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December 7, 2004

Abstract

We introduce and study a notion of Orlicz hypercontractive semi-
groups. We analyze their relations with general F-Sobolev inequalities,
thus extending Gross hypercontractivity theory. We provide criteria for
these Sobolev type inequalities and for related properties. In particular,
we implement in the context of probability measures the ideas of Maz’ja’s
capacity theory, and present equivalent forms relating the capacity of sets
to their measure. Orlicz hypercontractivity efficiently describes the in-
tegrability improving properties of the Heat semigroup associated to the
Boltzmann measures o (dz) = (Zo) e 2*/"dz, when o € (1,2). As an
application we derive accurate isoperimetric inequalities for their prod-
ucts. This completes earlier works by Bobkov-Houdré and Talagrand,
and provides a scale of dimension free isoperimetric inequalities as well as
comparison theorems.

Keywords. Isoperimetry — Orlicz spaces — Hypercontractivity — Boltzmann
measure — Girsanov Transform — F-Sobolev inequalities — MSC 2000: 26D10,
47D07 , 60E15, 60G10.

1 Introduction.

Sobolev type inequalities play an essential role in the study of the concentration
phenomenon for probability measures. They are also a powerful tool to analyze
the regularizing effects and the convergence to equilibrium of their associated
symmetric semigroups. In particular, several surveys deal with the celebrated
Poincaré (or spectral gap) inequality and the stronger logarithmic-Sobolev in-
equality and provide striking applications [32], [4], [3], [38], [33], [51].
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2 F. Barthe et al.

A concrete illustration can be given for the family of probability measures
on the real line
pa(dz) = (Za)_le_leladxy a>0.

These measures and their products u®" deserved particular attention in recent
years, where the focus was on dimension free properties. They enter Talagrand’s
work on the concentration phenomenon for product measures. His study was
continued by Ledoux [38], who strongly put forward the use of the logarithmic
Sobolev inequality for concentration, and more recently by Bobkov and Houdré
[19] who introduced L;-Sobolev type inequalities in order to study the more
delicate isoperimetric problem. We review the main results concerning these
measures and the associated semigroup (Pf);>o generated by the operator L,
such that

1
Lo.f = §f” — alz|* tsign(z) f'.

For a > 0 the measures p, verify a Weak Spectral Gap property introduced
by Aida and Kusuoka as shown in [47]. They satisfy the Spectral Gap inequality
exactly when a > 1, and the logarithmic Sobolev inequality if and only if a > 2.

When a < 1 there is no dimension free concentration, because this prop-
erty requires exponential tails [52]. Oppositely, the measures enjoy very strong
properties when a > 2. The corresponding semigroup is ultracontractive [35],
meaning that for positive time it is continuous from L?(us) to L°. The mea-
sures satisfy a dimension free Gaussian isoperimetric inequality [8, Theorem 9],
and this is as bad as it gets by the Central Limit Theorem. Recently, Bobkov
and Zegarlinski [18] obtained concentration inequalities for these measures but
for the £7-distance on R™. Their results are based on appropriate modification
of the logarithmic Sobolev inequality, and show different behaviors for different
values of a. This was not the case when considering the Euclidean distance.

The range a € [1,2] presents very interesting properties. We start with the
Gaussian case, o = 2, which is best understood. Concentration of measure and
isoperimetry in Gauss space are now classical (see e.g. [38, 7]). It is remarkable
that they are both dimension free. Recall that the isoperimetric inequality
asserts in particular that for A C R® with u$™(A) = p2((—00,t]) one has for all
h >0,

ugn (A+th) > ug((—oo,t+h]). (1)

Here BY is the n-dimensional Euclidean ball. Taking limits one obtains that
among sets of given Gaussian measure, half-spaces have minimal Gaussian
boundary measure.

On the other hand, the Gaussian measure has remarkable analytic prop-
erties: the corresponding Ornstein-Uhlenbeck semigroup is hypercontractive,
as discovered by Nelson [45]. Gross proved that this fact is equivalent to the
logarithmic Sobolev inequality [31]. Let us also mention that the Gaussian mea-
sure is the prototype of strictly log-concave measures. It was a success of the
Bakry-Emery formalism to allow the extension of most of the previous results
to abstract semigroups with positive curvature (see [6] for logarithmic Sobolev
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Interpolated inequalities between exponential and Gaussian. 3

inequalities and [7] for Gaussian isoperimetry and an abstract version of the
Levy-Gromov theorem).

The two sided exponential measure a = 1 is also well understood. Ta-
lagrand’s paper [52] provides the following very precise estimate: if A C R”
verifies u$™(A) = p1((—oc,]) then for all A > 0 it holds

pP™ (A + hBY + VhBE) > pi((—o0,t + h/K]),

where K is a universal constant and By = {x € R"; Y i, |z;[? < 1}. See also
[41, 55]. In a slightly weaker form, such a statement was recovered by Bobkov
and Ledoux [17], via a modified logarithmic Sobolev inequality which is equiv-
alent to Poincaré inequality. Thus products of measures on R? with a spectral
gap satisfy a concentration inequality on the exponential model. Moreover,
Bobkov and Houdré [16] proved that u$" satisfies a dimension free isoperimet-
ric inequality of Cheeger. The proof relies on an L; version of the Poincaré
inequality, and the statement can be rephrased as follows: let A C R™ with
™ (A) = py((—00,]) then for all h >0

h

®”(AJth”)> ( —oot+—). 2
M1 2 ) 2 M1 ( ) 2\/6] ( )
This result completes the one of Talagrand. It is weaker for large values of h
but gives isoperimetric information as h goes to zero.

This paper provides a precise description of concentration and isoperime-
try for product of distributions which are intermediate between the exponential
and the Gaussian laws. This range is particularly relevant because it contains
all models of dimension free concentration and isoperimetric inequality, of high
probabilistic importance. Indeed, as we briefly mentioned, dimension free con-
centration requires exponential or faster tails, and cannot be faster than Gaus-
sian by the Central Limit Theorem.

Going back to our examples, let us present what is known for p, when
a € (1,2). The concentration phenomenon is already well described. Indeed,
Talagrand’s exponential inequality transfers to u, for any a > 1[53] and ensures
that for every AC R™ and h > 0

~h/K_

o (A+noBr+VRBY) > 1~
(A4 0B RB) 21 -
In particular if a € (1,2) and p?(A) > 1/2 one gets that for h > 1, p2(A +
hB3) > 1—2e ""/K_ A functional approach to this fact was recently discovered
by Latata and Oleszkiewicz [36]. These authors established the following family
of Sobolev inequalities: there exists a universal constant C such that for all
1 < p<2it holds

[ Pava=( [1spa)” <ce-pe [(Pa. @
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4 F. Barthe et al.

for smooth enough f. For a = 2 these inequalities are due to Beckner [13].
Inequalities (3) interpolate between Poincaré and log-Sobolev. They enjoy the
tensorisation property and imply dimension free concentration with decay e~ %t”
as expected. Obviously [36] was the starting point of an extension of the log-
Sobolev approach to concentration, encompassing more general behaviors. Re-
cently two of us simplified the proof of (3) and characterized all measures on
R satisfying the same property [12] (such a criterion for log-Sobolev already
existed, thanks to Bobkov and Gotze [15]). See [20] for other developments.
Inequalities (3) above are part of a more general family denoted ®-Sobolev in-
equalities. A study of this family in connection with some aspects of semi-group
theory is done in [25].

The initial goal of this work is to obtain a precise dimension free isoperimetric
inequality for u®™ when a € (1,2). Namely we want to prove that there exists
a constant C such that for all n € N

n n 1 17%
(48"):(04) > O (4) (108 (gmy)) ()

a

for all A such that p®"(A) < %, where p,(0A) denotes the surface measure of
A (see section 8). This bound is known for @ = 1 [16] and a = 2 [7] and can
be deduced from [14] in dimension 1. So (4) is exactly what is expected. This
result is stronger than the concentration result. Indeed it implies that for all n

and A C R" with pu®"(A) = pa((—00,t]) one has
ug" (A+hB) > pa((—00,t + h/K]).

This interpolates between (2) and (1).

Inequality (4) will be shown in Theorem 46 as the achievement of a some-
what intricate story. Actually, we prove much more and develop several useful
methods on the way. They should find a field of applications in the study of
empirical processes or in statistical physics.

Before describing the organization of the paper, let us explain that our proof
relies on a method initiated by Ledoux [37] and improved in [7]. It can be
summarized as follows: any integrability improving property of a semigroup
with curvature bounded from below provides isoperimetric information for the
invariant measure. Hence our problem translates to a question on the semigroup
(P®)¢>0 for @ € (1,2). However, a theorem of Hgegh-Krohn and Simon [34]
shows that P& is never continuous from LZ(us) to L2+ (u,). Since the LP
scale is too rough for our problem, we analyze the regularizing properties in
appropriate scales of Orlicz spaces and ask whether the semigroup maps 1.2 (11,,)
into a smaller Orlicz space.

Section 2 contains the required elements on Orlicz spaces.

Section 3 presents a sufficient condition on the Young function 7 for Q¥ (a
slightly modified P#) to map continuously L? into L., for a fixed ¢. This condi-
tion relies on the probabilistic representation of P (Girsanov transformation)
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Interpolated inequalities between exponential and Gaussian. 5

and on martingale methods inspired by [35, 21]. Unfortunately the method can-
not reach the contraction property (only boundedness, simply called 7-Orlicz
hyperboundedness) and does not easily yield explicit bounds. The criterion
readily extends to certain perturbations of an ultracontractive semi-group.

In order to get contraction results and explicit bounds, we build in Section 4
the full analogue of Gross theory. Following [22] we start with the analogue of a
result by Hgegh-Krohn and Simon (Theorem 4): if Py, is continuous from L2 (u)
into L, (1) then p satisfies a defective logarithmic Orlicz-Sobolev inequality.
This is actually a particular F-Sobolev inequality as studied in [57, 30] (the
notion apparently goes back to Concordet). For the |z|* Boltzmann measure
Lo, it is equivalent (see (31)) to the following result of Rosen [49]: there exist
A and B such that for [ f2e=2¥"dy =1,

[ rw(osu0swn)™ etvay<a [ [wapettay 1B o)

See Adams [1] for extensions and Zegarlinski [59] for an application of Rosen
type inequalities to the study for Gibbs measures with non-Gaussian tails.

Next we consider homogeneous F-Sobolev inequalities. One of our main
results is Theorem 6 where we obtain the equivalence between a F-Sobolev
inequality and the 7,-Orlicz-hyperboundedness (or hypercontractivity) of the
whole semigroup for 7,(x) := zPe?F (") Under a few assumptions on F, the
time evolution of the regularizing effect is quantified. A weak form of part
of these results appeared in [30, Theorem 1.2 and Theorem 2.4]. These au-
thors proved that a particular tight F-Sobolev inequality is equivalent to Orlicz-
hyperboundedness for some time. Their motivation was a criterion for the gen-
erator to have a non-empty essential spectrum (see [30, 57] for connections with
super-Poincaré inequalities). By Theorem 6, a tight F-Sobolev inequality for
a nonnegative F' guarantees that the semigroup is Orlicz-hypercontractive. We
conclude this section by extending the well known inequality of Rothaus [50]:
under spectral gap assumption this allows to turn certain defective F-Sobolev
inequalities into tight ones.

Section 5 provides a thorough study of Sobolev type inequalities. In the
Gaussian context the log-Sobolev inequality is canonical and has plenty of re-
markable properties: it tensorizes, provides concentration via Herbst argument,
hypercontractivity and entropy decay along the semigroup. In our more gen-
eral setting, in particular for ps, a € (1,2), no such miracle happens. Several
Sobolev inequalities are available. However none of them concentrates all good
properties. This is why we undertake a precise study of Beckner type inequali-
ties, of homogeneous F-Sobolev inequalities and additive ¢-Sobolev inequalities
also called ®-Entropy inequalities (wee shall not discuss the latter in terms of
exponential decay of ®-entropy. See [25, 58]). Our strategy is to provide each
inequality with a simpler reduced form relating the measure of sets to their
p-capacity. This notion was alluded to by the first and last-named authors in
[12]. Here we use it systematically in the spirit of Maz’ja [42]. Note that the
probabilistic setting is delicate since constant functions are equality cases in all
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6 F. Barthe et al.

our inequalities. Our approach is an extension to any dimension of the criteria
on the real line recently obtained through Hardy inequalities [15, 12]. It pro-
vides new criteria and equivalences between several Sobolev inequalities. A final
figure summarizes the situation.

Section 6 deals with the consequences of generalized Beckner inequalities
for the concentration of measure. They are immediate from the method of
Latala-Oleszkiewicz, and where discussed independently by Wang [56]. Our
contribution here comes from our sharp criteria for these inequalities. In par-
ticular we give general neat conditions for products of measures on R to enjoy
dimension free concentration with rate e~®®) where ®(t) is convex, but less
than 2. Under reasonable assumptions the criterion is satisfied by the measure
e~ %) /Z itself, so the concentration is sharp. For other results in connection
with mass transportation, see also [58, 23, 29].

Section 7 illustrates all the previous results in the case of |z|* Boltzmann
measures. In this concrete situation we explain how to deal with the technical
conditions involved. We also develop a perturbation argument similar to the
one of [21, section 4].

The final section deduces isoperimetric inequalities from semigroup hyper-
boundedness properties. The claimed infinite dimensional isoperimetric bound
(4) is derived. As a consequence a family of comparison theorems is provided.

For sake of clarity we decided not to develop our argument in its full gen-
erality. However, most of our results easily extend to more general situations,
encompassing diffusion operators on Riemannian manifolds. This is the case of
the Gross-Orlicz theory, of the reductions to inequalities between capacity and
measure. The final isoperimetric lower bounds would work when the curvatures
of the generators is bounded from below.

2 Orlicz hypercontractivity.

In this section we discuss a weakened form of hypercontractivity and hyper-
boundedness, replacing IP spaces by Orlicz spaces. We start with recalling basic
notions about these spaces. Some definitions are not the usual ones used e.g.
in the book by Rao and Ren [46].

In the sequel we consider a complementary pair (7*,7) of continuous and
even Young’s functions (i.e. 7* is the Fenchel-Legendre dual function of 7, both
being convex functions vanishing at the origin) satisfying

lim Lg) =400 and lim ) =0 forp>2. (6)
y—+oo Y y—+oo yP
It follows that
lim (2y) =0 and lim ) =400 forp<2. (7
y—+oo Y y—+oo  yP

We assume that 7 and 7* both satisfy the Ay condition (i.e. 7(2y) < K 7(y)
for some K > 1 and y > y; > 0, and a similar result for 7* with possibly
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Interpolated inequalities between exponential and Gaussian. 7

different K* and y7). It follows that they both satisfy the Va condition too
(i.e. 2l7(y) < 7(ly) for some [ > 1 and y > 3 > 0 and similarly for 7* with {*
and g7), see [46, p. 22, 23].

We also assume that the pair (7,7*) satisfies 7(0) = 7*(0) = 0. The space
L, (i) is the space of measurable functions f such that

L)< / r(1f)dp < +oo. (8)

Thanks to the Ay property, L. and L.+ are linear spaces. We shall use two
norms on each space,

N, (f) % inf {u > o;IT(f) < 7(1)} , (9)

.
1£1l, % sup { [ 15dns N (9) < 1},

with similar definitions for 7*. The first one is called the gauge or Luzemburg
norm.

Note that N, is unchanged when 7 is multiplied by a positive constant.
Hence if there exists & > 0 such that a7(1) + a7*(1/a) = 1, we may consider
the pair (n,n*) where n = ar. It is normalized in the sense that n(1)+7n*(1) = 1.
In particular if 7/(1) exists and is positive, we may take n = 7/7'(1). However,
in general, this normalization is not assumed.

With our definitions, and thanks to the regularity properties of 7 and 7* it
is known that for f € I, and g € L.+ it holds (see [46, Proposition 1 p. 58])

/ =T n = =
I (§ks) =@ and M@=, -1

The analogue of Holder’s inequality is [ |fgldu < (7(1) + 7*(1)) N-(f)N-+(9)-
It implies that
71l < (r(1) + 7%(1)) N-(f). (10)

The A, condition ensures that (L., N,) is a reflexive Banach space with
dual space (L;-, ||-||,.) [46, Theorem 6 p.105]. Also note that N, and ||-||, are
equivalent (see (18) p.62 in [46]) and that the subset of bounded functions is
dense in L. The same holds when we replace 7 by 7*.

Finally remark that if N, (f) > 1,

0 =1(575) < v

so that

()
N (f) < max (1, e )- (11)

Conversely if f(z) > N-(f)y1 (recall the definition of Aj) then

o (i) xS (),
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8 F. Barthe et al.

It follows that
log(N7 (f))

L(f) < T(N-(f)ys) + K 1es Tlr(1).

