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Abstract. We present a detailed model describing the effects of wire corrugation on the trapping potential
experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the
current distribution due to corrugation and then derive the corresponding roughness in the magnetic
field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon
shaped wire. We also present experimental data on micro wire traps using cold atoms which complement
some previously published measurements and which demonstrate that wire corrugation can satisfactorily
explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present
measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of
gold. These wires appear to be substantially smoother than electroplated wires.

PACS. 39.25.+k Atom manipulation (scanning probe microscopy, laser cooling, etc.) – 03.75.Be Atom
and neutron optics

1 Introduction

Magnetic traps created by current carrying micro wires
have proven to be a powerful alternative to standard trap-
ping schemes in experiments with cold atoms and Bose-
Einstein condensates [1,2,3,4,5,6,7]. These so-called ”atom
chips” combine robustness, simplicity and low power con-
sumption with strong confinement and high flexibility in
the design of the trapping geometry. Integrated atom op-
tics elements such as waveguides and atom interferometers
have been proposed [8] and could possibly be integrated
on a single chip using fabrication techniques known from
microelectronics. Quantum information processing with a
single atom in a micro trap has also been proposed [9].

Real world limitations of atom chip performance are
thus of great interest. Losses and heating of atoms due
to thermally exited currents inside conducting materials
composing the chip were predicted theoretically [10,11]
and observed experimentally soon after the first experi-
mental realizations of atomic micro traps [12,13].

An unexpected problem in the use of atom chips was
the observation of a fragmentation of cold atomic clouds in
magnetic micro traps [14,5]. Experiments have shown that
this fragmentation is due to a time independent roughness
in the magnetic trapping potential created by a distortion
of the current flow inside the micro wire [15]. It has also
been demonstrated that the amplitude of this roughness

a Present address: Universität Hannover, D 30167 Han-
nover, Germany

increases as the trap center is moved closer to the mi-
cro wire [16]. Fragmentation has been observed on atom
chips built by different micro fabrication processes using
gold [17] and copper wires [14,5], and on more macro-
scopic systems based on cylindrical copper wires covered
with aluminum [16] and micro machined silver foil [18].
The origin of the current distortion inside the wires caus-
ing the potential roughness is still not known for every
system.

In a recent letter [17], we experimentally demonstrated
that wire edge corrugation explains the observed poten-
tial roughness (as theoretically proposed in [19]) in at least
one particular realization of a micro trap. In this paper, we
will expand on our previous work giving a more detailed
description of the necessary calculations as well as present-
ing a more complete set of experimental observations. We
emphasize that extreme care has to be taken when fab-
ricating atom chips, and that high quality measurements
are necessary to evaluate their flatness in the frequency
range of interest. We will discuss the influence of corru-
gations both on the edges as well as on the surface of the
wire and give scaling laws for the important geometrical
quantities like atom wire separation and wire dimensions.
We will also present preliminary measurements on wires
using improved fabrication techniques.

The paper is organized as follows. In section 2, we give
a brief introduction to magnetic wire traps and empha-
size that the potential roughness is created by a spatially
fluctuating magnetic field component parallel to the wire.
In section 3, we give a general framework to calculate the
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rough potential created by any current distortion in the
wire. A detailed calculation of the current flow distortion
due to edge and surface corrugations on a rectangular wire
is presented in section 4. In section 5, we apply these cal-
culations to the geometry of a flat wire, widely used in
experiments. Edge and surface effects are compared for
different heights above the wire and we present impor-
tant scaling laws that determine the optimal wire size for
a given fabrication quality. In section 6 and 7, we show
measurements of the spectra of edge and surface fluctua-
tions for two types of wires produced by different micro
fabrication methods: optical lithography followed by gold
electroplating and direct electron beam lithography fol-
lowed by gold evaporation. We also present measurements
of the rough potential created by a wire of the first type
using cold trapped Rubidium atoms.

2 Magnetic micro traps

The building block of atom chip setups is the so-called
side wire guide [8]. The magnetic field created by a straight
current carrying conductor along the z axis combined with
an homogeneous bias field B0 perpendicular to the wire
creates a two-dimensional trapping potential along the
wire (see figure (1)). The total magnetic field cancels on a
line located at a distance x from the wire and atoms in a
low field seeking state are trapped around this minimum.
For an infinitely long and thin wire, the trap is located
at a distance x = µ0 I/(2 π B0). To first order, the mag-
netic field is a linear quadrupole around its minimum. If
the atomic spin follows adiabatically the direction of the
magnetic field, the magnetic potential seen by the atoms
is proportional to the magnitude of the magnetic field.
Consequently, the potential of the side wire guide grows
linearly from zero with a gradient B0/x as the distance
from the position of the minimum increases.

