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Abstract

I propose an agent-based model of a single-asset financial market, described

in terms of a small number of parameters, which generates price returns with

statistical properties similar to the stylized facts observed in financial time se-

ries. I show that the joint effect of feedback and heterogeneity leads to a market

price that fluctuates endlessly and a volatility that displays a mean-reverting

behavior.

This agent-based model generically leads to an absence of autocorrelation in

returns, stochastic volatility, excess volatility, volatility clustering, and endoge-

neous bursts of market activity that is not attributable to external noise. The

model’s parsimonious structure allows the identification of the mechanism lead-

ing to these effects. I investigate some properties of this model theoretically and
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present extensive numerical simulations of other properties.

Keywords: agent-based model, financial markets, stylized facts, heterogeneity,

feedback, asynchronous updating.
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The study of statistical properties of financial time series has revealed a

wealth of interesting stylized facts which seem to be common to a wide variety

of markets, instruments, and periods. Market microstructure models, which

delve into the details of agent preferences and their interactions, may be useful

for normative design of market mechanisms but fail to explain why such stylized

facts are common to markets with such different microstructures.

Agent-based market models, which are based on a stylized description for the

behavior of agents, attempt to explain the origins of the observed behavior of

market prices in terms of simple behavioral rules for market participants: in

this approach a financial market is modeled as a system of heterogeneous, inter-

acting agents and several examples of such models have been shown to generate

price behavior similar to those observed in real markets.

Agent-based models studied in the literature have pointed to various possible

explanations for empirical stylized facts: herd behavior, social interaction and

mimetism, heterogeneity, investor inertia and switching between “chartist” and

“fundamentalist” behavior have been invoked as possible mechanisms. However

most of these models are formulated in a complex manner and, due to their

complexity, it is often not clear which aspect of the model is responsible for

generating the stylized facts and whether all the ingredients of the model are

indeed required for explaining empirical observations. This complexity also di-

minishes the explanatory power of such models.
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I propose here a parsimoniously parametrized agent-based model of a single-

asset financial market, that generates returns with statistical properties similar

to the stylized facts observed in financial time series. This agent-based model

generically leads to an absence of autocorrelation in returns, mean-reverting

stochastic volatility, excess volatility, volatility clustering, and endogeneous

bursts of market activity that is not attributable to external noise. The model’s

parsimonious structure allows identifying heterogeneity of strategies and feed-

back generated by the price impact of order flow as the key mechanisms leading

to these effects. In particular, I show that direct interaction or herding effects

are not needed to generate stylized facts. While heterogeneity of preferences

and endowments has also been studied in more classical frameworks in microe-

conomics, the model presents an example where heterogeneity is endogeneous

and follows a stochastic evolution in time.

The article is structured as follows. Section 1 recalls some stylized empirical

facts about returns of financial assets and reviews some agent-based models

used to explain the stylized facts. Section 2 presents my model. Simulation

results are presented in section 3, and a theoretical discussion is given in section

4 and section 5.
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1 Stylized properties of asset returns: facts and

models.

1.1 Stylized statistical propeties of asset returns.

Time series of asset returns exhibit interesting statistical features that seem

common to a wide range of markets and time-periods, Cont (2001):

• Excess volatility: many empirical studies point out to the fact that it

is difficult to justify the observed level of variability in asset returns by varia-

tions in “fundamental” economic variables. In particular, the occurence of large

(negative or positive) returns is not always explainable by the arrival of new

information on the market as noted by Cutler et al. (1989) and Shiller (2000).

• Heavy tails: the (unconditional) distribution of returns displays a heavy

tail with positive excess kurtosis.

• Absence of autocorrelation in returns: (linear) autocorrelations of asset

returns are often insignificant, except for very small intraday time scales (≃20

minutes) for which microstructure effects come into play.

• Volatility clustering: as noted by Mandelbrot (1963), “large changes tend
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to be followed by large changes, of either sign, and small changes tend to be

followed by small changes”. A quantitative manifestation of this fact is that,

while returns themselves are uncorrelated, absolute or squared returns |rt(∆)|

display a positive, significant, and slowly decaying autocorrelation function:

corr(|rt|, |rt+∆|) > 0 for ∆ ranging from a few minutes to several weeks.

• Volume/volatility correlation: trading volume is positively correlated with

market volatility.

These stylized facts are model-free, “nonparametric” statements on properties

of returns. While they do not pinpoint a single stochastic process as a candi-

date for the price dynamics, the fact that they are common to a wide variety of

markets and periods has intrigued many researchers who have sought to explain

their origin by relating them to the behavior of market agents.