Remark 1. Our definitions of norms on L, are not standard. Our choice ensures
that the constant function I has norm one in all spaces. If we replace 7(1) by 1
in the definition of N, we obtain the usual gauge norm N!. It is equivalent to
N;. Indeed (11) implies

1
< - 1
NT(f) S max (17 T(].) )NT (f):
and a similar argument yields N1(f) < max(1,7(1))N,(f). Our definition of
|| - ||+ does not coincide with the usual Orlicz norm [46, Definition 2 p. 58], but

it is natural by duality.

We are ready to state our main definitions.

Definition 1 (Orlicz-hyperboundedness). We say that a y-symmetric semi-
group (Py)¢>o is Orlicz-hyperbounded if there exist t > 0, and a Young function
T with

lim @ =400 and lim @

= f 2
yortoo y2 oo P 0 forp>2,

such that P; is a continuous mapping from L2 (i) into L, (u).

Definition 2 (Orlicz-hypercontractivity). We say that a y-symmetric semi-
group (Py)s>o is Orlicz-hypercontractive if there exist ¢ > 0 and a Young function
7 as in Definition 1 such that P is a contraction from L? (i) into (L, (i), N ).
Equivalently P; is a contraction from (L« (u), ||||,.) into L? (u).

Thanks to Jensen’s inequality, for all s > 0, P is a contraction in both
(Lr (1), N7) and (L« (), [|-]|,~) with norm 1, achieved by constant functions.
In particular if the contraction property in Definition 2 holds for ¢, it holds for
all s > t.

The next section gives a criterion for a semi-group to be Orlicz-hyper-
bounded.

3 Orlicz hyperboundedness for |z|* and general
Boltzmann measures.

First we present our argument for the potential |z|%, a € (1,2). Actually
the method requires C? regularity so we prefer to work with a well behaved
modification of the latter. For example we may consider the function u, defined
on R by

|| for |z| > 1

Ua(ib') = { a(a 2)$ 4 04(4 a) 2 + (1 _ %a + %()[2) for |.'L'| S 1. (12)
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Interpolated inequalities between exponential and Gaussian. 9

It is easy to see that uq is C?, convex and bounded below by 1 — 3a+ a? > 0.
One can also check that |z|* < uq(z) < max(l,|z|®), for all x € R The
associated Boltzmann probability measure on R" is defined as

V8" (dz) = Z, e 2 Xi=ival@) dy = 7~ e Wan(®) gy (13)

where Z, is the proper normalizing constant and Uy, ,(2) def > ug(z;). For
notational convenience we shall write U, for U, ,. Similarly the forthcoming
objects depend on the dimension n. This dependence will be recalled through
the notation v only.

To the Boltzmann measure is associated a symmetric semi-group (P%)¢>o
generated by the operator

Aa:%A—VUa-V.

One can show (see [51], [22, Section 7] or [21]) that the semi-group is given by
(PPR) (2) = eV @B = [W(Xy)e V(X1 My, (14)

where P, is the Wiener measure such that P, (Xo = ) =1 (i.e. under P,, X
is a n-dimensional Brownian motion starting from z) and M, is defined as

M; = exp (% /Ot(AUa - |VUa|2)(Xs)ds). (15)

In this section, we have chosen the probabilistic normalization of the Laplacian
%A in order to avoid extra variance on the Brownian motion.

Since eV= belongs to all L? (v®") for p < 2, an almost necessary condition
for Orlicz hypercontractivity is that P& (eY=) belongs to some L, (v¥™). In [21,
Section 3], the “Well Method” of Kavian, Kerkyacharian and Roynette [35] is
pushed further and allows to estimate PZ(eV~) when a > 2. In the following,
we extend this method to the case 1 < a < 2.

Theorem 1. Let a € (1,2) and n > 1. Let 7 be a Young function satisfying
7(y) = y2 ¢ (y) for some positive and non decreasing function 1) going to +oo at
infinity. Assume that 1) satisfies the Ay condition: there exists constants k,y;
such that ¥(2y) < kiy(y) provided y > y,. Let v®" be the Boltzmann measure
defined on R™ in (13).

Then P (eY=) belongs to L, (v®") if there exists a constant C < o? such
that

P(eV=(®))e=CtWa @7 4y < +oo.
R"

The proof below can be used to get explicit bounds, depending on n.

Proof. First remark that U, satisfies

L (IVUP @) — AVa(@) > CalUa(e)) — ca = HoUa(a)),  (16)
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10 F. Barthe et al.

with Ga(y) = O‘;|y|2(1_é) and cq = n(1+ a(a —1)), with our choice of u, for
|z| < 1. Since G, is subbadditive, it is enough to prove the above inequality in
dimension n = 1. We leave the details to the reader. Note that H, admits an
inverse H; ! defined on [—c,;+00) with values in RT.

For £ > 0 define the stopping time T, as

T, = inf {s > 0; %(|VUC,|2 — AUL)(X5) < Ho(Uy(z) — E)} . (17)

Note that for all z € R*, T,, > 0 P, a.s. provided U,(z) — e > 0 and that on
T, < 400,

1
Ua(Xr.) < H;' (5(VU* - AUL)(X1)) <Ua(@) —e. (1)
Introducing the previous stopping time we get
E"=[M;] = B = [M, Ly, ] + B [M; 17, <] = A+ B,

with
A=FE*[MLicr,] <exp(—tH,(Ua(z) —¢€)), (19)

and E’<[M;I7,<;]. In order to bound B from above we introduce the non-
positive quantity (AU, — [VUs[?) — ¢q

B = E*[MIr,<]
t
1
< e!'EPe|exp / —(AU, — |VUL?) — ca ) (X,)ds | Iz,
< [0 (| (5(A0 = 1V0P) = o) (Xo)ds) T <
T,
= /1
< e%!'EPe| exp / (AU, = |[VUL|?) = ¢o ) (X,)ds ) I,
< [ (| (AT~ IVUP) - ca) (Xo)ds) Tr. <]
T,
= /1
< el [ exp / L AU, = [VULP) ) (X,)ds) T,
< e (] (3(a0a = IVUal) (Xo)ds) Tr. <
= eC“tIEP”[MTEITESt]. (20)
Note that N, := e U«(Xs) M, is a bounded P, martingale (this can be seen

by the Itd calculus). Hence, Doob Optional Stopping Theorem ensures that
EP+ Ny, = ENy = e~ V=) Thus

EP#[e~Va(XTe) ppp Ir, <] < B I:e—Ua(XtATm)Mt/\TE — ¢ Ual2) (21)

According to (18), e~Va(X12) > ¢fe=Ua(®) g6 that thanks to (21),
]E]pml:]WTm ITa: St] < e °.
Combining this with (20) and using (19) we obtain

]EP”[Mt] < e—tHa(Ua(z)—s) +e—secat‘
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Interpolated inequalities between exponential and Gaussian. 11

Choosing € = U, (z) for some < 1 the latter inequality becomes

B [My] < oot (8 (90e@) Ty pm0a@), (22)

where for |z| large, the dominating term is the first one since o < 2. Also note
that (16) yields M; < e®=! and the rough bound E’=[M;] < ee?.
Finally P#(eV~) = eV=E"=[M;] belongs to L, (v®™) provided

/ Py (eV*)* (PP (eV)) dvS™ < +o0.
This is equivalent to
/ EP=[M,)2 (eUa(m)]EP“[Mt]) dz < +00.

Using the above bounds on EF=[M;] and the fact that the convergence is not a
problem on bounded sets, this is verified when

22

/ efta2((1fﬁ)Ua(z)) "y (eUa(z>eCaf) dx < +o0.

The A, property of ¢ gives the conclusion since when a > 1 and b is large
¢(ab) < k1+10g(a)/10g(2)w(b)‘ n

As in [21, Theorem 2.8] we show that PZ(eV=) € L, (v®") is also a sufficient
condition for 7-Orlicz hyperboundedness.

Theorem 2. Let 7 be as in Theorem 1. Let t > 0. If P¥(eV~) € L, (v®") then
(PY)s>0 is T-Orlicz hyperbounded.

S
Proof. First recall that thanks to (16), M; < e°«*. On the other hand, the Brow-
nian semi-group (P;)s>0 on R is ultracontractive and [|Ps||p2(gp)1.00(az) =
(4ms)~7 (see [27]).
Pick some smooth function f on R" with compact support. Since |f|e~V= €
L? (dz) and using the Markov property, for s > 0 and ¢ > 0, it holds

B [Mos (0 f1) (Xigs)| = EP=[MEx: [, (V| 71) (X))]]
I [MtPs (Ifle"Y=) (Xt)]
< et (dms) T E | fllpagen B [My].

Hence Py ,|f| < e®>®(4ms)~ % ||f||L2(V§n)Pt(eU“), and consequently

n

N (Praal £I) < ¢ (4ms) = N7 (Po(eV) |l z(ugm)-
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12 F. Barthe et al.

Ezample 2. An appropriate choice in Theorem 1 is 9(y) = exp ((log|y[)?>~ =)
for |y| large enough. According to Theorems 1 and 2, (P?)¢>o is then 7-Orlicz
hyperbounded for ¢ > ;.

The previous scheme of proof extends without any change to the general
framework we have introduced. Let us describe the situation.

Let P; be a u-symmetric diffusion semi-group on a space E as described
in section 1, with generator L. For V' in the domain (L) of L, we introduce
the general Boltzmann measure dvy = e_2vd,u and assume that vy is a prob-
ability measure. Under some assumptions it is known that one can build a
vy -symmetric semi-group (P );>0, via

(PY h)(z) = eV @EP= [h(Xt)e*V(X*)Mt] : (23)
with .
M, = exp (/0 (LV(XS) ~T(V, V)(Xs))ds).

In the general case these assumptions are denoted by (H.F) in [21]. Here we
have chosen the usual definition

r(v,v)=< (LV?-2VLV).

N | =

When E = R", L = A/2 and pu = dz each of the following conditions (among
others) is sufficient for (23) to hold:
(¢) there exists some ¢ such that 1(z) — +00 as |z| = +o0 and VV - Vi — Ay
is bounded from below,
(i) [|VVPdvy < +o0.
See e.g. [51, p.26], [21, (5.1)] for the first one, and [24] for the second one.
We introduce the analogue of (16):

Assumption (OB). We shall say that V satisfies Assumption OB, if
(7) V is bounded from below by a possibly negative constant d.
(#4) There exist ¢ € R, ug > 0 and a function G : Rt — Rt such that G(u) —
+00 as u = +o00 and G(u)/(u+ 1) is bounded for u > ug, and such that for all
z € E,

T(V,V)(@) - LV (z) > G(V (@)]) — c.

Assumption OB ensures that the dominating term in the analogue of (22)
is the former for x large enough.

Theorem 3. Let 7 be as in Theorem 1. If (P;);>o is ultracontractive and
V satisfies Assumption OB, then the perturbed semi-group (PtV)tZO is 7-Orlicz
hyperbounded as soon as for some C > 0

/w(ev)e_CG(‘V|)du< +oo.
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Interpolated inequalities between exponential and Gaussian. 13

Remark 3. Assumption OB appeared first in Rosen’s work with G(u) = u21-3)
[49, Theorem 1]. It was used to derive a variant of the logarithmic Sobolev in-
equalities for the |z|* Boltzmann measures on R™. Rosen proved that his condi-
tion is in a sense optimal, see his Theorem 5. He did not relate his inequality to
continuity properties of the associated semi-group. Furthermore, we think that
the meaning of Assumption OB is enlightened by our probabilistic approach.
Rosen’s results and F-Sobolev inequalities will be discussed in Section 7.

Remark 4. f E=R", L = A/2, p = dz and V goes to infinity at infinity, then
the second condition in Assumption OB implies the existence of a spectral gap,
see e.g. [21, Proposition 5.3.(2)].

4 Gross theory for Orlicz hypercontractivity.

We explore the relations between Orlicz hyperboundedness and Sobolev in-
equalities for the underlying measure. Since we do not a priori consider a
parametrized family of Orlicz functions, contrary to the family (IP;p > 2) used
in Gross theory, the extension of this theory to our framework is not immediate.

In this section we assume that 7 and 7* are smooth and increasing on R,
hence one to one on RT. When there is no ambiguity we denote the I.? (1) norm
of f by ||f[|,- We assume for simplicity that p is a probability measure. The
framework is the one described in the introduction.

4.1 An Orlicz version of Hgegh-Krohn and Simon Theo-
rem.

Hgegh-Krohn and Simon [34] showed that a measure y satisfies a possibly defec-
tive logarithmic Sobolev inequality as soon as the corresponding semigroup is
continuous from L2 () into I () for some time and some p > 2. A proof using
semi-group techniques appears in [4, Theorem 3.6]. Another proof is given in
[22, Corollary 2.8].

We follow the route in [22] in order to derive a functional inequality for an
Orlicz hyperbounded semi-group. The starting point is the following particular
case of Inequality (2.4) in [22]: let D be a nice core algebra (in the case of R”
we may choose the smooth compactly supported functions plus constants, see
[22] for details). Let (P;)¢>0 be a p-symmetric semi-group. Then for all ¢ > 0,
for all non-negative f € D with [ f2dp = 1, and all positive and bounded h,

[ Proghdu < J(.1) +log [ 1iPusa

If P; maps I.? into some (L., N, ) with operator norm C, we obtain

[ FProghdn < Je(7.0)+ log (1Al N (Pus)

t
< LE(F,1) +1logC +loglIfhl,. -
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14 F. Barthe et al.

Choosing h such that the last term in the above sum is bounded, yields a
functional inequality reminding the logarithmic Sobolev inequality. A natural

choice is e
= CLLT ),

for which I+ (|f|h) = [ 7*(1) f?dp = 7*(1). It follows that N,«(fh) =1 and by
(10) that ||fhl.. <7(1) 4+ 7*(1). We have shown

Theorem 4. Let tg > 0. Let (Py);>o be a p-symmetric semi-group. If Py, is
continuous from 1.2 (u) into (L, (u), N;) with operator norm C(tg, ), then for
all f € D the following defective logarithmic Orlicz Sobolev inequality holds

(DLOSI)  Ent.(f) < a€(f, f) +bllfll3,

with a = &, b =1og(C(to, 7)) + log(r(1) + 7*(1)) and

Ent.(f) d;f/f2 1og((7*)‘ (T;;ﬁit(lﬁllflb) ))du

(T*)_l‘(y‘ZT*(l))
y
up to the origin. Here (7*)~! is the inverse function of T* and not 1/7*.

In particular if (P;)i>o is T-Orlicz hypercontractive and (1) + 7*(1) =1,
(DLOSI) is tight i.e. becomes

provided the function y — y> log( ) can be continuously extended

(TLOSI)  Ent.(f) < a&(f, f).

Inequalities like (DLOSI) were already discussed in the literature, as a par-
ticular F-Sobolev inequalities.

Remark 5. In our setting (7*)~!(y) >> \/y. Hence Ent.(f) < +oc is stronger
than L2-integrability

Example 6. If we formally replace 7(y) by y? for some p > 2, then (7*)71(y)
behaves like y'/7 for the conjugate g of p. Hence we recover the usual logarithmic
Sobolev inequality as in the result by Hgegh-Krohn and Simon.

Ezample 7. For the |z|* Boltzmann measures, the results of the previous section
(Example 2) and the above theorem provide an Orlicz Sobolev inequality. In this
case we do not have a very explicit formula for Ent., but only an asymptotic

behavior, i.e.
*\—1(,2, %
og (L0 1)

as y — 4o0. See Example 13 in this section for details. Here a ~ b means that
ca < b < Ca for some universal constant ¢ and C.

) ~ (log ly)* % | (24)

The next section provides a converse to Theorem 4 in the framework of
general F-Sobolev inequalities.
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4.2 A Gross-Orlicz Theorem.

Our main result is Theorem 6 below. It gives the equivalence between the homo-
geneous F-Sobolev inequality and the Orlicz hypercontractivity. This extends
the standard theorem of Gross [31].

Recall that the probability measure p satisfies a log-Sobolev inequality if
there exists a constant Cg such that for any smooth enough function f,

/f”%(ﬁgg)wuﬂhg/Wﬂwm (25)

where p(f?) is a short hand notation for [ f2dp and |V f|? stands for T'(f, f).
The following theorem is the celebrated Gross Theorem ([31], see also [3]) re-
lating this property to the hypercontractivity of the semi-group (P¢)¢>o.

Theorem 5 ([31]). Let u be a probability measure. The following holds:
(i) Assume that p satisfies a log-Sobolev inequality (25) with constant CLg, then,
for any function f, any q(0) > 1,

Pl < 110y

where q(t) =1+ (q(0) — 1)e*/Crs .
(i1) Assume that for any function f,

P2 Fllgry < N1l

with q(t) =1+ e*/¢ for some ¢ > 0. Then the probability measure p satisfies a
log-Sobolev inequality (25) with constant c.

