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Interpolated inequalities between exponentialand Gaussian, Orli
z hyper
ontra
tivity andisoperimetry.F. Barthe1, P. Cattiaux2, C. Roberto31 Universit�e Toulouse III,e-mail: barthe�math.ups-tlse.fr2 E
ole Polyte
hnique et Universit�e Paris X,e-mail: 
attiaux�
mapx.polyte
hnique.fr3 Universit�es de Marne la Vall�ee et de Paris XII Val de Marne,e-mail: roberto�math.univ-mlv.frJuly 13, 2004Abstra
t. We introdu
e and study a notion of Orli
z hyper
ontra
-tive semigroups. We analyze their relations with general F -Sobolevinequalities, thus extending Gross hyper
ontra
tivity theory. We pro-vide 
riteria for these Sobolev type inequalities and for related prop-erties. In parti
ular, we implement in the 
ontext of probability mea-sures the ideas of Maz'ja's 
apa
ity theory, and present equivalentforms relating the 
apa
ity of sets to their measure. Orli
z hyper-
ontra
tivity eÆ
iently des
ribes the integrability improving prop-erties of the Heat semigroup asso
iated to the Boltzmann measures��(dx) = (Z�)�1e�2jxj�dx, when � 2 (1; 2). As an appli
ation we de-rive a

urate isoperimetri
 inequalities for their produ
ts. This 
om-pletes earlier works by Bobkov-Houdr�e and Talagrand, and providesa s
ale of dimension free isoperimetri
 inequalities as well as 
ompar-ison theorems.Key words. Isoperimetry { Orli
z spa
es { Hyper
ontra
tivity {Boltzmann measure { Girsanov Transform { F -Sobolev inequalities{ MSC 2000: 26D10, 47D07 , 60E15, 60G101. Introdu
tion.Sobolev type inequalities play an essential role in the study of the
on
entration phenomenon for probability measures. They are also apowerful tool to analyze the regularizing e�e
ts and the 
onvergen
e



2 F. Barthe et al.to equilibrium of their asso
iated symmetri
 semigroups. In parti
-ular, several surveys deal with the 
elebrated Poin
ar�e (or spe
tralgap) inequality and the stronger logarithmi
-Sobolev inequality andprovide striking appli
ations [33℄, [4℄, [3℄, [39℄, [34℄, [52℄.A 
on
rete illustration 
an be given for the family of probabilitymeasures on the real line��(dx) = (Z�)�1e�2jxj�dx; � > 0:These measures and their produ
ts �
n� deserved parti
ular atten-tion in re
ent years, where the fo
us was on dimension free proper-ties. They enter Talagrand's work on the 
on
entration phenomenonfor produ
t measures. His study was 
ontinued by Ledoux [39℄, whostrongly put forward the use of the logarithmi
 Sobolev inequalityfor 
on
entration, and more re
ently by Bobkov and Houdr�e [19℄ whointrodu
ed L1 -Sobolev type inequalities in order to study the moredeli
ate isoperimetri
 problem. We review the main results 
on
ern-ing these measures and the asso
iated semigroup (P�t )t�0 generatedby the operator L� su
h thatL�f = 12f 00 � �jxj��1sign(x)f 0:For � > 0 the measures �� verify a Weak Spe
tral Gap propertyintrodu
ed by Aida and Kusuoka as shown in [48℄. They satisfy theSpe
tral Gap inequality exa
tly when � � 1, and the logarithmi
Sobolev inequality if and only if � � 2.When � < 1 there is no dimension free 
on
entration property[53℄. Oppositely, the measures enjoy very strong properties when� > 2. The 
orresponding semigroup is ultra
ontra
tive [36℄, mean-ing that for positive time it is 
ontinuous from L2(��) to L1 . Themeasures satisfy a dimension free Gaussian isoperimetri
 inequality[8, Theorem 9℄, and this is as bad as it gets by the Central LimitTheorem. Re
ently, Bobkov and Zegarlinski [18℄ obtained 
on
en-tration inequalities for these measures but for the `n�-distan
e on Rn .Their results are based on appropriate modi�
ation of the logarithmi
Sobolev inequality, and show di�erent behaviors for di�erent valuesof �. This was not the 
ase when 
onsidering the Eu
lidean distan
e.The range � 2 [1; 2℄ presents very interesting properties. We startwith the Gaussian 
ase, � = 2, whi
h is best understood. Con
en-tration of measure and isoperimetry in Gauss spa
e are now 
lassi
al(see e.g. [39,7℄). It is remarkable that they are both dimension free.Re
all that the isoperimetri
 inequality asserts in parti
ular that forA � Rn with �
n2 (A) = �2((�1; t℄) one has for all h > 0,�
n2 �A+ hBn2 � � �2�(�1; t+ h℄�: (1)July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 3Here Bn2 is the n-dimensional Eu
lidean ball. Taking limits one ob-tains that among sets of given Gaussian measure, half-spa
es haveminimal Gaussian boundary measure.On the other hand, the Gaussian measure has remarkable ana-lyti
 properties: the 
orresponding Ornstein-Uhlenbe
k semigroup ishyper
ontra
tive, as dis
overed by Nelson [46℄. Gross proved that thisfa
t is equivalent to the logarithmi
 Sobolev inequality [32℄. Let usalso mention that the Gaussian measure is the prototype of stri
tlylog-
on
ave measures. It was a su