1.2 Agent-based models of financial markets.

The fact that these empirical properties are common to a wide range of mar-

kets and time periods suggests that their origin can be retraced to some simple

market mechanisms, common to many markets and thus largely independent

of their “microstructure”. This is the basis for the development of agent-based
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market models, which are based on a stylized description for the behavior of

agents and attempt to explain the origins of the observed behavior of market

prices as emerging from simple behavioral rules for a large number of hetero-

geneous market participants. Stauffer (2001) proposed for example percolation

models that generate price behavior with statistical properties similar to those

observed in real markets.

Agent-based models studied in the literature have pointed to various possible

explanation for empirical stylized facts. Mimetism (e.g., Orléan, 1995) and herd

behavior (e.g., Cont & Bouchaud, 2000 and Stauffer et al., 1999) has been sug-

gested as a possible explanation for heavy tails in returns and the occurence of

bubbles (e.g., Banerjee, 1993).

Another mechanism which has been considered is endogeneous switching be-

tween “chartist” and “fundamentalist” behavior as studied by Lux & March-

esi (2000) and Kirman & Teyssiere (2002). In such models one starts from

an exogeneous “fundamental value” for an asset and investors can switch be-

tween a strategy based on the fundamental value or a trend-following rule. This

switching is generated by the fact that backward-looking investors compare the

benefits of having used one strategy or the other in the recent past, leading

to boom-bust cycles in prices. Brock & Hommes (1998) study deterministic

variants and show that such behavior can also lead to chaotic behavior which

mimicks some “statistical” stylized facts. Similarly, Gaunersdorfer (2000) stud-
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ies a model in which traders have heterogeneous expectations concerning future

prices and update their beliefs according to a risk adjusted performance measure

and to market conditions: in the case where agents can only choose between two

different predictors chaotic behavior ensues. Chiarella et al. (2002) consider a

wider spectrum of forecasting strategies to study the effects of heterogeneous

beliefs and attitudes towards risk on the dynamics of asset prices and wealth.

Some models enrich this approach by adding the role of a market maker.

Evolutionary variants of these models where “natural” selection favors the sur-

vival of best performing strategies have been studied by Arthur et al. (1997),

Blume & Easley (1990), Farmer & Joshi (2002), Hommes et al. (2003).

Heterogeneity in agents’ time scale are also believed to be responsible for a num-

ber of stylized facts. Long term traders naturally focus on long-term behavior

of prices neglecting fluctuations at the smallest time scale, whereas short-term

traders are not concerned with price movements on the long-run but rather aim

to exploit short-term predictability. The effects of the diversity in time horizons

on price dynamics have been studied by LeBaron (2001) in an artificial stock

market. He concluded that the presence of heterogeneity in horizons may lead

to an increase in return variability, as well as volatility-volume relationships

similar to those of actual markets.

Numerical simulations of many of the models above lead to time series of “re-

turns” which have properties consistent with some of the empirical stylized facts
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noted above. However, due to the complexity of such models it is often not clear

which aspect of these models is responsible for generating the stylized facts or

if all the elements of the model are required. This complexity also diminishes

the explanatory power of such models.

A key point in Cont & Bouchaud (2000) work which leads to heavy tails in

the distribution of order flow is to allow for investor inertia-the fact that most

market partcipants trade very infrequently. Horst et al. (2003) have also shown

that this ingredient leads to long range dependence in returns; note however

that such “long range dependence”, if any, is actually observed in volatility

whereas returns are believed to be uncorrelated. Investor inertia will also be a

key feature of my model; however, instead of postulating investor inertia as a

starting point, I will define a mechanism which leads to it as a consequence.

A possible mechanism for generating investor inertia is threshold behavior.

Threshold response in the behavior of market participants can be seen either

as resulting from trade friction or, more fundamentally, from the risk aver-

sion of agents which leads them to be inactive if uncertain about their action.

There are also trading rules practiced by chartists such as John Bollinger rule

using threshold response. In a pioneering work, Granovetter (1983) has sug-

gested threshold behavior in the behavior of individuals as the possible origin

for collective phenomena and large fluctuations in aggregate quantities. I will

use threshold behavior as a crucial ingredient in formulating my market model.
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Based on these remarks, I now formulate a model of a single-asset market re-

taining the ingredients above.

2 Description of the model.

The model describes a market where a single asset, whose price is denoted by pt,

is traded by N agents. Trading takes place at discrete dates t = 0, 1, 2, ... Pro-

vided the parameters of the model are chosen in a certain range, these periods

may be interpreted as “trading days”. At each period, every agent receives pub-

lic news about the asset’s performance and, using a subjective criterion, judge

whether this news is significant. If the news is found to be significant, the agent

places buy or sell order depending on whether the news received is pessimistic

or optimistic. Prices then move up or down according to excess demand. These

ingredients are now described in more precise terms.

