
HAL Id: hal-00002231
https://hal.science/hal-00002231v2

Preprint submitted on 21 Jul 2004 (v2), last revised 1 Dec 2004 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agents switching between two trading behaviors and the
stylized facts of financial markets.

Francois Ghoulmie

To cite this version:
Francois Ghoulmie. Agents switching between two trading behaviors and the stylized facts of financial
markets.. 2004. �hal-00002231v2�

https://hal.science/hal-00002231v2
https://hal.archives-ouvertes.fr


cc
sd

-0
00

02
23

1,
 v

er
si

on
 2

 -
 2

1 
Ju

l 2
00

4

Agents switching between two trading behaviors

and the stylized facts of financial markets.

François GHOULMIEa,b,1

(a)Centre de Mathématiques Appliquées
Ecole Polytechnique, F-91128 Palaiseau, France.

(b)Laboratoire de Physique Statistique
Ecole Normale Supérieure, F-75321 Paris Cedex 05, France

July 21, 2004

Abstract

We propose an agent-based model of a single-asset financial market, de-
scribed in terms of a small number of parameters. We show that agents switch-
ing between two trading behaviors (informed vs. liquidity traders) leads to a
market price which fluctuates endlessly and a volatility which displays a mean-
reverting behavior : the volatility goes neither to zero nor to infinity in the
long-run.
Our agent-based model generically leads to price returns with statistical prop-
erties similar to the stylized facts observed in financial time series: absence of
autocorrelation in returns, stochastic volatility, excess volatility, volatility clus-
tering non-attrributable to the external signal. The parsimonious structure of
the model allows to identify the mechanism leading to these effects. We investi-
gate theoretically some properties of this model and present analytical results.

Keywords: agent-based model, financial markets, stylized facts, asynchronous
switching of trading rules, informed vs. liquidity traders.
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Agent-based models studied in the literature have pointed to various pos-
sible origins for empirical stylized facts common to a wide variety of markets,
instruments and periods: herd behavior, social interaction and mimetism, het-
erogeneity, investor inertia and switching between “chartist” and “fundamen-
talist” behavior have been invoked as possible mechanisms. However, an appeal
for simplicity is necessary in order to enhance the explanatory power of such
models.
We propose here a parsimoniously parametrized agent-based model of a single-
asset financial market, which generates returns with statistical properties sim-
ilar to the stylized facts observed in financial time series. Our agent-based
model generically leads to absence of autocorrelation in returns, mean-reverting
stochastic volatility, excess volatility and volatility clustering. The structure
of the model allows to identify a simple stochastic process of agents switching
between two trading behaviors (informed versus liquidity traders) as the key
mechanism leading to these effects.
The article is structured as follows. Section 1 recalls some stylized empirical
facts about returns of financial assets and reviews some agent-based models
presented in the literature to explain the stylized facts. Section 2 presents our
model; simulation results are presented in section 3 and a theoretical analysis
is given in section 4.
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1 Agent-based approach for market phenomena.

Time series of asset returns exhibit non trivial and intriguing statistical features
which seem to be common to a wide range of markets and time-periods as re-
viewed by Cont (2001):

• Excess volatility: observation that the level of variability in market prices is
much higher than what can be expected based on the variability of fundamental
economic variables and is unexplained by news arrivals as noted by Cutler et
al. (1989), and Shiller (2000).

• Heavy tails: the (unconditional) distribution of returns displays a heavy
tail with positive excess kurtosis.

• Absence of autocorrelation in returns: (linear) autocorrelations of asset
returns are often insignificant, except for very small intraday time scales (≃20
minutes) for which microstructure effects come into play.

• Volatility clustering: while returns themselves are uncorrelated, absolute
returns |rt(∆)| or their squares display a positive, significant and slowly decay-
ing autocorrelation function: corr(|rt|, |rt+∆|) > 0 for ∆ ranging from a few
minutes to several weeks (e.g., Mandelbrot, 1963).

• Volume/volatility correlation: trading volume is positively correlated with
market volatility.