ess of the Bakry-Emery formal-ism to allow the extension of most of the previous results to abstra
tsemigroups with positive 
urvature (see [6℄ for logarithmi
 Sobolevinequalities and [7℄ for Gaussian isoperimetry and an abstra
t versionof the Levy-Gromov theorem).The two sided exponential measure � = 1 is also well understood.Talagrand's paper [53℄ provides the following very pre
ise estimate:if A � Rn veri�es �
n1 (A) = �1((�1; t℄) then for all h � 0 it holds�
n1 (A+ hBn1 +phBn2 ) � �1((�1; t+ h=K℄);where K is a universal 
onstant and Bnp = fx 2 Rn ; Pni=1 jxijp � 1g.See also [42,56℄. In a slightly weaker form, su
h a statement wasre
overed by Bobkov and Ledoux [17℄, via a modi�ed logarithmi
Sobolev inequality whi
h is equivalent to Poin
ar�e inequality. Thusprodu
ts of measures on Rd with a spe
tral gap satisfy a 
on
en-tration inequality on the exponential model. Moreover, Bobkov andHoudr�e [16℄ proved that �
n1 satis�es a dimension free isoperimet-ri
 inequality of Cheeger. The proof relies on an L1 version of thePoin
ar�e inequality, and the statement 
an be rephrased as follows:let A � Rn with �
n1 (A) = �1((�1; t℄) then for all h � 0�
n1 �A+ hBn2 � � �1���1; t+ h2p6��: (2)This result 
ompletes the one of Talagrand. It is weaker for largevalues of h but gives isoperimetri
 information as h goes to zero.Understanding the 
ase � 2 (1; 2) is the task of the present paper.The 
on
entration phenomenon is already well des
ribed. Indeed, Ta-lagrand's exponential inequality transfers to �� for any � > 1 [54℄and ensures that for every A � Rn and h > 0�
n� �A+ h1=�Bn� +phBn2 � � 1� 1�
n� (A)e�h=K :In parti
ular if � 2 (1; 2) and �n�(A) � 1=2 one gets that for h � 1,�n�(A+ hBn2 ) � 1� 2e�h�=K . A fun
tional approa
h to this fa
t wasre
ently dis
overed by Lata la and Oleszkiewi
z [37℄. These authorsJuly 13, 2004.



4 F. Barthe et al.established the following family of Sobolev inequalities: there existsa universal 
onstant C su
h that for all 1 < p < 2 it holdsZ f2d�� � �Z jf jpd��� 2p � C(2� p)2(1� 1� ) Z (f 0)2d�� (3)for smooth enough f . For � = 2 these inequalities are due to Be
kner[13℄. Inequalities (3) interpolate between Poin
ar�e and log-Sobolev.They enjoy the tensorisation property and imply dimension free 
on-
entration with de
ay e�Kt� as expe
ted. Obviously [37℄ was thestarting point of an extension of the log-Sobolev approa
h to 
on-
entration, en
ompassing more general behaviors. Re
ently two of ussimpli�ed the proof of (3) and 
hara
terized all measures on R satis-fying the same property [12℄ (su
h a 
riterion for log-Sobolev alreadyexisted, thanks to Bobkov and G�otze [15℄). See [20℄ for other devel-opements. Inequalities (3) above are part of a more general familydenoted �-Sobolev inequalities. A study of this family in 
onne
tionwith some aspe
ts of semi-group theory is done in [25℄.The initial goal of this work is to obtain a pre
ise dimension freeisoperimetri
 inequality for �
n� when � 2 (1; 2). Namely we want toprove that there exists a 
onstant C su
h that for all n 2 N(�
n� )s(�A) � C�
n� (A)� log � 1�
n� (A)��1� 1� ; (4)for all A su
h that �
n� (A) � 12 , where �s(�A) denotes the surfa
emeasure of A (see se
tion 8). This bound is known for � = 1 [16℄and � = 2 [7℄ and 
an be dedu
ed from [14℄ in dimension 1. So (4)is exa
tly what is expe
ted. This result is stronger than the 
on-
entration result. Indeed it implies that for all n and A � Rn with�
n� (A) = ��((�1; t℄) one has�
n� �A+ hBn2 � � ���(�1; t+ h=K℄�:This interpolates between (2) and (1).Inequality (4) will be shown in Theorem 20 as the a
hievementof a somewhat intri
ate story. A
tually, we prove mu
h more anddevelop several useful methods on the way. They should �nd a �eldof appli
ations in the study of empiri
al pro
esses or in statisti
alphysi
s.Before des
ribing the organisation of the paper, let us explain thatour proof relies on a method initiated by Ledoux [38℄ and improvedin [7℄. It 
an be summarized as follows: any integrability improvingproperty of a semigroup with 
urvature bounded from below providesisoperimetri
 information for the invariant measure. Hen
e our prob-lem translates to a question on the semigroup (P�t )t�0 for � 2 (1; 2).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 5However, a theorem of H�egh-Krohn and Simon [35℄ shows that P�t isnever 
ontinuous from L2(��) to L2+"(��). Sin
e the Lp s
ale is toorough for our problem, we analyze the regularizing properties in ap-propriate s
ales of Orli
z spa
es and ask wether the semigroup mapsL2(��) into a smaller Orli
z spa
e.Se
tion 2 
ontains the required elements on Orli
z spa
es.Se
tion 3 presents a suÆ
ient 
ondition on the Young fun
tion �for Q�t (a slightly modi�ed P�t ) to map 
ontinuously L2 into L� , fora �xed t. This 
ondition relies on the probabilisti
 representation ofP�t (Girsanov transformation) and on martingale methods inspiredby [36,21℄. Unfortunately the method 
annot rea
h the 
ontra
tionproperty (only boundedness, simply 
alled � -Orli
z hyperbounded-ness) and does not easily yield expli
it bounds. The 
riterion readilyextends to 
ertain perturbations of an ultra
ontra
tive semi-group.In order to get 
ontra
tion results and expli
it bounds, we buildin Se
tion 4 the full analogue of Gross theory. Following [22℄ we startwith the analogue of a result by H�egh-Krohn and Simon (Theorem4): if Pt0 is 
ontinuous from L2(�) into L� (�) then � satis�es a defe
-tive logarithmi
 Orli
z-Sobolev inequality (DLOSI). This is a
tuallya parti
ular F -Sobolev inequality as studied in [58,30℄ (the notionapparently goes ba
k to Con
ordet). For the jxj� Boltzmann mea-sure ��, it is equivalent (see (36)) to the following result of Rosen[50℄: there exist A and B su
h that for R f2e�2jyj�dy = 1,Z f2(y)� log+(jf(y)j)�2(1� 1� )e�2jyj�dy � AZ jrf j2e�2jyj�dy +B:(5)See Adams [1℄ for extensions and Zegarlinski [60℄ for an appli
ationof Rosen type inequalities to the study for Gibbs measures with non-Gaussian tails.Next we 
onsider homogeneous F -Sobolev inequalities. One of ourmain results is Theorem 6 where we obtain the equivalen
e between aF -Sobolev inequality and the �q Orli
z-hyperboundedness (or hyper-
ontra
tivity) of the whole semigroup for �q(x) := xpeqF (xp). Under afew assumptions of F , the time evolution of the regularizing e�e
t isquanti�ed. A weak form of part of these results appeared in [30, The-orem 1.2 and Theorem 2.4℄. These authors proved that a parti
ulartight F -Sobolev inequality is equivalent to Orli
z-hyperboundednessfor some time. Their motivation was a 
riterion for the generatorto have a non-empty essential spe
trum (see [30,58℄ for 
onne
tionswith super-Poin
ar�e inequalities). By Theorem 6, a tight F -Sobolevinequality for a nonnegative F garantees that the semigroup is Orli
z-hyper
ontra
tive. We 
on
lude this se
tion by extending the wellknown inequality of Rothaus [51℄: under spe
tral gap assumption thisallows to turn 
ertain defe
tive F -Sobolev inequalities into tight ones.July 13, 2004.