2.1 Trading rules.

At each period, agents may send buy or sell order to the market for a unit

of asset: denoting by φi(t) the demand of the agent, we have φi(t) = 1 for a

buy order and φi(t) = −1 for a sell order. I allow the value φi(t) to be zero;

the agent is then inactive at period t. The inflow of new information is mod-
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eled by a sequence of IID Gaussian random variables (ǫt, t = 0, 1, 2, ..) with

ǫt ∼ N(0, D2). ǫt represents the value of a common signal received by all agents

at date t. The signal ǫt is a forecast of the future return rt and each agent has

to decide whether the information conveyed by ǫt is significant, in which case

he will place a buy or sell order according to the sign of ǫt.

The trading rule of each agent i = 1, ..., N is represented by a (time-varying)

decision threshold θi(t). The threshold θi(t) can be viewed as the agents (sub-

jective) view on volatility. By comparing the signal to her threshold, the agent

decides whether the news is significant enough to generate a trade (|ǫt| > θi(t)):

if ǫt > θi, φi = 1

if ǫt < −θi, φi = −1

otherwise φi = 0. (1)

This trading rule may be seen as a stylized example of threshold behavior: with-

out sufficient external stimulus, an agent remains inactive and if the external

signal is above a certain threshold, the agent will act. The corresponding de-

mand generated by the agent is therefore given by:

φi(t) = 1ǫt>θi
− 1ǫt<−θi

. (2)
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2.2 Price response to aggregate demand.

Agregate excess demand is:

Zt =
∑

i

φi(t). (3)

When Zt is non zero, there is a change in the price, and the resulting log return

is given by

rt = ln
pt

pt−1
= g(

Zt

N
). (4)

where the price impact function g : ℜ → ℜ is increasing in its argument with

g(0)=0. I define the (normalized) market depth λ by

g′(0) = 1/λ. (5)

While most of the analysis below holds for a general price impact function g, in

some cases it will be useful to consider the linear case: g(z) = z/λ.

2.3 Updating of strategies.

As I noted above, the threshold θi(t) represents the view of agent i on recent

market volatility: these thresholds are updated by agents from time to time to

reflect the amplitude of recent returns. Initially, we start from a population

distribution F0 of thresholds: θi(0), i = 1..N are positive IID variables drawn
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from F0.

The updating of strategies is asynchronous: at each time step, any agent i has a

probability s of updating her threshold θi(t). Thus, in a large population, s rep-

resents the fraction of agents updating their views at any period; 1/s represents

the typical time period over which an agent retains a given view θi(t). If periods

are to be interpreted as days, s is typically a small number s ≃ 10−1 − 10−3.

When an agent updates her threshold, he sets it to be equal to the recently ob-

served absolute return, which is an indicator of recent volatility |rt| = | ln pt

pt−1

|.

Introducing IID random variables ui(t), i = 1..N ,t ≥ 0 uniformly distributed on

[0, 1], which indicate whether agent i updates her threshold or not, we can write

the updating rule as:

θi(t) = 1ui(t)<s|rt| + 1ui(t)≥sθi(t − 1). (6)

Here ǫt represents randomness due to public news arrivals whereas the random

variables ui(t) represent idiosyncratic sources of randomness. This way of up-

dating can be seen as a stylized version of various estimators of volatility based

on moving averages or squared returns. It is also corroborated by a recent

empirical study by Zovko & Farmer (2002), who show that traders use recent

volatility as a signal when placing orders.

The asynchronous updating scheme proposed here avoids introducing an artifi-
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cial ordering of agents as in sequential choice models (e.g, Banerjee, 1993). The

random nature of updating is also a parsimonious way to differentiate agents

through their updating “frequencies”, feature believed to be important (e.g.,

LeBaron, 2001). Hong et al. (2000) present empirical evidence supporting the

view that inexperienced analysts revise their forecasts more frequently than

inexperienced analysts; more generally, existence of agents with various time

scales of intervention has been stressed in many studies of agent-based models

and this random updating allows to introduce heterogeneity in time scales with-

out introducing extra parameters.

Note that, given this random updating scheme, even if we start from an initially

homogeneous population θi(0) = θ0, heterogeneity creeps into the population

through the updating process. In this sense, the heterogeneity of agents strate-

gies is endogeneous in this model and, as we will see below, evolves in a random

manner.