For a straight wire along z, all magnetic field vectors
are in the (x, y) plane. Three dimensional trapping can be
obtained by adding a spatially varying magnetic field com-
ponent Bz along the wire. This can be done by bending the
wire, so that a magnetic field component along the central
part of the wire is created using the same current. Alter-
natively, separate chip wires or even macroscopic coils can
be used to provide trapping in the third dimension.

For a realistic description of the potential created by
a micro wire, its finite size has to be taken into account.
Because of finite size effects, the magnetic field does not
diverge but reaches a finite value at the wire surface. For
a square shaped wire of height and width a carrying a
current I, the magnetic field saturates at a value propor-
tional to I/a, the gradient reaches a value proportional to
I/a2. Assuming a simple model of heat dissipation, where
one of the wire surfaces is in contact with a heat reservoir
at constant temperature, one finds the maximal applica-
ble current to be proportional to a3/2 [20]. Therefore, the
maximal gradient that can be achieved is proportional to
1/

√
a. This shows that bringing atoms closer to smaller

wires carrying smaller currents still increases the magnetic

confinement, which is the main motivation for miniatur-
izing the trapping structures. However the magnetic field
roughness arising from inhomogeneities in the current den-
sity inside the wire also increases as atoms get closer to
the wire. This increase of potential roughness may prevent
the achievement of high confinement since the trap may
become too corrugated.

Before turning to the calculations of the rough mag-
netic field, we emphasize that only the z component of
the magnetic field is relevant to the potential roughness.
A variation of the magnetic field in the (x, y) plane will
cause a negligible displacement of the trap center, whereas
a varying magnetic field component Bz modifies the lon-
gitudinal trapping potential, creating local minima in the
overall potential [17].

3 Calculation of the rough magnetic field

created by a distorted current flow in a wire

In this section, we present a general calculation of the ex-
tra magnetic field due to distortions in the current flow
creating the trapping potential. By j we denote the cur-
rent density that characterizes the distortion in the cur-
rent flow. The total current density J is equal to the sum
of j and the undisturbed flow j0 ez. As the longitudinal
potential seen by the atoms is proportional to the z com-
ponent of the magnetic field, we restrict our calculation
to this component. We thus have to determine the x and
y component of the vector potential A from which the
magnetic field derives. In the following, we consider the
Fourier transform of all the quantities of interest along
the z axis which we define by

Al,k(x, y) =
1√

2 π L

∫

Al(x, y, z) e−i k z dz , (1)

where we have used the vector potential as an example
and l stands for x or y, L being the length of the wire. We
choose this definition so that the power spectral density of
a quantity coincides with the mean square of its Fourier
transform :

1

2π

∫

ei k z 〈Al(z)Al(0)〉 dz = 〈|Al,k|2〉 . (2)

The vector potential satisfies a Poisson equation with
a source term being proportional to the current density
in the wire. Thus the Fourier component Al,k satisfies the
following time independent heat equation

(

∂

∂x2
+

∂

∂y2

)

Al,k − k2 Al,k = −µ0 jl,k . (3)

where jl is one component of the current density j. In
the following, we use cylindrical coordinates defined by
x = r cos(ϕ) and y = r sin(ϕ). Outside the wire, the right
hand side of equation (3) is zero. The solution of this 2D
heat equation without source term can be expanded in
a basis of functions with a given ”angular momentum”
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n, the radial dependence of the solution being therefore a
linear combination of modified Bessel functions of the first
kind In and of the second kind Kn. Thus expanding Al,k

on this basis, we obtain the following linear combination
for the vector potential

Al,k(r, ϕ) =

n=∞
∑

n=−∞

cln(k) ei n ϕ Kn(k r) . (4)

We retain only the modified Bessel functions of the second
kind, since the potential has to go to zero as r goes to in-
finity. The cln(k) coefficients are imposed by equation (3),
and can be determined using the Green function of the 2D
heat equation [21]. We obtain

cln(k) = −µ0

2π

∫∫

In(k r) e−i n ϕ jl,k(ϕ, r) r dr dϕ . (5)

Taking the curl of the vector potential and using the re-
lations K ′

n = −(Kn−1 + Kn+1)/2 and 2 n Kn(u)/u =
−Kn−1 + Kn+1, we obtain the z component of the mag-
netic field from equation (4)

Bz,k = −k

2

∞
∑

n=−∞

[cyn−1
(k) + cyn+1

(k)]Kn(k r)ei n ϕ

−i
k

2

∞
∑

n=−∞

[cxn−1
(k) − cxn+1

(k)]Kn(k r)ei n ϕ .