6 F. Barthe et al.Se
tion 5 provides a thorough study of Sobolev type inequalities.In the Gaussian 
ontext the log-Sobolev inequality is 
anoni
al andhas plenty of remarkable properties: it tensorizes, provides 
on
en-tration via Herbst argument, hyper
ontra
tivity and entropy de
ayalong the semigroup. In our more general setting, in parti
ular for��, � 2 (1; 2), no su
h mira
le happens. Several Sobolev inequalitiesare available. However none of them 
on
entrates all good properties.This is why we undertake a pre
ise study of Be
kner type inequali-ties, of homogeneous F -Sobolev inequalities and additive '-Sobolevinequalities also 
alled �-Entropy inequalities (wee shall not dis
ussthe latter in terms of exponential de
ay of �-entropy. See [25,59℄).Our strategy is to provide ea
h inequality with a simpler redu
edform relating the measure of sets to their �-
apa
ity. This notion wasalluded to by the �rst and last-named authors in [12℄. Here we use itsystemati
ally in the spirit of Maz'ja [43℄. Note that the probabilisti
setting is deli
ate sin
e 
onstant fun
tions are equality 
ases in allour inequalities. Our approa
h is an extension to any dimension ofthe 
riteria on the real line re
ently obtained through Hardy inequali-ties [15,12℄. It provides new 
riteria and equivalen
es between severalSobolev inequalities. A �nal �gure summarizes the situation.Se
tion 6 deals with the 
onsequen
es of generalized Be
kner in-equalities for the 
on
entration of measure. They are immediate fromthe method of Lata la-Oleszkiewi
z, and where dis
ussed indepen-dently by Wang [57℄. Our 
ontribution here 
omes from our sharp
riteria for these inequalities. In parti
ular we give general neat 
on-ditions for produ
ts of measures on R to enjoy dimension free 
on-
entration with rate e��(t) where �(t) is 
onvex, but less than t2.Under reasonable assumptions the 
riterion is satis�ed by the mea-sure e��(t)=Z itself, so the 
on
entration is sharp. For other resultsin 
onne
tion with mass transportation, see also [59,23,29℄.Se
tion 7 illustrates all the previous results in the 
ase of jxj�Boltzmann measures. In this 
on
rete situation we explain how todeal with the te
hni
al 
onditions involved. We also develop a per-turbation argument similar to the one of [21, se
tion 4℄.The �nal se
tion dedu
es isoperimetri
 inequalities from semi-group hyperboundedness properties. The 
laimed in�nite dimensionalisoperimetri
 bound (4) is derived. As a 
onsequen
e a family of 
om-parison theorems is provided.For sake of 
larity we de
ided not to develop our argument in itsfull generality. However, most of our results easily extend to moregeneral situations, en
ompassing di�usion operators on Riemannianmanifolds. This is the 
ase of the Gross-Orli
z theory, of the redu
-tions to inequalities between 
apa
ity and measure. The �nal isoperi-metri
 lower bounds would work when the 
urvatures of the genera-tors is bounded from below.July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 72. Orli
z hyper
ontra
tivity.In this se
tion we shall dis
uss a weakened form of hyper
ontra
tivityand hyperboundedness, repla
ing Lp spa
es by Orli
z spa
es. Beforeto state the natural de�nition we have in mind, and be
ause Orli
zspa
es are somewhat intri
ate to use, we shall �rst introdu
e in thisse
tion the material we need. Some de�nitions are not the usual onesused e.g. in the book by Rao and Ren ([47℄).In the sequel we shall 
onsider a 
omplementary pair (��; �) of 
on-tinuous and even Young's fun
tions (i.e. �� is the Fen
hel-Legendredual fun
tion of � , both being 
onvex fun
tions vanishing at the ori-gin) satisfyinglimy!+1 �(y)y2 = +1 and limy!+1 �(y)yp = 0 for p > 2: (6)It follows thatlimy!+1 ��(y)y2 = 0 and limy!+1 ��(y)yp = +1 for p < 2: (7)We shall also assume that � and �� both satisfy the �2 
ondition(i.e. �(2y) � K �(y) for some K > 1 and y � y1 � 0, and a similarresult for �� with possibly di�erent K� and y�1). It follows that theyboth satisfy the r2 
ondition too (i.e. 2l �(y) � �(ly) for some l > 1and y � �y1 � 0 and similarly for �� with l� and �y�1), see [47, p. 23℄.We also assume that the pair (�; ��) is normalized, i.e.�(0) = ��(0) = 0 and �(1) + ��(1) = 1: (8)The spa
e L� (�) is the spa
e of measurable fun
tions f su
h thatI� (f) def= Z �(f)d� < +1: (9)Thanks to the �2 property, L� and L�� are linear spa
es.We shall use two norms on ea
h spa
e,N� (f) def= inffk > 0; I� �fk � � �(1)g; (10)kfk� def= supfZ jfgjd�;N��(g) � 1g;with similar de�nitions for ��. The �rst one is 
alled the gauge (orLuxemburg) norm while the se
ond de�nition does not 
oin
ide withthe usual Orli
z norm ([47, De�nition 2 page 58℄).Indeed in order to 
ompare Orli
z norms and usual Lp(�) normsin the framework of Markov semi-groups (for a given Probabilitymeasure �), we need the norms of 
onstant fun
tions to be equal toJuly 13, 2004.



