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PURELY PERIODIC (-EXPANSIONS IN THE PISOT NON-UNIT CASE

VALERIE BERTHE AND ANNE SIEGEL

ABSTRACT. It is well known that real numbers with a purely periodic decimal expansion are the
rationals having, when reduced, a denominator coprime with 10. The aim of this paper is to extend
this result to beta-expansions with a Pisot base beta which is not necessarily a unit: we characterize
real numbers having a purely periodic expansion in such a base; this characterization is given in
terms of an explicit set, called generalized Rauzy fractal, which is shown to be a graph-directed
self-affine compact subset of non-zero measure which belongs to the direct product of Euclidean
and p-adic spaces.

Keywords: expansion in a non-integral base, Pisot number, beta-shift, beta-numeration, purely
periodic expansion, self-affine set.

Let 3 be a Pisot number and T : ¢ — [z (mod 1) be the associated [-transformation. The
aim of this paper is to characterize the real numbers z in Q(8) N [0,1) having a purely periodic
(B-expansion.

It is well known that if § is a Pisot number, then the real numbers that have a ultimately
periodic (B-expansion are the elements of Q(3) [Ber77, Fch8(]. Thus real numbers = that have
a purely periodic beta-expansion belong to Q(f). We present a characterization that involves
the conjugates of the algebraic number z, and can be compared to Galois’ theorem for classical
continuous fractions.

Theorem 1. Let 3 be a Pisot number. A real number x € Q(3) N [0,1) has a purely periodic
beta-expansion if and only if x and its conjugates belong to an explicit_subset in the product of
Euclidean and p-adic spaces (see Figure [2.3 below); this set (denoted Rp and called generalized
Rauzy fractal) is a graph-directed self-affine compact subset in the sense of [MWS8]] of non-zero
measure; the primes p that occur are the prime divisors of the norm of 3.

The scheme of the proof is based on a realization of the natural extension of the g-transformation
T3 extended to a geometric space of representation for the two-sided S-shift (Xg,.5). Our results
and our proof is inspired by [[R0Z, [S01], San09 which presents a similar characterization of purely
periodic expansions in the case where § is a Pisot unit.

The construction of the set 7%7; (introduced in Theorem [[) is inspired by the geometric represen-
tation as generalized Rauzy fractals (also called atomic surfaces) of substitutive symbolic dynamical
systems in the non-unimodular case developed in [Bie0J]. In fact, a substitution o is a non-erasing
morphism of the free monoid A* and a substitutive dynamical system is a symbolic dynamical
system generated by an infinite sequence which is a fixed point of a substitution. Furthermore, if
the (B-expansion of 1 in base 3 is finite (3 is said to be a simple Parry number) and if its length
coincides with the degree of 3, then the set 7,2; involved in our characterization is exactly the
generalized Rauzy fractal that is associated in [Sie0J] with the underlying [-substitution (in the
sense of [Thu89, Fab9q)).

Rauzy fractals have been widely studied; for more details, see for instance [Sie0F]. There are
mainly two methods of construction for Rauzy fractals. One first approach inspired by the seminal

paper [Rau8], is based on formal power series, and is developed in [Mes9q, [Mes0(], or in [[CS014,
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ES0TH]. A second approach via YeskEbdE BERIHEASRAREIFGERNd generalized substitutions has
been developed following ideas from [[K91] in [AT01], BAI01], [HZ98, BWO03] with special focus on the

self-similar properties of the Rauzy fractals. We combine here both approaches: we define the set 7/?\,;3
by introducing a representation map of the two-sided shift (X3, S) based on formal power series, and
prove that this set has non-zero Haar measure by cutting it into pieces that are solutions of an IFS.
Similar sets have also been introduced and studied in the framework of S-numeration by S. Akiyama
in [Aki94, AS9Y, [Aki9Y, [Aki0d], inspired by [[Thu8d]. As an application of generalized Rauzy
fractals, let us mention that they provide Markov partitions for toral automorphisms of the torus,
as illustrated in [[O93, KV9§, Pra99, Bch0d, Bie0(]. Furthermore, there are numerous relations
between generalized Rauzy fractals and discrete planes as studied for instance in [[ABI0J, [ABS04].

The aim of this paper is twofold. We first want to characterize real numbers having a purely
periodic G-expansion; we second try to settle the first steps of a study of the geometric representation
of 3-shifts in the Pisot non-unit case, generalizing the results of [Aki9g, [AS9], [Aki99, [Aki0]], based
on the formalism introduced in the substitutive case in [Sie0J].

This paper is organized as follows. We first recall in Section [l| the basic elements needed on (-
expansions. We then associate in Section B with the two-sided S-shift (Xz,.S) formal power series
in Q[[X]]; we obtain in Section a representation map for the two-sided (-shift by gathering the
set of finite values which can be taken for any topology (Archimedean or not) by these formal power
series when specializing them in [: in fact, we take the completion of Q(3) with respect to all the
absolute values on Q(3) which take a value different from 1 on [ (this value is thus smaller than 1
since (3 is Pisot). We are then able to define the Rauzy geometric representation of the two-sided
B-shift (Definition ). Section [ is devoted to the study of the properties of the set 7’27; We then
prove Theorem [l in Section J.