(6)
This expression is valid only for r larger than r0, the ra-
dius of the cylinder that just encloses the wire. At a given
distance x from the wire, we expect that only fluctuations
with wavelengths larger or comparable to x contribute to
the magnetic field, since fluctuations with shorter wave-
lengths average to zero. Therefore we can simplify expres-
sion (6) assuming we calculate the magnetic field above
the center of the wire (ϕ = 0) for x much larger than r0.
The argument of In in equation (5) is very small in the do-
main of integration and we can make the approximation
In(k r) ≃ (k r)n/(2n n!). This shows that the cln coeffi-
cients decrease rapidly with n. Keeping only the dominant
term of the series in equation (6), we obtain

Bz,k(x) ≃ −cy0
(k)

k
×

[

k2 K1(k x)
]

. (7)

We will see in the next section that the first factor of this
expression, characterizing the distortion flow, is propor-
tional to the power spectral density of the wire corruga-
tion. The second factor peaks at k ≃ 1.3/x justifying the
expansion. Fluctuations with a frequency much smaller
or much larger than 1/x are filtered out and do not con-
tribute. As we approach the wire, more and more terms
have to be added in the series of equation (6) to compute
the magnetic field. We emphasize that the expressions de-
rived in equations (6) and (7) are general for any distorted
current flow that may arise from bulk inhomogeneities or
edge and surface corrugations.

x

y

z

x

y

(a)

(b)

(c)

y

z

fS frflu0 W0=2
Fig. 1. Rectangular wire considered in this paper. The edge
roughness and the top surface roughness are illustrated in (c)
and (b) respectively.

4 Calculation of the distorted current flow in

a corrugated wire

We now turn to the calculation of the distortion in the
current flow due to wire edge and surface corrugations in
order to determine the associated cln coefficients. We sup-
pose the wire has a rectangular cross section of width W0

and height u0 as shown on figure (1). Let us first con-
centrate on the effect of corrugations of the wire edges,
which denote the borders perpendicular to the substrate.
Figure (2) shows that, in our samples, these fluctuations
are almost independent of the direction x both for wires
deposited by electrodeposition and by evaporation. We
believe this result to be general for wires fabricated by
a lithographic process, since any defect in the mask or
in the photoresist is projected all along the height of the
wire during the fabrication process. Thus, in the follow-
ing, the function fr/l that describes the deviation of the
right (respectively left) wire edge from ±W0/2 is assumed
to depend only on z.

Conservation of charge and Ohm’s law give ∇J = 0
and J = −χ∇V where χ is the electrical conductivity and
V the electrostatic potential. We will make the approxima-
tion that χ is uniform inside the wire. In this case V satis-
fies the Laplace equation ∆V = 0. As we are interested in
deviations from the mean current density j0 = I/(u0 W0),
we introduce the electric potential v = V −j0 z/χ which is
equal to zero in the absence of deviations. From what we
have said above, v only depends on y and z and satisfies
the 2D Laplace equation. The boundary conditions for the
current density on the wire edge impose the current to be
parallel to the wire edge. Thus v satisfies

dfr/l

dz
(z) ×

[

j0 − χ
∂v

∂z
(y = ±W0/2 + fr/l, z)

]

=

− χ
∂v

∂y
(y = ±W0/2 + fr/l, z) . (8)

In the following we assume the amplitude of fr/l to be
small enough so we can make an expansion to first order
in fr/l of both terms. We then obtain a linear relation
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Fig. 2. Scanning electron microscope images of micro fabri-
cated wires. Side view (a) and top view (b): electroplated gold
wire of width 50 µm and height 4.5 µm fabricated using optical
lithography. Side view (c): evaporated gold wire of width and
height 0.7 µm fabricated using electron beam lithography.

between v(±W0/2, z) and fr/l(z) which in Fourier space
can be written as

i k j0 fr/l,k = −χ
∂vk

∂y
(y = ±W0/2) . (9)

The potential v satisfies the 2D Laplace equation, so the
k component vk(y) is a linear combination of e+k y and
e−k y. The two coefficients are imposed by the two bound-
ary conditions of equation (9). To complete the calcula-
tion of these two coefficients, we introduce the symmetric
component f+ = (fr + fl)/2 and antisymmetric compo-
nent f− = (fr −fl)/2 of the wire edge fluctuations. Going
back to the current density, we obtain

jy,k = i k j0

(

cosh(k y)

cosh(k W0/2)
f+

k +
sinh(k y)

sinh(k W0/2)
f−

k

)

.

(10)
We note that the symmetric part (first term) of the cur-
rent deviation is maximal near the wire edges for compo-
nents with a wave vector large compared to 1/W0. On the
other hand, the components with a small wave vector are
constant over the width of the wire.

We now turn to the calculation of the current distor-
tions due to surface corrugation. We assume the bottom
surface to be flat, since the wire is supposed to be fabri-
cated on a flat substrate. We denote by fS the fluctua-
tions of the height of the wire from its mean value u0 (see
figure (1)). We follow the same procedure as for the calcu-
lation of the effect of the wire edge fluctuations. Now v is
the electrical potential associated with the current density
j due to the surface corrugation. It depends on x, y and
z and satisfies the 3D Laplace equation. To first order in
fS , the boundary conditions of a current tangent to the

surface of the wire writes down










χ
∂v

∂x
(x = u0, y, z) + j0

∂fS

∂z
(z) = 0

χ
∂v

∂x
(x = 0, y, z) = 0 .