8 F. Barthe et al.the same 
onstant. With our de�nitions, and thanks to the regularityproperties of � and �� it is known that for f 2 L� and g 2 L�� itholds (see [47, Proposition 1 p.58℄)I�� fN� (f)� = �(1) and Z jfgjd� � N� (f)N��(g): (11)A

ordingly kfk� � N� (f) and k1Ik� = N� (1I) = 1; (12)similar results being true for L�� .Note that if we repla
e �(1) by 1 in the de�nition of N� we getanother gauge norm N1� (the usual one) whi
h is a
tually equivalentto N� , more pre
iselyN1� (f) � N� (f) � 1�(1)N1� (f):It follows thanks to �2 (see [47, 
hapter IV℄) that (L� ; N� ) is a re-
exive Bana
h spa
e with dual spa
e (L�� ; k�k��). Also note that N�and k�k� are equivalent (see (18) p.62 in [47℄) and that the subset ofbounded fun
tions is everywhere dense in L� . The same holds whenwe repla
e � by ��.Finally remark that if N� (f) � 1,�(1) = I�� fN� (f)� � 1N� (f)I� (f);so that N� (f) � max�1; I� (f)�(1) �: (13)Conversely if f(x) � N� (f)y1 (re
all the de�nition of �2) then�(f(x)) = ��N� (f) f(x)N� (f)� � K log(K)log(2) +1�� f(x)N� (f)�:It follows that I� (f) � �(N� (f)y1) +K log(K)log(2) +1�(1): (14)De�nition 1 (Orli
z-hyperboundedness). We shall say that a �-symmetri
 semi-group (Pt)t�0 is Orli
z-hyperbounded if for somet > 0, Pt is a 
ontinuous mapping from L2 (�) into some Orli
z spa
eL� (�) for some Young fun
tion � satisfyinglimy!+1 �(y)y2 = +1 and limy!+1 �(y)yp = 0 for p > 2:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 9We 
an now give the de�nition of Orli
z-hyper
ontra
tivityDe�nition 2 (Orli
z-hyper
ontra
tivity). We shall say that a �-symmetri
 semi-group (Pt)t�0 is Orli
z-hyper
ontra
tive if for somet > 0, Pt is a 
ontra
tion from L2(�) into (L� (�); N� ) for someYoung fun
tion � as in De�nition 1. Equivalently Pt is a 
ontra
tionfrom (L�� (�); k�k��) into L2(�).Note that this de�nition is 
oherent. With our de�nitions andthanks to Jensen's inequality, Ps is for all s > 0 a 
ontra
tion in both(L� (�); N� ) and (L�� (�); k�k��) (as well as in both (L�� (�); N��) and(L� (�); k�k� ) whose norm (equal to 1) is attained for the 
onstantfun
tions. In parti
ular if the 
ontra
tion property in De�nition 2holds for some t, it holds for all s > t.The next se
tion will give some 
riterion for semi-group to beOrli
z-hyperbounded.3. Orli
z hyperboundedness for jxj� and generalBoltzmann measures.For � 2℄1; 2[ we may 
onsider the C2 fun
tion u� de�ned on R byu�(x) = � jxj� for jxj > 1�(��2)8 x4 + �(4��)4 x2 + (1� 34�+ 18�2) for jxj � 1: (15)With this 
hoi
e it is easy to see that u� is 
onvex and bounded belowby 1� 34�+ 18�2 whi
h is positive.The asso
iated Boltzmann measure on Rn is de�ned as��(dx) = Z�1� e�2Pni=1 u�(xi)dx = Z�1� e�2U�(x)dx (16)where Z� is the proper normalizing 
onstant su
h that �� is a Prob-ability measure and U�(x) def= Pni=1 u�(xi).To the Boltzmann measure is asso
iated a symmetri
 semi-group(P�t )t�0 generated by the operatorA� = 12��rU� � r:One 
an show (see [22℄ or [21℄) that the semi-group is given by�P�t h�(x) = eU�(x)EPx [h(Xt)e�U�(Xt)Mt℄; (17)where Px is the Wiener measure su
h that Px�X0 = x� = 1 (i.e.under Px, X: is a n-dimensional Brownian motion starting from x)and Mt is de�ned asMt = exp�12 Z t0 (�U� � jrU�j2)(Xs)ds�: (18)July 13, 2004.



