instance, the decay of an atom could be stimulated
by the presence of the photons but the presence of the atoms did not produce any
similar effect. Moreover, the atoms were not able to be created or annihilated,
only their internal energy could change by emission or absorption of photons.
However, considering what we know about the origin of the Universe, we have to
admit that atoms can be created too. Of course, the corresponding mechanism
can be complicated and slow but annihilation and creation of atoms are possible
as well as annihilation and creation of photons; this is a matter of principle not
of order of magnitude.

First, in order to restore the similarity between the atoms and the photons,
let us modify the notations. Now, a is an atom in its fundamental state of
energy Ea. This atom can absorb a photon ϕ, the corresponding excited state
is aϕ whose internal energy is Eaϕ. We consider that the thermal equilibrium
is a statistical equilibrium driven by the chemical-like equation

aϕ ⇀↽ a + ϕ (13)

where ϕ, a and aϕ are bosons described by waves (i.e. electromagnetic waves
and matter waves) which are trapped in an ideal cavity at temperature T .

An atom is considered as the quantum associated to a matter wave, therefore
Naϕ and Na are now occupation numbers of matter-wave-modes, similar to the
occupation number of the electromagnetic modes (i.e. the number of photons).

The mass of the atom depends on its internal energy. Thus we can interpret
the change of the internal energy as the annihilation of an atom with the initial
value of the mass and the creation of an atom with the final value of the mass.

The atoms and the photons are supposed to be trapped in an ideal cavity
without losses. The cavity is coupled to a thermal reservoir at temperature T .
We assume the following properties:

B1 The photons and the atoms occupy respectively electromagnetic-modes
and matter-wave-modes. The equilibrium is achieved when the mean number
of quanta per mode is given by the Bose-Einstein statistics n = 1

eh̄ω/kB T −1
i.e.

we substitute equ. (10) to equ. (4).
B2 Second we consider that photons and atoms can be either absorbed or

emitted by the reservoir, in order to achieve the equilibrium spectral densities
(1) and (11).

B3 Finally we admit that once the thermal equilibrium is achieved, it re-
mains without the help of the reservoir although it is a statistical equilibrium
where annihilation and creation of photons and atoms, happen permanently.

From the old point of view the dissymmetry between matter and light lies
in the difference between the assumptions A1 and A2 of section 2. Here, this
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dissymmetry has disappeared but the Maxwell-Boltzmann statistics used in as-
sumption A1 has been changed into Bose-Einstein relativistic statistics.

The various modes of the excited atoms aϕ are labelled by a set of indexes
called m; the modes of the atoms a are labelled by n and the modes of the
photons ϕ by a set of indexes k. We use the notation (aϕ)m for an excited
atom aϕ in the mode m, and the similar notations (a)n and (ϕ)k. With these
notations equation (13) becomes

(1)
(aϕ)m

⇀↽ (a)n + (ϕ)k .
(2)

(14)

Following assumption B3 above, we assume that the equilibrium is achieved
when, during a given arbitrary time, the number of reactions to the right (re-
action (1)) is the same as the number of reactions to the left (reaction (2)).
Moreover we accept the usual assumption that the number of reactions per unit
time is proportional to the number of quanta in the modes involved.

We introduce the concentrations [aϕ]m, [a]n and [ϕ]k i.e. the number of
atoms or photons per unit volume respectively in mode m, n and k. The volume
of the cavity is V . We define α, β(abs), β(em) and γ:
(i) The number of spontaneous reactions (1) per unit time is α × [aϕ]m V .
(ii) The number of reactions (2) per unit time is β(abs) × [ϕ]k V × [a]n V .
(iii) Given an excited atom, aϕ, in the mode m, we consider its decay (reaction
(1)) stimulated by the presence of the photons in the mode k. The number of
such reactions per unit time is β(em) × [ϕ]k V × [aϕ]m V .

With Maxwell-Boltzmann statistics where M0c
2 ≫ h̄ω0 and Mc2 ≫ kBT ,

and within the ”broad band” approximation3, these mechanisms result in equ.
(5).
(iv) Finally, we assume that the reaction (1) can also be stimulated by the pres-
ence of the atoms a in the mode n, which restores the symmetry between elec-
tromagnetic waves and matter waves. We call this mechanism the ”forgotten”
process4. The number of such reactions per unit time is γ × [a]n V × [aϕ]m V .