A natural extension of the log-Sobolev inequality is the homogeneous F'-
Sobolev inequality. Let F' : Rt — R be a non-decreasing function satisfying
F(1) = 0. A probability measure y satisfies an homogeneous F-Sobolev inequal-
ity if there exist two constants Cr and C~'F such that for any smooth enough

function f,
[rF ( )w<@/Wﬂw+%/ﬂw (26)

If Cp = 0 (resp. # 0) the inequality is tight (resp. defective). We shall use this
terminology only when it is necessary.
We have the following result

Theorem 6 (Gross-Orlicz). Fiz p > 1. Let F : R* — R be a C? non-
decreasing function satisfying F(1) = 0. Define for all ¢ > 0, 1,(z) := zPe?¥(="),
(i) Assume that

o there exists a mon negative function k on Rt such that for all ¢ > 0:

2
Ty > '“Ef) " (hence 14 is a Young function),
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16 F. Barthe et al.

e there exists a mon negative function £ on RY and a constant m > 0 such
that 7,(z)F(zP) < £(q)14(z)F (14(z)) +m, for all ¢ > 0 and all x > 0,

e the measure p satisfies the homogeneous F-Sobolev inequality (26) with
constants Cr and CF.

Then, for all non-decreasing C! functions q : Rt — RY with q(0) = 0 and
satisfying q' < Z(IZ()‘IC),F, the following holds for all f,

Ny (Pef) < e tma®+Cr 50 o gy

Tq(t)

(it) Conversely assume that there erist two non-decreasing functions, q,r :
Rt — R*, differentiable at 0, with q(0) = r(0) = 0, such that for any f,

Nryoy ®ef) < D]l 27)

Then u satisfies the following homogeneous F-Sobolev inequality: for all f

smooth enough
f? 4p—1) 2, Ppr'(0) [ o
f2F( dp < Vilfdu+ fedpu.
(i) < Sy | IR g
Remark 8. Note that by our assumptions on 7,4, Nr_,, (f) is well defined.
Furthermore when m = 0 the previous result states that the Orlicz hy-
percontractivity is equivalent to the tight homogeneous F-Sobolev inequality
(Cr =0).

Proof. We follow the general line of the original proof by Gross [31], see also
[3]. It is based on differentiation.

Without loss of generality we can assume that f is non negative. Then,
for a general C! non decreasing function ¢ : Rt — RT satisfying q(0) = 0, let
N(t) := Ny, (P:f). For simplicity, we set T'(z, p) := 7,(). Then, by definition
of the gauge norm (9) we have

/T (%,q(t)) dui=1 V0.

Thus, by differentiation, we get

x;—((?)/PtfalT (%,q(t)) dp = ﬁ/LPtfr%T (%A(t)) dp

+0(0) [T (k.a®) du

or equivalently, if g := Nﬂ(%,
NI
W/g 0T (g,q)dp = /Lg 61T(g,q)du+q’/82T(g,q)du- (28)
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Interpolated inequalities between exponential and Gaussian. 17
Here 0; and 0 are short hand notations for the partial derivative with respect
to the first and second variable respectively.

Let us start with the proof of the second part (i¢) of the Theorem. For
simplicity, assume that N(0) = [|f[|, = 1. Take ¢t = 0 in the latter equality gives

pN'(0) / fPdu=p / Lf - fP~ldp+ ¢ (0) / FPR(f)dg,

because g(0) = f, 0:1T(f,4(0)) = pf*~' and 8:T(f,q(0)) = fPF(f*) (recall that
¢(0) = 0 and N(0) = 1). Using the integration by parts formula [ Lf-¢(f)dp =
= [IVIP# (f)dp, we get

p L0 tan=—ptp - [194P 2 = =D 19007

Now, it follows from the bound (27) that N'(0) <r'(0)[|f||,- This implies

4p—1 .
OISl [1ran> =22 19 ¢ [rin.
Since || f[|, = 1, this achieves the proof of (ii).

The proof of part (i) is more technical. By a simple computation one can
check that 20, T(z, q) = pT(z, q) + pgz* F' (xP)e?¥(#") | Since F is non decreas-
ing and g > 0, we get when N'(t) > 0

pN' pN'
T = )
N / (9, 9)dp N

On the other hand, using once again the integration by parts formula [Lf -
d(f)du = — [|VfI*¢'(f)du, and our assumption on 7,

N'
- >
~ /galT(g,q)du >

/Lg&lT(g,q)du = —/|Vg|2311T(9aCI)le

< k(@) [ 1VoP AT

= —k(g) / VTG0 d.

Next, .1 (z,q) = T(z,q)F(2?) < €(q)T(z,q)F(T(z,q)) + m by hypothesis.
Thus, (28) becomes

I%I < —k(q)/IV\/T(g, 9’ dp + Z(Q)q’/T(g, )F(T(g,q))dp+mq'.

Note that the right hand side of this inequality contains the three terms ap-
pearing in the homogeneous F-Sobolev inequality (26) applied to \/T'(g,q) (re-

call that [(1/T(g,q))?dp = 1). In consequence, applying the homogeneous
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18 F. Barthe et al.

F-Sobolev inequality (26) to v/T'(g, q) gives

!

P <dn+ Crt(@) + [-k@) + ¢ a)Ce] [ 19V/TTg0) dp

If ¢ < CI;(Z()Q)’ it follows that pTNI < ¢'(m + Crl(q)). This we proved when

N'(t) > 0. Tt is obviously true when N'(t) < 0. Thus by integration

N(t) < N(0)erlma(+Cr [7 lwydu],

Noting that N(0) = || f||, achieves the proof.
o

Remark 9. Since the homogeneous F-Sobolev inequality (26) recover the log-
Sobolev inequality (25) (with F = log and Cr = 0), it is natural to ask whether
the previous Theorem recover the classical Gross Theorem or not.

So, take F' = log. Then, 7,(z) = zP(4+1)

5.74(0) = 7730 108(e) = 7300 (ry (o),
and thus, we can choose £(q) = qJ%l and m = 0. Moreover, it is easy to see that
T/ = B (pq(Jngr)l;le > % ,;2, hence k(q) = 4%. Applying the Theorem, we

get that if 4 satisfies a log-Sobolev inequality (25) with constant Crg (Cr = 0),
then, for any function f and any ¢ > 0,

1P fllpaeey+1) < 1511,
(p—1)t (p—1)t
where §(t) = —1 + e'»%s . The function p(§(t) + 1) = pe' »°zs is less than
q(t) =14 (p—1)e**/Crs of Theorem 5.

Let us make some additional remarks on the hypotheses of the Theorem.

Remark 10. Let mp := |min,e(o,1) zF (x)| and assume that mp < co. With
our choice of 74(z) in the Theorem, one can choose ! =1 and m = mp in order
to have 7, (z)F(2?) < £(q)14(x)F(14(x)) + m.

Moreover, if F' is non negative, then mg = 0. Thus, in that particular case,
the previous Theorem states that the Orlicz hypercontractivity is equivalent to
the tight homogeneous F-Sobolev inequality.

Remark 11. The condition 7,(z)F(zP) < £(q)7,(z)F (14(x)) + m is technical. It
comes from our choice of 7, = zPe?¥(*"). In view of the proof of Theorem 6 the
most natural choice for 7, would be the solution of

{(%Tq(x) = 7(x)F(7y(2))

To(z) = 2aP.

Unfortunately, it is not explicit in general. This is why we preferred the expres-
sion 2Pe?F(#") which has the same asymptotics when z tends to infinity.
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Interpolated inequalities between exponential and Gaussian. 19

k(q)

. k 2 1— .
Remark 12. The hypothesis 7,/7, > %Té can be read as: 7, * 1is a convex
k(a)

function. Note that if zF'(z) — 0 and zF"(z) — 0 when z — 0, qu % ismno
more convex if k(¢) > 4(p — 1)/p. Thus, we cannot hope for a better exponent
than k(g) = 4(p—1)/p (ie. 1 - 52 = 1),

Now, we give a sufficient condition, involving F', insuring that 7, satisfies
that condition.

Proposition 7. Let F : Rt — R be a C2 non decreasing function satisfying
F(1) = 0. Fiz p > 1. Define for all ¢ > 0, 7,(z) = zPe?F "), Assume that
there exists a constant k < 4(p — 1)/p such that for any x > 0,

p—1 &k

zF" () + (2 + > §)F'($) >0,

Then, for any q > 0, 7, satisfies 7,/T, > %Téz.

Proof. Note that for ¢ = 0 the conclusion is clearly true. Suppose ¢ > 0. It is
not difficult to check that for all z > 0,
n

7, ()74 () s 1-1+gq(p—1)aPF'(zP) + pqz®P F" (zP)
R ’ (@ + g P |

Thus, it is enough to prove that for any = > 0,

_%_§+1+(@—2q(§—1)>x}7'(w‘)

+q2?F"(2) — (g - 1) *2°F'(z)?) > 0.

Note that —= > % — 1 because k < 4(p — 1) /p, hence, it is sufficient to have

1
p
-1
(7(1(13 ) _ 2q (g - 1)) oF'(z) 4+ qz®F" (z) — (g - 1) ¢z F'(z)? > 0.
p
Since z > 0, £ —1 <0 and F'(z)? > 0, it is satisfied when

(1% —9 (g - 1)) F'(z) + oF"(z) > 0

which is our condition. This achieves the proof.

4.3 r7-Entropy and F-Sobolev inequalities.

In the previous two subsections we put forward two relations between F-Sobolev
inequalities and 7-hyperboundedness properties. On one hand we showed that
7-hyperboundedness implies an F-Sobolev inequality with
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On the other hand our analogue of Gross Theorem shows that an F-Sobolev

inequality implies Orlicz hyperboundedness with say 7(y) = y?e’’ ("), The goal

of this paragraph is to show that these two relations are almost the same.
First, for 7(y) = y2(y) = y?e" ") as above, it is easily seen that

(™) () = V2yn(y),

where 7 goes to +00 at infinity. Furthermore (see [46, Proposition 1 (4¢) p.14]),
forally >0

y <)) T () < 29 (29)

We apply the latter to y = 7(2) to get ((771(2)))2 < v/2n(2) from the left-
hand inequality. Since 7! is a non decreasing function and 771(z) > c.z2~°
for all £ > & > 0 for some c., we certainly have v/2n(z) > ((c.227¢))z. Hence
provided

Dy) > de (y™=))", (30)

for some positive k. and d., we get that at least for large |y| (using condition
Vs), log(¥(y)) < K log(n(y)). Also note that (29) furnishes

n(z) < V20(171(2)) < /20 (Vz) < CVY(2),

for z large enough. Hence under (30) and for large |y|, there exists two constant
c and C such that clog(y) <log(n) < Clog(v). In addition

og (C )

] > ~ log (n(7*(1)y?)),

so that for |y| large enough

g (1070

o )zmwww

where we recall that a =~ b if there exist some universal constants ci,cs such
that cia < b < ¢aa.

_ Finally note that for a defective F-Sobolev inequality we may replace F' by
F that behaves like F' at infinity, up to the modification of both constants C'r
and Cr in (26). Hence provided 1) satisfies (30) we may choose

F =log(y) or F =log(n).
Ezample 13. Consider the |z|® Boltzmann measure. According to Example 2,

Theorem 4 and the above discussion above, there exist A and B such that for
[ el dy =1,

2(1-1) - o
[ £ (o 0rwD) " e dy < a [19sPe a4 B @)
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Interpolated inequalities between exponential and Gaussian. 21

The latter is exactly the inequality shown by Rosen in [49, Theorem 1]. His
proof relies on Sobolev inequalities in R™ and results on monotone operators.
Of course F' = (log™")? does not satisfy the regularity assumptions in Theorem 6,
so that we cannot apply it. But smoothing this function, we may obtain similar
inequalities. This will be discussed in Section 7.

Ezxample 14. In the general setting of Theorem 3 we may take F'(y) = G(log(y))
provided, in addition to assumption OB, G satisfies [ e~ 1GUVDdy < 00 , for
some ¢ > 0, and conditions As and Vs.

4.4 From hyperboundedness to hypercontractivity.

Most of the interesting properties of hyperbounded semi-groups are in fact con-
sequences of their possible hypercontractivity. It is well known that a defective
log-Sobolev inequality and a Poincaré inequality together are equivalent to a
tight log-Sobolev inequality. We shall finish this section with the proof of a sim-
ilar statement for F-Sobolev inequalities (we refer to section 5.4 for additional
results).

The first statement is straight forward

Lemma 8. Let u be a probability measure on R™. Let F : (0,+00) — R be C2
on a neighborhood of 1. Assume that F(1) = 0 and that every smooth function

[ satisfies
[0 (i) < [ 9t

Then for every smooth function g

@ar @) +2r() [ (g— / gdu>2du5 [ 1voan.

In particular, setting ®(z) = zF(x), if ®"(1) > 0 one has Cp(p) < 1/(29"(1))
where Cp(u) denotes the Poincaré constant.

Proof. We apply the F-Sobolev inequality to f = 1 + eg where g is bounded
and [ gdp =0 and we let € to zero.
([l

Conversely, we first prove an analogue of Rothaus inequality [50]:

Lemma 9 (Rothaus-Orlicz inequality). For any bounded function f, denote
by f the centered f — [ fdu. If F is C* on (0,+00) with F(1) =0 and satisfies
(1) F is concave non decreasing, goes to infinity at +o00o,
(#1) uF'(u) is bounded by K(F).

Then it holds

[re () [ 77 (i
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Proof. We follow the proof in [4]. Again it is enough to prove the result for
functions f written as f = 1+tg for some bounded function g such that [ gdu =
0 and [ g*dp = 1. We introduce

u() =L = CEI og A= F(u) + &%), log A=F (g + ),

for some € > 0 and define

ot) = /f2 ( 7 +s)du /fz ( ;2)+s>du
= /(1+tg)210gA(t)du—t2/9210gAdM-

The variable ¢ is introduced in order to avoid problems near 0. Simple calcula-
tions yield

¢(t) = / (20(1+tg) log A(t) — 2tg% log A + (1 + tg)? i’é? iz

and

ot = /(Zg2log% +4g(1+tg)il((;))

2 A"(H)A() — A’z(t))
A2(1)

It is then easy to see that ¢(0) = F(1 + &2) and ¢'(0) = 0. Thanks to Taylor
Lagrange formula,

+(1 +tg) dp.

pt) = F(L+&%) + S¢/'(s),

for some s. Hence what we need is an upper bound for the second derivative,

since t2 = || f|2.
On one hand one has for all ¢
At
tog 2 = F(u(t) + £2) - F(g? + %) <0
if u(t) < g2, and
Alt) _ 2 g2, 2 12, 2 2
log —= = F(u(t) + &) = Fg” +¢7) < F'(g” +&7)(ult) - 9°),
if u(t) > g? since F' is non-increasing. Note that u(t) — g2 = (1 + 2tg —
g%)/(1 +t?) < 1. For |g| > 1 we get that u(t) — g> < ¢g. Thus, in this case,
log(A(t)/A) < K(F). For |g| < 1, u(t) — g®> < 1 yields that
A(t) A(t) A(t)
2, A) 2, At 2, At
/Zg log A < /|g|<1, 29” log A du+/|g|21, 29" log A dp
u(t)>g2 u(t)>g2
< [ 2P +ult) - o)+ 2K (F)
1‘L(‘i)>g,2
< 4K(F).
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On the other hand,
! r 2
Ay = / (4g(1+tg)‘j((;)) — (1 +tg)? (‘Z((:))) )du < 4

D 2 3
Indeed define Z = (f(l +tg)? (’;T(tt))) du) and remark that, just using

Cauchy-Schwarz and [ ¢g?dp = 1, Ay < 4Z — Z? which is less than 4.
It remains to control the final term 4, = [(1+ tg)? "X’(g) dp. This term may

be written in terms of F', namely

Ay = / (1+tg)[u” (8) (F" + F'*) (u(t) + £%) + u" () F'(u(t) + )] dp.

Since F"" < 0 we only look at terms involving F”. Note that

2(1+tg)(g—1)

e Gp2)

(3t2 — 1) + 2gt(t> — 1) — ¢g?(3t2 — 1)
(1+12)2

and (1 +tg)*u(t) = 2u(t)[ ]. According to

assumption (i),
(1+tg)u*OF (u(t) +€%) = ult)’F*(u(t) + 52)%

Y
< KQ(F)7?§9+ tg2 <8K*(F)(1+g°)

while

(14 tg)?u" (t)F' (u(t) + €?)

3t24+1  2glt(#®+1) L(3t2+1)
i+ a+e)2 70+ t2)2]
<6K(F)(1+[g] +¢%) <12K(F)(1+g¢°).

<2K(F)|

Integrating with respect to p yields that A, is uniformly bounded from above,
with a bound that does not depend on e. It remains to let € go to 0.
O

Remark 15. Remark that a smoothed version of F' = (log, )21~ =) will satisfy
the hypotheses of the Lemma, for 1 < a < 2 (see section 7).