10 F. Barthe et al.(see [22, se
tion 7℄ for a proof). We have 
hosen this form of A� (with1/2 in front of �) in this se
tion not to introdu
e extra varian
e onthe Brownian motion.Sin
e eU� belongs to all Lp(��) for p < 2, an almost ne
essary
ondition for Orli
z hyper
ontra
tivity is that P�t (eU�) belongs tosome L� (��).In [21, se
tion 3℄, the \Well Method" originally due to Kavian,Kerkya
harian and Roynette [36℄ is further developed and allows toget estimates for P�t (eU�), but for � � 2.We shall below extend the \Well Method" to the 
ase 1 < � < 2.Theorem 1. Let � be a Young fun
tion satisfying �(y) = y2  (y)for some positive and non de
reasing fun
tion  going to +1 atin�nity. We also assume that there exists a 
onstant k( ) su
h that (2y) � k( ) (y) (i.e. � satis�es �2). Let �� be the Boltzmannmeasure de�ned on Rn in (16).Then for any integer n, P�t (eU�) belongs to L� (��) if there existssome 
onstant d� < �2 su
h thatZ +1  (ejxj�)e�d�tjxj2(��1)dx < +1:The proof below 
an be used (or improved) to get expli
it bounds.Proof. First remark that U� satis�es12�jrU�j2(x)��U�(x)� � G�(U�(x)) � 
� = H�(U�(x)); (19)with G�(y) = �22 jyj2(1� 1� ) and 
� = n(1+ 12�(��1)), with our 
hoi
eof u� for jxj � 1. Note that H� admits an inverse H�1� de�ned on[�
�; +1) with values in R+ .For 0 < " de�ne the stopping time Tx asTx = inffs > 0; 12(jrU�j2 ��U�)(Xs) � H��U�(x)� "�g: (20)Note that for all x 2 Rn , Tx > 0 Px a.s. provided U�(x) � " � 0and that on Tx < +1,U�(XTx) � H�1� �12(jrU�j2 ��U�)(XTx)� � U�(x)� ": (21)Introdu
ing the previous stopping time we getEPx [Mt℄ = EPx [Mt1It<Tx ℄ + EPx [Mt1ITx�t℄ = A+B;with A = EPx [Mt1It<Tx ℄ � exp �� tH�(U�(x)� ")�; (22)July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 11andB = EPx [Mt1ITx�t℄� e
�tEPx� exp�Z t0 �12(�U� � jrU�j2)� 
��(Xs)ds�1ITx�t�� e
�tEPx� exp�Z Tx0 �12(�U� � jrU�j2)� 
��(Xs)ds�1ITx�t�� e
�tEPx� exp�Z Tx0 �12(�U� � jrU�j2)�(Xs)ds�1ITx�t�= e
�tEPx [MTx1ITx�t℄: (23)But e�U�(Xs)Ms is a bounded Px martingale. Hen
e, a

ording toDoob optional sampling TheoremEPx [e�U�(XTx )MTx1ITx�t℄ � EPx�e�U�(Xt^Tx)Mt^Tx� = e�U�(x): (24)A

ording to (21), e�U�(XTx ) � e"e�U�(x), so that thanks to (24),EPx [MTx1ITx�t℄ � e�":Using this estimate in (23) and using (22) we �nally obtainEPx [Mt℄ � e�tH�(U�(x)�") + e�"e
�t: (25)It remains to 
hoose " = �U�(x) for some � < 1. Inequality (25)yields for jxj > 1EPx [Mt℄ � e
�t�e��t(1��)2(1� 1� ) 12�2jxj2(��1)� + e��jxj��; (26)while a rough bound for jxj � 1 is EPx [Mt℄ � e
�t, sin
e Mt � e
�ta

ording to (19).Finally re
all that P�t (eU�) = eU�EPx [Mt℄ and remark that sin
e� < 2 the dominating term in (26) is the �rst one in the sum, atleast for large jxj. Together with the property of  all this yields thestatement in the Theorem. utAs in [21, Theorem 2.8.℄ we shall see below that the 
onditionP�t (eU�) 2 L� (��) is also a suÆ
ient 
ondition for � -Orli
z hyper-boundedness.Theorem 2. Let � be as in Theorem 1. A suÆ
ient 
ondition for(P�t )t�0 to be � -Orli
z hyperbounded is that P�t (eU�) 2 L� (��) forsome t > 0.July 13, 2004.