Agent-based market models, which are based on a stylized description for the
behavior of agents attempt to explain the origins of the observed behavior of
market prices as emerging from simple behavioral rules of a large number of
heterogeneous market participants and largely independent of markets “mi-
crostructure”. Stauffer (2001) proposed for example percolation models that
generate price behavior with statistical properties similar to those observed in
real markets. Giardina & Bouchaud (2003) proposed also an agent-based model
inspired from the Santa Fe artificial market and the Minority Game and review
several mechanisms leading to long-range correlations such as switching between
two trading styles.
Indeed, various possible explanations for empirical stylized facts have been sug-
gested in the literature:

•mimetism (e.g., Orléan, 1995).

•herd behavior (e.g., Cont & Bouchaud, 2000 and Stauffer et al., 1999).

•switching between “chartist” and “fundamentalist” behavior as stud-
ied by Lux & Marchesi (2000), Kirman & Teyssiere (2002), Brock & Hommes
(1998) and Farmer & Joshi (2002).
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•heterogeneity in expectations concerning future prices (e.g., Gaunersdorfer,
2000; Arthur et al., 1997; Hommes et al., 2003), towards risk (e.g., Chiarella et
al, 2002) and in agent’s time scale (e.g., LeBaron, 2001).

•investor inertia introduced in Cont & Bouchaud (2000) and Horst et al.
(2003) studies.

Numerical simulations of many of the models above lead to time series of “re-
turns” which have properties consistent with (some of) the empirical stylized
facts observed above. However, due to the complexity of such models it is often
not clear which aspect of these models is responsible for generating the stylized
facts and whether all the ingredients of the model are indeed required for ex-
plaining empirical observations. Thus, an appeal for simplicity is necessary and
we will propose an agent-based market model described with few parameters.
An important issue in microstructure studies is the competition between in-
formed traders and liquidity provider or uninformed traders. Information-based
microstructure models from Kyle (1984), Glosten & Milgrom (1985), Easley &
O’Hara (1987) typically assume that uninformed traders do not act strategi-
cally.
Based on this remark, we will describe the dynamics of agents switching asyn-
chronously from an informed trader group to a liquidity provider group. This
mechanism will be a crucial ingredient in formulating our market model.

2 Description of the model.

Our model describes a market where a single asset, whose price is denoted by
pt, is traded by N agents. Trading takes place at discrete dates t = 0, 1, 2, ..2.
At each period, informed agents receive common news about the asset’s perfor-
mance and places a buy or sell order, depending on whether the news received
is pessimistic or optimistic. Liquidity provider agents place systematically the
opposite order. Prices then moved up or down according to excess demand.
Agents switch asynchronously their trading behavior. We now describe these
ingredients in more precise terms.

2.1 Trading rules.

At each period, agents have the possibility to send an order to the market for
buying or selling a unit of asset: denoting by φi(t) the demand of the agent,
we have φi(t) = 1 for a buy order and φi(t) = −1 for a sell order. The inflow
of new information is modeled by a sequence of IID Gaussian random variables

2We will see that, provided the parameters of the model are chosen in a certain range, we
will be able to interpret these periods as “trading days”.
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(ǫt, t = 0, 1, 2, ..) with ǫt ∼ N(0, D2). ǫt represents the value of a common signal
received by informed agents at date t.
The trading rule of an informed agent is to follow the signal when he considers
it significant. NA is the number of informed traders, they place the same order
φA(t):

if ǫt > θ, φA = 1

if ǫt < θ, φA = −1

otherwise φA = 0. (1)

This threshold response leads to investor inertia, however we will see that it
has no effects on the dependence properties of the returns. The trading rule of
liquidity provider agents or uninformed traders is to place an order opposite to
the informed traders. NB is the number of agents of this type, they place the
same order φB(t):

φB(t) = −φA(t). (2)

2.2 Price response to aggregate demand.

The aggregate excess demand is then given by:

Zt =
∑

i

φi(t). (3)

A non zero value of Zt produces a change in the price, and the resulting log
return is given by :

rt = ln
pt

pt−1

= g(
Zt

N
). (4)

where the price impact function g : ℜ → ℜ is an increasing function with
g(0)=0. We define the (normalized) market depth λ by:

g′(0) = 1/λ. (5)

While most of the analysis below holds for a general price impact function g, in
some cases it will be useful to consider a linear price impact: g(z) = z/λ.
We do not describe the details of the mechanism of price formation, one can
assume for example that prices are set period by period via a market maker
mechanism.