2.4 Summary.

Let us recall the main ingredients of the model described above. At each time

period:

•agents receive a common signal ǫt ∼ N(0, D2).
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•each agent i compares the signal to her threshold θi(t).

•if |ǫt| > θi(t) the agent considers the signal as significant and generates an

order φi(t) according to (1).

•The market price is affected by the excess demand and moves according to

(4).

•each agent updates, with probability s, her threshold according to (6).

With regard to some of the agent-based models considered in the literature,

some important aspects are the following:

•There is no exogeneous “fundamental price” process: prices move through

market fluctuations of supply and demand. In particular, we do not distinguish

between “fundamentalist” and “chartist” traders.

•No information asymetry: the same information is available to all agents.

Agents differ in the way they process the information.
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•Absence of “social interaction”: agents interacts indirectly via the price, as

in standard Walrasian markets. We do not introduce any “social interaction”

among agents. In particular, no notion of locality, lattice or graph structure is

introduced.

•Endogeneous heterogeneity: heterogeneity of agents behavioral rules appears

endogeneously due to the asynchronous updating sheme.

The model has very few parameters: s describes the average updating fre-

quency, D is the standard deviation of the news arrival process and λ is the

market depth. Furthermore, as we will observe in the next section, if we require

to interpret the trading periods as “days” this will put a further restriction on

the parameters, reducing the effective number of parameters. Nevertheless, this

simple model generates time series of returns with interesting dynamics and

with properties similar to those observed empirically.

3 Numerical simulations

The model described above is straightforward to simulate. I describe the simu-

lation procedure here and present some typical results. The simulations identify

basic properties of the model and indicate the range of parameters that accord
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with the empirical data on asset returns.

3.1 Simulation procedure.

The state of the system at each time period is described by the vector (θi(t), i =

1..N) of thresholds. The thresholds θi(0) are initialized by drawing from an IID

distribution F0. Simulation is done through an iterative procedure, each itera-

tion repeating the steps described in Section 2.4. Although the model allows for

more general price impact functions, in the absence of an empirically motivated

parametric form, I have chosen a linear function g(x) = x/λ. This choice can

be viewed as a linearization of a more general g, valid for small values of excess

demand or for markets with large market depth.

Usually in Monte Carlo simulations, expectations, moments, and distributions

of quantities of interest are computed by averages from many independent run-

ning independent simulation runs. However, for direct comparison with empiri-

cal stylized facts to be meaningful, we should consider that only a single sample

path of the price is available and compute the (unconditional) by averaging over

the (single) sample path. I therefore adopt such an approach here: after simu-

lating a sample path of the price pt for T = 104 periods, I compute the following

quantities:
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•the time series of returns rt = ln(pt/pt−1), t = 1..T .

•the histogram of returns, which is an estimator of its unconditional distri-

bution.

•a moving average estimator of the standard deviation of returns:

σ̂2(t) = 250[
1

T ′

t
∑

t′=t−T ′+1

|rt|
2 − (

1

T ′

T ′

∑

t′=t−T ′+1

rt)
2]. (7)

This quantity is a frequently used indicator for “volatility”. I “annualize” it by

multiplying the “daily” estimate by 250.

•the sample autocorrelation function of returns:

Cr(τ) =
T

∑T
t=1 |rt|2

[
1

T − τ

T−τ
∑

t=1

rtrt+τ − (
1

T − τ

T−τ
∑

t=1

rt)(
1

T − τ

T
∑

t=τ+1

rt)] (8)

•the sample autocorrelation function of absolute returns:

C|r|(τ) =
T

∑T

t=1 |rt|2
[

1

T − τ

T−τ
∑

t=1

|rt||rt+τ | − (
1

T − τ

T−τ
∑

t=1

|rt|)(
1

T − τ

T
∑

t=τ+1

|rt|)]

(9)
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These quantities can then be compared to those of empirical stylized facts de-

scribed in Section 1.1. Finally, to decrease the sensitivity of results to initial

conditions, I allow an initial transitory regime and discard the first 103 periods

before averaging. The rationale behind the choice of this initial period will be

discussed below.

3.2 Choosing the range of parameters

Simulation of the model requires the specification of the parameters s, D, λ,

the number of agents N and the specification of the initial distribution of the

thresholds.

To be able to interpret the trading periods as “days” in order to compare the

results to properties of daily returns, some restrictions must be imposed on

the parameter values. First, note that the one-period returns are bounded by

max{|g(x)|, x ∈ [−1, 1]}. In the case where g is linear, |rt| ≤
1
λ
.