12 F. Barthe et al.Proof. First re
all that thanks to (19), Mt � e
�t. On the otherhand, the Brownian semi-group (Ps)s�0 on Rn is ultra
ontra
tiveand kPskL2(dx)!L1(dx) = (4�s)�n4 .Pi
k some smooth fun
tion f on Rn with 
ompa
t support. Sin
ejf je�U� 2 L2(dx) and using the Markov property, for s > 0 and t > 0,it holdsEPx [Mt+s�e�U� jf j�(Xt+s)℄ = EPx [MtEPXt [Ms�e�U� jf j�(X 0s)℄℄� e
�sEPx [Mt�Ps(jf je�U�)�(Xt)℄� e
�s(4�s)�n4 kfkL2(��)EPx [Mt℄:Hen
eZ �(P�t+s(jf j))d�� = Z ��eU�EPx�Mt+s�e�U� jf j�(Xt+s)��d��� C2(�; s)kfk2L2(��)k( )1+log2 �C(�;s)kfkL2(��)�Z ��eU�EPx [Mt℄�d��;with C(�; s) = e
�s(4�s)�n4 . In parti
ular, if kfkL2(��) = 1,Z �(P�t+s(jf j))d�� � K(t; s; �):A

ording to (13), P�t+s is thus 
ontinuous. utExample 1. The best possible 
hoi
e of  in Theorem 1 is given by (y) = exp�(log(jyj)2(1� 1� )� for jyj large enough.A

ording to Theorem 1 and 2, (P�t )t�0 is then � -Orli
z hyper-bounded for t > 1�2 .The previous s
heme of proof, without any 
hange, obviously ex-tends to the general framework we have introdu
ed. Let us des
ribethe situation.Let Pt be a �-symmetri
 semi-group on a spa
e E as des
ribein se
tion 1, with generator L. For V in the domain D (L) of L, weintrodu
e the general Boltzmann measure d�V = e�2V d� and assumethat �V is a probability measure. Under some assumptions it is knownthat one 
an build a �V -symmetri
 semi-group (PVt )t�0, via(PVt h)(x) = eV (x)EPx�h(Xt)e�V (Xt)Mt�; (27)with Mt = exp� Z t0 �LV (Xs)� � (V; V )(Xs)�ds�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 13In the general 
ase these assumptions are denoted by (H.F) in [21℄.Here we have 
hosen the usual de�nition� (V; V ) = 12 �LV 2 � 2V LV � :When E = Rn , L = 1=2� and � = dx ea
h of the following
onditions (among others) is suÆ
ient for (27) to hold:(i) there exists some  su
h that  (x) ! +1 as jxj ! +1 andrV � r �� is bounded from below,(ii) R jrV j2d�V < +1.For the �rst one see e.g. [52, p.26℄ and [21, (5.1)℄, for the se
ondone see e.g. [24℄.Introdu
e the analogue of (19):Assumption (OB(V)). We shall say that V satis�es assumptionOB(V), if(i) V is bounded from below by some (possibly negative) 
onstant d.(ii) There exist some 
 2 R, u0 > 0 and a fun
tion G : R+ ! R+su
h that G(u) ! +1 as u! +1 and G(u)=(u+ 1) is bounded foru � u0, and su
h that for all x 2 E,� (V; V )(x) � LV (x) � G(jV (x)j)� 
:Assumption OB(V) ensures that the dominating term in the ana-logue of (26) is the former for x large enough. ThenTheorem 3. Let � be as in Theorem 1. If (Pt)t�0 is ultra
ontra
tiveand V satis�es assumption OB(V), then the perturbed semi-group(PVt )t�0 is � -Orli
z hyperbounded as soon as for some C > 0Z  (eV )e�CG(jV j)d� < +1:Remark 1. The assumption OB(V) appeared �rst in Rosen's workwithG(u) = u2(1� 1� ) ([50, 
ondition (5) in Theorem 1℄) for jxj� Boltz-mann measures on Rn , for whi
h a modi�ed version of (defe
tive) log-arithmi
 Sobolev inequalities is obtained. Though Rosen proved thatthis 
ondition is in a sense optimal (see his Theorem 5) for his log-Sobolev like inequality for the jxj� Boltzmann measure, he did notrely this inequality to the Orli
z hyperboundedness of the asso
iatedsemi-group. Furthermore, we think that the meaning of assumptionOB(V) is enlightened by our probabilisti
 approa
h. We shall dis
usslater Rosen's results in relationship with F -Sobolev inequalities (seese
tion 7).Remark 2. If E = Rn , L = 1=2� and � = dx, the se
ond 
onditionin assumption OB(V) implies the existen
e of a spe
tral gap (see e.g.[21, Proposition 5.3.(2)℄), provided V goes to in�nity at in�nity.July 13, 2004.