Remark 16. Using the notations in the previous subsection, we have seen con-
ditions for F' = log(n) to be an appropriate choice. In this case using the
fact that y — /yn(y) is concave and non decreasing, it is easy to check that
y>(n" /n)(y) < 3/4and y(n'/n)(y) < (1/2),/y. Though we are not exactly in the
situation of the Lemma one can however check with more efforts that a similar
statement for Ent, is available.
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To conclude this section we may state

Theorem 10. Let p be a probability measure on a set E and (Py)¢>0 o p-
symmetric semi-group. Let F' be as in Lemma 9. If u satisfies a defective
F-Sobolev inequality and a Poincaré inequality, i.e.

[re (7
/ (f -/ fdu)2 s < Co() [ 19 fPan

then u satisfies a tight F-Sobolev inequality, more precisely

[r=(5

with Cy = Cp + Cp(F)(Cr + Crot(F)).

)du<CF/|Vf|2du+CF/f2dp,

and

) du < G [ 194Pa

Proof. Using the notation f as in the previous Lemma, we have

el < [7o(5

CrE(f, f) + (Cr + Crot(F))II fII3
(Cr + Cp(F)(Cr + Crot(F)))E(f, )

) dp + Crot(F)|f13

IN A

5 Sobolev inequalities

A measure g on R™ satisfies a logarithmic Sobolev inequality for the usual
Dirichlet form if there exists a constant C' > 0 such that for every smooth

function
/leog( T )dMSC/IVdeu-

The latter can be rewritten as

[ #1og i ([ 2 an)iog ([ ) < [ 19520

and also as

e 42— (J1f1Pdp) )?

<20/|Vf| du.
p—2~ 2—p

Each of these forms naturally leads to considering more general inequalities.
We present them before studying their properties in details. We shall say that
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1 satisfies a homogeneous F-Sobolev inequality when every smooth function

satisfies )
[ 27 () < [ 19 5P (32

i.e. in this section we only consider the tight F-Sobolev inequality introduced
in (26).
The measure p is said to verify an additive ¢-Sobolev inequality when for

o /fzw(fQ)du— (/deu) @ (/ f2du) < /IVflzdu- (33)

Finally we consider the following generalization of Beckner’s inequality: for
every smooth f

2
P

[ f2dp = ([ 1f]Pdp) 2
p:g};) @ —p) < / [V f|dp. (34)

This property was introduced by Beckner [13] for the Gaussian measure and
T(r) = r. It was considered by Latata and Oleszkiewicz [36] for T'(r) = Cr°.
A recent independent paper by Wang [56] studies the general case and gives
correspondences between certain homogeneous F-Sobolev inequalities and gen-
eralized Beckner-type inequalities (and actual equivalences for T'(r) = C'r?).

5.1 First remarks, tightness and tensorisation

Using the homogeneity property, Inequality (32) above equivalently asserts that
for every smooth function f satisfying [ f2du = 1, one has [ f2F(f?)dp <
J IV f|?dp. Tt is then obvious that when p verifies an additive p-Sobolev in-
equality as (33) then it satisfies a homogeneous F-Sobolev inequality with
F=¢-¢1).

Inequality (32) is tight (it is an equality for constant functions) whenever
F(1) = 0. Inequalities (33) and (34) are tight by construction. Big differences
appear about tensorisation. The homogeneous F-Sobolev inequality need not
tensorise in general. The generalized Beckner inequality (34) has the tensorisa-
tion property. This is established in [36] as a consequence of the following

Lemma 11. Let ® : [0,00) = R having a strictly positive second derivative and
such that 1/®" is concave. Let (1, p1),(Qa, ) be probability spaces. Then
for any non-negative random variable Z defined on the product space (Q,u) =
(1 x Qa, 1 ® po) with finite expectation one has

]EH(I)(Z) - (D(EHZ) < EM (EMCI)(Z)—(I)(EM Z)+]EN2 (I)(Z)_(I)(]Euz Z)) -

When ®(z) = zp(x) satisfies the hypothesis of the lemma, one can prove
that the corresponding additive ¢-Sobolev inequality tensorises, even for very
general Dirichlet forms. In our case, we can use the properties of the square of
the gradient to prove the tensorisation property for arbitrary ®.
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Lemma 12. Consider for i = 1,2 probability spaces (R™ , u;). Assume that for
1 =1,2 and every smooth function f: R* — R one has

[o(#)ini-e ( / deuz-) < [1v17du (35)

then the measure p1 @ po enjoys exactly the same property.

Proof. Let f : Rmtn2 — R We start with applying Inequality (35) in the
second variable. This gives

[ atamaue = [ ([ 202w 0)di ) dina)

< [ (2( ] @) + [ 19,000 ) duw

=/‘I>(92)du1+/|Vyf|2du1duz,

where we have set g(z) = /[ f2(z,y)dp2(y). Next we apply (35) on the first

space to g. Note that [ g>du; = [ f?duidus and that by the Cauchy-Schwartz
inequality

_ [ 1@ y)Vai(@,y)dus
[ (@, y)dpa(y)
Thus we get that [ (¢%)du < @ ([ f2dudus) + [ |VofPdudps. Combining

this with the former inequality yields the claimed ®-Sobolev inequality on the
product space.

Vol (@) Wl [ 1957w et

O

5.2 The notion of capacity of a set with respect to a prob-
ability measure

There exists a wide variety of Sobolev-type inequalities in the literature. It
is natural to analyze connections between them. To do so, one tries to define
for each inequality an equivalent “reduced inequality”, in such a way that it
is easy to decide equivalences on the reduced forms. For example it is known
that Sobolev inequalities involving the L!-norm of the gradient are equivalent
to isoperimetric inequalities. There exists a corresponding tool for Sobolev
inequalities involving L?-norms (and even L”-norms) of gradients: capacities.
We refer to the book of Maz’ya [42] for more details. The classical electrostatic
capacity of a set A C R" is

Cap(A) 4ef inf {/ |V f(2)|*dz; fia =1 and f has compact support}

where from now on the functions appearing in the infimum are locally Lipschitz.
The usual IL2-Sobolev inequalities on R” can be reduced to an inequality relating
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the capacity of sets to their volume. This was extended to more general measures
and inequalities (see [42]). However, if one replaces the dz in the latter formula
by dv(x) where v is a finite measure, then the above capacity is zero. The
appropriate notion was introduced in [12]. We recall it after a few definitions.
Let v be an absolutely continuous measure on R". Let A C Q be Borel sets, we
write

Cap,(4,0) % inf {/ |V f?dv; fa>1and flg- = 0}
= inf{/|Vf|2dy;IA <f< IQ},

where the equality follows from an easy truncation. If u is a probability measure
on R™, then we set for A with p(A) <1/2

Cap,(Ag) 2 int { [1912d0s fu 2 1 and (s =0) > 1}

= inf {CapV(A,Q);A C Qand p(Q) < %} .
If u is absolutely continuous, then since Cap, (A, ?) is non-increasing in €,

Cap, (A, u) = inf {Cap,,(A, 02); AC Qand pu(Q) = %} .

We write Cap,,(A) for Cap, (4, u).
The reduction of an I.2-Sobolev inequality to an inequality between capacity

and measure of sets is done via level-sets decomposition. For completeness we
illustrate this on the simplest possible inequality (see [42]).

Proposition 13. Let p,v be absolutely continuous measures on R™ and let
Q C R*. Let C denote the smallest constant so that every locally Lipschitz
function vanishing on Q° verifies

[ ransc [1vspa.

Then B < C < 4B, where B is the smallest constant so that for all A C Q one
has p(A) < BCap,(A4,Q).

Remark 17. The constant 4 in the above result is best possible, and is obtained
by using a result of page 109 in [42]. We shall prove the result with a worse
constant. We follow a simplified proof, written in page 110 of this book (this
paragraph contained a small mistake which we correct below).

Proof. The fact that B < C is obvious from the definition of capacity. The
other bounds requires level-sets decomposition. First note that replacing f by
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| f| makes the inequality tighter. So we may restrict to f > 0 vanishing outside
Q. Let p > 1 and consider for k € Z, Qi = {f? > p*}. Then

/f"’du < DOt < 2 < oMY

kEZ
—1
= ) o (M(Qk) - u(ﬂk+1)) = P2 R ().
kEZ p kEZ

We estimate the latter measures as follows:
W(O%) < BCap, (%.9) < B [ [VouPar,

. _pk=1)/2 . . .
where we have set g = min (1, (m) ) . Indeed this function is 1 on
+

Q. and vanishes outside Q;_1 so outside ). Note that

2, _ IV£?
/|ng| dv = /Qk—l\Qk (/2 _p(k—l)/2)2dy

V§?
+/f—p’°/2 (pk72 — ph=1)/2)2 dv.

Since f is locally Lipschitz, the sets {f = pF/2} N {Vf # 0} are Lebesgue
negligible. So the latter integral vanishes (in the rest of the paper, similar
arguments are sometimes needed but we omit them). Thus

2

24 p—1 p 24
/f " p BZ(\/ﬁ—l)Z'/Qk_l\levfl v

k

+1
< Bpﬁ_l/IVfIQdV-

IA

The best choice of p leads to a constant (11 + 5v/5)/2 < 11.1.
O

Remark 18. Let us mention another possible reduction of Sobolev type inequal-
ities to inequalities of the form R(Q) > ¢ (u(Q)) where R(Q) is the infimum
over functions f with compact support in Q of [|Vf|?’dv/ [ f?du (Rayleigh
quotient). See e.g. [5, 26] where the focus is on infinite measures. Note that by
Proposition 13 this criterion amounts to inequalities of the form

(AP (u(Q)) < Cap, (4,9)

for A C Q. Here the interest is in the behavior of the capacity in terms of the
outer set. We shall be rather interested in estimates of the form G(v(4)) <
Cap,(4,Q), that is in the dependence on the measure of the inner sets. These
two approaches are rather different, and seem to be efficient in different settings.
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Remark 19. Proposition 13 appears as a n-dimensional version of the generalized
Hardy inequality (see Muckenhoupt [44]), which asserts that the best A so that
every smooth f on R with f(0) = 0 one has

400 +oo 9
/ Pdu< A / v,
0 0

verifies B < A < 4B where B = sup,q p([z, +00)) [ p;*, and p, is the
density of the absolute continuous part of v. Note that Cap,, ([z, +00), [0, 00)) =

(Jy pv 1)1, so B is the smallest constant so that

u([z, +o0)) < BCap, ([z, +00), [0,00))

for all x > 0. This criterion is simpler than the one in n dimensions, because
one can reduce to non-decreasing functions, for which level sets are half-lines.
Remark 20. It is shown in [12] that the Poincaré constant of a measure y verifies
C/2 < Cp < KC where C is the best constant in: p(A) < CCap,(A, ) for all
A with p(A) < 1/2, and K is a universal constant. Proposition 13 shows that
one can take K =4.

5.3 A criterion for general Beckner-type inequalities

The aim of this section is to give a sharp criterion for inequalities of the form
(34). Since they appear as a collection of Sobolev inequalities, the first step
consists in finding a criterion for each Sobolev inequality. This was done by the
first and last-named authors in the case of measures on the line. We present
here a slightly weaker but more convenient formulation of Theorem 11 in [12]
and its extension to arbitrary dimension.

Theorem 14. Let p € (1,2), p,v be Borel measures on R*, with u(R*) =1
and dv(z) = p,(x)dx. Let C be the optimal constant such that for every smooth
f:R* = R one has

[ - ( / IfIPdM)% <c [\vita. (36)

Then %B(p) < C < 20B(p), where B(p) is the optimal constant so that every
Borel set A C R™ with pu(A) < 1/2 satisfies

p=2

u(A) (1 - (1 + ﬁ) T) < B(p)Cap, (A, p).

Ifn =1, one has } max(B_(p), B4 (p)) < C < 20max(B_(p), By (p)) where

By (p) = sup (lz, +o0)) (1— (1+ ﬁ)_> "1

z>m -Z':OO)) m p_lf7
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B_(p) = sup j((~oc,2) (1 - (14 2oep) ) [

and m is a median of .

Proof. The one dimensional result follows from [12, Theorem 11 and Remark 12]
which involve 1+ 1/(2u([z, 00)). In order to derive the result presented here we
have used the following easy inequality, valid for y > 2, and p € (1,2),

1—(1+y)% < log 3
1—(1+y/2)% ~ log2

(37)

Note that the left hand side is monotonous in y and p.

We turn to the n-dimensional part of the theorem. We use three lemmas
from [12] which we recall just after this proof. We start with the lower bound
on the constant C. Assume that the Sobolev inequality (36) is satisfied for
all functions. Let A C R® with pu(A4) < 1/2, and let f : R* — R be locally
Lipschitz, with f > T4 and p(f = 0) > 1/2. Denote S = {z; f(z) # 0}. By
Inequality (36) and Lemma 16, one has

C/IVfIQdV > sup{/f2gdu;g :R" = (—oo, 1),/(1 — g)77dp < 1}-

In the latter supremum, the values of g on {f = 0} have no incidence on the
integral, but they have an incidence on the constraint. So the supremum is
achieved for ¢’s being —oo on {f = 0}. Thus

C/IVf|2dV > sup{/fzgdu;grsﬁ(—wyl),/(l—g)ﬁduﬁl}
S S
> sup{/f2gdu;g:5—> [0,1),/(1—9)P%2du§ 1}
S S
>

SUP{/IAQISd,U;g 55 0.1), [ (1= )72 Tsdu < 1}

-5

where we have used f > 14 and Lemma 17 for the measure d@) = Igdu. Since
1(S) < 1/2 and this is valid for any f larger than 1 on A and vanishing for
probability 1/2 one gets

1(A) <1 - <1 + WlA)) ) < CCap, (4, p).

One concludes with Inequality (37).
Next we prove the upper bound on C. Let f be a locally Lipschitz function.
Let m be a median of the law of f under u. Set F' = f —m, Q = {f > m},
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QO ={f<m}, Ff =FlIg, and F = FIg_. Note that u(Q),u(Q2-) <1/2.
We define the class of functions 7 by

I={9=R"—>[0,1);/(1—g)ﬁdu§1+(p—1)ﬁ}-

Combining Lemmas 15 and 16 and observing that F? = FZ + F2 gives

[ Pa-( [ |f|"du)% < [Pa- -0 ([irra)

< SUP/(FJ‘: + F2)gdp
g€T

A

< sup/Figdu%—sup/Fzgdu.
g€eT g€z

Applying Proposition 13 with the measures gdu and dv (it is crucial here that
g >0) gives [ FZgdp < 4B, [ |VF, |*dv, where

J Tagdp J Tagdu

B, = sup ——F——< sup ————

g ACQy Ca‘pu(A) Q"r) u(A)S% Ca‘pu(A7 N)
Tpgdu;g € T

< swp sup { [ Tagdp; g € T}

A<y Cap,,(A, ,LL)

2\ 52
(172
u(A) (1 - (1 + )
=  sup

p(A)<3 Ca‘pll (A7 /"’)

) < 5B(p).

In the preceding lines we have used Lemma 17 and the inequality

p—2
p—2

1—(1+m(p—1)p%) ’ §5<1—(1+:c) ; ),x22,p6(1,2),

which follows from Remark 12 of [12]. We have shown that

sup/F_f_gdp < ZOB(p)/|VF+|2dV.

9€T

Adding up with a similar relation for F_ leads to

/f2d,u— (/|f|”du>% < 20B(p) (/|VF+|2dV+/|VF_|2dV>

20B(p) / IV £ .

Working version - December 7, 2004.



32 F. Barthe et al.

We list the three lemmas from [12] that we used in the previous proof.

Lemma 15. Let p € (1,2). Let f : X — R be square integrable function on a
probability space (X,Q). Then for all a € R one has

/f%Q—(/UW@>§S/U—ﬂfﬂl—@—n</ﬁ—aﬁw)?

Lemma 16. Let ¢ be a non-negative integrable function on a probability space
(X,P). Let A>0 and a € (0,1), then

/wdp_A(/wadp)i |

= sup{/gogdP;g:X — (—00,1) and /(l—g)aildPgAa—l}

IA

sup{/cpgdP;g:X—)[O,l) and /(1_g)fT1dp§1+Aa;:1}‘

Lemma 17. Let a € (0,1). Let Q be a finite measure on a space X and let
K > Q(X). Let A C X be measurable with Q(A) > 0. Then

sup{‘/)(IAng;g:X—)[O,l) and /}((l—g)ﬁngK}

a—1
K-QX)\ =
= Q) [1- (1 + =) .
@ Q)
Theorem 14 readily implies a sharp criterion for inequalities generalizing the
ones of Beckner and Latata-Oleszkiewicz.