(11)

and
∂v

∂y
(x, y = ±W0/2, z) = 0. (12)

Symmetry arguments show that only the part of fS(y, z)
which is odd in y contributes to the magnetic field along z
in the plane y = 0. An even component of fS produces a
current distribution which is invariant by axial symmetry
with respect to the plane y = 0. Therefore, they cannot
contribute to Bz in this plane. Thus, only the Fourier com-
ponents

fSk,m
(x) =

∫∫

dy dz

π
√

2L W0

e−ikz sin(2mπy/W0) f(y, z)

(13)
contribute. We choose this definition of the Fourier compo-
nent fSk,m

so that 〈|fSk,m
|2〉 is equal to the 2-dimensional

spectral density of fS. To obtain the electric potential pro-
duced by a given component fSk,m

we use the expansion

sin(2mπy/W0) =

∞
∑

p=0

γm,p sin((2p + 1)πy/W0), (14)

where

γm,p =
−8m

π

(−1)m+p

(2(m + p) + 1)(2(p − m) + 1)
, (15)

valid for y ∈ [−W0/2, W0/2]. Each p Fourier component
induces an electrical potential vk,m,p and, since v satisfies
the Laplace equation, vk,m,p(x) is a linear combination

of e+νpx and e−νpx where νp =
√

k2 + ((2p + 1)π/W0)2.
The boundary conditions on the surfaces x = 0 and x = u0

determine the coefficients and we obtain

−χ vk,m,p = i k j0 fSk,m
γm,p

cosh(νpx)

sinh(νpu0)

1

νp
sin((2p+1)πy/W0).

(16)
With the choice of the expansion (14), the boundary con-
ditions on y = ±W0/2 are satisfied by each term. Finally,
we obtain the current density distribution






















































jxk,m
(x, y)=2ikfSk,m

j0
√

π
W0

∞
∑

p=0

(

γm,p
sinh(νpx)

sinh(νpu0)
sin((2p + 1)πy/W0)

)

jyk,m
(x, y)=2ikfSk,m

j0
√

π
W0

∞
∑

p=0

(

γm,p
cosh(νpx)

sinh(νpu0)

(2p + 1)π

νpW0
cos((2p + 1)πy/W0)

)

(17)
The Fourier component jlk is obtained by summing the
previous expressions for m = 1, . . . ,∞.
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5 Rough potential of a ribbon shaped wire

In this section, we combine the results of the two previ-
ous sections to compute the z component of the rough
magnetic field in the specific case of a flat rectangular
wire (u0 ≪ W0). This simplification enables us to obtain
analytical results for a system that is widely used in ex-
periments [1,2,3,5,7,18].

We do the calculation on the x axis for x > W0/2.
Since the wire is considered as flat, we replace the volume
current density j by a surface current density σ =

∫

j dx.
Then we can rewrite the cln coefficients as

cln(k)=−µ0

2π
(−i)n

∫ W0/2

0

dyIn(ky)[σl,k(y)+(−1)nσl,k(−y)] .

(18)
We will first study the effect of wire edge fluctuations and
give universal behaviors for the magnetic field roughness.
We will then concentrate on the effect of the top surface
roughness. We will compare the relative importance of the
two effects and point out important consequences for the
design of micro wires.

5.1 Effect of wire edge roughness

Let us first study the effect of wire edge fluctuations. Here
we derive the same results as [19] in a different way. The
distorted current flow has no component along the x axis.
The expression of the rough magnetic field is then given
by the first sum of equation (6). Taking ϕ = 0, we can
rearrange this sum using the equalities Kn(kr) = K−n(kr)
and cy

−n
= (−1)ncyn

(see equation (18)), we then obtain

Bz,k = −k

∞
∑

n=0

(cy2n
(k) + cy2n+2

(k))K2n+1(kr). (19)

Since only the cyn
with even n contribute, we see from

equation (18) that only the symmetric part of the current
density participates to the magnetic field. This is what we
expect from a simple symmetry argument. For the cy2n

coefficients we obtain

cy2n
= (−1)n+1 µ0 I

π W0
i k f+

k ×
∫ W0/2

0

I2n(k y)
cosh(k y)

cosh(k W0/2)
dy (20)

As pointed out in the previous section, the sum over the
angular momenta n in equation (19) converges rapidly
with n if x ≫ W0. More precisely, the dominant term pro-
portional to K1(k x) gives the correct result within 10%
as soon as x > 1.5 W0. As x approaches 0, more and more
terms contribute, and for x = W0/2, 20 terms have to be
taken into account to reach the same accuracy.