1. B-NUMERATION

Let 8 > 1 be a real number. In all that follows, B is assumed to be a Pisot number. The
Renyi (-expansion of a real number x € [0,1) is defined as the sequence (x;);>1 with values in
Ag:=1{0,1,...,[f]} produced by the -transformation T3 : 2 +— Bx (mod 1) as follows

Vi>1, u; = LﬁTéfl(x)J, and thus z = Zuzﬂ_l

i>1
Let dg(1) = (;)i>1 denote the S-expansion of 1. Numbers [ such that dg(1) is ultimately periodic
are called Parry numbers and those such that dg(1) is finite are called simple Parry numbers. Since
B is assumed to be Pisot, then [ is either a Parry number or a simple Parry number [BM8(]. Let
di5(1) = dg(1), if dg(1) is infinite, and dj(1) = (t1... tp—1(tn — 1)), if dg(1) = t1 ... t,—1t, is finite
(tn, #0). The set of S-expansions of real numbers in [0,1) is exactly the set of sequences (u;);>1 in
Ag such that

(11) vk > 1, (ul)ZZk <1€X dz(l)

For more details on the S-numeration, see for instance [Fro03, [Fro0(].
The (two-sided symbolic) [(3-shift. Let (Xg,S) denote the two-sided symbolic dynamical system
associated with (3, where the shift map S maps the sequence (y;)iez onto (yi+1)iez. The set Xz
is defined as the set of two-sided sequences (y;);ez in .A% such that each left truncated sequence is
less than or equal to dj(1), that is, Vk € Z, (yi)i>k <1ex d5(1)-

We will use the following notation for the elements of Xg: if y = (yi)icz € X3, define u =
(ui)i>1 = (¥i)i>1 and w = (w;)i>o0 = (y—i)i>0. One thus gets a two-sided sequence of the form

Lo W3W2wrwouU2US .



and write it as y EUE@BZY)ZEEO?{QBE%ﬁ'E%(Pw?JﬁN%ﬂNOTH& FRSMES 6V (885 he letters (w;) fof
denoting the “past” and (u;) for the “future” of the element y = (w,u) of the two-sided shift Xg.

One-sided (3-shifts. We denote by X5 the set of one-sided sequences u = (u;);>1 such that there
exists w = (w;);>0 with (w,u) € Xg. This set is called the right one-sided (3-shift. It coincides with
the usual one-sided [(-shift and is equal to the set of sequences (u;);>1 which satisfy

(1.2) Vi > 1, (wi)izk <qex d5(1)-

One similarly defines Xlﬁ as the set of one-sided sequences w = (w;);>p such that there exists
u = (u;)i>1 with (w,u) € Xg. We call it the left one-sided (3-shift.

Sofic shift. Since (3 is a Parry number (simple or not), then (Xg,S) is sofic [BM8G]. We denote
by F(Xg3) the set of finite factors of the sequences in Xg; the minimal automaton Mg recognizing
the set of factors of F(Dg) can easily be constructed (see Figure [L.1). The number of states d of
this automaton is equal to the length of the period n of d;}(l) if B is a simple Parry number with
dg(1) =t1...th—1ty, tn # 0, and to the sum of its preperiod n plus its period p, if § is a non-simple
Parry number with dg(1) =t1 ... tn(tnt1 - tnip)™ (En # tngps tngt - tngp 7 OP).

tntp

FIGURE 1.1. The automata Mg for 8 simple Parry number (dg(1) = t1...tp—1ty)
and for § non-simple Parry number (dg(1) =t1...tn(tng1 - .- tngp)™).

(B-substitutions. Let us recall that a substitution o is a morphism of the free monoid A*, such that
the image of each letter of A is non-empty. As introduced for instance in [Thu8d] and in [Fab93],
one can associate in a natural way a substitution o (called (-substitution) with (X3, .5) over the
alphabet {1,---,d}, where d denotes the number of states of the automaton Mpg: j is the k-th
letter occuring in og(7) (that is, o3(i) = pjs, where p,s € {1,--- ,d}* and |p| = k — 1) if and only
if there is an arrow in Mg from the state 7 to the state j labeled by £ — 1. One easily checks that
this definition is consistent.
An explicit formula for g can be computed by considering the two different cases, 3 simple and
(8 non-simple Parry number.
o Assume dg(1) =t1...t,_1ty, is finite, with ¢, # 0. Thus dj(1) = (t1...tn—1(tn —1))>°. One
defines og over the alphabet {1,2,...,n} as shown in (d)
e Assume dg(1) is infinite. Then it cannot be purely periodic (according to Remark 7.2.5
[Fro02]). Hence dg(1) = dj(1) = t1...tp(tns1 .- tpgp)™, with n > 1, &, # t,4p and
tnt1---tnip 7 OP. One defines og over the alphabet {1,2,...,n+ p} as shown in (|L.3).
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1 — 1112 1 — 1112
2 — 1023 2 — 1123
I3y : T84 :
(1.3) n—1 —1in n4p—1 > 1=1(n+p)
n — 1in. n+p — 1tn+r(n 4 1).
Substitution associated with Substitution associated with
a simple Parry number a non-simple Parry number

We will use (-substitutions in Section f] in order to describe properties of the set 7%7; Notice
that the automaton Mg is exactly the prefix-suffix automaton of the substitution oz considered for
instance in [[CS014, [CSO1H], after reversing all the edges and replacing the labels in the prefix-suffix
automaton by the lengths of the prefixes.