2.3 Switching of trading rule.

Switching of trading rule is asynchronous: at each time step, any agent i has
a probability s (s ∈ [0, 1]) of switching from a trading rule to the other one,
for example from an informed trader behavior to a liquidity provider behavior.
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Thus, in a large population, s represents the fraction of agents changing their
behavior at any period; 1/s represents the typical time period during which an
agent will hold a given trading rule. A possible explanation for this switching
is that information is costly and agents do not seek it at each time step.

2.4 Extreme events.

The parameter θ describes an inability of agents to access information. When
it is the case, a crowd dynamics occurs and all agents seek information at next
time step. There is no more liquidity provider agents and this will be considered
as an extreme event causing a large fluctuation in the prices.

2.5 Summary.

Let us recall the main ingredients of the model described above. At each time
period:

•informed agents follow a common signal ǫt.

•liquidity provider agents submit an opposite order.

•agents switch from one type of trading rule to the other one at each time
period with a probability s.

•The market price is impacted by the excess demand and moves according to (4).

With regard to some of the agent-based models considered in the literature,
some important aspects are the following:

•There is no exogeneous “fundamental price” process: prices move through
market fluctuations of supply and demand. In particular, we do not distinguish
between “fundamentalist” and “chartist” traders.

•We do not introduce any “social interaction” among agents. In particular,
no notion of locality, lattice or graph structure is introduced.

The model has very few parameters: s describes the average updating frequency,
D the standard deviation of the noise representing the news arrival process, λ
the market depth and θ the level of threshold response. We will observe never-
theless that this simple model generates time series of returns with interesting
dynamics and properties similar to empirically observed properties of asset re-
turns.
Note that we are not interested in describing the details of the mechanism of
transactions and the problem of optimization of each agent’s portofolio. Indeed,
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we describe two types of agent assuming that they are the main responsible of
the price fluctuations of a single asset, but we do not describe the whole market.
However, it would be interesting to check the effects of adding constraints on the
agent’s behavior (budget constraint for example), and this will be investigated
in an other work.

3 Numerical simulations

The model described above is straightforward to simulate. We describe in this
section the simulation procedure, describe the quantities of interest and presents
some typical results. The simulation procedure allows us to identify generic
properties of the model and calibrate the range of parameters in accordance
with empirical data on asset returns.

3.1 Simulation procedure.

Simulation is done through an iterative procedure, each iteration repeating the
steps described in Section 2.4. Although the model setting accomodates for
more general price impact functions, in absence of an empirically motivated
parametric form, we have chosen a linear function g(x) = x/λ. This choice can
be viewed as a linearization of a more general g, valid for small values of excess
demand or in a market with large market depth.
In a usual Monte Carlo simulation approach, expectations, moments and dis-
tributions of quantities of interest can be computed by running independent
simulations and averaging the quantities of interest over the simulation runs.
Note however that, in order for a direct comparison with empirical stylized
facts to be meaningful, we have to consider that in the case of empirical data
only a single sample path of the price is available and (unconditional) moments
are computed by averaging over the (single) sample path. We therefore adopt a
similar approach here: after simulating a sample path of the price pt for T = 104

periods, we compute the following quantities:

•the time series of returns rt = ln(pt/pt−1), t = 1..T .

•the histogram of returns, which is an estimator of its unconditional distri-
bution.

•a moving average estimator of the standard deviation of returns:

σ̂2(t) = 250[
1

T ′

t∑

t′=t−T ′+1

|rt|
2 − (

1

T ′

T
′∑

t′=t−T ′+1

rt)
2]. (6)
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This quantity is a frequently used indicator for “volatility”. We “annualize” it
by multiplying the “daily” estimate by 250.

