
HAL Id: hal-00002254
https://hal.science/hal-00002254

Preprint submitted on 21 Jul 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonequilibrium fluctuations in a resistor
Nicolas Garnier, Ciliberto Sergio

To cite this version:

Nicolas Garnier, Ciliberto Sergio. Nonequilibrium fluctuations in a resistor. 2004. �hal-00002254�

https://hal.science/hal-00002254
https://hal.archives-ouvertes.fr


cc
sd

-0
00

02
25

4,
 v

er
si

on
 1

 -
 2

1 
Ju

l 2
00

4
Nonequilibrium fluctuations in a resistor

N. Garnier∗ and S. Ciliberto
Laboratoire de Physique, Ecole Normale Supérieure de Lyon

(Dated: July 21, 2004)

In small systems where relevant energies are comparable to thermal agitation, fluctuations are
of the order of average values. In systems in thermodynamical equilibrium, the variance of these
fluctuations can be related to the dissipation constant in the system, exploiting the Fluctuation-
Dissipation Theorem (FDT) [1, 2, 3]. In non-equilibrium steady systems, Fluctuations Theorems
(FT) [4, 5, 6, 7] additionally describe symmetry properties of the probability density functions
(PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model
system: an electrical dipole driven out of equilibrium by a small constant current I , and show that
FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure
the dissipated power P̄ = RI2 in the system by just studying the PDFs symmetries.

PACS numbers: 05.40.-a, 05.70.-a, 07.50.-e, 84.30.Bv

Introduction

By studying the fluctuations of an extensive quan-
tity such as the voltage across an electric dipole [1, 2],
Fluctuation-Dissipation Theorem [3] allows one to mea-
sure at equilibrium the parameter quantifying the dissi-
pative part of the system. The first relation of this type
was given for Brownian motion in 1905 [8, 9], relating
the mean squared displacement of a particle in a thermal
viscous bath with the viscosity and the temperature, via
a microscopic expression of the diffusion coefficient of the
particle. Since Johnson [1] and Nyquist [2], FDT is also
known to apply in electrical circuits, relating equilibrium
fluctuations of voltage U across a dipole with the resistive
part of this dipole.

In the last decade, a new type of relations, Fluctua-
tion Theorems (FT) [4, 5], appeared in nonequilibrium
statistical physics that relate the asymmetry of fluctua-
tions of energies (or powers) with the dissipated power
required to maintain the nonequilibrium steady state of
the system, which is a measure of the distance from equi-
librium. Using a powerful analogy with a forced Langevin
equation [6], a precise formulation was recently given for
electrical circuits [7]. While FDT is derived for equilib-
rium systems and can still be used close to equilibrium
where generalizations are inferred, FT require the system
to be out of equilibrium, but at an arbitrary distance of
it.

We drive an electrical dipole out of equilibrium by in-
jecting in it a small current and we use this system as
a model nonequilibrium system. By looking at the in-
jected power, and the dissipated heat in the system, we
checked Fluctuation Theorems. We show that they are
as a predictive tool as the FDT of Nyquist, extending it
away from equilibrium.

Our system is an electrical dipole constituted of a resis-
tance R in parallel with a capacitor C (Fig. 1). We drive
it out of equilibrium by making a constant current I flow
in it. The injected power is typically of some kBT per
second, of the same order as in biophysics or nanoscale

FIG. 1: Model circuit : an electrical dipole is composed of
a resistive part R and a capacitive part C. Due to thermal
fluctuations of charges positions, a fluctuating voltage U is
observed. We drive the system away from equilibrium by
imposing a constant flux of electrons, via a constant current
I .

physics experiments. This represent the fundamental
case of a system in contact with two different (electrons-
) reservoirs, one of the simplest and most fundamental
problems of nonequilibrium physics [10]. Nyquist FDT
as well as FT are verified experimentally.

Experimental setup

The circuit we use is composed of a resistor in parallel
with a capacitor, as depicted on Fig.1. The resistance
is a standard metallic one of nominal value R = 9.52
MΩ. In parallel, we have an equivalent capacitor of value
C = 280 pF. This accounts for the capacitance of the all
set of coaxial connectors and cables that we used. The
time constant of the circuit is τ0 ≡ RC = 2.67ms. Using
a 50 GΩ resistance, we inject in the circuit a constant
current I ranging from 0 to 6 × 10−13 A. This current
corresponds to an injected power I2R ranging from 0 to
1000kBT /s, where kB is the Boltzmann constant and T
is the absolute temperature. Experiments are conducted
at room temperature T = 300 K. The typical values of
the injected energy for, e.g., I = 1.4 × 10−13 A and τ =
10τ0 are of order of a few hundreds of kBT , which is
small enough to ensure that the resistance is not heating;
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expected changes of temperature are estimated to be less
than 10−14 K over a one hour experiment. Moreover,
the resistance is thermostated: all the heat dissipated by
Joule effect is absorbed by the thermal bath.