The incidence matriz of the substitution o is defined as the d x d matrix whose entry of index
(i,7) counts the number of occurrences of the letter i in o(j). As a consequence of the definition, the
incidence matrix of o3 coincides with the transpose of the adjacency matrix of the automaton Mg.
By eigenvalue of a substitution o, we mean in all that follows an eigenvalue of the characteristic
polynomial of the incidence matrix of o. A substitution is said to be of Pisot type if all its eigenvalues
except its largest one which is assumed to be simple, are non-zero and of modulus smaller than 1.

2. REPRESENTATION OF (3-SHIFTS

The right one-sided shift X admits as a natural geometric representation the interval [0, 1];
namely, one associates with a sequence (u;)i>1 € Xp its real value Zi21 u;3~%. We even have a
measure-theoretical isomorphism between Xj endowed with the shift, and [0,1] endowed with the
map T3. We want now to give a similar geometric interpretation of the set Xg; for that purpose,
we first give a geometric representation of X é as a generalized Rauzy fractal.

2.1. Representation of the left one-sided shift X lﬁ The aim of this section is to introduce first
a formal power series, called formal representation of X é and second a geometrical representation

as an explicit compact set of in the product of Euclidean and p-adic spaces following [], the
primes which appear as p-adic spaces here will be the prime factors of the norm of (.

Formal representation of the symbolic dynamical system Xé.

Definition 1. The formal representation of X lﬁ is denoted

px + Xg — Q[X]]

where Q[[X]] is the ring of formal power series with coefficients in Q, and defined by:

for all (wi)izo S Xlg, QOX(wi) = ZwiXi S @[[XH

i>0

Topologies over Q(3). We now want to specialize these formal power series by giving to the inde-
terminate X the value [, and associating with them values by making them converge. We thus
want to find a topological framework in which all the series >, w; 3" for (wi)iso € X é, would
converge; in fact, this boils down to find all the Archemedean and non-Archemedean metrizable
topologies on Q(() for which these series converge in a suitable completion; they are of two types.



e Suppose thAURRESFREE (Wit HHISIANE IGEE FIPQL AXNHINEG i its restriction to @

corresponds to the usual absolute value on Q and there exists a Q-isomorphism 7; such that
|z| = |7i(z)|c, for x € Q(B). The series px specialized in 3 converge in C if and only if 7;
is associated with a conjugate (; of modulus strictly smaller than one.

e Assume that the topology is non-Archimedean: there exists a prime ideal Z of the integer
ring Og(g) of Q(3) for which the topology coincides with the the Z-adic topology; let p be
the prime number defined by Z NZ = pZ; the restriction of the topology to Q is the p-adic
topology. The series @ x specialized in (3 take finite values in the completion Kz of Q(/3) for
the Z-adic topology if and only if 5 € Z, i.e., |07 < 1.

Representation space Kg of Xlﬁ. We assume now that (8 be a Pisot number of degree d, say. Let (s,
.., By be the real conjugates of 3 (they all have modulus strictly smaller than 1, since 3 is Pisot),
and let Br41, Brsts - -+ s Briss Brys be its complex conjugates. For 2 < j < r, let Kpg, be equal to R,
and for r +1 < j <r+s, let Kg, be equal to C, R and C being endowed with the usual topology.
For ¢ = 1 to d, let 7; be a Q-automorphism of K = Q(f4,...,Hs) which sends 3 on its algebraic
conjugate [3;. For a given i and for every element Q(3) of Q(53), then 7(Q(3)) = Q(5;)-
We first gather the complex representations by omitting the ones which are conjugate in the
complex case. This representation contains all the possible Archemedean values for px. It takes
values in

KOO:K52 Xoeee XK5T+S.

Let 7y, ..., Z, be the prime ideals in the integer ring Og(g) of Q(pB) that contain (3, that is,
(2.1) BOg = [[ 7™
i=1

Recall that Kz denotes the completion of Q(f3) for the Z-adic topology. We then gather the
representations in the completions of Q(/3) for the non-Archemedean topologies. Hence one defines
the representation space of Xz as the direct product Kz of all these fields:

Kg=Kg, x...Kg,, xKg, x...Kg, *R"™' x C* x Kz, x -+ x Kg,.

The field K7 is a finite extension of the pz-adic field Q,, where Z N Z = pzZ. For a given prime

p, the fields K7 that are p-adic fields are the ones for which Z contains simultaneously p and (.

Furthermore, the prime numbers p for which there exists a prime ideal of Og(g) which contains

simultaneously p and (§ are exactly the prime divisors of the constant term of the minimal polyno-

mial of 3 (see Lemma 4.2 [Fie0J]). In particular, Kg is a Euclidean space if and only if 3 is a unit.