14 F. Barthe et al.4. Gross theory for Orli
z hyper
ontra
tivity.In this se
tion we assume that � and �� are smooth and in
reasingon R+ (hen
e one to one on R+). We also simply denote by kfkpthe Lp(�) norm of f (when no 
onfusion on the underlying measure� is possible). In this se
tion we shall assume for simpli
ity that �is a probability measure. The framework is the one des
ribed in theintrodu
tion (see the notations therein).4.1. An Orli
z version of H�egh-Krohn and Simon Theorem.Sin
e we do not a priori 
onsider a parametrized family of Orli
zfun
tions, 
ontrary to the family (Lp ; p � 2) used in Gross theory,the extension of this theory to our framework is not immediate. Ourde�nitions are nevertheless similar to the ones used in H�egh-Krohnand Simon result relating hyper
ontra
tivity and logarithmi
 Sobolevinequalities. A proof of H�egh-Krohn and Simon Theorem using semi-group te
hniques is 
ontained in [4, Theorem 3.6℄. Another proof isgiven in [22, Corollary 2.8℄.We follow the route in [22℄ in order to get some fun
tional in-equality for an Orli
z hyperbounded semi-group. The starting pointis the following parti
ular 
ase of Inequality (2.4) in [22℄: for all non-negative f 2 D (a ni
e 
ore algebra see [22℄, in the usual Rn 
asewe may 
hoose the smooth 
ompa
tly supported fun
tions plus 
on-stants) su
h that R f2d� = 1, all positive and bounded h and allt � 0, Z f2 log hd� � t2E(f; f) + log Z fhPtfd�: (28)Re
all that for (28) to hold, Ps has to be �-symmetri
. If Pt maps 
on-tinuously L2 in some (L� ; N� ) with operator norm C(t; �), applyingH�older inequality we obtainZ f2 log hd� � t2E(f; f) + log(C(t; �)) + log(kjf jhk��):Hen
e if we 
an 
hoose some h su
h that the last term in the abovesum is less than 0, we will obtain some fun
tional inequality remind-ing the (defe
tive) logarithmi
 Sobolev inequality. A natural 
hoi
eis h(f) = (��)�1(f2��(1))jf j ;sin
e in this 
ase I��(jf jh) = R ��(1)f2d� = ��(1). It follows thatN��(jf jh) = 1 and we may apply (12). This 
hoi
e is allowed providedf2 log h is � integrable and interesting provided log h is a non-negativefun
tion growing to in�nity with f . Note that with our 
hoi
es ofJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 15(�; ��), (��)�1(y) � py and thus h(y) ! +1 as y ! +1. We haveshownTheorem 4. If the �-symmetri
 semi-group (Pt)t�0 is � -Orli
z hy-perbounded (with operator norm C(t0; �) for some t0 > 0) then for allf 2 D the following (defe
tive) logarithmi
 Orli
z Sobolev inequalityholds (DLOSI) Ent� (f) � aE(f; f) + bkfk22;with Ent� (f) def= R f2 log� (��)�1(��(1)(f=kfk2)2)jf=kfk2j �d�, a = t02 and b =log(C(t0; �)) provided the fun
tiony 7! y2 log�(��)�1(y2��(1))jyj �
an be 
ontinuously extended up to the origin (here (��)�1 is theinverse fun
tion of �� and not 1=��).In parti
ular if (Pt)t�0 is � -Orli
z hyper
ontra
tive, (DLOSI) istight i.e. be
omes(TLOSI) Ent� (f) � aE(f; f):Remark 3. If we formally repla
e �(y) by yp for some p > 2, then(��)�1(y) behaves like y1=q for the 
onjugate q of p. Hen
e we re
overthe usual logarithmi
 Sobolev inequality as in H�egh-Krohn and Si-mon theorem. This is not surprising sin
e the previous proof is theexa
t analogue of the one in [22℄.Remark 4. Remark that our 
hoi
e of h is su
h that N��(jf jh) � 1.Hen
e we may repla
e the operator norm of Pt as a linear operatorbetween L2 and (L� ; N� ) by the similar operator norm with (L� ; k�k� )instead. This should be interesting if Pt be
omes a 
ontra
tion for thisnorm, while it is not for the previous one (re
all (12)).In view of Theorem 4 it is now natural to ask for a 
onverse, hen
ea Gross-Orli
z Theorem.A
tually an inequality like (DLOSI) was already dis
ussed in theliterature, where it appears as a parti
ular F -Sobolev inequality (seebelow). In addition the expli
it form of Ent� is not easily tra
tableas it stands. For instan
e we 
annot obtain an expli
it form of Ent�for the jxj� Boltzmann measure, but only an asymptoti
 behavior,i.e. (re
all Example 1 and see Example 2 in this se
tion)log�(��)�1(y2��(1))jyj � � (log(jyj))2(1� 1� ) ; (29)as y ! +1 (where a � b means that 
a � b � Ca for some universal
onstant 
 and C). It is thus natural to ask whether one 
an repla
eone by the other in Theorem 4. All these reasons lead to the studyof Orli
z-hyperboundedness in 
onne
tion with general F -Sobolev in-equalities.July 13, 2004.



16 F. Barthe et al.4.2. A Gross-Orli
z Theorem.Our main Theorem is Theorem 6 below. This Theorem gives theequivalen
e between the homogeneous F -Sobolev inequality and theOrli
z hyper
ontra
tivity and gives a generalization of the standardGross Theorem [32℄.Re
all that the probability measure � satis�es a log-Sobolev in-equality if there exists a 
onstant CLS su
h that for any smoothenough fun
tion f ,Z f2 log� f2�(f2)� d� � CLS Z jrf j2d�; (30)where �(f2) is a short hand notation for R f2d� and jrf j2 standsfor � (f; f). The following theorem is the 
elebrated Gross Theorem([32℄, see also [3℄) relating this property to the hyper
ontra
tivity ofthe semi-group (Pt)t�0.Theorem 5 ([32℄). Let � be a probability measure. The followingholds:(i) Assume that � satis�es a log-Sobolev inequality (30) with 
onstantCLS, then, for any fun
tion f , any q(0) > 1,kPtfkq(t) � kfkq(0);where q(t) = 1 + (q(0)� 1)e4t=CLS .(ii) Assume that for any fun
tion f ,kPtfkq(t) � kfk2with q(t) = 1 + e4t=
 for some 
 > 0. Then the probability measure �satis�es a log-Sobolev inequality (30) with 
onstant 
.A natural extension of the log-Sobolev inequality is the homoge-neous F -Sobolev inequality. Let F : R+ ! R be a non-de
reasingfun
tion satisfying F (1) = 0. A probability measure � satis�es anhomogeneous F -Sobolev inequality if there exist two 
onstants CFand eCF su
h that for any smooth enough fun
tion f ,Z f2F � f2�(f2)� d� � CF Z jrf j2d�+ eCF Z f2d�: (31)If eCF = 0 (resp. 6= 0) the inequality is tight (resp. defe
tive). We shalluse this terminology only when it is ne
essary.We have the following resultJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 17Theorem 6 (Gross-Orli
z). Fix p > 1. Let F : R+ ! R be a C2non-de
reasing fun
tion satisfying F (1) = 0. De�ne for all q � 0,�q(x) := xpeqF (xp).(i) Assume that{ there exists a non negative fun
tion k on R+ su
h that for allq � 0: � 00q �q � k(q)4 � 0q2 (hen
e �q is a Young fun
tion),{ there exists a non negative fun
tion ` on R+ and a 
onstant m � 0su
h that �q(x)F (xp) � `(q)�q(x)F (�q(x)) + m, for all q � 0 andall x � 0,{ the measure � satis�es the homogeneous F -Sobolev inequality (31)with 
onstants CF and eCF .Then, for all non-de
reasing C1 fun
tions q : R+ ! R+ with q(0) = 0and satisfying q0 � k(q)`(q)CF , the following holds for all f ,N�q(t)(Ptf) � e 1p [mq(t)+ eCF R q(t)0 `(u)du℄kfkp:(ii) Conversely assume that there exist two non-de
reasing fun
-tions, q; r : R+ ! R+ , di�erentiable at 0, with q(0) = 0, su
h thatfor any f , N�q(t)(Ptf) � er(t)kfkp: (32)Then � satis�es the following homogeneous F -Sobolev inequality: forall f smooth enoughZ f2F � f2�(f2)� d� � 4(p� 1)pq0(0) Z jrf j2d�+ pr0(0)er(0)q0(0) Z f2d�:Remark 5. Note that by our assumptions on �q, N�q(t)(f) is well de-�ned.Furthermore whenm = 0 the previous result states that the Orli
zhyper
ontra
tivity is equivalent to the tight homogeneous F -Sobolevinequality ( eCF = 0).Proof. We follow the general line of the original proof by Gross [32℄,see also [3℄. It is based on di�erentiation.Without loss of generality we 
an assume that f is non negative.Then, for a general C1 non de
reasing fun
tion q : R+ ! R+ satisfyingq(0) = 0, let N(t) := N�q(t)(Ptf). For simpli
ity, we set T (x; p) :=�p(x). Then, by de�nition of the gauge norm (10) we haveZ T � PtfN(t) ; q(t)� d� = 1 8t � 0:July 13, 2004.