This suggest that the (normalized) market depth λ should not be too large in

order to allow for a realistic range of daily returns. I choose here 5 ≤ λ ≤ 20

which allows a (maximal) range of daily returns between 5% and 20%. Note

that this is a maximal range and, in fact, we will see that this maximum is not

attained in a typical sample path. In practice, varying λ within this range does
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not affect the qualitative properties of the return process.

As noted above, 1/s represents the average number of periods an agent takes to

update his view on market volatility: as noted in Section 4, unless the market

is entirely composed of professional day traders following the market on a daily

basis (for which s = 1), it is more plausible that s ≪ 1. I have chosen here s

within the range s = 10−3 − 10−2.

The amplitude D of the input noise can be chosen as to reproduce a realistic

range of values for the (annualized) volatility, such as measured by the moving

average indicator σ̂ defined above. Intuitively, the volatility of returns is increas-

ing in D (although the relation turns out to be nonlinear) and this constraint

leads us to choosing D in the range 10−3 − 10−2.

Finally, I choose N = 103 − 104 to get a realistic number of investors in a mar-

ket. When the number of agents is lowered, the distribution of returns becomes

multimodal with 3 local maxima, one at zero, one positive maximum and a

negative one (figure2). This can be interpreted as a disequilibrium regime: the

market moves either one way or the other. Stanley et al. (2003) have observed

empirically a similar behavior.

It should be emphasized that I am discussing here the calibration of the order of

magnitude of parameters, and am not fine-tuning them to a set of critical values.

The results given in the sequel are characteristic of those obtained within this

range of parameters, that allow for a comparison with daily returns.
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3.3 Simulation results.

Using the parameter ranges above, I perform an extensive simulation study of

price behavior in this model. Figures 1 and 2 illustrate typical sample paths

obtained with different parameter values: they all generate series of returns with

realistic ranges and realistic values of annualized volatility. For each series, the

figures also give the histogram of returns both in linear and log scales, the ACF

of returns Cr, and the ACF of absolute returns C|r|.

We note that all the return series possess some regularities that match some of

the empirical properties given in Section 1.1:

•Excess volatility: the sample standard deviation of returns can be much larger

than the standard deviation of the input noise representing news arrivals

σ̂(t) ≫ D.

•Mean-reverting volatility: the market price fluctuates endlessly and displays

“stochastic volatility”: the volatility, as measured by the moving average esti-

mator σ̂(t), goes neither to zero nor to infinity and displays a mean-reverting

behavior. This behavior is found in many empirical studies. GARCH models

(e.g., Engel, 1995), on one hand, and stochastic volatility models, on the other,
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aim at reproducing this mean-reverting stochastic behavior of volatility.

•The simulated process generates a leptokurtic distribution of returns with

(semi-)heavy tails, with an excess kurtosis around κ ≃ 7. As shown in the

logarithmic histogram plots in figures 1-3, the tail exhibit an approximately ex-

ponential decay, as observed in various studies of daily returns (e.g., Engle et

al., 1993). Note that κ = 6 for a (two-sided) exponential distribution.

•The returns are uncorrelated: the sample autocorrelation function of the re-

turn exhibits an insignificant value (very similar to that of asset returns) at all

lags, indicating the absence of linear serial dependence in the returns.

•Volatility clustering: the autocorrelation function of absolute returns remains

positive, and significantly above the autocorrelation of the returns, over many

time lags, corresponding to persistence in the amplitude of returns over periods

ranging from a few weeks to several months. This is an indication of nonlinear

dependence in the returns.

I will now attempt to understand the origin of these properties by analyzing

the model.
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Figure 1: Numerical simulation of the model with updating frequency s = 0.015
(updating period: 67 “days”), N = 1500 agents, λ = 10, D = 0.001.

4 Some limiting cases.

Here I study some limiting cases of the model and deduce some simple proper-

ties for the returns.
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Figure 2: Numerical simulations of the model with updating frequency s = 0.01
(updating period: 100 days), N = 1000, λ = 10, D = 0.001.
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Figure 3: Numerical simulations of the model with updating frequency s = 0.1
(updating period: 10 days), N = 1500, λ = 5, D = 0.001.
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4.1 Feedback without heterogeneity: s = 1.

In the case where s = 1, all agents synchronously update their threshold at

each period. Consequently, the agents have the same thresholds, given by the

absolute return of the last period:

θi(t) = |rt−1|. (10)

and will therefore generate the same order: Zt = Nφ1(t) ∈ {0,−N, N}.