5 The thermal equilibrium and its consequences

Compared to the year 1917 the conception of matter has changed dramatically.
We will now explain why this conceptual change leaves the description of the
thermal equilibrium practically unchanged. However, we will emphasize the
importance of the ”forgotten” process.

3The ”broad band” approximation is valid when the radiation in the cavity displays a line
shape whose width is large compared to the width of the natural lineshape of the atomic
decay.

4The short chronology that we gave shows that this process could not be considered before
1924. It was actually forgotten between 1924 and the 1990s when it first appeared in the
context of Bose-Einstein condensation [2, 3, 4, 5].
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Now we assume that the equilibrium is achieved when the mean number of
quanta per mode is given by the Bose-Einstein statistics and when the number
of reactions (1) per unit time is equal to the number of reactions (2). Therefore

[a]n V =
1

e(h̄ωa)/(kBT ) − 1
,

[ϕ]k V =
1

e(h̄ωϕ)/(kBT ) − 1
, (15)

[aϕ]m V =
1

e(h̄ωaϕ)/(kBT ) − 1
,

and

β(abs) × [ϕ]k V × [a]n V = α × [aϕ]m V + β(em) × [ϕ]k V × [aϕ]m V

+γ × [a]n V × [aϕ]m V. (16)

The energy of the atom a in the mode n is h̄ωa, similarly h̄ωϕ is the energy
of the photon in the mode k and h̄ωaϕ is the energy of the excited atom aϕ in
the mode m. We assume that the energy (h̄ωa, h̄ωϕ or h̄ωaϕ) defines the mode
except for the polarization of the light and the degeneracy of the internal energy
of the atoms5.

One can check that the equality (16) holds true at any temperature if and
only if

ωaϕ = ωa + ωϕ and β(abs) = α = β(em) = γ (17)

The first relation in (17) expresses the conservation of energy while the other
relations imply that the ”forgotten” process happens because spontaneous decay
is an actual process (α 6= 0 ⇒ γ 6= 0).

Let us now verify that at thermal equilibrium the results above are prac-
tically the usual ones when the ”forgotten” process is neglected. We consider
equ. (16) with β(abs) = α = β(em) = γ. Then the sum of the last two terms is

γ×[ϕ]k V ×[aϕ]m V
(

1 +
[a]n
[ϕ]k

)

. Using (15) it is easy to check that
[a]n
[ϕ]k

≪ 1 even

with extreme (impossible!) values of h̄ωϕ and kBT . Therefore the contribution
γ× [a]n V × [aϕ]m V in (16) is completely negligible and the ”forgotten” process
does not play any significant role at thermal equilibrium.

Moreover one can easily calculate Naϕ/Na where Naϕ (resp. Na) is the mean
number of atoms with energy Eaϕ = h̄ωaϕ (resp. Ea = h̄ωa). It is the number
of atoms in one mode with energy h̄ωaϕ (resp. h̄ωa) times the number of modes
with such an energy. From the preceeding assumptions we obtain

Naϕ =
daϕ

e(h̄ωaϕ)/(kBT ) − 1
and similarly Na =

da

e(h̄ωa)/(kBT ) − 1
. (18)

Finally, using the relation h̄ωaϕ ∼ h̄ωa ∼ M0c
2 ≫ kBT we obtain

5This is the case, for example, for an ideal rectangular cavity of suitable proportions.
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Naϕ

Na
≃ daϕ

da

e(h̄ωa)/(kBT )

e(h̄ωaϕ)/(kBT )
=

daϕ

da
e−(h̄ωaϕ−h̄ωa)/(kBT ) (19)

which is identical to (4) under the simple change of notation (aϕ → 2, a → 1
and h̄ωaϕ − h̄ωa = h̄ω0).

As a conclusion we can notice that at thermal equilibrium nothing is signifi-
cantly modified if we use Maxwell-Boltzmann statistics instead of Bose-Einstein
statistics and if we neglect the ”forgotten” process. However, far from equilib-
rium this is not necessarily the case.

Now we can use standard methods to give an estimation of γ in the simplest
case of a homogeneous line width.

