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Abstract

An agent-based model of a single-asset financial market, described in terms

of a small number of parameters is presented in this paper. The joint effect

of feedback and heterogeneity leads to price returns with statistical properties

similar to the stylized facts observed in financial time series.

The paper focus on the evolution of heterogeneity in the model.

Keywords: agent-based model, financial markets, stylized facts, heterogeneity,

feedback, asynchronous updating.

1

1Tel.: +33 1 69 33 47 48; fax: +33 1 69 33 30 11.
E-mail adress: ghoulmie@cmapx.polytechnique.fr, ghoulmie@santafe.edu (F.Ghoulmié).

1



Contents

1 Description of the model. 3

1.1 Trading rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Price response to aggregate demand. . . . . . . . . . . . . . . . . 4

1.3 Updating of strategies. . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dynamics of heterogeneity. 6

2.1 Feedback without heterogeneity: s = 1. . . . . . . . . . . . . . . 6

2.2 Heterogeneity without feedback: s=0. . . . . . . . . . . . . . . . 7

2.3 General remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Conclusion. 11

2



There is a growing body of research on agent-based models of financial mar-

kets that explores the relation between market participants and the statistical

properties of aggregate market variables such as prices and trading volume.

Indeed, financial time series exhibit non-trivial and intriguing statistical features

[3] which are not easy to model and even less to explain : volatility clustering

and heavy tailed increments for example.

In a previous paper [7], some methodological issues related to this approach are

considered. It appears that two main ingredients in agent-based models (and in

real speculative markets) which lead to realistic behavior of prices and trading

volume are heterogeneity in behavioral rules, resources or beliefs among market

participants and feedback effects, the agents behavior determining the state of

market variables which in turn influences these behaviors.

Let us recall the crucial ingredients of this model: threshold behavior of agents

that leads to investor inertia; absence of exogeneous “fundamental price” pro-

cess; absence of information asymetry; absence of “social interaction”.

A final element is endogeneous heterogeneity: heterogeneity of agents behav-

ioral rules appears endogeneously due to the asynchronous updating scheme.

Section 1 describes the model. The dynamics of heterogeneity and the thermo-

dynamic limit are investigated in section 2.

1 Description of the model.

The model describes a market where a single asset, whose price is denoted by

pt, is traded by N agents. Trading takes place at discrete dates t = 0, 1, 2, ..2.

At each period, every agent receives public news about the asset’s performance

and, using a subjective criterion, judge whether this news is significant. If the

news is found to be significant, the agent places a buy or sell order, depending

on whether the news received is pessimistic or optimistic. Prices then moved up

or down according to excess demand. Let us describe these ingredients in more

precise terms.

2Provided the parameters of the model are chosen in a certain range, we will be able to
interpret these periods as “trading days”.
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1.1 Trading rules.

At each period, agents have the possibility to send an order to the market for

buying or selling a unit of asset: denoting by φi(t) the demand of the agent,

we have φi(t) = 1 for a buy order and φi(t) = −1 for a sell order. We allow

the value φi(t) to be zero; the agent is then inactive at period t. The inflow

of new information is modeled by a sequence of IID Gaussian random variables

(ǫt, t = 0, 1, 2, ..) with ǫt ∼ N(0, D2). ǫt represents the value of a common signal

received by all agents at date t. The signal ǫt is a forecast of the future return

rt and each agent has to decide whether the information conveyed by ǫt is sig-

nificant, in which case she will place a buy or sell order according to the sign of

ǫt.

The trading rule of each agent i = 1, ..., N is represented by a (time-varying)

decision threshold θi(t). The threshold θi(t) can be viewed as the agents (sub-

jective) view on volatility. By comparing the signal to her threshold, the agent

decides whether the news is significant enough to generate a trade (|ǫt| > θi(t)):

if ǫt > θ+
i , φi = 1

if ǫt < θ−i , φi = −1

otherwise φi = 0. (1)

This trading rule may be seen as a stylized example of threshold behavior: with-

out sufficient external stimulus, an agent remains inactive and if the external

signal is above a certain threshold, the agent will act. The corresponding de-

mand generated by the agent is therefore given by:

φi(t) = 1ǫt>θi
− 1ǫt<−θi

. (2)

1.2 Price response to aggregate demand.

The aggregate excess demand is then given by:

Zt =
∑

i

φi(t). (3)

A non zero value of Zt produces a change in the price, and the resulting log

return is given by :

rt = ln
pt

pt−1
= g(

Zt

N
). (4)
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where the price impact function g : ℜ → ℜ is an increasing function with

g(0)=0. We define the (normalized) market depth λ by:

g′(0) = 1/λ. (5)

While most of the analysis below holds for a general price impact function g, in

some cases it will be useful to consider a linear price impact: g(z) = z/λ.

1.3 Updating of strategies.

As noted above, the threshold θi(t) represents the view of agent i on recent

market volatility: these thresholds are updated by agents from time to time to

reflect the amplitude of recent returns. Initially, we start from a population

distribution F0 of thresholds: θi(0), i = 1..N are positive IID variables drawn

from F0.