•the sample autocorrelation function of returns:

Cr(τ) =
T

∑T

t=1
|rt|2

[
1

T − τ

T−τ∑

t=1

rtrt+τ − (
1

T − τ

T−τ∑

t=1

rt)(
1

T − τ

T∑

t=τ+1

rt)] (7)

•the sample autocorrelation function of absolute returns:

C|r|(τ) =
T

∑T

t=1
|rt|2

[
1

T − τ

T−τ∑

t=1

|rt||rt+τ | − (
1

T − τ

T−τ∑

t=1

|rt|)(
1

T − τ

T∑

t=τ+1

|rt|)]

(8)
These quantities can then be used to compare with the empirical stylized facts
described in Section 1.1. Finally, in order to decrease the sensitivity of results
to initial conditions, we allow for an initial transitory regime and discard the
first 103 periods before averaging.

3.2 Choosing the range of parameters

Simulation of the model requires the specification of the parameters s, λ, θ and
the number of agents N.
In order to interpret the trading periods as “days” and compare the results
obtained to properties of daily returns, some restrictions must be imposed
on parameter values. First, note that the one-period returns are bounded by
max{|g(x)|, x ∈ [−1, 1]}. In the case where g is linear |rt| ≤

1

λ
.

This suggest that the (normalized) market depth λ should not be too large in or-
der to allow for realistic range of daily returns. We have chosen here 1 ≤ λ ≤ 10.
In practice, varying λ within this range does not affect the qualitative properties
of the return process.
As noted above, 1/s represents the average number of periods an agent takes
to update her trading rule. We get realistic long-range correlations in the am-
plitude of the returns for s close to 1 and for s ≪ 1.
We choose N = 100 in order to get a realistic number of investors in a market.
We took D = 10−3 in order to get excess volatility and to have a realistic vari-
ability of fundamental economic variables.
The choice of θ determines the frequency of extreme events and the excess
kurtosis of the distribution of returns, we choose θ = 10−6 in the simulations
presented. Note that when θ = 0, the kurtosis is close to 3 (gaussian distribu-
tion).
Let us emphasize that we are discussing the calibration of the order of magni-

tude of parameters, not fine-tuning them to a set of critical values. These results
discussed in the following subsection are generic within this range of parame-
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ters, which simply make a comparison with daily returns possible.

3.3 Simulation results.

Using the parameter ranges above, we have performed an extensive simulation
study of price behavior in this model. Figures 1 and 2 illustrate typical sample
paths obtained with different parameter values: they all generate series of re-
turns with realistic ranges and realistic values of annualized volatility. For each
series, the figures represent also the histogram of returns both in linear and log
scales, the ACF of returns Cr, the ACF of absolute returns C|r|.
More interestingly, we note that all the return series obtained possess some reg-
ularities which match some empirical properties outlined in Section 1.1:

•Excess volatility: the sample standard deviation of returns can be much larger
than the standard deviation of the input noise representing news arrivals

σ̂(t) ≫ D. (9)

In the simulation example shown in figure 1, D = 10−3 which corresponds to
an annualized volatility of 1.6%, while the annualized volatility of returns is in
the range of 30%, an order of magnitude larger. This is a generic phenomenon
also observed in other simulations: the order of magnitude of the volatility of
returns may be totally different from that of the input noise.

• Mean-reverting volatility: the market price fluctuates endlessly and displays
“stochastic volatility”: the volatility, as measured by the moving average estima-
tor σ̂(t), does neither go to zero nor to infinity and displays a mean-reverting be-
havior. Many microstructure models-especially those with learning or evolution-
when observed over large time intervals, converge to an equilibrium where prices
and other aggregate quantities cease to fluctuate randomly. Of course, this is
not observed in financial markets: prices fluctuate endlessly and the volatility
exhibits mean-reverting behavior. Indeed, this behavior is attested by many
empirical studies and GARCH models (e.g., Engle, 1995) on one hand and
stochastic volatility models on the other hand aim at reproducing this mean-
reverting stochastic behavior of volatility.