So, the return rt depends on the past only through the absolute return |rt−1|:

rt = f(|rt−1|, ǫt) = g(1)1ǫt>|rt−1| + g(−1)1ǫt<−|rt−1|,

a dependence structure typical of ARCH models, leading to uncorrelated re-

turns and volatility clustering. In this case, the distribution of rt conditional

on |rt−1| is actually a trinomial distribution:

rt ∈ {0, g(1), g(−1)}. (11)

Due to the special threshold structure of the model, the autocorrelation of the

absolute returns is in fact negative at lag 1: indeed, when the return take the

value 0, the thresholds take the value 0 and at the next time step agents will

act with a probability 1 so the return will take a non zero value ±1/λ and the

thresholds will be updated at 1/λ. For D small enough compared to 1/λ, the

agents will not act with a probability 1 and again the returns will take the value
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0.

Of course, this behavior is extreme since it implies that the agents have identical

trading strategies and all agents are trading at each period, saturating market

activity: it does not allow for market inertia. It also generates a trinomial distri-

bution of returns which is not realistic. Simulation studies show that a similar

behavior persists for 1−s ≪ 1, leading to tri-modal distributions. This confirms

the intuition that the updating probability s, which reflects the proportion of

agents updating their choices at a given period, should be chosen small in order

to guarantee the heterogeneity of the population.

4.2 Heterogeneity without feedback: s=0.

In the case where s = 0, no updating takes places: the trading strategies, given

by the thresholds θi, are unaffected by the price behavior and the feedback effect

is not present anymore. Heterogeneity is still present: the distribution of the

thresholds remains identical to what it was at t=0. The return rt depends only

on ǫt:

rt = g(
1

N

N
∑

i=1

1ǫt>θi
− 1ǫt<−θi

) = F (ǫt). (12)
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I conclude therefore that the returns are IID random variables, obtained by

transforming the Gaussian IID sequence (ǫt) by the nonlinear function F given

in (12), whose properties depend on the (initial) distribution of thresholds

(θi, i = 1..N). The log-price then follows a (non-Gaussian) random walk and

the model does not exhibit volatility clustering.

5 Behavior of prices and volatility.

The two limiting cases above show that, in order to obtain the interesting statis-

tical properties observed in the simulated examples shown above, it is necessary

to have 0 < s ≪ 1: both feedback and heterogeneity are essential ingredients.

Let us now turn to the general case.

5.1 General remarks.

Define ak = g(k/N) for k = −N..0..N and consider the finite sets

E = {ak, k = −N..0..N}, E+ = {g(k/N), k = 0..N} = {0, a1, ..aN} (13)

The returns take their value in E while the thresholds θi(t) take their values in

E+. Let us start by noting that the law of the thresholds (θi(t), i = 1..N) only
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depends on their values at t-1. We have with a probability 1-s:

θi(t + 1) = θi(t) (14)

and with probability s

θi(t + 1) = |rt| = |g(
1

N

∑

i

[1ǫt>θi
− 1ǫt<−θi

])|. (15)

In the extreme cases where s=0 or s=1, we observed that the return rt was in

fact a Markov chain. This is not true in general: as seen in the above relations,

the return rt not only depends on rt−1 but also on the states of the agents θi(t).

However it is readily observed from the above that:

Property 1 [θi(t), i = 1..N ] is a Markov chain in EN
+ .

More interestingly, given that agents are indistinguishable and only the em-

pirical distribution of threshold values affects the returns, defining Nk(t) as

the (random) number of agents with a threshold smaller than the k-th value

Nk(t) =
∑N

i=1 1[0,ak[(θi(t)) one can actually show that the Markovian dynamics

can be entirely described by (Nk(t), k = 0..N):

Property 2 (Evolution of heterogeneity) (Nk(t), k = 0..N)t=0,1.. evolves
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as a Markov chain in {0, ..., N}N .

Note that N(t) = (Nk(t), k = 0..N) is none other than the (cumulative) popu-

lation distribution of the thresholds. The fact that N(t) itself follows a Markov

chain means that the population distribution of thresholds is a random measure

on {0, ...N}, which is characteristic of disordered systems. In this case, even if

we start from a deterministic set of values for the initial thresholds (even identi-

cal ones), the population distribution will evolve. By contrast with some models

of disorder which have been used as analogies for systems of economic agents

(e.g., Challet et al., 2001), here the disorder is endogeneous and is generated by

the random updating mechanism.

5.2 Excess volatility

By “excess volatility” one refers to the observation that the level of variability

in market prices is much higher than what can be expected based on the vari-

ability of fundamental economic variables and is unexplained by news arrivals.