Updating of strategies is asynchronous: at each time step, any agent i has a

probability s (s ∈ [0, 1]) of updating her threshold θi(t). Thus, in a large pop-

ulation, s represents the fraction of agents updating their views at any period;

1/s represents the typical time period during which an agent will hold a given

view θi(t). If periods are to be interpreted as days, s is typically a small number

s ≃ 10−1 − 10−3.

When an agent updates her threshold, she sets it to be equal to the recently ob-

served absolute return, which is an indicator of recent volatility |rt| = | ln pt

pt−1

|.

Introducing IID random variables ui(t), i = 1..N ,t ≥ 0 uniformly distributed on

[0, 1], which indicate whether agent i updates her threshold or not, we can write

the updating rule as:

θi(t) = 1ui(t)<s|rt| + 1ui(t)≥sθi(t − 1). (6)

Here ǫt represents randomness due to public news arrivals whereas the random

variables ui(t) represent idiosyncratic sources of randomness. This way of up-

dating can be seen as a stylized version of various estimators of volatility based

on moving averages or squared returns. It is also corroborated by a recent em-

pirical study by Zovko & Farmer [10], who show that traders use recent volatility

as a signal when placing orders.

Note that, given this random updating scheme, even if we start from an initially

homogeneous population θi(0) = θ0, heterogeneity creeps into the population

through the updating process. In this sense, the heterogeneity of agents strate-
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gies is endogeneous in this model and, as we will see below, evolves in a random

manner.

2 Dynamics of heterogeneity.

Numerical simulations of the model [7] lead to series of returns with realistic

ranges and realistic values of annualized volatility and with some regularities

which match some empirical properties: excess volatility [9, 4]; mean-reverting

stochastic volatility [6]; a leptokurtic distribution of returns with (semi-)heavy

tails [5]; absence of autocorrelation of the returns; volatility clustering [8].

The origin of these properties can be understood with the following mechanism:

suppose we are in a period of “low-volatility”; the amplitude |rt| of returns is

small. Agents who update their thresholds will therefore update them to small

values, become more sensitive to news arrivals, thus generating higher excess

demand and thus increasing the amplitude of returns.

The persistence of a low or high volatility period depends on how frequently

agents update their thresholds, thus reacting to marklet activity. If s is the

proportion of agents updating their thresholds at each period, the duration of

such periods is of order 1/s.

Let us study first some limiting cases underlining the role of heterogeneity and

feedback and then the general case with the thermodynamic limit.

2.1 Feedback without heterogeneity: s = 1.

In the case where s = 1, all agents synchronously update their threshold at

each period. Consequently, the agents have the same thresholds, given by the

absolute return of the last period:

θi(t) = |rt−1|. (7)

and will therefore generate the same order: Zt = Nφ1(t) ∈ {0,−N, N}.

So, the return rt depends on the past only through the absolute return |rt−1|:

rt = f(|rt−1|, ǫt) = g(1)1ǫt>|rt−1| + g(−1)1ǫt<−|rt−1|,

a dependence structure typical of ARCH models, leading to uncorrelated re-

turns and volatility clustering. In this case, the distribution of rt conditional

on |rt−1| is actually a trinomial distribution:
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rt ∈ {0, g(1), g(−1)}. (8)

Of course, this behavior is extreme since it implies that the agents have identical

trading strategies and all agents are trading at each period, saturating market

activity: it does not allow for market inertia. It also generates a trinomial distri-

bution of returns which is not realistic. Simulation studies show that a similar

behavior persists for 1−s ≪ 1, leading to tri-modal distributions. This confirms

the intuition that the updating probability s, which reflects the proportion of

agents updating their choices at a given period, should be chosen small in order

to guarantee the heterogeneity of the population.

2.2 Heterogeneity without feedback: s=0.

In the case where s = 0, no updating takes places: the trading strategies, given

by the thresholds θi, are unaffected by the price behavior and the feedback effect

is not present anymore. Heterogeneity is still present: the distribution of the

thresholds remains identical to what it was at t=0. The return rt depends only

on ǫt:

rt = g(
1

N

N∑

i=1

1ǫt>θi
− 1ǫt<−θi

) = F (ǫt). (9)

One can conclude therefore that the returns are IID random variables, obtained

by transforming the Gaussian IID sequence (ǫt) by the nonlinear function F

given in (12), whose properties depend on the (initial) distribution of thresh-

olds (θi, i = 1..N). The log-price then follows a (non-Gaussian) random walk

and the model does not exhibit volatility clustering.

The two limiting cases above show that, in order to obtain the interesting

statistical properties, it is necessary to have 0 < s ≪ 1: both feedback and

heterogeneity are essential ingredients. Let us now turn to the general case.