Endowed with the product of the topologies of each of its elements, K3 is a metric abelian group.
The canonical embedding of Q(3) into Kz is defined by the following morphism:

(2'2) 65 : P(B) € @(ﬂ) = (P(B2), ce >P(Br+s)ap(ﬂ)’ s ’P(ﬂ)) € Kﬁ'
N~—— —— N
€Ks, €Kp,y s €Kz €Kz,

Since the topqlogy on K has been chosen so that the formal power series lim,, o d5(3 1 wi/3?)
= Y i>o widp(B)" are convergent in Ky for every (w;)i>o € X!, one defines the following, where the

notation dg(3 ;- w;3") stands for >i>0 w;05(B3)".
Definition 2. The representation map of X é, called one-sided representation map, is defined by
w5 Xfp— Kg, (wy)izo— 050> wi).
i>0
We set Rg := goﬁ(Xé) and call it the generalized Rauzy fractal or geometric representation of the
left one-sided shift X é
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The golden ratio. Let = (1 ++/5)/2 be the golden ratio, that is, the largest root of X2 — X — 1.
One has dg(1) = 11 (8 is a simple Parry number) and dj(1) = (10)*°. Hence X is the set of
sequences in {0,1}? in which there are no two consecutive 1’s. Furthermore, the associated 3-
substitution is the Fibonacci substitution: oz : 1+~ 12, 2 — 1. One has Kg = R; the canonical
embedding d3 is reduced to the map T1—v5)/2 (that is, the Q-automorphism of Q(3) which maps
B on its conjugate), and d3(Q(5)) = Q(5). The set Rz is an interval.

The Tribonacci number. Let 8 be the Tribonacci number, that is, the Pisot root of the polynomial
X3 — X2 - X —1. One has dg(1) = 111 (8 is a simple Parry number) and dj(1) = (110)*°. Hence
X is the set of sequences in {0, 1}% in which there are no three consecutive 1’s. Furthermore,
og: 1+ 12, 2 — 13, 3 — 1. One has Kg = C; the canonical embedding is reduced to the
Q-isomorphism 7, which maps § on «, where « is one of the complex roots of X3 — X2 — X — 1.
The set Rg which satisfies

Rg = {Z inél; Vi, w; € {O, 1}, WiW;41W542 7é 0}
i>0

is a compact subset of C called the Rauzy fractal. This set was introduced in [R 1], see also
K91, Mes9g, Mes0(]. It is shown in Fig. PR.J with a division into three pieces indicated by
different shades. They correspond to the sequences (w;);>o such that either wy = 0, or wow; = 10,
or wow; = 11. There are as many pieces as the length of dg(1), which is also equal here to the
degree of 3. We will come back to the interest of this division of the Rauzy fractals into smaller
pieces in Section [3.

The smallest Pisot number. Let 3 be the Pisot root of X? — X — 1. One has dg(1) = 10001 (S
is a simple Parry number) and dj(1) = (10000)°; 0 : 1+ 12,2 3, 34, 4= 5, 5 1
the characteristic polynomial of its incidence matrix is (X3 — X — 1)(X? — X + 1), hence o4 is
not a substitution of Pisot type. A self-similar tiling generated by it has been studied in details in
[AS9§); some connected surprising tilings have also been introduced in [EI0Z]. One has Kg = C;
the canonical embedding is also reduced to the Q-isomorphism 7, which maps § on «, where « is
one of the complex roots of X3 — X — 1. The set Ry is shown in Fig. B3 with a division into five
pieces corresponding respectively to the sequences (w;)i>o such that either wow;wows = 0000, or
wo = 1, wowi = 01, wowiws = 001, or wowiwows = 0001. The number of different pieces is equal
to the length of dg(1); there are here 5 pieces whereas the degree of 3 is 3.

A non-unit example. Let 8 = 2 4+ v/2 be the dominant root of the polynomial X2 —4X + 2. The
other root is 2—+/2. One has dg(1) = dj(1) = 31°°; B is not a simple Parry number; o5 : 1+ 1112,
2 +— 12. The ideal 2Z is ramified in OQ( V2) that is, 2Z = Z2. Hence there exists only one ideal
which contains v/2; its index of ramification is 2; the degree of the extension Kz over Q9 has degree
2. Hence the geometric one-sided representation Rg is a subset of R x Q2 x Q2, shown in Fig.

R.9. The division of the Rauzy fractal cannot be expressed as in the previous examples as finite
conditions on the prefixes of the sequences (w;);>o (for more details, see Section B.2).

2.3. Representation of the two-sided shift (Xg, 5).
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FI1GURE 2.1. The Rauzy geometric one-sided representation for the Tribonacci-shift,
the smallest Pisot number-shift and the (2 + v/2)-shift.

Representation space ]K} of the two-sided (-shift Xg and representation map pg. We define now
the representation map @z of Xg: it takes its values in Kg x R and maps a point (w,u) =
((ws)i>0, (u3)i>1) in Xpg to the point obtained by introducing on the last coordinate (in R) the
real number whose [-expansion is given by (u;);>1, and by gathering on the first coordinate (in
Kp) the set of finite values which can be taken by the formal power series ¢y (w) specialized in

for all the topologies that exist on Q(3). Let us define Kz as Kg x R.