•The simulated process generates a leptokurtic distribution of returns with
heavy tails, with an excess kurtosis around κ ≃ 11.

•The returns are uncorrelated: the sample autocorrelation function of the re-
turn exhibits an insignificant value (very similar to that of asset returns) at all
lags, indicate absence of linear serial dependence in the returns.

•Volatility clustering: the autocorrelation function of absolute returns remains
positive, and significantly above the autocorrelation of the returns, over many
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Figure 1: Numerical simulation of the model with updating frequency s = 0.01
(updating period: 100 “days”), N = 100 agents, λ = 10, D = 0.001, θ = 10−6.

time lags, corresponding to persistence of the amplitude of returns a time scale
ranging from a few weeks to several months. This is an indication of nonlinear
dependence in the returns. Note that this dependence is not function of the
threshold level θ.

We will now analyze the dependence properties of the returns in the model.

4 Dependence properties of returns.

One deduces from the two-groups dynamics the following properties:

Property 1 (Uncorrelated returns) Assume that g is an odd function. As-

set returns (rt)t≥0 are uncorrelated: cov(rt, rt+1) = 0.

This can be understood easily when noting that the sign of the returns de-
pends directly on the sign of the signal ǫt.
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Figure 2: Numerical simulation of the model with updating frequency s = 0.99,
N = 100 agents, λ = 10, D = 0.001, θ = 10−6.

12



Property 2 (Volatility clustering) Amplitudes of consecutive returns are

positively correlated: cov(|rt|, |rt+1|) > 0.

Of course, the volatility clustering property is observed to hold well beyond
the first lag in the simulations shown above. In fact, defining the cluster length
τc as the first lag for which the autocorrelation of absolute returns becomes
zero, one can inquire into the dependence of this cluster length with respect
to the updating frequency s. We will prove that the duration τc of volatility
clusters is linked with the average updating time 1/s: as a first approximation
τ ≃ 1/ln|1−2s|. This interpretation is interesting since it related an observable
quantity, τc, to the parameter s which describes the updating behavior of the
agents. In most markets, the length of volatility cluster is roughly of the order
of months, indicating that the range s ∼ 10−2 and s ∼ 0.99 is in fact quite
consistent with this behavior.

Let us note NA(t) the number of informed agents and NB(t) the number of
agents in the other group at time t. We have the following relation:

|rt| =
|Zt|

Nλ
=

|NA(t) − NB(t)|

Nλ
. (10)

We first have:

E[NA(t + 1)|NA(t)] = (1 − s)NA(t) + sNB(t) = sN + (1 − 2s)NA(t). (11)

E[NA(t+τ)|NA(t)] = sN
τ−1∑

l=0

(1−2s)l+(1−2s)τNA(t) =
N

2
[1−(1−2s)τ ]+(1−2s)τNA(t).

(12)
From this relation, we get:

E[NA(t + τ)NA(t)] − E[NA(t + τ)]E[NA(t)] = var(NA(t))(1 − 2s)τ . (13)

We deduce the dependence property of returns:

C|r|(τ) = |1 − 2s|τ . (14)

5 Conclusion.

We have presented a minimal agent-based model which is capable of reproduc-
ing the main empirical stylized facts observed in returns of financial assets.
Our model is based on the main ingredient:

•switching between two trading rules.

13



The first trader type is the informed trader following an external signal, and
the second one is the liquidity provider trader placing the opposite order of the
informed traders. Extreme events occurs after periods of lack of information.
Numerical simulations of the model generically produce time series that capture
the stylized facts observed in asset returns. Due to the simple structure of the
model, these simulation results can be explained by a full analytical solution of
the price process in the model.
These ingredients suffice for reproducing several empirical stylized facts as heavy
tails, absence of autocorrelation in returns and volatility clustering, with realis-
tic values in the time scales involved. The challenge would be in an other work
to endogenize this switching.
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