We now derive the response function of the magnetic
field to the wire edge fluctuation which we define as
R(k, x) = |Bz,k/f+

k |2. As we already noticed in the previ-
ous section, far away from the wire (x ≫ W0), only wave

vectors k ≪ 1/W0 are relevant. Then we can approximate
the integral in equation (20) by expanding the integrand
to zeroth order in k y. Keeping the dominant term in the
series that defines the magnetic field, we obtain the fol-
lowing expression for the response function

R(k, x) ≃ (µ0I)2

4π2x4
(k x)4K2

1(k x) . (21)

For a given height x, as k increases, this function increases
from zero as k2, peaks at k = 1.3/x and finally tends ex-
ponentially to zero. This behavior can be understood as
follows. At low wave vectors, the angle between the direc-
tion of the distorted current flow and the z axis tends to
zero, thus the contribution of these components becomes
negligible. At high wave vectors, fluctuations with a wave
length shorter than the distance to the wire average to
zero.

To check the validity of equation (21), we plot the di-
mensionless function R(k, x)/[(µ0I)2/(4π2x4)] for differ-
ent ratios x/W0 in figure (3). The limit function corre-
sponds to a configuration where the distorted current flow
is concentrated on the line x = y = 0. For a smaller dis-
tance from the wire, the finite width of the wire becomes
important and R(k, x) differs from the expression (21).
The amplitude is smaller and the peak is shifted to a lower
frequency. These effects are due to the fact that as x de-
creases, the distance to the borders of the wire decreases
less rapidly than the distance to the central part of the
wire because of the finite width of the wire. Furthermore,
because corrugations of high wave vector produce a cur-
rent density localized near the wire border, their decrease
in amplitude is more pronounced.

Assuming a white power spectrum of the wire edge
corrugations with a spectral density J+

e , we can integrate
the equation (21) over the whole spectral range. We then
find the following scaling law for the rms fluctuations of
Bz with the atom-wire distance x:

〈B2
z〉 = J+

e

(µ0I)2

x5
× 0.044 . (22)

This expression is valid for x ≫ W0, the numerical fac-
tor has been found by a numerical integration of equa-
tion (21). Figure (4) shows that this expression is valid
within 10% as soon as x > 2W0. For smaller distances
x, the fluctuations of magnetic field increase more slowly
and tends to a constant. Note that here J+

e is the spectral
density of f+. For edges with independent fluctuations,
J+

e = Je/2 where Je is the spectral density of each wire
edge. The asymptotic behavior of 〈B2

z〉 was first derived
in [19].

5.2 Effect of top surface corrugation

We now consider the effect of corrugations of the top sur-
face of the wire. As shown in equation (17), it induces both
a current along the x and y direction. The surface current
densities obtained by integration over x have remarkably
simple forms. We find

σyk,m
= σ(1)

yk,m
+ σ(2)

yk,m
(23)
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Fig. 3. Response function relating the magnetic field rough-
ness |Bzk

|2 to the wire edge fluctuations |f+

k |2 (see equa-
tion (21)). Plotted is the dimensionless quantity |Bzk

/f+

k |2 ×
4π2x4/(µ0I)2 as a function of k x where x is the height above
the wire. The different curves correspond to different ratios
x/W0 going from 0.5 to 4.7 in steps of 0.3. Small values of
x/W0 correspond to lower curves. The curve corresponding to
the limit given by equation (21) is also shown (dashed line).

x=W0hB2 ziW5 0=((� 0I)
2 J+ e)

1010.10.01
1010.10.010.0010.00011e-051e-06

Fig. 4. Magnetic field fluctuations 〈B2
z 〉 as a function of the

height above the wire. Plotted is the dimensionless quantity
〈B2

z〉W 5
0 /((µ0I)2J+

e ), where 〈B2
z〉 is the magnetic field rough-

ness and Je is the spectral density of the wire edges assumed
to be white, as a function of x/W0 where x is the height above
the the wire. Dashed line: 1/x5 law given by equation (22).

where











σ
(1)
yk,m

= 2ikfSk,m
j0

√

π
W0

2πm
κ2W0

cos(2πmy
W0

)

σ
(2)
yk,m = −2ikfSk,m

j0
√

π
W0

2πm
κ2W0

(−1)m cosh(ky)
cosh(kW0/2)

(24)

and κ =
√

k2 + (2mπ/W0)2. In the calculation of σxk,m

the summation over p is not analytical. However, as we
consider wires with u0 ≪ W0, one can make the approxi-
mation (cosh(νpu0) − 1)/sinh(νpu0) ≃ νpu0. We then ob-
tain

σxk,m
= ikfSk,m

j0

√

π

W0
u0 sin(2mπy/W0). (25)

Comparing equation (25) and equation (24), we see that
the current density along x is much smaller than the cur-
rent density along y as long as Fourier components κ ≪
1/u0 are considered. Within our flat wire approximation,
where only distances from the wire x ≫ u0 are consid-
ered, this is always the case. In the following we therefore
only consider the effect of the current density along y.
For x ≥ W0/2, the rough magnetic field is then given by
equation (19).