Definition 3. The representation map g : Xg — ]If(g of Xg, called two-sided representation map,
is defined for all (w,u) = ((w;)i>0, (ui)i>1) € Xg by:

pp(w,u) = (_Spﬁ(wi),zuiﬁ_i) = (—55(2 wzﬁi),zuiﬁ_i) € Kg x R.
i>1 >0 i>1

The set 75;; = pp(Xp) is called the Rauzy fractal or geometric representation of the two-sided
(B-shift. This set is easily seen to be bounded and hence compact.

We will see below (see (B.4) and ([.1])) the interest of introducing the sign minus before dg in
the definition of the map 3.

Ezxtension Tﬁ of the [(-transformation. One can extend in a natural way the definition of T} to
the product of the representation space Kz by R as follows, in order to obtain a realization of its
natural extension.

Definition 4. Let hg: K3 — Kz stands for the multiplication map in Kz by the diagonal matrix
whose diagonal coefficients are given by dg(3). One thus defines

Tp: Kg xR — Kg xR, (a,0) — (hg(a) — [8b)35(1), 8b — [3b]).

In particular, the following commutation relations hold, where I'd denotes the identity map over
R; recall that S denotes the shift over Xg:

(2.3) Ty 0 (85, Id) = (63, Id) o Ts over Q(B).

(2.4) V(wu) € Xg, ifudy(1), FgoS(w,u)=Tg0Ga(w,u).
The proof of (£.3) is immediate. Let us prove (R-4). Take an element (w,u) = ((w;)i>0, (wi)i>1) €
Xp with u # dj(1). One has pg(w,u) = (=053 ;>0 wiﬂi),zi21 u;3~%). Since u satisfies ([.1]),

then the integer part of B(Y",~; w37 is equal to uy, hence T3(> ;oq i3~ = Y mpuif~%, and
the assertion follows. - - -



Framples. The geometric repres%ﬁ%@ﬁ%%ﬁ%ﬁp‘e“fi‘éNg’o‘fHTﬁEiatio-shift maps to R%2. The ones
for the Tribonacci number and the smallest Pisot number map to R? = C x R. They are shown (up
to a change of coordinates) in Fig. R.2. The sets R are unions of products of the different pieces
of the Rauzy fractal Rg by finite real intervals of different heights. For instance, in the Tribonacci
case, since the different pieces in Rg correspond to the sequences (w;);>¢ such that either wg = 0,
or wowy = 10, or wow; = 11, this gives different constraints on the sequences (u;);>1 which produce
the real component; for instance, the piece which corresponds to the sequences (w;);>¢ such that
wow; = 11 implies the following constraint on the sequences (u;);>1: up has to be equal to 0.

FiGURE 2.2. The geometric representation of the two-sided [-shift for the Fibo-
nacci-shift, the Tribonacci-shift, and the smallest Pisot number-shift.

Remark 1. The definition of the representation map @g is inspired by [Sie0d] in the substitutive
case. We cannot apply here directly the substitutive formalism to the substitution og since it is
generally not Pisot : the dominant eigenvalue of g is still a Pisot number but other eigenvalues
may occur, as in the smallest Pisot case. The main difference here is that we do not take those
extra eigenvalues into acount in our definition of pg3.

3. GEOMETRIC PROPERTIES OF THE RAUZY FRACTAL OF THE (3-NUMERATION

The aim of this section is to prove some geometric properties of the Rauzy fractal associated
with the S-numeration:

Theorem 2. Let 3 be a Pisot number.

(1) The Rauzy fractal R of the one-sided [3-shift has a graph directed self-affine structure in
the sense of [MWS8Y|. More precisely:

e it has a non-zero measure for the Haar measure;

e there are d pieces which form the self-affine structure, where d is equal to the period
of dg(1)* if 8 is a simple Parry number or to the sum of its preperiod plus its period,
otherwise. N

(2) The Rauzy fractal Ry of the two-sided (3-shift has non-zero measure for the Haar measure
px, over Kg x R. It is the disjoint union of d cylinders obtained as the product of each
piece of the one-sided Rauzy fractal by a finite interval of R.

3.1. Proof of Theorem [. The proof of the first point of this theorem is divided into several
steps; roughly, we use the self-affine structure of Rg to deduce that it has non-zero measure.
Similar statements are proved in the framework of Pisot substitutions in [Bie03], but we cannot use
here directly these statements since the B-substitutions (Section [) used here are not necessarily
Pisot according to Remark [, as for instance in the smallest Pisot case.
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d pieces where d denotes the number of states in the minimal automaton Mg which recognizes the
set of factors F'(Xg) of the two-sided shift Xg.

Let ./\A/IZ; denote the (non-deterministic) automaton obatined from Mg by reversing the orienta-
tion of the edges. The set of sequences in the left one-sided shift X é, is equal to the set of labels

of infinite one-sided paths in the automaton /% We label the states of the automaton /\/;173 by
ai, -+ ,aq. For i =1,---  d, one defines

Rai) = pa((wr)kz0); (wk)izo0 € AF; (We)kz0
PSS is a path from the state a; in Mg .

Let us recall that d is larger than or equal to the degree r of the minimal polynomial of 3. For
instance, 7 = 3 and d = 5 in the smallest Pisot case. In particular, d can be arbitrarily large when
[ is cubic, according to [Bas02].

Self-affine decomposition. We recall that the map hg : Kz — Kg stands for the multiplication
map in Kg by the diagonal matrix whose diagonal coefficients are given by §3(3) (Definition [).
Hence d3(B8x) = hgog(x) for every x € Q(B).