Theorem 18. Let T : [0,1] — R*. Let p,v be a Borel measures on R™, with
uw(R™) =1 and dv(z) = p,(z)dz. Let C be the optimal constant such that for
every smooth f : R® — R one has

[ Fdp = (] |flrdn)® :
sup < C’/ Vf|*dv. 38)
pe(1,2) T(Z - P) l l (
Define the function
_ 1— 5%

T(zx) = sup ———.
(@) pe(1,2) T2 -p)

Then 1B(T) < C < 20B(T), where B(T) is the smallest constant so that every
Borel set A C R™ with pu(A) < 1/2 satisfies

mmTQ+m%)SB@mwam.
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If the dimension n =1, then

S max(B, (T), B_(T)) < C < 20max(B,(T), B_(T)),

where

Bo(1) = sup ulla, +oo)T (14—t ) [

B(T) = sup p(~c0,a)T (1 * m) [

and m is a median of .

Under fairly reasonable assumptions, the following lemma gives a simple
expression of T in terms of T'. In particular the lemma and the theorem recover
the criterion for the Latala-Oleszkiewicz on the real line and extends it to any
dimension.

Lemma 19. Let T : [0,1] —» Ry be non-decreasing. Then, for any X > e,

p—2

sup 1-Xr > 1
ety T(2—p) = 3T(@)

If one also assumes that x — T(x)/x is non-increasing, then for X > e

p—2

1-X"7 1

sup < .
pei2) T(2=p) ~— (ﬁ)

Proof. Let b= 2%” and note that 2 —p = bi—bl < 2b. Since T is non-decreasing,
one has
1- X% 1 _ e—blogX 1 — e—blogX

sup ————— = Sup —————— > SUup ————
pe(i2) T(2—p) be(0,1) T( 2b) be(o,1/2)  T(2b)

(251
1— /e
1 )
T(logX)
by choosing b= 1/(2log X) < 1/2. Finally 1 — /e ~ 0.393 > 3.

For the second assertion, let b = 2_71’ € (0,1), ¢ = blog X and note that
2 —p= ;2 >b. Since T is non-decreasing,

b+1
1_pr%2 1_e—b10gX 1_e—b10gX
Sup ———~— = sup ———— < Ssup —————
pe2) T(2—p) be(0,1) T (bi_bl) be(0,1) T(b)
1—e ¢ 1—e¢
< max | sup sup

c€(0.1] m7 c€(1,log X) @
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Recall that T'(x)/z is non-increasing. So for ¢ € (0,1], T (@) > T (@)

Hence,
1—e¢ 1 1—e°¢ 1
sup sup

c€(0, 1]T(logx) T(long) ce(0] € T(long)

When ¢ > 1, one has T (log X) >T (@) since T is non-decreasing. Thus

—C

[y

1—e¢

B 1
ce(flgzx) T (logX) T (10;)() igﬁ)(l —e9) < @.

This achieves the proof.

5.4 Homogeneous F-Sobolev inequalities

In the next statement, we show how to derive special homogeneous F-Sobolev
inequalities, which ignore the behavior of functions close to their average. Such
inequalities appear in the work of Wang. Let us also note that any behavior of
F at infinity may occur.

Theorem 20. Let D > 0 and p > 1. Let F : [0,+00) — [0,4+00) be a non-
decreasing function. Assume that F(x) = 0 if x < 2p. Let p be a probability
measure on R™ such that every A C R™ with u(A) <1/(2p) < 1/2

u()F (L) < DCap, (4)

Then for every smooth f : R" — R one has

[ (g e (2) [

Proof. For k > 1, set Qi = {z; f2(x) > 2p*u(f?)}. Chebichev inequality gives
w(Q%) < 1/(2p%). Next, since F vanishes on [0, 2p]

frr (ffzd ) e ,;Ak\gk+lf2p(f1{;du)d“

D u()20" () F (20",

k>1

IN

Since k > 1 and F is non-decreasing, we have

HOOFEA™) < p(@WF (L) < DCap, (@)
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Let us consider the function

hk:min<1< If] = V20" u(f?) ))
\V2oru(f?) - V20 (D ), )

it is equal to 1 on €, and zero outside Qj_;. Since for k > 1, u(Qp_1) < 1/2,
hi vanishes with probability at least 1/2. Thus

jék_1\9k|‘7f|2dﬂ
2051 (/5 — 1) u(f?)

Cap, (%) < / Ve Pdp =
Combining these estimates gives

2
/ f°F ( T JJ; D> 2" u(f?)Cap,, ()

dp
7)< PR
2
p
D(\/_ 1) /|Vf|2dp.

In the following we briefly study homogeneous F-Sobolev inequalities which
are tight but do not ignore the values of functions close to their L?-norm. In
this case the behavior of F at 1 is crucial. We have already seen in Lemma 8 of
Section 4.4 that when F(1) = 0 and z — zF(z) has a positive second derivative
at 1, then the homogeneous F-Sobolev inequality implies a spectral inequality.
Besides, if a measure satisfies a Poincaré inequality, and a tight homogeneous F'-
Sobolev inequality which ignores small values of functions, then one can modify
F on small values in an almost arbitrary way:

IN

IN

O

Lemma 21. Let D > 0 and p > 1. Let F : [0,400) — R be a non-decreasing
function, such that F = 0 on [0,2p). Let p be a probability measure on R"
with Poincaré constant Cp < oo and such that every smooth function f on R™

satisfies
/f2 ( o )dMSD/|Vf|2dp.

Let F : [0,+00) = R be non-decreasing such that }7'(1) =0, F is C? on [0, 2p]
and F(z) = F(z) for x > 2p. Set ®(x) = xF(x). Then for every smooth
f:R* = R one has

/f2 f2d dp§(1+\/_ Cp(man)” +D)/|Vf|2dp.

[0,2p]

Proof. Note that ®(1) = 0 and ®'(1) = F’(1) > 0. We introduce the function
®y(z) = &(x) — &(1) — ®'(1)(z — 1). Without loss of generality, we consider a
function f > 0 with [ f?du = 1. One has

[odn = [ au7)dn - /f L, B /f IO TCRC D
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For the first term, using Taylor’s formula and 0 < f < /2p, we obtain

8,(f?) < (max qw) Fo1f Ay (max <1>")+ (f =102

[0,20] 2 - [0,2p]

Therefore

2 (1 + \/%)2 ( x //) _1)2
/f L, B < S (masat) / (f - 1)%du

can be upper-bounded thanks to the Poincaré inequality. Indeed

Ju=dn = [ (£-u)
= 2</f2du—/fdu(/f2du>§>
2 (/deu— (/fdu>2> < 2CP/|Vf|2du-

The second term in (39) is easily handled by our hypothesis. Indeed, since
®'(1) >0

®,(f*)d ®(f*)d 2F(f*)d D 2du.
[, mnis [ et [ prati< [ 19t

[SIEY

IA

O

Finally, we show that an homogeneous F-Sobolev inequality implies an in-
equality between capacity and measure. We believe that the result should be
true in more generality.

Theorem 22. Let p be a probability measure on R*. Let F : Rt — Rt be a
non-negative non-decreasing function such that there exists A > 4 such that for
x > 2, F(z)/z is non-increasing and F(\x) < AF(z)/4. Assume that for every
smooth function, one has

7 (L) an < [19sran

then for all A C R™ with p(A) < 1 it holds

W(A)F (ﬁ) < 4ADCap,,(A).

Proof. Let A be a set of measure less than 1/2. In order to estimate its capacity,

we may consider non-negative functions g > 14 and p(g =0) > 1/2. For k € Z
we consider the function

gk = min ((g —2* u(g2))+, 2" u(g2)> :
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We also set ), = {z;g(z) > 2¥,/u(9?)}. Note that on Q41, g7 is constantly
22k 11(g?) and that [ g2du < pu(%)2%* u(g?). Therefore, applying the F-Sobolev
inequality (with F' > 0) to gi yields

2
D/V 2du>/ g2F( Ik )du

(Qr1)2%  p(g?) F <@) :

Setting ar = p(Q) and C = D [ |Vg|*du/u(g?), we have for k € Z

v

D [ Vo

v

2% a1 F(1/ax) < C.

Lemma 23 guarantees that 22%a; F(1/ay) < AC for every k with a; > 0, that is
1
228 1 (g?) () F (—) < /\D/ Vgldp.
u(a () F () <AD [ Vg

We choose the largest k with 2%y/u(g2) < 1. Thus 2¥+1y/u(g?) > 1 and
A C Q. In particular 2 < 1/p() < 1/p(A), so these ratios are in the range

where z — F(z)/z is non-increasing. Combining these remarks with the above
inequality yields
1 1

Z,u(A)F (m) < )\D/|Vg|2du.

Since this is valid for every g > I4 and vanishing on a set of measure at least
1/2, we have shown that u(A)F (1/u(A)) < 4ADCap,,(A).
O

The next lemma was inspired by the argument of Theorem 10.5 in [5].

Lemma 23. Let F : [2,400) — [0,+00) be a non-decreasing function such that
x — F(x)/z is non increasing and there exists X > 4 such that for all z > 2 one
has F(Az) < AF(z)/4. Let (ar)rez be a non-increasing (double-sided) sequence
of numbers in [0,1/2]. Assume that for all k € Z with ar, > 0 one has

1
2%kqy  F (-) <C,
ag
then for all k € Z with ay, > 0 one has

2%kq, F <i> < \C.
ag,

Proof. Discarding trivial cases where F(1/ay) is always zero, we observe that
the sequence 22¥F(1/a;) tends to +oo when k tends to +oo, and tends to
zero when k tends to —oco. So we define kg as the largest integer such that
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22kF(1/ay) < 2C. Let k < ko, then 2C > 22*F(1/a;) > 22*F(2) since aj, < 1/2
and F' is non-decreasing. Moreover since F'(t)/t is non-increasing, we also have

22(’“+1)ak+1F( ) < 22k p(2) /2.

Gk+1

Combining these two inequalities yields

22k g, F ( ) < 4C < \C,

Q41

so the claimed result is established for £ < kg + 1. For larger values we proceed
by induction. Let k > ko + 1, for which the conclusion holds. If ag+; = 0 we
have nothing to prove. Otherwise the hypothesis of the lemma gives

s (2)
1 > Qg
ag41 C '

Since k > ko we know that the term on the right is larger than 2. Using the
fact that ¢ > 2 — F'(t)/t is non-increasing, we obtain

1 C 27 ()
a1 F (ak+1) < o (i)F C(ak

Next, by the induction hypothesis for & this is bounded from above by
O (A< g
2k 7 (L) ag, 2 4

where we have used F(At) < AF(t)/4. So we have shown

ak+1F< > <27%2)\C,

ak41

and the conclusion is valid for k + 1.
O

Remark 21. The alternative reduction of Sobolev type inequalities to estimates
on the Rayleigh quotient (see Remark 18) turns out to work better for homoge-
neous F-Sobolev inequalities. See Proposition 2.2 in [26], dealing with measures
of infinite mass, but the proof of which extends to our setting.

Remark 22. Applying Theorem 22 to the function F' = 1|5 | .y and A = 4 shows
the following. If for every function one has

/ fausc [ 197Pdu
f2>2p(f2)
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then for all A C R* with u(A4) < 1/2, one has u(4) < 16CCap,(A). By
Remark 20, the measure p satisfies a Poincaré inequality with constant Cp(u) <
64C.

The converse implication also holds. Assume that p satisfies for all f,
Var,(f) < Cp(p) [|Vf[?du. Without loss of generality, we consider f > 0.
If 2 > 2u(f?) then by Cauchy-Schwarz one has f > v/2 u(f) and consequently
(F = n(f)? = (1= 1/V2)2f2. Hence Var,(f) = (1 - 1/V2? [pasy, o) F2dn

and the Poincaré inequality implies

1\"2

Zd o 2d
//‘222u(f2)f " (1 ﬁ) CP(M)/|Vf| "
12Ce(u) [ V4P dn

IN

IN

As a conclusion, Poincaré inequality enters the framework of homogeneous

F-Sobolev inequalities and is equivalent to [ f21 250, (s2ydp < C [ |V f|*dp (up
to the constants). Note that the number 2 is crucial in our argument.
Remark 23. Let us present a convenient variant of Theorem 22. Assume that p
satisfies a Poincaré inequality and a F-Sobolev inequality as in Theorem 22. If
F verifies the assumptions F(z)/z non-increasing and F(Az) < AF(z)/4 only
for z > 2o > 2 then one can however conclude with a similar inequality between
capacity and measure. To see this, introduce a function F' on Rt with F(z) :=
F(z) for z > zo, F(z) := F(x,) for z € [2,20], F(1) = 0 and F is C? and non-
decreasing on [0, o]. Then by Lemma 21, p satisfies a homogeneous F-Sobolev
inequality, and F satisfies the assumptions of Theorem 22. Therefore one obtains
an inequality of the form u(A)F(1/u(A)) < KCap,,(A). In particular if p(A) <
1/zo one has pu(A)F(1/u(A)) < KCap,(A).

5.5 Additive ¢-Sobolev inequalities

We present an extension of a method developed by Miclo and Roberto [43]
for logarithmic Sobolev inequalities. Throughout this section, we work with a
function ®(x) = zp(zx), where ¢ : (0, +00) — R is non-decreasing, continuously
differentiable. We assume that ® can be extended to 0. For z,t > 0 we define
the function

Oy(z) = @(x) — 2(t) — '(t)(z — 1) = z(p(x) — (1)) — 1" (V) (x — 1)

We start with two preliminary statements about ®-entropies. The first one is
classical and easy, and we skip its proof (see also Lemma 3.4.2 in [3]). For short,

we write p(g) for [ gdp.

Lemma 24. For every function f,

[ouan-a( [ £an) = [ 2,00
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When ® is convex, one has

Jouan—e ([ £an) = int [ e

Lemma 25. Let the function ¢ be non-decreasing and concave. Assume that
there exists v > 0 such that y'(y) <~ for ally > 0. Then for everyt >0 and
every x € [0,2t] one has

®.2(2%) < 9y(z —t)°.

Proof. The concavity of ¢ ensures that p(2?) < p(t?) + ¢'(t?)(z? — t?). This
yields

By (2%) ¢'() (@ —17) = (z = )¢ () (z + 1)°

<
< (z—1)2Q'(#*)(3t) < 9y(z —1)?,

where we have used z < 2t.
O

Theorem 26. Let ¢ be a non-decreasing, concave, C* function on (0, +00) with
»(8) > 0. Assume that there exist constants v, M such that for all x,y > 0 one
has

zp'(z) <y and  p(zy) <M +p(z) + 9(y)-

Let 1 be a probability measure on R™ satisfying a Poincaré inequality with con-
stant Cp and the following relation between capacity and measure: there exists
D > 0 such that for all A C R™ with p(A) < 1/4

e (25 ) < DCap, (4),

then for every smooth function one has

/(I)(f2)d,u—<1>(/f2du) < (1870p+24(1+ %)D) /|Vf|2d,u,

where as usual ®(x) = zp(z).

Proof. Without loss of generality, we may consider f > 0. Set ¢t = (u( fz))%.

Then
[oiu-a ( / f2du) = [t

-/ B ()du+ [ o (f)dp.  (40)
f2<4u(f?) F2>4u(f?)
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The first term is bounded from above thanks to Lemma 25, indeed

/ Boa(f2)dps = / B (1)
£2<4p(f?) f€l0,2t]

97/1%[07%] (f - u(f2)%)2du < 97/ (f — u(f?)
18y ( [ £an- | sau ( / f2du) )
18y (/fzdu— (/fdu)2> < 18'YCP/|Vf|2d,U:

where we have used Cauchy-Schwartz and the Poincaré inequality for pu.
The second term in (40) is estimated as follows

/f2>4u(f2) e (f2)d,u - ‘/f2>4u(f2) [f2 (CP(fZ) — ‘P(N(f2)))
() (1) (£ = w(r?) ] i
/f2>4p(f2) r? (cp(fz) - 90(:”(](2))) du

/f2>4u(f2) f2 (SO (H(f;)> * M) -

We conclude by applying Theorem 20 with p = 2, F(z) = 0 if x < 4, and
F(z) = o(z) + M if z > 4. Since for u(A) < 1/4 one has

ar(5) = it () (1)

D (1 + %) Cap,,(A),

o[-

X

IA

IA

IN

IN

IN

we obtain

M
d,2(2)d 4 2D — 2du.
/f g B A ) (”w)) [ v sa
|

Remark 24. As already explained, the Poincaré constant of the measure p is
bounded above by 4B where B is the best constant such that every set A with
p(A) < 1/2 verifies u(A) < BCap,,(A). If ¢(4) > 0, one has

D:= sup H(A)p(2/u(4) > (4)  sup A 0(4)B.

uay<12  Cap,(4) u(a)<1/2 Cap,(4)

So Cp < 4D/p(4). In particular, if D < +oo, then u satisfies an additive
¢-Sobolev inequality.
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Remark 25. As already mentioned, the additive ¢-Sobolev inequality has the
tensorisation property. If it is valid for a measure p (with second moment) then
it is true for its product measures, and by a classical application of the Central
Limit Theorem it holds for the Gaussian measure. For the latter it is known that
the logarithmic Sobolev inequality, viewed as an embedding result, is optimal.
So ¢ cannot grow faster than a logarithm. Note that both hypothesis on ¢
assumed in Theorem 26 imply that ¢ is at most a logarithm.