Assuming a white power spectrum for the surface cor-
rugation of spectral density JS , we now derive some prop-
erties of the rough magnetic field. For distances above the
wire x ≫ W0, only k components much smaller than 1/W0

are relevant. Then, as we have already shown, the cln coef-
ficients decrease rapidly with n and the dominant contri-
bution is given by cy0

. To lowest order in ky, cy0
is propor-

tional to the total current
∫ W0/2

−W0/2 σy(y)dy. Thus, the only

contribution comes from σ
(2)
yk,m

. Then, calculations similar
to those presented in the previous section show that the
contribution to 〈B2

z 〉 of the Fourier component m of fSk

is

〈B2
z,m〉 = Js

W0

πu2
0

1

m2

(µ0I)2

x5
× 0.044 (26)

where Js is the 2-dimensional spectral density of fS . As
expected it decreases with m as the contribution of rapidly
oscillating terms averages to zero for large distances x ≫
W0. Computing the sum over m > 0 gives the scaling law
for the rms fluctuation of Bz due to surface corrugation
with atom-wire distance x:

〈B2
z〉 = Js

W0

u2
0

π

6

(µ0I)2

x5
× 0.044 (27)

In figure (5) this expression is compared to numerical cal-

culations based on equation (24). The terms σ
(2)
yk,m con-

tribute at least 90% of 〈B2
z〉 as soon as x > W0.

Comparing edge and surface corrugation, we see that
for large distances, both effects scale in the same way (see
equations (22) and (27)). However, at short distances from
the wire, the amplitude of the magnetic field roughness
produced by surface corrugation does not saturate. In-

deed, although the contribution of σ
(2)
yk,m

saturates in the
same way as the effect of wire edge fluctuations, the con-

tribution of σ
(1)
yk,m

to the current density diverges as one
gets closer to the wire. Thus at small distances from the
wire, we expect surface roughness to become the dominant
source of magnetic field fluctuations.

5.3 Consequences for micro wire traps

The scaling laws (22) and (27) are of major importance as
they impose strong constrains in the use of micro traps.
As mentioned in section 2, high magnetic field gradients
are achieved with small wires and short distances. But as
the distance to the wire decreases, the roughness in the
magnetic trapping potential increases. Imposing a maxi-
mal roughness ∆Bmax tolerable in an experiment there-
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Fig. 5. Longitudinal magnetic field fluctuations 〈B2
z〉 pro-

duced by white noise top surface wire roughness as a
function of x/W0. Plotted is the dimensionless quantity
〈B2

z〉/(JS(µ0I)2/(u2
0W

4
0 )). The dashed lines represents equa-

tion (27).

fore directly determines the maximal transverse gradient
accessible with a given realization of a micro wire.

More precisely, as mentioned in section 2, the maxi-
mal current in a micro wire is limited by heat dissipation:

Imax = κW0u
1/2
0 [20]. To analyze the scaling of the system,

we consider the trap center at a distance comparable to
the wire width x ≃ W0 and the wire height u0 is small and
constant. For a given fabrication technology, we expect the
wire roughness to be independent of the wire dimensions
W0 and u0 and we assume white noise spectral densities
Je and JS for the edge and top surface corrugations. Using
the above expressions for x and I and equations (22) and
(27), we obtain the following scaling laws

〈B2
edge〉 =

Jeµ2
0κ2u0

W 3
0

〈B2
surf〉 = π

6
JSµ2

0κ2

W 2
0

u0

(28)

for the magnetic field fluctuations induced by the edge
and the surface roughness respectively. Imposing magnetic
field fluctuations smaller than ∆Bmax determines a min-
imal wire width W0,min and the maximal transverse gra-
dient ∇Bmax. If the potential roughness is dominated by
effects due to wire edge corrugation, we find:

W0,min =
(

Jeµ2
0κ2u0×0.044
∆B2

max

)1/3

∇Bmax = 1
2π

(

µ0κ
√

u0∆B2
max

Je×0.044

)1/3

.

(29)

For a potential roughness dominated by effects due to wire
top surface corrugation, we find:

W0,min =
(

π
6

JSµ2
0κ2×0.044

∆B2
maxu0

)1/2

∇Bmax = 1
2π

(

u0∆Bmax

JS
π
6
×0.044

)1/2

.

(30)

As will be described in the following section, a micro wire
fabricated by electroplating presents an edge roughness
of Je ≃ 0.1 µm3. Assuming a wire without top surface

roughness, a wire height of u0 = 5 µm, a typical κ = 3 ×
107 A.m−3/2 and imposing a maximal potential roughness
of ∆Bmax = 100mG, the wire width is limited to W0,min ≃
70 µm, the maximal gradient will be ∆Bmax ≃ 2T/cm.