α is the probability per unit time that an excited atom aϕ, in a given mode
m with given energy h̄ωaϕ, decays spontaneously into a + ϕ where the photon
ϕ is in the mode k with energy h̄ωϕ and the atom a in the mode n with energy
h̄ωa. Let us define the probability per unit time, dp, that an excited atom decays
spontaneously into a photon with angular frequency ωϕ ∈ [ωϕk, ωϕk + dω] and
a ground state atom with angular frequency ωa ∈ [ωan − dω, ωan] where ωaϕ =
ωa + ωϕ. We then have

dp = α × dϕda × dNa+ϕ (20)

where dNa+ϕ is the number of pairs of resonance values (νa, νϕ) that satisfy
ωϕ ∈ [ωϕk, ωϕk + dω], ωa ∈ [ωan − dω, ωan] and ωaϕ = ωa + ωϕ.

For the photons, the number of resonant values of νϕ, dNϕ, over the band-
width dω are given (c.f. equation (1)) by the number of possible values of ν, i.e.
4πν2

c3 dνV , and 2πν = ω which holds true for photons, therefore

dNϕ =
ωϕνϕdω

πc3
V. (21)

Similarly for the ground state atom, the number of resonant values of νa

over the bandwidth dω are given by 4πν2

c3 dνV , but with the relation between ν
and ω given in (8). This leads to

dNa =
ωaνadω

πc3
V =

ωa

√

(h̄ωa)
2 − (M0c2)

2
dω

2π2c3h̄
V

≃
(

M0c
2
)√

2M0c2Ekdω

2π2c3h̄2 V (22)

where Ek = h̄ωa − M0c
2 is the kinetic energy of a, and where we have used

h̄ωa + M0c
2 ≃ 2M0c

2.
Comparing (21) to (22) we note that even in extreme conditions dNa is much

bigger than dNϕ. For example, with Ek ≈ kBT ≈ 10−13 eV, M0c
2 ≈ 1 GeV

and h̄ωϕ ≈ 20 eV we have dNa ≈ 104dNϕ. As a result the number of possible
energy pairs dNa+ϕ is entirely determined by dNϕ as for each ωϕ there exists
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a ωa such that ωaϕ = ωa + ωϕ (but not vice-versa), so we have dNa+ϕ ≃ dNϕ.
Under these conditions equation (20) becomes

dp = α × dϕda × ωϕνϕdω

πc3
V. (23)

On the other hand, under the assumption that the atom is at rest and the
assumption of isotropy, the spontaneous emission of a photon is characterized
by a function fϕ (ωϕ − ωϕ0) which defines the line shape of the emitted light.
The quantity fϕ (ωϕ − ωϕ0) dω is interpreted as the probability that the emitted
photon displays an angular frequency ωϕ ∈ [ωϕk, ωϕk + dω]. Therefore

dp =
1

tsp
fϕ (ωϕ − ωϕ0) (24)

where tsp is the time constant which characterizes the spontaneous emission (i.e.
1/tsp = A, the Einstein coefficient).

It is then straightforward to obtain α by eliminating dp between (23) and
(24)

α = βabs = βem = γ =
πc3

dϕdaωϕνϕ

1

tsp
fϕ(ωϕ − ωϕ0) ×

1

V
. (25)

One can now calculate the probability per unit time, W(em), of stimulated
decay of an excited atom aϕ in mode m into a photon ϕ in mode k and a
ground state atom a in any mode. First we notice that the decay due to the
photons in mode k, towards a special given mode of a, has a probability per
unit time β(em) × [ϕ]k V (see the property (iii) of section 4 above). Therefore,
the probability of a decay towards the various modes n of a which display the
same energy is

W(em) = da × β(em) × [ϕ]k V =
πc3

dϕωϕνϕ

1

tsp
fϕ(ωϕ − ωϕ0) ×

uk(ωϕ)

h̄ωϕ
(26)

where we have introduced the electromagnetic energy density of the mode k
defined as uk(ωϕ) = [ϕ]k × h̄ωϕ.