Next we present an improved criterion for measures on the real line.

Theorem 27. Let ® be a continuous convex function on [0,00), with ®(z) =
zp(x) for x > 0. Assume that ¢ is non-decreasing, concave, and C* on (0, +oc)
with ¢(8) > 0. Assume that there exist constants v, M such that for all z,y > 0
one has

z'(x) <y and  p(zy) < M+ o) + @(y).

Let p be a probability measure on R, with density p,, and median m. Let

2 T 1

Dy = EBE"([“"”’*“”S"(M[xﬁoo)))/mE

2 m 1

D = :25“((‘“’x])“”(u<<—oo,m]))/m o
By = fggﬂu([erOO)) pi
m 1
B= s[5

and B =max(By,B_), D = max(D4,D_). Then for every smooth function

/(I)(f2)d/,¢ ~3 (/ f2du> < (14473+ 24(1 + %)D) /f’2dp.

Proof. The argument is a refinement of the proof of Theorem 26. We explain
the points which differ. Without loss of generality we consider a non-negative
function f on R. We consider the associated function g defined by

g(x) = f(m) +/ [ ()1 (y>0du if z>m
o@) = fo)+ [ F@lpwod i s<m
Set t = (1(g%))2. Then Lemma 24 ensures that

[oudu-a ( / f2du) < [ @)

-/ B ()du+ [ B (f2)d. (41)
f2<4u(g?)

F2>4p(g?)
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For the first term, we use Lemma, 25

[, setin=[  aa()

F2<4p(g?) felo,2t]

9y /fe[o . (f - u(g2)%)2du < 97/ (f - u(g?) )zdu
187/(f —9)*du+ 187/ (g - u(gz)%)zdu-

IA
o

IA

Next observe that

/(f —9)%du
-/ ( [ =spsa) aso + [ ([0 =110 aute)
/ </ f1f1<0> du(z (/m f’>0) ()

+oo
4B+/ flzlflSOd,U/ + 4B_/ flzlflzodll
—00

m

IN

where the last inequality relies on Hardy inequality (see Remark 19). As in the
proof of Theorem 26,

/ (g - u(gQ)%)Qdu

VAN

2Cp /9'2dﬂ

“+co m
2Cp (/ f’zlf’>0d/~¢ +/ fl21f’<0dﬂ> ;

m

and we also use the fact that the Poincaré constant Cp of y satisfies Cp < 4B.
Combining the previous three estimates gives

/ b () du < 14478 [ Pd
F2<4u(g?)

Now we evaluate the second term in equation (41): since ®;(x) < z(p(z) —p(t))
for z > ¢,

S @ < [ (o)~ p(us) ) do
< /g2>4u(gz) 92) - w(u(gz))) du
: /92>4u(92) ( (N(g;)) - M> an

where we have used ¢ > f > 0 and the fact that ¢ is non-decreasing. At
this stage, we apply the decomposition into level sets performed in the proof of
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Theorem 20, once on (m, +o0) and once on (—oco,m). Note that the function g
being non-increasing before m and non-decreasing after, the level sets appearing
in the proof are of the form (—o0,z], £ < m, and [z, 4+00), £ > m for which the
p-capacity is controlled by the hypothesis of the theorem.

O

The previous two theorems apply to logarithmic Sobolev inequality when
o(z) = log(z), this is how Miclo and Roberto recovered the sufficiency part
of the Bobkov-Go&tze criterion. The next result gives an application to tight
versions of Rosen’s inequality.

Theorem 28. Let § € (0,1]. Let p be a probability measure on R*. Assume

that one of the following hypotheses holds:
(i) There exists a constant D so that every A C R™ with u(A) < 1/2 satisfies

““”%ﬁo*jﬁﬁ)chwﬁA)

(i4) The dimension n =1, pu has density p,. Let m be a median of u and
71

Dy = sup u([z,+00))log’ (1 + m) Pu

D_ = zsggu((—oo,:zz]) log” (1 + m) /mm i

Assume that D = max(D,., D_) is finite.
Then for every smooth f : R* — R one has

#1067 @+ Pyt ([Pan)iog? (1+ [Paw) < kD [197Pdn

where one can toke K = 96 in case (i) and K = 168 in case (ii).

Proof. In view of Theorems 26, 27 and Remark 24 all we have to do is to check
a few properties of ®5(x) = zpg(z) where ps(z) = log®(1 4+ x). We insist on
the more significant ones. The function ¢g is increasing, and since § < 1 it is
also concave. From the obvious relation

log(1 + zy) < log ((1 +z)(1+ y)) <log(l1+z)+log(1+y), x,y>0

and the sub-additivity of z — z° for 8 € (0,1] we deduce that @g(zy) <
vs(x) + ¢p(y). Finally we check the differential properties. Direct calculation
gives

log” 11 + 2 z \?
zpp(x) = ﬂx% <p (1+—$> <B<,

where we have used (1 + z)log(l + ) > z for > 0. Finally, ®3 is concave

since 5o

Blog” (14 x)
@II —

5(@) 1 +2)?

is non-negative due to (2 + z)log(l + z) > (1 + z)log(1l + =) > =.

(2+x)log(l+2)+(8—1)x)
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5.6 A summary

In Figure 1 we summarize the various implications between the inequalities
studied in this section. We hope that it will help the reader to have an overview
of the picture.
First remark that thanks to Lemma 19, in Figure 1, if T : [0,1] —» Ry is
non-decreasing and x — T'(z)/x non-increasing, then for z > e
1 1-2"% 1
3T/ Toga) = V@) = sup

< .
pei2) T(2—p) — T(1/logx)

Assumption (H1, see Theorem 20). F' : [0,+00) — R is a non-decreasing
function satisfying F' = 0 on [0,2p) for some p > 1. Finally F(z) = ¢(z/p) for
x > 2p and A = 1/(2p).

Assumption (H2, see Theorem 21). F' : [0,+00) — R is a non-decreasing
function satisfying F(1) = 0 and F is C2 on [0,2p]. The measure yu satisfies a
Poincaré inequality. Finally F(z) = ¢(z/p) for x > 0 and A = 1/(2p).

Assumption (H3, see Theorem 22). F : [0,+0c0) — R is a non-decreasing
function such that there exists a constant v > 4 such that for z > 2, z — F(z)/x
is non-increasing and F(yz) < vF(z)/4. Then, ¢ = F and A = 1/2.

Assumption (H4, see Theorem 26). The function ¢ is non-decreasing, con-
cave and C! on (0, +00) with (8) > 0. Furthermore, there exists two constants
M and + such that for any z,y > 0 one has

z'(x) <y and o(zy) < M + o(z) + d(y).

The measure p satisfies a Poincaré inequality. Finally ¢(z) = 9(x/2) and
A=1/4.

Assumption (H5, see Lemma 8). F : [0,+00) — R is a C? function on a
neighborhood of 1, F(1) = 0 and if ®(z) := zF(z), ®"(1) > 0.

Assumption (H6). ¢ : [0,+00) — R is a C? function on a neighborhood of
1. Let ®(z) := zp(x). The same proof as in Lemma 8 gives that p satisfies a
Poincaré inequality if ®"(1) > 0.

6 Generalized Beckner - Latala - Oleszkiewicz
inequality and concentration property.

Recall that a probability measure p on R” satisfies a generalized Beckner in-
equality if there is a constant Cr such that for any smooth function f,

J Pdu— (f |fPdp)?
s L <o [ 9stdn (42)
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(Take p=1)
Poincaré inequality < Beckner-type inequality (T') (34)

See Remark 20. See Theorem 18.

1 1-2"% 1
P(x)=1L,A= 5 (@)= sup ——, A==
() 2 pe(1,2) T(2-p) 2
VA such that u(4) <A, Cap,(4) > C,J,N(A)zﬁ(m)
Under assumptions Under assumption
(H1) or (H2) on F (H3) on F
Under assumption
Homogenous F-Sobolev inequality (32) (H4) on ¢
Under assumption 1
(H5) on F =9 =) ﬂ
Under (H6)
Poincaré inequality on o Additive ¢-Sobolev inequality (33)

Figure 1: The various implications.
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Here T : [0,1] — R is non decreasing, positive on (0,1] and T'(0) = 0. This
section explores the concentration results implied by such a property.

Herbst argument, see [28, 39, 3], derives Gaussian concentration for measures
1 satisfying a log-Sobolev inequality along the following lines: let A be a 1-
Lipschitz function. Applying the inequality to exp(Ah/2) provides the next
differential inequality for the Laplace transform H()\) = [exp(Ah)du

CLS

AH'(A) — H(\) log H(\) < ZES X2 ()).

Here Cps is the log-Sobolev constant. It can be explicitly solved and gives
the sub-Gaussian bound H()\) < exp(Au(h) + (Crs/4)A?). This easily yields
concentration.

In the case of a Poincaré inequality, this Laplace transform method works
[2], but provides an induction inequality for the function H. This approach
was performed by Latala and Oleszkiewicz for their inequality (i.e. (42) with
T(u) = u*1=3), 1 < a < 2). See [36], where optimization over p is crucial. As
also noted in [56], their argument extends as it is to general T'. It yields

Proposition 29. Let T : [0,1] = Rt be a non decreasing function such that
T(0) = 0 and positive elsewhere. Define 0(x) = 1/T (L) for z € [1,00). let p be a
probability measure on R™ and assume that there exists a constant C > 0 such
that for any smooth function f satisfies Inequality (42). Then any 1-Lipschitz
function h : R" — R wverifies [ |h|dp < 0o, and

(i) for any t € [0,/T(1)],
u({ : h@) — u(h) > t/Cr}) < e 5w,
(ii) for any ¢ > \/T(D),
p({z : h(z) ) > t/Cr}) < —VZsup,s 1 {t/0(y)—y}

Proof. We follow the argument of [36]. If H()\) = u(e*") is the Laplace trans-
form of a 1-Lipschitz function h, Inequality (42) for f = exp(\h/2) gives

HO) - H (g,\)z/p < %T@ —p)AZH(N).

Then, by induction, we get (see [56]) for any A < 2//CrT(2 — p),
) c ~2/(2-p)
(B < (1 - p)) .

Chebichev inequality ensures that for any p € [1,2) and A < 2/,/CrT(2 - p),

2

u({x  hiz) — u(h) > 1/Cr}) < *tm(l—CTT”m—p))_“’. (43)
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Fort < 24/T(1), weset p=1and A = T(l)% in the latter inequality. We get

2\
) > ) < T(l) — .
u({z : h(z) t\/Cr}) <e ( 4T(1))
In particular, for ¢t < 4/T(1) we have 1 — 4T(1) >e - oy . Thus,

u({z - h(z) — p(h) > tV/Cr}) < e 5

For the second regime, choose A\ such that 1 — CTTAQT(Q —p) = 1. It follows
from (43) that for any p € (1,2)

2ln2

u({z < h(@) — p(h) > 1/Cr}) < e Vi
Note that 2In2 < v/2. Thus, if y := p, we get
2 2In2 1
T\(/Q—t_p)+2—p < _f{ T2 — p) 2—1)}
S
One concludes the proof by optimizing in p € (1, 2) or equivalently in y € (1, 00).

O

The next statement provides an application of the latter result to concen-
tration with rate e~®® for a general convex ®. When ®(t) = t*, a € (1,2), it
reduces to the result by Latala and Oleszkiewicz.

Corollary 30. Let ® : Rt — R be an increasing convez function, with ®(0) =
0. Define 0(z) = (<I>’(<I>’1(;z:)))2 forz € RT andT(z) =1/6(%) for x € R*\{0},
T(0) = 0. Here ® is the right derivative of ®. Let u be a probability measure
on R™ and assume that there exists a constant Cr such that it satisfies the

generalized Beckner inequality (42). Then, for any 1-Lipschitz function h :
R" - R, [|h| < 00 and for any t > /T (1) V 2871(1),

ul{z : h(z) — p(h) > t/0r}) < e V22(5),

Proof. Thanks to Proposition 29, it is enough to bound sup,~;{t\/0(y) —
from below. By assumption ¢t > 2®71(1), so ®(¢/2) > 1. It follows that for

= ®(t/2),
sup{t\/ —y} > t/0(B(t/2)) — B(t/2) = t'(t/2) — B(t/2).

Since ® is convex and ®(0) = 0, one has z®'(x) > ®(z) for all x > 0. Hence,

supy>1{tv/6(y) —y} > 2(t/2). o
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Theorem 18 of Section 5 provides a criterion for a measure on the line to sat-
isfy a generalized Beckner inequality. Under mild assumptions, and if one is not
interested in estimating the constant, the condition may be further simplified.

Proposition 31. Let V : R — R be a C' function. Assume that du(z) =
Zyte=V@dy is a probability measure. Let T : [0,1] — Rt be non-decreasing
with T(0) = 0 and positive elsewhere. Assume that © — T(x)/z is non-
increasing. Define 8(z) = 1/T(1/z) for x € [1,00). Furthermore, assume that
(i) there ezists a constant A > 0 such that for all |z| > A, V is C? and
sign(z)V'(z) > 0,
g V'(2)
(“) \ml\lgloo V’(.’L’)2 =0,

(i) Tim sup 0(V(z) + log |V’($)| +log Zy) <o

|| =00 VI('Z')Z

Then u satisfies the following Beckner-type inequality: there exists a constant
Crt > 0 such that for any smooth function f,

J Pdp— ([ f1Pdu)?
pgtlll,g) T(2 - p)

< CT/f'2d#-

Proof. The proof is similar to the one of [12, Proposition 15]. Let m be a median
of p. Under Hypotheses (i) and (ii), when z tends to oo, one has (see e.g. [3,
chapter 6])

z V(z) 00 —-V(z)
V) g ~ & V(&) gt ~ &
/m e dt Vi) and /w e dt Vita)

Thus, for x > m,

u((z, ) T Vg 7, OV (@) +10g V(@) +log Zy)
T( : /m Y Y Vi(2)?

1
log(1+ iz, 07

By Hypothesis (4i%), this quantity is bounded on [A’, o00) for some A’. Since
the left hand side is continuous in z € [m, A'], it is bounded on (m,o0). It
follows from Lemma 19 that the quantity B4 (T) defined in Theorem 18 is
finite. Similarly B_(T') < +00. We conclude with Theorem 18.

|

The latter results provide a very general condition for dimension free con-
centration. Starting with an increasing convex concentration rate ® : Rt — Rt
with ®(0) = 0, we introduce the function T'(z) = 1/(®'(®~!(z)))2. Under
the additional assumption that v/® is concave, we know that T'(z)/z is non-
increasing. Therefore, under the assumptions of Proposition 31, a probability
measure du(z) = Zy,'e”V(#)dz on R satisfies the Beckner inequality with func-
tion T'. By the tensorisation property, the measures u®" verify the same inequal-
ity and by Corollary 30, they satisfy a dimension free concentration inequality
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with rate e~V2®(t/2) Note that our condition about v/® is quite natural since,
by the Central Limit Theorem, a dimension free concentration inequality has at
most a Gaussian rate.

The next application of our criterion provides the best expected concentra-
tion rate for certain log-concave distributions.

Corollary 32. Let ® : Rt — R be an increasing convez function with ®(0) =
0 and consider the probability measure du(zx) = qule_q’('w') dz. Assume that ®
is C? on [®~1(1),00) and that /® is concave.

Then there exits ¢ > 0 such that for all n > 1, every 1-Lipschitz function
h:R* — R is u®"-integrable and satisfies

p®({z : h(z) — p®"(h) > ty/c}) < e V22(%)
provided t > 20~ 1(1) v 1/(®'(®1(1))).

Proof. Set 6(u) = (®'(® 1 (u)))? and T'(u) = 1/6(1/u) for u > 0. The hypothe-
ses on ® ensure that T is non-decreasing and 7' (u) /u is non-increasing. We check
below that p satisfies a Beckner-type inequality with rate function 7. By the
above argument this implies the claimed concentration inequality for products.
Let us check that V(z) = ®(|z|) satisfies the three conditions in Proposition
31. By symmetry it is enough to work on R*. Condition (%) is obvious. Con-
dition (#7) is easily checked. Indeed since v/@® is concave, its second derivative
is non-positive when it is defined. So for large z we have /&> < 1/(2®). So
lim, o, & = 400 implies that lim ., ®" /&> = 0.