Let us first prove that for i =1,--- ,d:
(3.1) Rp(i) = Ui<j<d YUy, o40)=pis "a(Rp(5)) + ds(Ip])-
Let i € {1,--- ,d} be given. Let (wy)r>0 € Rp(i). One has

05((we)k20) = 05(Xkz1 wrBF) + 65(wo) = hpdp(X sy wiB1) + d5(wo)
= hpps((wk)k>1) + d(wo).

Let a; denote the state in ./% obtained by reading the label wy from the state a;. By the
definition of o, there exist p = 1"° and s such that o3(j) = pis, that is, wy = |p|. Hence

wo((wr)r>0) € ha(Ra(j)) +s(Ip));
which provides one inclusion for the equality (B.1]). The other inclusion is then immediate.
The Rauzy fractal has non-zero measure. The proof is an adaption of the corresponding proof
of [Fie03] which is done in the framework of Pisot substitution dynamical systems; two properties

are recalled below without a proof, the first one describing the action of the multiplication map hg
on the Haar measure ug, of Kg:

Lemma 1 ([Sie03]). (1) For every Borelian set B of Kg

1
iy (h3(B) = i, (B).
(2) Let S be a finite set included in Q(3). The set of points {6(P(1/3)); P € S[X]} is a discrete

set in Kg.

Let (Un)nen denote the linear canonical numeration system associated with 8 according to
IBM&Y], that is, Uy = 1, and for all k, Uy = t;Up_1 + - -+ + t;;Up + 1, where d’g(l) = (tx)ken. Let
us expand every integer i = 0,1,--- , Uy — 1 in this system according to the greedy algorithm (this
expansion being unique):

0<k<N-1



Reccording to [BM8Y], see also @ﬁl%ﬁéﬁm%dﬁq%}ﬂEQE%g% fori =0,1,--- , Uy — 1 are
all distinct and all belong to the set F(Xg) of factors of elements of X3. Hence the sequences
((w(()z) e w](\zf)_l)Ooo), fori=0,1,--- ,Uyx — 1, all belong to the left one-sided [-shift Xlﬁ.

Let &y denote the image under the action of ¢g of this set of points. Ome has for i =
0,1,--- , Uy —1

pa((wy) - wl) 0®) =05 S wp).

0<k<N-1
The points in £y are all distinct since for ¢ = 0,1,--- , Uy — 1, the finite words wg\i,)fl e w(()i) are
all distinct. There thus exists B > 0 such that Card Ex = Uy > BAY, since [ is a Pisot number.
Let us apply now Lemma [] with & = {0,1,---,[3]}. Hence there exists a constant A > 0

such that the distance between two elements of £y is larger than A. Let us define now for every
non-negative integer N, the set

By = Uzeen (hg)NB(z, A/Q),

where B(z, A/2) denotes the closed ball in Kg of center z and radius A/2. According to Lemma
and to the fact that Card &y > BBV, for all N, there exists C' > 0 such that prs(By) > C, for all
N.

The main point now is that the sequence of compact sets (By)nen converges toward a subset
of Rg with respect to the Hausdorff metric; indeed for a fixed positive integer p, for N large
enough, By C Rg(1/p) := {x € Kg; d(z,Rg) < 1/p}. Independently, fix € > 0; since the sequence
(Rp(1/p))p converges toward Rg, there exists p > 0 such that px,(Rs(1/p)) < ux,(Rg) + .
This finally implies liminf g, (BN) < px,(Rp) + €. Since this holds for every e > 0, one obtains
MK,B(Rﬁ) >C >0.

Computation of the measures and self-affine structure. Let us prove now that the union in
(B1) is a disjoint union up to sets of zero measure. One has for a given i € {1,--- ,d} according to
(B and to Lemma

'U’KB(RB(Z)) < Z] 1,---,d, og(j)=pis ,U/]Kﬁ(hg(Rg( )))
<1/p Z]:17...7d7 o5(j)=pis ,UKB(RB(J))-

Let m = (uk,(R3(i)))i=1,. 4 denote the vector in R? of measures in Kg of the picces of the
Rauzy fractal. We know from what precedes that m is a non-zero vector with non-negative entries.
According to Perron-Frobenius theorem, the previous equality implies that m is an eigenvector of
the primitive incidence matrix of the substitution og. We thus have equality in (B.J) which implies
that the unions are disjoint up to sets of zero measure. One similarly proves that this equality in
measure still holds by replacing o by ¢”, for every n.

Now take two distinct pieces, (Rs(j)) and (Rg(k)) say, with j # k. There exists n such that
both ¢™(j) and 0™ (k) admit as first letter 1. Hence they both occur in (B.1]) for 4 = 1 with the same
translation term (which is indeed equal to 0) and they are thus distinct. We hence have proved
that the d pieces of the Rauzy fractal (Rg(j)) are disjoint up to sets of zero measure, which ends
the proof of Assertion (i), that is, Rg has a self-affine structure.