The fluctuating voltage U across the dipole is mea-
sured with a resolution of 10−11 V sampled at 819.2 Hz.
This is achieved by first amplifying the signal by 104,
using a FET amplifier, with a 4 GΩ input impedance,
a voltage noise level of 5 nV/

√
Hz and a current noise

of 10−15 A/
√

Hz. The signal is then digitized with a 24-
bits data acquisition card at frequency 8192 Hz, and then
decimating after averaging ten consecutive points.

Fluctuation-Dissipation theorem

If one considers a electrical dipole, as a pure resis-
tance R in parallel with a capacitor C, as modeled as
on Fig. 1 the complex impedance of the dipole reads
Z(f) = 1/(1/R + i2πRCf) where i2 = −1 and f is the
frequency. The effective dissipative part is the real part
of Z. It was experimentally observed by Johnson [1], and
then demonstrated by Nyquist [2] that the potential dif-
ference U across the dipole fluctuates with a stationary
power spectral density S(f)df such that

S(f)df = 4kBTℜ(Z)df , (1)

In average, no current is flowing in the circuit, and the
mean value of U is zero. Integrating over all positive
frequencies, one gets the variance of U :

〈U2〉 =
kBTR

τ0

=
kBT

C
. (2)

Eqs. (1) and (2) are the expressions of the Fluctuation-
Dissipation theorem (FDT) for electrical circuits.

The exact value of our capacitance was determined by
fitting the power density spectrum of equilibrium fluctu-
ations (at imposed I = 0 A) by a Lorentzian low-pass
transfer function (eq.(1)), as illustrated on Fig. 2. Ap-
plication of FDT leads with a very good accuracy to the
determination of R, in perfect accordance with the mea-
sured nominal value (Fig.2). When I = 1.4×10−13 A, we
found the very same power spectral density for U , and
performing the same treatments gave the same estimates
of R and C. We therefore conclude that FDT is still
holding in our system driven out of equilibrium.

Fluctuation theorems

The power injected in the circuit is Pin = UI but power
is dissipated in the resistive part only, so the dissipated
power is Pdiss = UiR where iR is the current flowing
in the resistor (Fig. 1). As already noted [11], in aver-
age, one expects 〈Pin〉 = 〈Pdiss〉 ≡ P̄ , where the brackets
stand for time average over sufficiently long times com-
pared to τ0. This is very well checked in our experiment.
Pin and Pdiss fluctuate in time because U itself is fluc-
tuating. If one assumes that fluctuations of U have a
Gaussian distribution, which is the case at equilibrium
when I = 0, then Pin has also a Gaussian distribution,

FIG. 2: For I = 0 A, Johnson-Nyquist noise has a Gaussian
distribution. Relation (2) is verified. The noise is white up
to the cutoff frequency f0 of the RC dipole. We use FDT to
extract from the energy of the noise the value of the resistive,
dissipative part of the circuit R: for low frequency, the noise
level spectral density is constant, equal to

√
4kBTR in a band

[f ; f+df ]. A Lorentzian fit of the spectrum additionally gives
τ0 = RC.

because I is constant. On the contrary, iR fluctuates, as
we see from Kirchoff’s laws:

I = iR + C
dU

dt
, so Pin = Pdiss +

1

2
C

dU2

dt
, (3)

and therefore, the probability distribution of Pdiss is
not Gaussian [7]. It is worth noting that for large current
I, some orders of magnitude larger than the one we use,
Pin and Pdiss will be much larger than the conservative

part C
2

dU2

dt
and therefore the probability distributions of

both the injected and dissipated power will be Gaussian,
as it is usually expected in macroscopic systems.

We call 〈g〉τ (t) = 1

τ

∫ t+τ

t
g(t′)dt′ the time-averaged

value of a function g over a time τ .
Reasoning with energies instead of powers, we define

Wτ (t) = τ〈Pin〉τ (t), the energy injected in the circuit
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FIG. 3: Histograms of Wτ and Qτ when a current I = 1.4×
10−13A is flowing in the dipole (P̄ = RI2 = 45kBT/s).

during time τ , analogous to the work performed on the
system (positive when received by the system). In the
same way, we write Qτ (t) = τ〈Pdiss〉τ (t), the energy dis-
sipated by Joule effect during time τ , analogous to the
heat given by the system (positive when given by the
system). We used values of τ spanning from τ0 up to
hundreds of τ0.

From the experimentally measured U(t) for a given
value of I, we compute Pin and Pdiss. We then build the
probability density functions of cumulated variables Wτ

and Qτ using 106 points; their typical distributions are
plotted on Fig. 3. As noticed above, fluctuations of Wτ

are Gaussian for any τ ; on the contrary, heat fluctuations
are not Gaussian for small values of τ , but exponential:
large fluctuations of heat Qτ are more likely to occur
than large fluctuations of work Wτ .