Now we prove that Condition (4i7) of the latter proposition is verified. Our
aim is to bound from above the quantity

0(®(z) + log ®'(x) + log Zs)
(13'(517)2

K(z) :=

By concavity of v/®, the function &' 2 /® is non-increasing. Thus for z > ®~1(1),
one has ®'(z)? < ®'(®~!(1))2®(x). Hence for x large enough log ®'(z) +
log Zg < ®(x), and K (z) < 6(2®(z))/®’ (x).

Since ® is convex, the slope function (®(z) — ®(0))/z = ®(x)/z is non-
decreasing. Comparing its values at = and 2z shows that 2®(z) < ®(2z). Thus
0(2®(x)) < &' (2z)? and for z large enough K (z) < ®'(22)2/®'(2)2. As 3'*/®

is non-increasing we know that ®'(2z)? < %@’ (z)2. On the other hand,
V/® being concave, the slope function \/®(z)/z is non-increasing so \/®(2z) <

24/®(z). Finally for z large

¥'(2z)?  ®(2x)
F@? = B@) =

K(z) <

The proof is complete.
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Remark 26. The hypotheses of Corollary 32 are simple but could be more gen-
eral. It is plain from Proposition 31 that we need the convexity assumptions
only for large values. The argument can be adapted to show that the measures
with potential ®(z) = |z|*log(1 + |z|)? with 1 < a < 2 and B > 0 satisfy a

dimension free concentration inequality with decay e ¢®®),

Remark 27. Other concentration results for products of log-concave measures
on the line follow from Talagrand exponential inequality, see [54, Theorem 2.7.1,
Proposition 2.7.4]. They involve a different notion of enlargement depending on
the log-concave density itself. However, they imply an analogue of Corollary 32,
under the similar assumption that ®(/¢) is subadditive.

7 Examples

In this section we study fundamental examples, starting with |z|® Boltzmann’s
measures in relation with Beckner’s type inequalities. We shall show in partic-
ular how to get dimension free inequalities.

7.1 |z|* Boltzmann’s measures.

In this subsection we are looking at the following probability measure dv¥™(z) =
[T, Z, ‘e 24=(®dg; on R", where as in section 3, 1 < a < 2 and

|z|* for |z| > 1

44
ala) gyt p ool L (1304 1a%) for |2 < 1. (44)

uq(z) = {

We will study two kind of F' functionals, starting from the capacity-measure

point of view. For each of them we give functional inequalities and derive

hypercontractivity (or hyperboundedness) property satisfied by the semi-group.
The first function of interest for us is

F,:R" - R
z —  (log(1+2))207%) — (log2)21~=). (45)
Note that it is a C2 non-decreasing function satisfying F, (1) = 0. It is negative

for x < 1 and positive for > 1.
The second function of interest is

F,:R* - R

0 if 2z €][0,2p]
T {<log<x))2<1—i>—<1og2p)2<1—i> it z>2 0 (40

where p > 1 is a fixed parameter. Note that F, is continuous but not C2. On
the other hand, it is always non-negative.

Proposition 33. Let 1 < a < 2. Let F, and F, defined in (45) and (46)

respectively. Denote by v3" = ®?:1ua,,~ the product measure of n copies of
dvg(z) = Z7 e 2u=(@)dg,
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Then, there ezist two constants C = C(a) and C = C(a, p) such that for
any integer n, for any smooth enough function f : R — R,

[ £ (5 f2))dv;?"sc RS
/f2 ( ®n fZ))dV§"§5/|Vf|2dy§".

Proof. We start with F,,. Fix n = 1. Then 0 is a median of v,. When z tends
to infinity, it is easy to check that

T 2™ 72m°‘
/ g2tV dt ~ € and / e~ 2ua(t) gt ~
0 20z2~1 w 2aze—1’

It follows that the two constants D, and D_ introduced in Theorem 28 with
B =2(1—1) are finite. Then, we conclude by Theorem 28 that there exists a
constant C, such that for every function f on R,

/ f2log? (1+ f?) dve — ( / f2dua) log? <1+ / f2d1/a> (47)

< Ca/|Vf|2dua.

and

Then, for any integer n, by Lemma 12 the latter inequality holds for v®" in R".
Finally, applying the inequality to f2/v2"(f?) gives the expected result.

The case of F, is a bit more difficult. Let 8 = 2(1— 1) and T(z) = |zfA. Ttis
easy to check that the hypotheses of Proposition 31 are satisfied (for ® = 2u,)
and thus that there exists a constant C = C(a) such that for any function
f:RoR

2

i

pe(1,2) (2-p)p
Now, by tensorisation property (see [36]), the same inequality holds for v®"
with the same constant C' (independent of n). Thus, by Theorem 18 together

with Lemma 19 (recall that T'(z) = |z|?), it follows that for any integer n, any
Borel set A C R with v®"(A) < 1/2,

<c/|w| dve.

1 B
V?n(A) (log(l + V&T(‘A))) S 2CCapVgpn (A)

Now, for any z > 2p, Fu(pz) < (log(1 + z))?. Therefore, for any Borel set
A C R* with v®"(A) < 1/(2p),

O (A)F, (2 )<2~ «(A).
MR, (s ) < 20Can,gn (1)

The expected result follows from Theorem 20. This achieves the proof. O
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Remark 28. It is not difficult to check that

0< inf C(a)< sup C(a) < +oo.
a€(1,2) a€(1,2)

This means that the constant C(«) appearing in Proposition 33 can be chosen
independently of @ € (1,2). This uniformity will be useful for applications.

Corollary 34. Let 1 < a < 2. Let F, defined in (45). Denote by v&" =
®F vy, the product measure of n copies of the probability measure dv,(z) =
Zte=2ua(@)dy. Define for any ¢ >0, any x > 0, 7,5“) (z) = z2eFa (@),

Then, there exists a universal constant C' such that for any integer n, any
function f :R®* - R and any t > 0,

N-r(zr))(Ptf) <e2'lIflly

where q(t) = Ct and Ng(g) := inf{\: [ ®(g/\)dv®™ < 1}.

Proof. The result is a direct consequence of Theorem 6, using Proposition 33
and Lemma 35 below.
O

Lemma 35. Let 1 < a < 2. Let F,, defined in (45). Define for any ¢ > 0, any
x>0, 7\ (z) = 22e97=(=") | Then,
(i) For any x >0, any q¢ > 0,

5— (4/a) 1
()" > — = ()" = ()"

(i) for any x >0, any ¢ > 0,
Tga) (w)F(m2) < Téa) (Z‘)F(Téa) () + 1.

Proof. Let 8 = 2(1 — é) Then 0 < B < 1. It is easy to check that for any
z >0,
zF(z)  x(1-p+log(l +x))
CFl(z)  (1+z)log(l+x)

— B.

We conclude the proof of point (i) applying Proposition 7 (note that 2 + 1 —
5-(/a) — 9 _ gy
3 .
Note that mp, := |minge(o,1) #Fa(z)| < 1. Hence, using remark 10 con-
cludes the proof of point (i7).
|

The analogue of Corollary 34 for F, is a bit harder due to differentiation
problem at x = 2p. The result is the following:
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Corollary 36. Let 1 < a < 2. Let Fy defined in (46). Denote by v@n =
®_ Va,i the product measure of n copies of the probability measure dv,(z) =
Zte2u(2)dy. Define for any q > 0, any x > 0, 7 (7) = g2eaFale?)

Then, there exists a constant C=C (a, p) such that for any integer n, any
function f : R* - R and any t > 0,

N (Bef) < I,

where q(t) = Ct and Ng(g) := inf{\ : J ®(g/N)dv@™ < 1}.

Proof. Let g be a C* non-negative function with compact support in [—1,0]
and such that [ g(y)dy = 1. For any e > 0 define g.(z) = £9(Z) and note that
Fo % g.(2) == [ Fa(z — y)g-(y)dy is a C> function.

Deﬁne for any € > 0, any ¢ > 0, %5,‘? (z) = z2etFarge(®)

Thanks to Lemma 37 below, }~7’a * g satisfies the hypothesis of Theorem 6,
uniformly in n. Thus, by Theorem 6 there exists two constants C = C(a, p)
and C' = C'(a, p) (maybe different from those one of Lemma 37) such that for
any integer n, any function f: R® — R and any t > 0,

NT-("‘) (Ptf) < e%(ﬁ"‘(2p+s)+551)t||f”2.
a(t),e
Then, it is easy to verify that for any function f, any ¢, when ¢ tends to 0,
Niw (Pf) = Nuw (Pif)  and  eb(Felrrareit g,
q(t),e q(t)

This achieves the proof.
O

i=1Va,i

Lemma 37. Let1 < o < 2. Let F, defined in (46). Denote by v&" = "
Le—2ua(z) Jyp Define for any

the product measure of n copies of dv,(z) = Z,,
g>0,anyz>0,T ( )( ) = a? etFa ()

Let g be a C*® non negative function with compact support in [—1,0] and such
that [ g(y)dy = 1. Define g-(z) = 1g9(2), and Fy * g () := [ Fa(z —y)g:(y)dy
for any € > 0, and for any q > 0, ﬁﬁj‘;) (z) = z2etfarge(e ) Then,

(2) for any e > 0 and any ¢ > 0,
(FDyFe) > 3-2(2- 0‘21/(04 log(2p)) (?,1(?;))'2
(#¢) For any € > 0 small enough, any ¢ > 0, and any z > 0,

ﬁa*.%( )<F * ge (T, (a)( ))-

(iii) There ezist two constants C = C(a, p) and C' = C'(a, p) such that for any
integer n, any function f :R® = R and any € > 0 small enough,

PRt e < ¢ fivrpagr

+(}7’a(2p+6)+5C~")/f2dV§’".
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Proof. Let f=2(1-1).
We start with (7). The result is obviously true for z < 2p. For z > 2p, an
easy computation gives

— =14+ —-o:.
F!(x) log - log(2p) * alog2p

xﬁg(x)_l—ﬁ+1ogx< 1-3 2—a

Thus, by Lemma 38 below we get that for any € > 0, any = > 0,

oFar 0" (@) + (14 200 (Fa g (@) 20

The result follows from Proposition 7.

For (ii) note that for any & < 2p — 1, F,, x g. = 0 on [0,1]. Thus the result
becomes obvious thanks to Remark 12.

Next we deal with (iii). First note that F, * g. = 0 on [0,2p — &]. Then, for
x € [2p — €, 2p], since F,, is non-decreasing,

Fo s gu(a) = / Pz — 9)g.()dy < Fu(20 + ).
{—e<y<o0}

Finally, for > 2p, since F, is non-increasing,

Farge@) = Ra@+ [ (Fale—9) = Falolac)dy

F(z) + F
(x) +¢ e o (?)

Fule) + eFL(2p"),

IA

IA

a—2

where we have set F!(2p%) = lim,_ o)+ Fl(z) = ‘);—_pl(log 2p) = . Hence, for
any integer n, for any function f : R® — R and any £ > 0 small enough,

/f2ﬁa*gs(7yg,{(2f2))du§" < /f?ﬁa(iygfzﬁ))dugn

+(Fal2p-+2) +eFa2p") [Pavgr,

a— a—2

The claimed result follows from Proposition 33, with C" = a—pl(log 2p) =« .
[l
Lemma 38. Let F : R+ — RT be a continuous non-decreasing function such
that F' = 0 on [0, 2p], for some p> 1, and F > 0 on (2p,0). Assume that F is
C? on (2p,00) and thatlim,_,»,+ F'(z) and lim, ,,,+ F"(z) exist. Furthermore,
assume that F" < 0 on (2p, 00).
Let g be a C*® non-negative function with compact support in [—1,0] and
such that [ g(y)dy = 1. Define ge(x) = Lg(Z) for any e > 0.
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Assume that for some X\ > 0, F satisfies for all x # 2p
oF"(z) + A\F'(z) > 0.
Then, for any € > 0 small enough, any z > 0,
o(F x ge)" (z) + MF = g)' () > 0. (48)

Here, F x g(z) := [ F(z — y)g-(y)dy.
Proof. Note that for any € > 0, F' x g. is a C* function. Fix ¢ € (0, 2p).

If x € (0,2p—¢), then it is easy to check that F'x g.(x) = 0. Thus (48) holds
for any = € (0,2p — ¢) and by continuity for any = € [0,2p — ¢).

Now fix x € (2p, 00) and note that for any y € supp(ge) C [—¢,0], z—y > 2p.
Thus F'(z —y) and F"(xz — y) are well defined. It follows that

2(F % .)'"(2) + A(F * ge)'(z) = / F" (@ — y) + AF'(z — 4)]ge (v)dy.

Since F"" <0 and y <0, zF"(x —y) > (xr —y)F"(x — y). Hence, the left hand
side of the latter inequality is bounded below by

/ (&~ 9)F"(z —y) + AF'(z — 1)lg. (y)dy > O

by our assumption on F. Thus (48) holds for any = > 2p and it remains the
case x € [2p — €, 2p]. By continuity, it is enough to deal with z € (2p — ¢, 2p).

Fix ¢ € (2p — ¢,2p). Choose h such that z + h < 2p and note that if
z —y < 2p, then F(z —y) = 0. Hence,

/F(m—y+h})l—F(x—y)gE(y)dy:
/ F(:c—y+h})L—F(a:—y)g€(y)dy
—e<y<—(2p—=)

+/_ Mgg(y)dy_

(2p—z)<y<0 h

The second term in the latter equality is non-negative because F' is non-negative.
It follows by Lebesgue Theorem that

(Fro)@> [ F'(z = )g:(y)dy-
{—e<y<—(2p—2)}
The same holds for (F' * g.)"(z) because F' is non-negative. Now, as in the

previous argument, by our hypothesis on F, z(F * g.)"(z) + A(F * g.)'(z) is
bounded below by

/ [¢F"(z — y) + AF'(z — y)]g: (y)dy
{—e<y<—(2p—2)}

> / (2 = 9)F"(z — y) + AF' (& — 9)lg-(4)dy > 0.
{—e<y<—(2p—2)}

Working version - December 7, 2004.



Interpolated inequalities between exponential and Gaussian. 57

7.2 A general perturbation argument.

In Section 3 we discussed a perturbation argument in order to prove the hy-
perboundedness of Pt(a) the semi group associated to v,. In the previous sub-
section we recovered and improved these results by using the capacity-measure
approach and the Gross-Orlicz theory. We shall below show that one can also
derive the results in Proposition 33 by a perturbation argument on F,-Sobolev
inequalities (see [21, section 4] for a similar argument for usual log-Sobolev in-
equalities). The argument can be easily generalized to other situations, but we
shall not develop a complete perturbation theory here.

Recall that Lebesgue measure on R" satisfies a family of F' = log, Sobolev
inequalities 4.e. for all > 0 and all f belonging to ! (dz) N IL> (dz) such that
[ fPdz =1

/f210g+f2d:1:§2n/|Vf|2d:c+2+glog(1), (49)

)
see e.g. [27] Theorem 2.2.4. In the sequel we denote by c¢(n) the constant in
(49).
Set B =2(1 — 1) which is less than 1. According to Lemma 47 in the next
section F,(z) = log?(1 + ) —log®(2) < logz for z > 1. Since F,(z) is non
positive for x < 1, it follows

/ PRz < / Flog, fids. (50)

Let V be smooth and satisfying the conditions stated in Section 3. Denote by
vy(dz) = e~ 2Vdx the associated Boltzmann measure and introduce g = eV f.
Remark that [ g?dvy = 1. According to (49) and (50), a simple calculation
yields

/gQFa (¢’ V) dvy < 277/|Vg|2dl/v+c(n)
+ 217/92 (AV — |VV?) dvy. (51)

Since 8 < 1, (A + B)? < AP + BP for positive A and B. Hence if V > 0
log”(1+ g?e¢™?") +log”(€*V) > log’ (e’ + ¢*) > log” (1 + ¢%),
while for V <0
log?(1 4 g%¢™*") +1log” (e*IV'!) > log” (1 + g%~V > log”(1 + ¢°).
It follows that

/ PRy < 2 / IVo2dvy + e(n)

+ [ ¢ (1087 @) + 20(AV = [VVE) ) vy (52)
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Now we introduce the convex conjugate function H, of ¢ — xF,(x). Using the
Young’s inequality zy < exF,(z) + Hq(y/€) in (52) we obtain

2
[eFaeian < 2 [ 1VaPavy +em,e) (53)

i [ Ha (@ (@VDP + 20(aV = [9VE))) d.

We have thus obtained

Theorem 39. Let vy(dz) = e 2Vdx be a Boltzmann measure defined for a
smooth V as in section 8. Denote by H, the conver conjugate of x — zF,(x).
Assume that

(i) there exist some £ > 0 and some A > 0 such that

/Ha ((2+OIV[]P + NAV — |[VV[3]) dvy < +o0,

(i) vy satisfies a Poincaré inequality.

Then the conclusions of Proposition 33 for F, are still true replacing vy by vy .
As a consequence the conclusions of Corollary 34 are also still true.
Both conditions (i) and (ii) are satisfied when V satisfies assumption OB in

section 3 with G(y) = c|y|2(1_é) for some ¢ and V goes to infinity at infinity.