Similarly the probability per unit time, W(abs), of absorption of a photon ϕ
in mode k by a ground state atom a in mode n to form an excited atom aϕ in
any mode is

W(abs) = daϕ × β(em) × [ϕ]k V =
daϕ

da

πc3

dϕωϕνϕ

1

tsp
fϕ(ωϕ − ωϕ0)×

uk(ωϕ)

h̄ωϕ
. (27)

Expressions (26) and (27) are well known in the usual laser theory and can
be found in many textbooks (e.g. [6]).

On the other hand, the ”forgotten” process leads to new results. We cal-
culate the probability per unit time, Wf , that an excited atom aϕ in mode m
undertakes the forgotten process i.e. that it decays into a ground state atom a
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in mode n and a photon ϕ in any mode. The decay due to the atoms a in mode
n, towards a special given mode of ϕ, has a probability per unit time γ × [a]n V
(see the property (iv) of section 4 above). Therefore, the probability of a decay
towards the various modes k of ϕ which display the same energy is

Wf = dϕ × γ × [a]n V =
πc3

daωϕνϕ

1

tsp
fϕ(ωϕ − ωϕ0) ×

un(ωa)

h̄ωa
(28)

where un(ωa) = [a]n × h̄ωa is the energy density of the ground state atoms in
mode n.

At thermal equilibrium we have [a]n ≪ [ϕ]k (from (15)) which, using (26)
and (28), implies Wf ≪ W(em), i.e. the probability for an excited atom to
decay via stimulation by a matter wave is much smaller than via stimulation by
an electromagnetic wave, and the ”forgotten” process is practically negligible.
However, this may not be the case far from equilibrium. For example, one
can imagine a situation where one particular mode [a]n is strongly populated.
This would lead to decay preferentially towards that mode via the ”forgotten”
process, which in turn increases the population of that mode, and so on. That
kind of mechanism is the basis of the experimental proposal for an atom laser
in [4].

6 The Einstein and the ”forgotten” coefficients

Now we consider a broad band electromagnetic radiation which is modelled by
monochromatic radiations with angular frequencies ωϕℓ where ℓ is an integer and
ωϕℓ+1−ωϕℓ = δωϕ. The function fϕ(ωϕℓ−ωϕ0) has a maximum for ωϕℓ ≃ ω0; it
is negligible for |ωϕℓ − ωϕ0| > ∆ω with ∆ω ≪ ωϕ0, and it fulfills the condition
∫ ∞

0
fϕ(ωϕℓ − ωϕ0)dω = 1. Assuming δωϕ ≪ ∆ω we can write :

∑

ℓ

fϕ(ωϕℓ − ωϕ0)δωϕ ≃ 1 . (29)

We consider a given initial state characterized by the number Naϕ of atoms
aϕ with angular frequency ωaϕ, and the number Na of atoms a with angular
frequency ωa. We use the preceding results in order to calculate the number
dN of photons which are emitted or absorbed during dt, through the various
processes.

Let us give the final results before we outline the derivation. One finds
(i) for the spontaneous emission : dNsp = A Naϕ dt = 1

tsp
Naϕ dt,

(ii) for the absorption : dNabs = B(abs) ρϕ (ωϕ0) Nadt with

B(abs) =
daϕ

dadϕ
× c3

4πh̄ωϕ0ν2
ϕ0

1

tsp
(30)

(iii) for the emission stimulated by the photons :

11



dNem = B(em) ρϕ (ωϕ0) Naϕdt with

B(em) =
1

dϕ
× c3

4πh̄ωϕ0ν2
ϕ0

1

tsp
(31)

(iv) for the forgotten process (emission stimulated by the atoms) :
dNf = Cρa (ωa0)Naϕdt with

C =
1

da
× c3

4πh̄ωa0ν2
a0

1

tsp
(32)

where ωa0 = ωaϕ − ωϕ0.
B(abs) and B(em) are the well known Einstein coefficients but C is a new one

(it is the ”forgotten” coefficient which describes the ”forgotten” process).
We now detail the derivation of the above expressions. Let us for instance

calculate B(em). We consider that, at a given angular frequency ωϕ, the two
electromagnetic polarizations display the same energy density uk (ωϕ). There-
fore the number of photons produced during dt by the stimulated emission due
to the electromagnetic radiation at angular frequency ωϕ is dϕ W(em) Naϕ dt
where W(em) is given by equ. (26). The stimulated emission due to the radi-
ations at the various frequencies ωϕℓ results in the number of emitted photons
dN(em) =