6 Probing the rough magnetic potential with

cold atoms

In a previous letter [17], we described measurements of the
magnetic field roughness produced by a current carrying
micro fabricated wire. The basic idea is to use the fact that
the longitudinal density n(z) of atoms along the wire, is
related to the longitudinal potential seen by the atoms
through a Boltzmann factor:

n(z) ∝ e−V (z)/kBT . (31)

As discussed in section 2, the potential V (z) is propor-
tional to the z-component of the magnetic field a the cen-
ter of the trapping potential. Our typical thermal energy,
1µK, corresponds to a magnetic field of 70µG for a 87Rb
atom in the F = 2, mF = 2 state. Since longitudinal den-
sity variations of order 10% are easily visible in our exper-
iment, we are sensitive to variations in the magnetic field
at the mG level.

The micro wire we used to create the magnetic po-
tential is a 50µm wide electroplated gold wire of 4.5µm
height. The process of micro fabrication is the following:
a silicon wafer is first covered by a 200 nm silicon dioxide
layer using thermal oxidation. Next, seed layers of tita-
nium (20 nm) and gold (200 nm) are evaporated. The wire
pattern is imprinted on a 6µm thick photoresist using op-
tical UV lithography. Gold is electroplated between the
resist walls using the first gold layer as an electrode. The
photoresist is then removed, as well as the first gold and
titanium layers. Finally the wire is covered with a 10µm
layer of BCB resin and a 200 nm thick layer of evaporated
gold. The gold surface acts as a mirror for a magneto-
optical trap. The procedure for deducing the potential
roughness from images of the atomic cloud is complex and
we refer the reader to [17].

Figure (6) shows the measured longitudinal potential
for various distances above the wire. We also show the
power spectral density of these potentials in figure (7). A
region of 1.6mm along the wire is explored by the atoms.
To estimate the power spectral density of the potential
roughness we divide the total window in three smaller
windows overlapping by 50% [22]. In each window, the
fourier transform of the potential is computed after mul-
tiplication with a Hamming window and the estimate of
the spectral density is the average of the square of the
Fourier transforms.

In figure (7), a flat plateau is visible at the highest wave
vectors (e.g. k > 0.07 µm−1 at 46 µm and k > 0.04 µm−1

at 80 µm). The level of this plateau depends on experi-
mental parameters such as the temperature and density of
the atom cloud. On the other hand the spectral density at
low wave vectors, i.e. in the region where it rises above the
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Fig. 6. Rough magnetic field Bz(z) normalized to the cur-
rent in the micro wire. Solid lines: magnetic field measured
using cold atomic clouds. Dashed lines: magnetic field calcu-
lated from the measured corrugation of the edges of the wire.
The different curves have been vertically shifted by 0.1 G/A
from each other and heights above the wire are indicated on
the right.

plateau, is independent of these parameters. This obser-
vation leads us to conclude that while the low wave vector
part of the spectrum corresponds to a potential seen by
the atoms, the plateau at high wave vectors is due to in-
strumental noise in our imaging system, such as fringes.
We expect it to vary in a complex way with tempera-
ture and atom density. Qualitatively, smaller atom-wire
distances, which are analyzed with higher temperature
clouds, should result in higher plateaus. This tendency
is indeed observed in figure (7).

To measure the wire corrugations, we removed the
atom chip from vacuum and etched off the gold mirror
and the BCB layer. We analyzed the bare wire with scan-
ning electron microscopy (SEM) and with atomic force
microscopy (AFM) techniques. The function f describ-
ing the edge corrugation is extracted from SEM images
such as (2b). Rms deviations of the edges are as small
as 200 nm, and we use a 50µm × 50µm field of view
in order to have a sufficient resolution. We use 66 over-
lapping images to reconstruct both wire edges over the
whole wire length of 2.8mm. We identify no correlation
between the two edges. The spectral density obtained for
f+ = (fl + fr)/2 is plotted in figure (8). We see two
structures in the spectrum: first, we observe fluctuations
with a correlation length of 0.2µm and 100 nm rms ampli-
tude. It corresponds to the fluctuations seen on figure (2b)
which are probably due to the electrodeposition process.
Second, roughness with low wave vectors is present and
raises significantly the power spectral density in the 0.01-
0.1µm−1 range. For the spectral range 0.01-1 µm−1, the
wire border fluctuations are well fitted by a power law
J = 3.2 × 10−6k−2.15 + 8.2 × 10−4 µm3 as seen in fig-
ure (8). We use this expression to compute the spectra
shown in figure (7). As we measured f over the whole re-
gion explored by the atoms, we can not only compare the
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Fig. 7. Spectral density of the magnetic field roughness for
different heights above the wire. The points represent experi-
mental data. The curves result from the calculations detailed in
the text. Solid curves: expected noise due to wire edge rough-
ness. We used the power law fit to the spectral density of the
wire border fluctuations. Dashed curves: expected noise due to
top surface roughness.

spectral densities of the magnetic field roughness but we
also can compare the direct shape of the magnetic field
Bz(z). This is done in figure (6) where the magnetic field,
computed from f as described in the previous sections, is
shown by dashed lines. We note that no adjustment has
been applied to superimpose the two curves, the absolute
position of the atoms with respect to the wire is known to
the 3µm resolution of our imaging system.