In this model, the volatility of the news arrival process is quantified by D which

is the standard deviation of the external noise ǫt, whereas the volatility of the

returns can be measured a posteriori as the (conditional or unconditional) stan-

dard deviation of rt. As seen from the nonlinear relation between ǫt and rt,
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rt = g(
1

N

N
∑

i=1

[1ǫt>θi
− 1ǫt<−θi

]) (16)

the relation between these two quantities is far from being an equality: even

after conditioning on the current states of agents θi(t), i = 1..N , Eq. (16) yields

a nonlinear relation between the input noise ǫt and the returns which can have

the effect of amplifying the noise by an order of magnitude or more.

In practice one can compare D with a commonly used notion of “volatility”,

a moving average estimator of standard deviation of returns, as decribed in

Section 3. In the simulation example shown in figure 1, D = 10−3 which cor-

responds to an annualized volatility of 1.6%, while the annualized volatility of

returns is in the range of 20%, an order of magnitude larger. This is a basic

phenomenon also observed in other simulations: the order of magnitude of the

volatility of returns may be totally different from that of the input noise. Here

the mechanism for generating this excess volatility is identified as the threshold

behavior of individual agents along with the heterogeneity of their behavioral

rules.

5.3 Dependence properties of returns.

The following equations link the returns rt, the thresholds [θi(t), i = 1..N ] and

the input noise ǫt:
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Zt =
∑

i

φi(t) =
∑

i

[1ǫt>θi
− 1ǫt<−θi

]. (17)

rt = g(Zt/N) = g(
1

N

∑

i

[1ǫt>θi
− 1ǫt<−θi

]). (18)

From these relations one deduces the following properties:

Property 3 (Uncorrelated returns) Assume that g is an odd function. As-

set returns (rt)t≥0 are uncorrelated: cov(rt, rt+1) = 0.

Property 4 (Volatility clustering) Amplitudes of consecutive returns are

positively correlated: cov(|rt|, |rt+1|) > 0.

Of course, the volatility clustering property is observed to hold well beyond

the first lag in the simulations shown above. In fact, defining the cluster length

τc as the first lag for which the autocorrelation of absolute returns becomes

zero, one can inquire into the dependence of this cluster length with respect

to the updating frequency s. Figure 4 shows that the duration τc of volatility

clusters increases with the average updating time 1/s in a monotone fashion

and as a first approximation τ ≃ 1/s. This interpretation is interesting since it

related an observable quantity, τc, to the parameter s which describes the up-

dating behavior of the agents. In most markets, the length of volatility cluster
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Figure 4: Time scale τc over which absolute returns remain positively correlated,
as a function of the updating period 1/s.

is roughly of the order of months, indicating that the range s ∼ 10−2 is in fact

quite consistent with this behavior.

5.4 Investor inertia.

Except in times of crisis or market crash, at a given point in time only a small

proportion of stockholders are actually trading in the market. As a result,

the (daily) order flow for a typical stock can be much smaller than the mar-

ket capitalization. This phenomenon, sometimes refered to as investor inertia,
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was used by Cont & Bouchaud (2000) as a key ingredient for generating long-

memory properties in returns. However, while in these models investor inertia

is exogeneously assumed, in the present case it is an outcome of the model:

although all agents have the possibility of trading at each period, we observe

that only a fraction of agents actually submit orders.

Starting from an initial holding of pi(0), the quantity of asset held by agent i is

given by pi(t) =
∑t

τ=0 φi(τ). Figure 5 displays the evolution of the portofolio

pi(t) of a typical agent. The phenomenon of investor inertia is readily observed

in this figure: short periods of activity (trading) are separated by long periods

of inactivity, where the portofolio remains constant. Moreover, this “inertia”

increases in periods of high volatility: agents update their thresholds to high

values of absolute returns and such high values of thresholds makes them less

reactive to the arrival of information and decreases order flow. While there is

no explicit modeling of preferences or risk aversion in our simplified model, this

effect is similar to the behavior of risk-averse agent maximizing the expectation

of a concave utility.

I am studying daily fluctuations and thus I am not concerned with describing

the details of the transactions mechanism or any problems of optimization in

each agent’s portofolio. I simply describe one type of agents assuming them to

be the main source of price fluctuations for a single asset; I do not describe the

whole market. However, it would be interesting to examine the effects of adding
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Figure 5: Evolution of the portofolio of a typical agent, in the market simulation
displayed in figure1.

constraints on the agent’s behaviors (budget constraint for example), and this

will be investigated in an other work.

5.5 Mean-reverting volatility.

Many microstructure models-especially those with learning or evolution- when

observed over large time intervals, converge to an equilibrium where prices and

other aggregate quantities cease to fluctuate randomly. Of course, this is not

observed in financial markets: prices fluctuate endlessly and the volatility ex-
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hibits mean-reverting behavior.