∑

ℓdϕ W(em) Naϕ dt. The function fϕ (ωϕ − ωϕ0) is a quickly vary-
ing function of ωϕ while uk (ωϕℓ) is slowly varying within the framework of the
broad band approximation. More precisely, we assume uk (ωϕℓ) ≃ uk (ωϕ0) ,
ωϕℓ ≃ ωϕ0 and νϕℓ ≃ νϕ0, for ωϕ0 − ∆ω < ωϕℓ < ωϕ0 + ∆ω. Therefore we can
take these expressions of uk (ωϕℓ) , ωϕℓ and νϕℓ in order to calculate dN(em). We
obtain

dN(em) =
∑

ℓ

dϕ × W(em) Naϕdt

=
∑

ℓ

dϕ × 1

dϕ

πc3

h̄ω 2
ϕℓνϕℓ

1

tsp
uk (ωϕℓ) fϕ (ωϕℓ − ωϕ0) Naϕdt

≃ 1

dϕ

πc3

h̄ω 2
ϕ0νϕ0

1

tsp
dϕuk (ωϕ0)

∑

ℓ

fϕ (ωϕℓ − ωϕ0) Naϕdt (33)

The spectral energy density is
dϕ uk(ωϕ0)

δωϕ
= ρ̃ϕ (ωϕ0) where ρ̃ϕ is defined by

relation (3) then

dN(em) =
1

dϕ

πc3

h̄ω 2
ϕ0νϕ0

1

tsp
ρ̃ϕ (ωϕ0)

∑

ℓ

fϕ (ωϕℓ − ωϕ0) δωϕ Naϕdt. (34)

Finally, with (29) and (3) we find

dN(em) = B(em) ρϕ (ωϕ0) Naϕdt (35)
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with

B(em) =
1

dϕ
× c3

4πh̄ωϕ0ν2
ϕ0

1

tsp
. (36)

This expression of B(em) can be found in many textbooks such as [6] where it
is calculated in a way very similar to the one presented above. It is also derived
in [8].

Expression (30) for B(abs) is obtained by the same method and we will not
detail it here.

In order to calculate C we express dNf using expression (28) for Wf . In
this expression, ωa = ωaϕ −ωϕℓ is a function of ωϕℓ because the mode m, of the
initial state is given.

We consider that the da atomic modes at the same frequency ωa display the
same energy density un (ωa) so

dNf =
∑

ℓ

da × Wf Naϕ dt

=
∑

ℓ

1

da

πc3

ωϕℓνϕℓ

1

tsp
fϕ (ωϕℓ − ωϕ0) ×

daun (ωa)

h̄ωa
Naϕ dt. (37)

We assume that ωa and un (ωa) are two slowly varying functions of ωϕℓ,
then, with the conditions that we have already assumed, we find

dNf =
1

da

πc3

ωϕ0νϕ0

1

tsp
× daun (ωa0)

h̄ωa0

∑

ℓ

fϕ (ωϕℓ − ωϕ0) Naϕ dt

=
1

da

πc3

ωϕ0νϕ0

1

tsp
× 1

h̄ωa0

daun (ωa0)

δωϕ
Naϕ dt. (38)

It is not obvious to introduce the spectral density ρa (ωa0) of the atoms
because δωϕ which appears in the expression above is not the angular frequency
separation between two neighboring atomic rays.

In the bandwidth δωϕ, around ωa0, the number of resonant atomic angular
frequencies is given by expression (22): δNa = ωa0νa0

πc3 δωϕ × V . In the same
bandwidth there is only one resonant frequency for the photons (the consequence
of the definition of δωϕ) so δNϕ =

ωϕ0νϕ0

πc3 δωϕ × V = 1 (c.f. (21)). Therefore

δNa = ωa0νa0

ωϕ0νϕ0

. The spectral energy density is ρ̃a (ωa0, T ) = daun(ωa0)δNa

δωϕ
=

daun(ωa0)
δωϕ

ωa0νa0

ωϕ0νϕ0

. Substituting this into (38) and using the definition (12) of ρ̃a

we finally obtain

dNf = C ρa (ωa0) Naϕ dt (39)

with
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C =
1

da
× c3

4πh̄ωa0ν2
a0

1

tsp
. (40)