The corrugation of the top surface of the wire is mea-
sured using an AFM and the observed power spectral
density is plotted in figure (9). The spectrum is flat for
wave vectors smaller than 1 µm−1 with a value JS =
1.6×10−3 µm4. Unfortunately, we were not able to obtain
the spectrum for very long wave vectors. For purposes of
calculation, we shall simply assume that the spectral den-
sity below 0.1 µm−1 has the same value as between 0.1 and
1 µm−1. The results of this calculation is plotted figure (7)
(dashed lines).
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Fig. 8. Measured spectral density of the edge roughness of the
electroplated wire (upper curve) and of the evaporated wire
(lower curve). For the electroplated wire, the spectral density
of f+ = (fl + fr)/2 is plotted. For the electroplated wire, Jf/2
is plotted, where Jf is the spectral density of a single border
of the wire, as expected for the spectral density of f+ for inde-
pendent wire border fluctuations. The thick line on the upper
curve is a power law fit J = ax−b + c which gives b = 2.19.
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Fig. 9. Power spectral density of the wire top surface rough-
ness measured with an AFM. We plot the spectral density cor-
responding to the transverse mode m = 1 (ky = 2π/W0) which
is the first one to contribute to magnetic field roughness. The
horizontal line indicates the mean value for kz ranging from
0.2 µm−1 to 0.1 µm−1.

Our results indicate that the magnetic field roughness
measured with cold atoms is explained by wire corruga-
tion. At low wave vectors (k < 0.04 µm−1), it seems that
the magnetic field roughness is primarily due to edge cor-
rugations. The good agreement between the observed field
and the calculation shown in figure (6) are the strongest
evidence for this conclusion. For wave vectors larger than
about 0.5 µm−1, the corrugations of the top surface are
expected to contribute as strongly as those of the edges.
This wave vector regime however, is not being stringently
tested by our data. Since we have no data on surface corru-
gation at wave vectors below 0.1 µm−1, it is possible that
the contribution from this effect is larger than shown in
figure (7). The atom data in the figure however, indicate
that the surface effect is not the dominant one although
given our signal-to-noise it could be of comparable mag-
nitude.

7 Improved fabrication process for micro

wires

The fabrication technology described above limits us to
atom wire separations greater than several tens of mi-
crons if we want to obtain a reasonably smooth potential.
In order to improve the quality of our wire, we turn to
a different micro fabrication process: the wire structures
are patterned onto an oxidized silicon wafer using elec-
tron beam lithography. We use gold evaporation and a
standard lift-off technique to obtain 700nm square cross
section wires as shown in figure (2c).

We extract the wire border roughness from SEM im-
ages and the obtained power spectral density is plotted in
figure (8) (lower curve). In the spectral range studied, the
roughness is greatly reduced compared to the first fabrica-
tion process. This was expected as the grain size of evapo-
rated gold is much smaller than of electroplated gold. Un-
fortunately, we do not have a quantitative measurement of
the power spectral density in the 0.01-0.1 µm−1 range. In-
deed, as we had to reduce the field of view to increase the
resolution, it becomes very difficult to overlap hundreds
of SEM pictures without adding spectral components due
to stitching errors.

Gold evaporation produces surfaces of optical quality
at visible light. Thus the roughness of the top surface of
the evaporated wire is expected to be much smaller than
that of an electroplated wire.

8 Conclusion

Our goal in this paper has been to give a more detailed de-
scription of the work which led to our conclusion that wire
corrugations can account for the magnetic field roughness
typically observed in atom chip experiments. We wish to
emphasize in this paper that great care must be taken to
characterize the roughness of a micro fabricated wire. The
ratio of the rms roughness to the wavelength of the im-
perfections is below 10−4. Thus a single microscope image
cannot reveal the imperfections.

The model we use has already been suggested in ref-
erence [19]. Here we have given more details of the calcu-
lation as well as some physical arguments explaining the
results. We have also extended the calculation to include
the effects of corrugations of the top surface of the wire.
The top surface corrugations become increasingly impor-
tant as the distance to the wire decreases, while the effect
due to wire edge roughness saturates.

The equations (22) and (27), giving the behavior of the
magnetic field roughness due to edge and surface corru-
gation as a function of height, are important scaling laws
that one should keep in mind in the design of atom chips.
The requirements of small roughness and high transverse
confinement impose a tradeoff in choosing a wire size for a
given fabrication quality. We do not believe however that
we are at the end of our progress in improving the fabri-
cation technology [20]. Thus sub-micron scale atom chips
continue to hold out much promise for the manipulation
of ultra cold atoms.
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