Proof. Inequality (53) and Hypothesis (i) ensure that vy satisfies a defective
homogeneous F, Sobolev inequality. It is easily seen that F, fulfills the hy-
potheses of the Rothaus-Orlicz Lemma 9. Hence (4¢) and Theorem 10 allow to
tight the homogeneous F,-Sobolev inequality. Since
2
log? (1 + ¢?) < logP(1 + %) +1log?(1+ /gz)

Inequality (47) holds when we replace v, by vy. Hence we may use the tensori-
sation property as in Proposition 33 to end the proof.

Finally (%) is clearly implied by OB, while (i7) follows from Remark 4. [

Again the situation is more delicate when dealing with E,.

8 Isoperimetric inequalities

In this section we show that the Orlicz-hypercontractivity property implies
isoperimetric inequalities. These results are more precise than the concentration
inequalities derived in Section 6 via the Beckner type inequalities. Let us recall
the basic definitions. Let u be a Borel measure on R". For a measurable set
A C R" we define its py-boundary measure as

115(0A) = lim inf #(An) — p(4)

h—s0+ h ’
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where Ay, = {z € R"?,d(z, A) < h} = A+ hB¥ is the h-enlargement of A in the
Euclidean distance (here B} = {# € R"; |z| < 1}). The isoperimetric function
(or profile) of a probability measure on R" is

I(a) = inf{u,(0A); p(4) =a}, ae[o,1].

We shall write I+ for the isoperimetric function of the product measure (on
R the enlargements are for the Euclidean distance, that is the ¢5 combination
of the distances on the factors). Finally we set I :=infg>1 [x.

We follow Ledoux’s approach of an inequality by Buser [37] bounding from
below the Cheeger constant of a compact Riemannian manifold in terms of its
spectral gap and of a lower bound on its curvature. Ledoux also deduced a
Gaussian isoperimetric inequality from a logarithmic Sobolev inequality. The
argument was extended to the framework of Markov diffusion generators by
Bakry and Ledoux [7]. Moreover these authors obtained dimension free con-
stants. The following result is a particular case of [7, Inequality (4.3)]. It allows
to turn hypercontractivity properties into isoperimetric inequalities.

Theorem 40. Let u be a probability measure on R* with du(z) = e~V (@ dx with
V" > 0. Let (Py)i>o0 be the corresponding semi-group with generator A —VV.V.
Then for every t > 0 and every smooth and bounded function, one has

IF12 = 1Py 12 < V2E| llso / IV ldu.

In particular (applying this to approximations of characteristic functions) for
any Borel set A C R"® one has

u(A) = IPy2Lall3 < V2tp,(0A).

Remark 29. If one only assumes that V" > —R-Id for R > 0 then the statement
is valid with an additional factor (2tR/(1 — exp(—2tR)))'/? on the right-hand
side. This factor is essentially a constant when ¢t < 1/R.

In order to exploit this result we need the following two lemmas.
Lemma 41. Let the measure pu and the semi-group (P;)¢>0 be as before. Let T be
a Young function, and assume that for all f € 1.2 () one has N, (Pyf) < C||fl|2-

Then for every Borel subset A of R™ one has |PIalls < Cu(4)r—! (;&))),
1

where T~ stands for the reciprocal function of T.

Proof. Since Py is symmetric for u, one gets by duality that P; maps the dual
of (L, (u),N,) into L?(u) with norm at most C. So for every A, ||P;I4l2 <
C||Lal|7+- Recall that the latter norm is

alle = sup{ [ ot [ rtorin < v}
sup{ [ adis [ @ <0} = uar (Z5).
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Indeed Jensen inequality yields [, T(g)u—‘fA”—) >T ( N gu—‘ZA“—)) , which is tight for
9 ="Tar 1 (1(1)/1(4)).
O

Lemma 42. Let F : RY — R be a non-decreasing function with F(1) =0, and
continuous on [1,+00). Consider for g,z > 0, the function 14(z) = z2e1F(@*)
Assume there exists constants ci,ce such that for all x > 1 one has F(z) <
c1logz and F(z?) < coF (z). Then for all ¢ € [0,1/c1] one has

M) < Ve =W,y >
Proof. Set ©(x) = exp(—gF(x)/(2¢2)). Setting y = 75(x), * > 1 the claimed
inequality can be rephrased as:
2 < 7,(@)0(ry(2)) = zed e s OPUED) g5,

This is equivalent to F(z? exp(qF (2?))) < c2F(x?). The latter follows from the
hypotheses: for ¢ < 1/c1, F(2? exp(qF(x?))) < F(z?T24°1) < F(z*) < caF(2?).
O

Theorem 43. Let p be a probability measure on R" with du(z) = e V(®dz
and V" > 0. Assume that the corresponding semi-group (Py)¢>o with generator
A —VV -V satisfies for every t € [0,T] and every function in L2 (R", p),
No (Pef) < ClIfll2,

where k > 0,C > 1 and for ¢ > 0,2 € R, 7,(z) = z*exp(q¢F(2?)). Here
F : [0,00) = R is non-decreasing and satisfies F(1) = 0, and for z > 1,
F(z) < cilogz, F(2?) < coF(x). Then if A C R"™ has small measure in
the sense that F(1/u(A)) > c2log(2C?)/ min(kT,1/c1) one has the following
isoperimetric inequality:

1 k 3 1\?
Ha(04) 2 3 ( log<2c2)> WAF (u(A)) '
calog(2C?)

The symmetric inequality holds for large sets: if F (1—;(A)) > min(hT17c1)?
then

o=

@) § (s ) (1= wa)F (I%H(A)) .

Proof. We combine the above results and choose an appropriate value of the
time parameter. If ¢ < min(27,2/(kc;y) then

p(A4) — (1P 1all3

ps(0A4) > Nor
) - (Cutarma ()
> Vo
> u(A)l_C%XP(:/Q—{TZF(ﬁ))'
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2¢co

is compatible with the condition ¢ < min(27,2/(kec1) provided F(1/u(A)) >
c210g(2C?)/ min(kT,1/c1). Under this condition, this value of time yields the
claimed isoperimetric inequality for small sets. For large sets note that applying
the functional inequality of Theorem 40 to suitable approximations of the char-
acteristic function of A° gives v2tu,(0A) > p(A°) — ||Pyja1ac||3, so the study
of small sets apply.

At this point we wish to choose ¢ so that £ = C?exp ( - ﬁF(ﬁ)) This

O

Remark 30. Under the weaker assumption V"' > —R for R > 0 we have similar
results with constants depending on R.

Remark 31. Under specific assumptions on F' we have shown that Cap,(4) >
w(A)F(1/u(A)) for all A implies continuity of the semigroup in the Orlicz
scale 7,(z) = 2% exp(¢F (2?)), which implies, at least for small sets, ps(0A) >
Ku(A)\/F(1/u(A)). Note the analogy between these relations and also the
inequality

1 (04) > Capfl) () s= it { [19f1dpisf > Taand (s =0) > 1/2}.

The previous theorem provides a lower bound on the isoperimetric profile for
small and large values of the measure only. We deal with the remaining values,
away from 0 and 1, by means of Cheeger’s inequality. The dimension free version
of Buser’s inequality for diffusion generator, contained in the work of Bakry and
Ledoux allows to derive Cheeger’s inequality from Poincaré inequality.

Theorem 44. Let i be a probability measure on R™ with du(z) = e V@ dz
and V" > 0. Assume that the corresponding semi-group (Py)¢>0 with generator
A —VV -V satisfies the following Poincaré inequality: for aoll f

A / (f = p()*dp < / IV £ dp.

Then for every Borel set A C R™ one has

1y (04) > 1 ‘ﬁ VAR(A)(L = u(A)).

The argument is written in the setting of Riemannian manifolds in [40,
Theorem 5.2]. We sketch the proof for completeness.

Proof. The spectral gap inequalities classically implies the exponential decay of
the norm of P; on the space of zero mean. Therefore

IPrjoLall3 = [Prj2u(A)3 + IPyy2(La — u(A)I3

HAY + e MLy = (A3
HAY + e Mu(A) (L - p(A)).

A
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By Theorem 40, one has
V2H,(94) > (1 — e M)u(A)(1 - p(A)).

Choosing t = 1/A concludes the proof.
O

Finally we apply the previous results to infinite products of the measures:
me(dz) = exp(—|z|*)/(2T'(1 + 1/a))dz, x € R. For technical reasons, we also
consider the measures v, defined in section 7 up to the irrelevant constant 2.
They also have a log-concave density, but more regular. The isoperimetric func-
tion of a symmetric log-concave density on the line (with the usual metric) was
calculated by Bobkov [14]. He showed that half-lines have minimal boundary
among sets of the same measure. Since the boundary measure of (—o0, t] is given
by the density of the measure at t, the isoperimetric profile is easily computed.
They are readily compared to the functions

. 1 1
La(t) = mln(t, 1-— t) logl @ (m) .

We omit the details, some of them are written in [9].

Lemma 45. There are constants ki,ks such that for oll a € [1,2], t € [0,1]
one has
k1La(t) < Iy (t) < kaLo(2),

lea (t) S Iua (t) S k2La (t)

Our goal is to show the following infinite dimensional isoperimetric inequal-
ity.

Theorem 46. There ezxists a constant K > 0 such that for all o € [1,2] and
t € [0,1], one has
L= (t) > KLo(2).

Since I, < I, < kaL,, we have, up to a constant, the value of the isoperi-
metric profile of the infinite product.

Proof. As shown in Corollary 34 of Section 7 the semi-group associated to v$™ is
Orlicz-hyperbounded. Thus we may apply Theorem 43 with F' = F}, defined in
(45) and get an isoperimetric inequality for small and large sets, with constants
independent of the dimension n. This step requires to check a few properties
of the function F,. They are established in the following Lemma 47. More
precisely there are constants K;,K, > 0 independent of o and n such that,
denoting B(a) =2(1—1/a)

1

1 2
S K min(e 1 — B(a) oeB@
I,en(t) > Kimin(t,1—1) [log (1 + T t)) log”'*(2) (54)

Working version - December 7, 2004.



Interpolated inequalities between exponential and Gaussian. 63

provided

1

1 2
logf@ (14— ) —10g%@(2)) > K.
(og ( +min(t,1—t)> 08" (2) =72

We can prove (54) in the remaining range as well. Indeed, it is plain that

x

1
supva([z,+00)) | — < M,
z>0 0 Pra

so that the measures (Va)ae[1,2) satisfy a Poincaré inequality with a uniform
constant. The latter inequality has the tensorisation property, so the measures
v@™ also share a common Poincaré inequality. By Theorem 44, there exists a
constant K3 > 0 such that for all n, all & € [1,2] and all ¢ € [0, 1]

Ien(t) > Kzmin(t,1 —t). (55)

Since the exponential measure has a spectral gap, the latter argument reproves,
with a slightly worse constant, the result of [16]. Now assume that

log#(®) (1 + ) —10g?@(2) < K2,

min(t,1 —t)

then

K
Lon(t) > F3min(t,1—t)K2

Va
2
1

3 ) — log?(®) (2)] 2

> Ks min(t, 1—t) [1og5<“) (1+

K, min(¢,1—1)

So Inequality (54) is valid for all ¢ € [0, 1] provided one replaces K; by K4 :=
min(K;, K3/K>). Finally, the uniform Cheeger inequality (55), implies that

1

Ien (t) > log?(®/2(2) min(t, 1 — t).
K3 «

Adding up this relation to

ih;@n (t) > min(t,1—t) [1Ogﬂ(a) <1 +

1
Y L 1odP @9
Ky min(t,l—t)) 8 ( )]

> min(¢, 1 —t) [logﬁ("‘)/2 (1 + ) - logﬁ(a)/Q(Q)]

min(t,1 —t)
yields the claimed inequality. This manipulation was important in order to get
a non-trivial inequality when « tends to 1, i.e. when B(«) tends to 0.

O

The following technical result was used in the above proof.
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Lemma 47. Let 8 € [0,1] then for all > 1 one has
log? (1 + 2) —log?(2) < log z, (56)
log? (1 + 2?) —log?(2) < 8 (logﬁ(l +z) — logﬂ(Q)) . (57)

Proof. Note that (56) is an equality for z = 1. It is enough to prove the
inequality between derivatives, that is Slog® ' (1 + z)/(1 4+ z) < 1/z for z > 1.
If £ > e — 1 then log’ ! (1 +z) < 1 and the inequality is obvious. If 2 < e — 1,
then log® (1 + z) < 1, therefore

log? (1 + z) 1

1
(1+2) = (1+x)log(l + ) SE'

Next we address (57). One easily checks that for A > B > 1 the map § >
0 — (AP—1)/(BP-1) is non-decreasing. Applying this to A = log(1+22)/log(2)
and B = log(1 + z)/log(2) shows that it is enough to prove (57) for 5 = 1. Let
x > 1, since 1 + 22 < (1 + z)? one has

log(1 +z%) —log(2) < 2log(1l+ z) —log(2)
= 2(log(l + z) —log(2)) + log(2).
If z > 3 then log(1 + z) — log(2) > log(2) and the claimed inequality is proved.

For z € (1, 3], we use the fundamental relation of calculus. It provides ¢; € (1,9)
and ¢, € (1,3) with

log(1 + %) —log(2) = (2* — 1) 1 _i 7 <2(z-1)
and
log(1+ z) —log(2) = (z — 1)1 _i 5 >(xz-1)/4

So the ratio is bounded from above by 8. A smarter choice than 3 would give a
better result.
O

Remark 32. According to Theorem 39 the conclusion of Theorem 46 is still
true with the same L, when replacing v, by vy, provided V is convex and the
hypotheses in Theorem 39 are fulfilled.

We conclude the paper with consequences of Theorem 46. The first one
is a comparison theorem. It could be stated in a more general framework of
metric probability spaces satisfying a smoothness assumption (see e.g. [10]).
For simplicity we write it in the setting of Riemannian manifolds where the
definition of isoperimetric profile given in the beginning of the section applies.

Theorem 48. Let (X, d, u) be a Riemannian manifold, with the geodesic metric,
and a probability measure which has a density with respect to the volume. On the
product manifold we consider the geodesic distance, which is the 2 combination
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of the distances on the factors. There exists a universal constant K > 0 such
that if for some ¢ >0, v € [0, %] and all t € [0,1] one has

1
> 1 — L
I,(t) > cmin(t,1 —t) log ( in(, 1 t))’

then for alln > 1, t € [0,1] one has

Ten(t) > % min(t, 1 — t) log” (

1

min(¢, 1 — t)) '

Remark 33. This provides a scale of infinite dimensional isoperimetric inequal-
ities. Both ends of the scale where previously known. A standard argument
based on the central limit theorem shows that if p is a measure on R with second
moment then inf, I,,¢~» is dominated by a multiple of the Gaussian isoperimet-
ric function, which is comparable to min(¢,1 — ?) 10g1/2(1/min(t, 1—1)). On
the other hand an argument of Talagrand [52] shows that the weakest possible
dimension free concentration result for p implies that it has at most exponential
tails. The isoperimetric function of the exponential density is min(¢,1 —¢). So
the above scale covers the whole range of infinite isoperimetric inequalities. Of
course finer scales could be obtained from our methods, with more effort.

Remark 34. A similar statement was proved in [11] for the case when the dis-
tance on the product space is the £, combination of the distances on the factors
(i.e. the maximum). This case was much easier due to the product structure of
balls in the product space. Also, this notion leads to bigger enlargement, and
the scale of infinite dimension behavior was larger, the values v € [0, 1] being
allowed.

of Theorem 48. The hypothesis implies that I, > =1, fora =1/(1-17) €
[1,2]. Theorem 10 in [10] asserts that among measures having the same concave
isoperimetric behavior, the even log-concave one minimizes the isoperimetric
profile for the product measures, see also [48]. So we have I, gn > éI”(@n. By
the previous results I e» > KL, and the proof is complete.

([l

The second consequence that we wish to put forward deals with the measures
dmg(z) = exp(—|z|*)dz/(2T'(1 + 1/a)), @ € [1,2]. It shows that among sets of
prescribed measure for m®” in R, coordinate half-spaces have enlargements of
minimal measure, up to a universal factor. The result was known for a € 1, 2.

Theorem 49. There ezists a universal constant K such that for every o € [1,2],
n > 1 and every Borel set A C R™, if m&™(A) = mqy((—o0,t]) then for h >0,

m%”(A—Fth‘) > Mg ((—oo,t—l— %]) .
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Proof. This fact is proved by integrating the inequality I, &= > I’"T" which
provides a similar information about boundary measure (this corresponds to
infinitesimal enlargements). This isoperimetric inequality is a consequence of
the fact that I,,,_ is comparable to I, . The comparison theorem of [10] implies
that I, o« is larger than a universal constant times [ en > KLq > %Ima. O
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