(3.2)

7/55 has non-zero measure. It remains now to prove the second point of the theorem. The
assertion that Rg has non-zero measure is a direct consequence of the structure of the Rauzy

fractal 7/55 studied above since 7/55 can be decomposed as the disjoint (in measure) union of 7/55(1),
i=1,---,d, where

7”3\“5(2) — { v3(u,w); (u,w) is a two-sided path in /\/lg }

such that w starts from the state q;
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3.2. Examples. Let us pursue the study of three of the examples of Section R.2

The Tribonacci number. Let us recall that

ng = {Z wio/; Vi, w; € {0, 1}, WiWi41Wi4-2 =+ O}.

i>0

One easily checks thanks to the automaton ./\A/IZ; shown in Fig. B.J that R(1) corresponds to the
sequences (wj;);>o such that wyg = 1, Rg(2) corresponds to the set of sequences (w;);>o such that
wowy = 10, and lastly, Rg(3) corresponds to the sequences (w;);>¢ such that wow; = 11. One has

Rp(1) = a(Rp(1) URE(2) URp(3))
Rp(2) = a(Rp(1)) +1
Rﬁ(?)) = Oz(Rg(Q)) + 1.

The smallest Pisot number. One has
Re= {Dis0 wiaty Vi, w; € {0,1}, if w; = 1,
then Wit] = Wit2 = Wi43 = Witq = 0}

One easily checks that Rg(1) corresponds to the sequences (w;);>o such that wy = 0000, R3(2)
corresponds to the set of sequences (w;);>0 such that wow; = 1, R3(3) corresponds to the sequences
(w;)i>0 such that wow; = 01, Rg(4) corresponds to the sequences (w;);>o such that wow; = 001,
and lastly Rg(5) corresponds to the sequences (w;);>o such that wow; = 0001.

One has

Rp(1) = a(Rp(1) URg(5))
Rp(2) = a(Rp(1)) +1
R5(3) = a(Rp(2))

Rp(4) = a(Rs(3))

Rp(5) = a(Rs(4)).

The (2 + v/2)-shift. One has

Rp = {Z wi(2 —V2)"; Vi, wi € {0,1,2}, (w)iz0 <)y (31%°)}
i>0
In this non-simple Parry case, we cannot express as easily as previously the sets Rg(1) and R3(2):
one checks in Figure @ that there exist cycles from a; to a; and from as to ao, which implies
that both Rg(1) and Rpg(2) contain sequences with arbitrarily long common prefixes, such as 1"

for every n.
One has

Rs(1) = (2-V2)(R(1)) U (2 - V2)(Rs(1) + 1) U (2~ V2)(Rp(1)) +2)
U2 = V2)(Rs(2))
Rp(2) = (2= V2)(Rs(1)) +3+ (2 - V2)(Rs(2)) + 1.

4. CHARACTERIZATION OF PURELY PERIODIC POINTS
We can now state the main theorem of this paper.

Theorem 3. Let 5 be a Pisot number. For all x € Q(5) N[0,1), the B-expansion of = is purely
periodic if and only if (0g(x),x) € Rg = ©3(X3).
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FiGURE 3.1. Reversed minimal automaton /\7173 describing the structure of the S-shift.

Proof

Let us assume that the (-expansion of x is purely periodic. Write z as x = 0.(ay ...ar,)>,
and set w =°(a;...ar) and u = (a; ...ar)> (that is, w = (w;)i>o with wo---wp—1 = ar,...a1,
and w4, = w; for all 4, and u = (u;)i>1, with uy ---ur, = a1 ...ar, and w1, = u; for all ). One
has (w,u) € Xz acording to ([.1). Let us compute pg(w,u). Note that the second coordinate of
pp(w,u) is x by definition:

o+ ta Tt e+ tag
> - -

= =1.
_ 3L L _
= 1-p pr =1
Futhermore, lim,, o d3(8") = 0 in Kz. We thus have
og(w,u) = | —da( Zwlﬂ’ Zuzﬁ_’
i>0 i>1

( hm 55 ar, + - +alﬁL_1)(1+ﬁL+"'+ﬁnL))aw>
I 1 1— BnL
- (s (e ) o)
_ ( (alﬁL 1 + -+ aL) )
= , T
-1
(35

),

hence (dg(x),z) € 7/?\;5

Consider now the reciprocal and let z € Q(f5) such that (dz(z),x) € 7/?;3
The sketch of the proof is the following and is inspired by a similar discrete argument in [[R03],

dealing with the case 3 is a unit. We introduce below a finite subset 7, of Rg, which depends on

x, and which is stable under the action of the map T 13 which is onto on it. In order to define this
finite set, we take into account all the Z-adic topologies which correspond to prime ideals Z which
do not appear in the decomposition (B.1]). These topologies are the extensions on Q(3) of p-adic
topologies for the primes p which do not divide the constant term of the minimal polynomial Pg
of 3 according to [Sie03]. Roughly speaking, one introduces further restrictions over Q(/3) which
involve the primes that were not already considered in Kg. We will prove below that the set

T, C 7%7; C Kg x Q() is finite by using the fact that the second coordinate of its elements, which
belongs to Q(3), is bounded for all the topologies on Q(3).
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S ={2€Q(B), |2|z < max(|z|z,1), for every prime ideal Z such that |G|z = 1}.
One has

e © €S, since |z|r < max(|z|z,1) for every prime ideal Z.
e 7 C S, since for every integer N and for every ideal Z, one has |[N|7 < 1 < max(|z|z,1).
e 35, C S, and 3718, C S, since |Bz|zr = |8z |2z = |2|7 if |B]z = 1, and as well |371z|7 =
’Z‘I.
e (S;,+) is a group since the Z-adic valuations are ultrametric.
Hence one deduces that:

e S, is stable under the action of Tjs; indeed
T3S, CBS; —ZLC Sy —2ZC S —8; CS;.

e For every integer N, one has 371(S, + N) C 3718, C S..