2.3 General remarks.

Define ak = g(k/N) for k = −N..0..N and consider the finite sets

E = {ak, k = −N..0..N}, E+ = {g(k/N), k = 0..N} = {0, a1, ..aN} (10)
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The returns take their value in E while the thresholds θi(t) take their values in

E+. Let us start by noting that the law of the thresholds (θi(t), i = 1..N) only

depends on their values at t-1. We have with a probability 1-s:

θi(t + 1) = θi(t) (11)

and with probability s

θi(t + 1) = |rt| = |g(
1

N

∑

i

[1ǫt>θi
− 1ǫt<−θi

])|. (12)

In the extreme cases where s=0 or s=1, we observed that the return rt was in

fact a Markov chain. This is not true in general: as seen in the above relations,

the return rt not only depends on rt−1 but also on the states of the agents θi(t).

However it is readily observed from the above that:

Property 1 [θi(t), i = 1..N ] is a Markov chain in EN
+ .

More interestingly, given that agents are indistinguishable and only the em-

pirical distribution of threshold values affects the returns, defining Nk(t) as

the (random) number of agents with a threshold smaller than the k-th value

Nk(t) =
∑N

i=1 1[0,ak[(θi(t)) one can actually show that the Markovian dynamics

can be entirely described by (Nk(t), k = 0..N):

Property 2 (Evolution of heterogeneity) (Nk(t), k = 0..N)t=0,1.. evolves

as a Markov chain in {0, ..., N}N .

Note that N(t) = (Nk(t), k = 0..N) is none other than the (cumulative) popu-

lation distribution of the thresholds. The fact that N(t) itself follows a Markov

chain means that the population distribution of thresholds is a random measure

on {0, ...N}, which is characteristic of disordered systems. In this case, even

if we start from a deterministic set of values for the initial thresholds (even

identical ones), the population distribution will evolve. By contrast with some

models of disorder which have been used as analogies for systems of economic

agents [2], here the disorder is endogeneous and is generated by the random

updating mechanism.

The fraction of agents with a θi smaller than a given value θ at time t is:
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FN,t(θ) =
1

N
Θ(θ − θi(t)). (13)

which in the thermodynamic limit tends to the cumulative of the distribution

of the thresholds at time t if the law of large numbers(LLN) is valid :

Ft(θ) = Prob(θi(t) < θ). (14)

At time t the returns are

rt = g(
1

N

∑

i

[1ǫt>θi
−1ǫt<−θi

]) = g([FN,t(ǫt)−FN,t(−ǫt)]). = g(sgn(ǫt)FN,t(|ǫt|)).

(15)

In the thermodynamic limit if the LLN is valid, one can describe the evolution

of the distribution of the thresholds with this equation :

ft+1(θ) = (1 − s) ft(θ) + s δ|rt|,θ. (16)

whith |rt| = |g(sgn(ǫt)Ft(|ǫt|))| We then get the evolution equation for F :

Ft+1(θ) = (1 − s)Ft(θ) + sΘ(θ − |rt|). (17)

And we have :

ft = (1 − s)tf0 +

t∑

j=1

sj(1 − s)δ|rt−j |. (18)

One can say from this analysis that the LLN is valid if the measured distribution

of the thresholds matches after a time greater than − 1
ln(1−s) the distribution F

computed with the above equation.

A quick look at figure 1 reveals that the evolution of occupation numbers of a

given threshold computed with the asymptotic equation is similar to the one

with the multi-agent simulation. The asymptotic equation is then a good can-

didate for determining the stationnary distribution of the markovian process.

A finer look is needed and will be investigted in an other work.

Note finally that the occupation numbers decays exponentially in time and in-

creases through upward “jumps”: this behavior is actually similar to that of a

class of stochastic volatility models, introduced by Barndorff-Nielsen & Shepard

[1] and successfully used to describe various econometric properties of returns.
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Figure 1: Evolution of occupation numbers of threshold θk, k=0,2,100, com-
puted both with the asymptotic equation and with multi-agent simulation
(N = 1500).
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3 Conclusion.

The paper is about a parsimonious agent-based model which is capable of repro-

ducing the main empirical stylized facts observed in returns of financial assets.

The focus of this study is on the heterogeneity and its dynamics in the model.

More precisely, an asymptotic equation for the evolution of the ditribution of

the thresholds is derived. A full exploration of the parameter phase space and

of the complex dynamics of heterogeneity will be investigated in other works.

To quote Brian Arthur, “economics is changing currently from an emphasis on

equilibrium and homogeneity to an emphasis on the formation of pattern and

heterogeneity”. Thus, economics needs different tools and approaches. I hope

that the present work will contribute to this objective.
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[7] Ghoulmié, F., 2004. Heterogeneity and feedback in an agent-based market

model, paper prepared for the 10th International Conference for the Society

of Computational Economics, 2004, Amsterdam, The Netherlands.

[8] Mandelbrot, B.B., 1963. The variation of certain speculative prices, Journal

of Business 36, 384-419.

[9] Shiller, R., 2000. Irrational Exuberance, Princeton University Press.

11



[10] Zovko, I., Farmer, J.D., 2002. The power of patience: a behavioral regularity

in limit order placement, Quantitative Finance 2, 387-392.

12