It is easy to understand why our agent-based model will generically lead to

endless price fluctuations and mean-reverting volatility. The mechanism is the

following. Suppose we are in a period of “low-volatility”; the amplitude |rt| of

returns is small. Agent who update their thresholds will therefore update them

to small values, become more sensitive to news arrivals, thus generating higher

excess demand and thus increasing the amplitude of returns.

The persistence of a low or high volatility period depends on how frequently

agents update their thresholds, thus reacting to market activity. If s is the

proportion of agents updating their thresholds at each period, the duration of

such periods is of order 1/s. This mechanism can also be understood as agents

switching between an active strategy and inactive one, ingredient reviewed in

Giardina & Bouchaud (2003) work as a possible explanation of long-range de-

pendence in the volatility time series.

The mechanism of this mean-reverting behavior can be understood in more de-

tail in the case where the amplitude D of the input noise ǫt is small. Assume for

simplicity that ǫt has bounded support and P (|ǫt| > g(1/N)) = 0. Let us note

N0(t) the number of agents with threshold zero at time t. A fraction of them

will update their threshold to a non zero value, sN0(t) is the most probable

fraction of updating agents so :
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E[N0(t + 1)] = (1 − s)N0(t). (19)

until we have zero agents with threshold zero, then again we expect sN agents

to get their thresholds at zero. Because rt = g(±N0(t)
N

), and with g linear, if

|rt| 6= 0

E[|rt+1|||rt|] = (1 − s)|rt| (20)

and from this we get :

E[|rt+j |||rt|] = (1 − s)j |rt|. (21)

until we have no agents with threshold zero.

In figure 6, we have a simulation for D = 10−5. It confirms the dynamics

described above : bursts of activity around the value sN and then exponential

decays, the process is not periodic however the sequences of activity last around

a period of value − 1
ln(1−s) .

From this, one can guess why the autocorrelation function of the absolute returns

is positive and decays on a period that is an increasing function of the updating

period 1
s

as observed in figure 7, however this is not obvious to prove.
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One can write :

N0(t + 1) =

N0(t)
∑

i=1

1γi≤1−s + δ(N0(t))

N
∑

j=1

1γj≤s (22)

with γi and γj random variables chosen uniformly on [0, 1]. From this we get :

The two-point autocorrelation function of the absolute returns is given by :

̺(1) =
cov(N0(t + 1)N0(t))

√

var(N0(t + 1))var(N0(t))
(23)

From (22) we prove that the two-point autocorrelation function is positive :

̺(1) = (1 − s)

√

var(N0(t))

var(N0(t + 1))
> 0. (24)

Thus in the case of D small enough, volatility decays exponentially in time and

increases through upward “jumps” of magnitude sN. This behavior is actually

similar to that of a class of stochastic volatility models, introduced by Barndorff-

Nielsen & Shepard (2001) and successfully used to describe various econometric

properties of returns.

One can understand qualitatively the dynamics of heterogeneity and how

this is linked to the stylized facts. When a majority of agents have a low value

for their threshold, it is very probable to get a large fluctuation. Because only
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Figure 6: Numerical simulation of the model with s = 0.015 N = 1500 λ = 0.1
D = 10−5

a small fraction do higher their threshold response when a large fluctuation oc-

curs, it is still very probable to get a large fluctuation at the next time step. In

other words, the slow feedback mechanism causes persistence in the fluctuations.

6 Conclusion.

I have presented a parsimonious agent-based model capable of reproducing the

main empirical stylized facts observed in returns of financial assets.
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Figure 7: Numerical simulation of the model with s = 0.015 N = 1500 λ = 0.1
D = 10−5

The model is based on three main ingredients:

•Threshold behavior of agents.

•Heterogeneity of agent strategies, generated endogeneously through random

asynchronous updating of thresholds.

•A feedback effect of recent price behavior on agent strategies.

Numerical simulations of the model generically produce time series that cap-

ture the stylized facts observed in asset returns. Due to the simple structure of

the model, these simulation results can be explained by a theoretical analysis

of the price process in the model.
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These observations illustrate that these ingredients suffice for reproducing sev-

eral empirical stylized facts such as heavy tails, absence of autocorrelation in

returns, and volatility clustering, with realistic values in the time scales involved.

In particular, I do not introduce any exogeneous “fundamental” price or any di-

rect interaction between agents, nor do I use different classes of traders (such

as “chartists” or “fundamentalists”). These results question some conclusions

previously drawn from simulation of agent-based models regarding the origins

of stylized properties of asset returns and call for a closer, critical look at this

issue through the study of a wider variety of agent-based market designs. I hope

that the present work will contribute to this objective.
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