In the original proof of [[R0J], the analogous of the set S, is Z[3]/q for an integer ¢ which
depends on x, this set being no more stable under the multiplication by 1/ in the non-unit case.
The keypoint of the present proof is that S, is not only stable under the action of Tj3 but also under
the multiplication by 1/3, even when [ is not a unit.

Let us consider now the following subset of 7/?\;5 obtained by first embeding the points of S, into
Kg x R, and then intersecting it with the bounded set Rg:

T, = (35, 1d)(S,) "Ry C K x Q(B).
Let us first observe that (d5(z),z) € 7.

e The set 7, is finite. Indeed let us prove that all the absolute values of Q() take bounded
values on the last coordinate of the elements of 7,. Let z € S, such that (d3(2),2) € 7’27;
Note first that the usual absolute value of z is bounded. Furthermore

— if | - | is an Archimedean valuation or if | - |7 is an ultrametric valuation satisfying
|6|7 # 1, this valuation appears by construction in Kg, and thus |z| is bounded since
(0g(x), ) belongs to the bounded set 7/?\;5

— if ||z is an ultrametric valuation satisfying |3|7 = 1, then |z|7 is bounded by definition
of S,. .

e The map T} is onto over 7,. Let (d3(z), 2) € 7, with z € S;. By definition, there exists
(w,u) = ((wi)ix0, (ui)i>1) € X such that pg(w,u) = (95(2),2). Hence z = > 5 u; 3~
and 03(2) = —03(> ;50 wiB"). An easy computation shows that

(4.1) 5505 (w,u) = (55 (””Z‘”O),Zzw(]).

Let us note that this computation works thanks to the introduction of a sign minus before
dp in the expression of pg.
Let us first assume that woujug - - - # dj(1). One thus deduces according to(R4), that

(05(2), 2) = @a(w,u) = $p oS 0 8 (w,u) = Ty 0 G5 0 S (w,u) =T 0 (3, 1d) <z+ﬁw0> .

On the one hand (93, Id) (%) = pgo S Hw,u) € 7/?,73, and on the other hand —ZJ%U’O €

Setwn C 3718, 4+ Z) C S, Hence, (63(2),2) € To(To).



14 Assume now that wouY@}ERIEéQﬁﬁTI)IEBy@Mﬁ&E%L: [B]. Moreover, one checks that
z = 3 — wg. One has
T o (95, 1d)(1) = (hp(1) = [8155(1), B — [8]) = (35(8) = 85(8]), B — [8]) = (J5(2), 2)-
Since Z'Fﬁwo and from (@),ine has (dg,Id)(1) € 7,2; so that (d3(2),2) € %(’Z})
e The set 7, is stable by Tj. Let (05(2), 2) € T, with z € S;. By definition, there exists
(w,u) = ((w;)iz0, (ui)i>1) € Xg such that @z(w,u) = (J3(2),z). One has according to (R.3)
T3(35(2), 2) = (63, Id) o Tp(2).
Let us first suppose that u # dj3(1). One deduces from (P.4)

Tj 0 @p(w,u) = §p 0 S(w,u).

N}(:W if u=dj(1), then z = > .-, uif~ =1, Tg(2) = B — uy and d5(3 ;50 wiff* = d5(1)
so that

P50 S(w,u) = (=0g(ur + Y wiB ), Y wip ) = (—ds(wr) + 05(8), B — 1) = (83, Id) 0 T(2).

i>0 i>2

Hence, since T; is onto over a stable finite set, it is one-to-one over this set 7. By construction,
(0g(x),x) € T,. Hence there exists an integer n such that

(0p(x),z) =T (d5(x), ) = (0p(Tp"(x)), Ts" (x)).
We thus deduce that the expansion of x is purely periodic. [

5. CONCLUSION

One can also introduce a notion of generalized Rauzy fractal in the non-Pisot case. Namely, a
similar characterization holds in the non-Pisot case by introducing in the representation map ¢z
the coordinate ), u;A~" for the conjugates A of modulus strictly larger that 1 (see for instance
[KV9q] for a similar description). Yet we are not able to prove that the union in Equation (B.]) is
disjoint up to sets of zero measure and that the Haar measure of the generalized Rauzy fractal is
non-zero.

It remains now to use this formalism to study further topological or metrical properties of the
sets Rg and Rg, even in the non-Pisot case, which will be the object of a subsequent paper. Our
motivations are the following: first the construction of explicit Markov partitions of endomorphisms
of the torus as initiated in [Sie0d], second, the study of rational numbers having a purely periodic
expansion in the flavour of [[Aki9§, Bch8(], and third, the spectral study of B-shifts in the Pisot
non-unit case according to [Sie03].
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