We then look at the symmetry function:

SE(τ, a) = ln
p(Eτ = a)

p(Eτ = −a)
,

where Eτ stands for either Wτ or Qτ . If the Fluctuation
Theorem for energy Eτ holds, then one should have, for

FIG. 4: Normalized symmetry functions SW and SQ for Wτ

and Qτ when a current I = 1.4 × 10−13A is flowing in the
dipole. For any τ , SW is a linear function of a = Wτ/〈Wτ 〉.
For τ → ∞, SW (a) tends to have a slope of 1, whereas SQ(a)
tends to a limit function (black curve) which is a straight line
of slope 1 for a < 1 only.

large enough τ , the relationship

SE(τ, a) =
τ P̄
kBT

fE(τ, a) , (4)

where for the work limτ→∞ fW (τ, a) = a. In contrast, for
the heat and τ → ∞, the asymptotic values of fQ(τ, a)
are f∞

Q (a) = a for a ≤ 1, f∞

Q (a) = 2 for a ≥ 3, and there
is a continuous parabolic connection for 1 ≤ a ≤ 3 that
has a continuous derivative [6, 7]. From histograms of
Fig. 3, we deduce the symmetry functions SW (τ, a) and
SQ(τ, a) (Fig. 4).

Work fluctuations First, for any given τ we checked
that the symmetry function SW (τ, a) is linear in a
(Fig. 4a). We measured the corresponding proportion-
ality coefficient σW (τ) such that fW (τ, a) = σW (τ)a.
This coefficient σW (τ) tends to 1 when τ is increased
(see Fig. 5).

Heat fluctuations We found that SQ(τ, a) is linear in
a only for a < 1, as expected [6, 7]. Again, as τ → ∞,
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FIG. 5: (a): dependence on τ of the slope of SW in Fig. 4.
Slope is converging from above. (b): distance between SQ(τ )
for finite τ and theoretical prediction of SQ for infinite τ , for
several values of a = Q/〈Q〉. for a < 3, convergence is from
below, whereas it is from above for a > 3.

the limit slope of the symmetry function is 1 whereas for
a > 3, SQ(τ, a) tends to two.

Asymptotic symmetry functions and convergence

In [6, 7], expressions for the convergence towards the
asymptotic limits f∞

W (a) and f∞

Q (a) are given in terms
of τ . We can check these predictions with our data. The
convergence for the work Wτ is very well reproduced by
these predictions, as can be seen on Fig. 4a: continuous
straight lines are theoretical predictions for small values
of τ , using eqs. (9) and (10) from [7], with no adjustable
parameters. On Fig. 5a the slope σW (τ) of the exper-
imental symmetry function is plotted. The continuous
line is the prediction of [7], which perfectly agrees with
our data.

For the heat, we distinguish two regimes for the con-
vergence towards the asymptotic symmetry function. For
a = Qτ/〈Q〉 < 3, we find that when τ is increased, sym-
metry functions are converging to the asymptotic func-
tion from below (Fig. 4), which is the opposite of what
is observed for the work. On the contrary, for a > 3,
convergence to the asymptotic function is from above,
thus enhancing the peculiarity of the point a = 3. On
Fig. 5, we have plotted the evolution of fQ(τ, a) versus
τ for several fixed values of a. The convergence from
above for a ≥ 3 and from below for a < 3 is clear. For

increasing values of τ , only smaller and smaller values of
a are accessible because of the averaging process. There-
fore the accessible values of a are quickly lower than 1,
and only the linear part of SQ(τ, a) can be experimen-
tally tested. Nevertheless, for intermediate time scales τ
we see in Fig. 4 that the data converge towards the the-
oretical asymptotic nonlinear symmetry function [6, 7]
(smooth curve in Fig. 4b).

We observed that the convergence reproduced on Fig. 5
depends on the injected current I, as pointed out in [7].
Other experiments with a larger current (P̄ = 186kBT /s)
give a faster convergence; corresponding results will be
reported elsewhere.

Conclusions

We have shown experimentally that the asymmetry of
the probability distribution functions of work and heat in
a simple electrical circuit driven out of equilibrium by a
fixed current I, is linked to the averaged dissipated power
in the system. The recently proposed Fluctuation The-
orems for first order Langevin systems are then experi-
mentally confirmed. Exploiting formula (4), FT can be
used to measure an unknown averaged dissipated power
P̄ = limτ→∞

Qτ

τ
by using only the symmetries of the

fluctuations, i.e. computing SW or SQ and measuring
their asymptotic slope.

We operated with energies of order of kBT in order
to have strong fluctuations compared to the averaged
values. It is worth noting that as the driving current
is increased up to macroscopic values, the fluctuations
become more and more negligible, therefore Fluctuation
Theorems become harder and harder to use, and there-
fore less relevant.
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