One can notice the similarities between the expressions of C and B(em).
A permanent state is achieved when dNsp+dNem+dNf = dNabs. Therefore,

at thermal equilibrium, equation (5) becomes

ANaϕ + B(em)ρϕ (ωϕ0, T ) Naϕ + C ρa (ωa0, T ) Naϕ = B(abs)ρϕ (ωϕ0, T ) Na.
(41)

One can easily check that the expressions obtained above guarantee the valid-
ity of equ. (41) at any temperature when Naϕ and Na satisfy Bose-Einstein
statistics.

It is also possible to derive the conservation of energy and the coefficients
B(em), B(abs) and C directly from equ. (41) where Naϕ and Na fulfill Bose-
Einstein rather than the Maxwell-Boltzmann statistics. However, in this paper,
we chose to emphasize the elementary underlying processes providing, for ex-
ample, the transition probabilities W(em), W(abs) and Wf (equations (26), (27)
and (28)) as functions of the observed electromagnetic line-shape fϕ(ωϕ −ωϕ0).

7 Conclusion

We have derived a general description of atom-photon interactions of the form
aϕ ⇀↽ a + ϕ that includes the ”forgotten” process of decay stimulated by the
matter waves a, additionally to the well known spontaneous decay and the
decay stimulated by the electromagnetic waves ϕ. Our aim was to provide
a description based on fundamental elementary principles, and to emphasize
throughout this work the symmetry between atomic and matter waves. To
do so, we have followed standard textbook descriptions of the involved known
processes (in terms of transition probabilities, energy densities, observed line
shapes, and Einstein coefficients) but applied them to also derive analogous
expressions for the ”forgotten” process that cannot be found in textbooks, yet.

Throughout this work the various mechanisms have been considered for the
case of thermal equilibrium. But, similarly to the well known photonic pro-
cesses, our results (in particular the transition probability Wf and coefficient
C of the ”forgotten” process) are quite general and remain valid far away from
equilibrium. Non-equilibrium conditions (population inversions etc.) are the
fundamental ingredients of lasers, and one expects the same to hold true for
atom lasers i.e. sources of coherent matter waves. Atom lasers based on matter
wave amplification have not been built yet, but several propositions for a prac-
tical realization based on the ”forgotten” process can be found in the literature
[2, 4, 5]. Indeed, any practical realization will necessarily involve conditions far
from thermal equilibrium, as can easily be seen from equ. (15). For example, a
single atom a inside a cavity corresponds to [a]nV = 1 and therefore the thermal
equilibrium condition (15) is only satisfied for temperatures T ≃ 1013K which
are impossible to attain in practice.
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It is easy to generalise the results that we have obtained to the general
bosonic case ab ⇀↽ a+ b where ab, a and b are massive or massless bosons of any
kind (photons, atoms, molecules, etc.). If we assume that the same concepts
are valid for the decay of an atom and for the chemical reaction ab ⇀↽ a + b,
i.e. the concept of line shape where fϕ (ω − ωϕ0) becomes fb (ω − ωb0) and the
concept of stimulated and spontaneous reactions, then all our considerations
apply to the general bosonic case. Moreover if we assume that in the same
elementary angular frequency interval dω, the number of resonance frequencies
is much higher for b than for a, the developments of the preceeding sections
(sections 3 to 6) remain unchanged, except for the substitution ϕ → b and
νϕ = ωϕ/2π → νb =

√

(h̄ωb)2 − (Mbc2)2/2πh̄ where Mb is the mass of b in its
fundamental state. Under these conditions, the formulae (26), (27), (28), (30),
(31), and (32) hold true for the general bosonic case, and the photon case is
simply recovered when setting Mb = 0 and db = 2. This simple generalisation
further stresses the symmetry between electromagnetic and matter waves as
now the atom-photon interaction is just a special case of a general bosonic
interaction.

If a perfect symmetry exists between electromagnetic and matter waves, it
may be relevant to raise the question of the physical nature of holography with
atomic waves, a surely premature question for the time being.
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