18 F. Barthe et al.Thus, by di�erentiation, we getN 0(t)N2(t)Z Ptf�1T �PtfN(t) ; q(t)� d� = 1N(t)Z LPtf�1T �PtfN(t) ; q(t)� d�+q0(t)Z �2T � PtfN(t) ; q(t)� d�;or equivalently, if g := PtfN(t) ,N 0N Z g �1T (g; q)d� = Z Lg �1T (g; q)d� + q0 Z �2T (g; q)d�: (33)Here �1 and �2 are short hand notations for the partial derivativewith respe
t to the �rst and se
ond variable respe
tively.Let us start with the proof of the se
ond part (ii) of the Theorem.For simpli
ity, assume that N(0) = kfkp = 1. Take t = 0 in the latterequality givespN 0(0)Z fpd� = pZ Lf � fp�1d�+ q0(0)Z fpF (fp)d�;be
ause g(0) = f , �1T (f; q(0)) = pfp�1 and �2T (f; q(0)) = fpF (fp)(re
all that q(0) = 0 and N(0) = 1). Using the integration by partsformula R Lf � �(f)d� = � R jrf j2�0(f)d�, we getpZ Lf � fp�1d� = �p(p� 1)Z jrf j2fp�2d� = 4(p� 1)p Z jrfp=2j2d�:Now, it follows from the bound (32) that N 0(0) � r0(0)er(0)kfkp. Thisimpliespr0(0)er(0)kfkpZ fpd� � �4(p� 1)p Z jrfp=2j2d�+q0(0)Z fpF (fp)d�:Sin
e kfkp = 1, this a
hieves the proof of (ii).The proof of part (i) is more te
hni
al. A simple 
omputation givesx�1T (x; q) = pT (x; q)+pqx2pF 0(xp)eqF (xp). Sin
e F is non de
reasingand g � 0, we get when N 0(t) � 0N 0N Z g�1T (g; q)d� � pN 0N Z T (g; q)d� = pN 0N :July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 19On the other hand, using on
e again the integration by parts formulaR Lf � �(f)d� = � R jrf j2�0(f)d�, and our assumption on �q,Z Lg�1T (g; q)d� = �Z jrgj2�11T (g; q)d�� �k(q)Z jrgj2 �1T (g; q)24T (g; q) d�= �k(q)Z jrpT (g; q)j2d�:Next, �2T (x; q) = T (x; q)F (xp) � `(q)T (x; q)F (T (x; q)) + m by hy-pothesis. Thus, (33) be
omespN 0N � �k(q)Z jrpT (g; q)j2d�+ `(q)q0Z T (g; q)F (T (g; q))d� +mq0:Note that the right hand side of this inequality 
ontains the threeterms appearing in the homogeneous F -Sobolev inequality (31) ap-plied to pT (g; q) (re
all that R (pT (g; q))2d� = 1). In 
onsequen
e,applying the homogeneous F -Sobolev inequality (31) to pT (g; q)givespN 0N � q0(m+ eCF `(q)) + [�k(q) + q0`(q)CF ℄Z jrpT (g; q)j2d�:If q0 � k(q)CF `(q) , it follows that pN 0N � q0(m+ eCF `(q)). This we provedwhen N 0(t) � 0. It is obviously true when N 0(t) < 0. Thus by inte-gration N(t) � N(0)e 1p [mq(t)+ eCF R q(t)0 `(u)du℄:Noting that N(0) = kfkp a
hieves the proof. utRemark 6. Sin
e the homogeneous F -Sobolev inequality (31) re
overthe log-Sobolev inequality (30) (with F = log and eCF = 0), it isnatural to ask whether the previous Theorem re
over the 
lassi
alGross Theorem or not.So, take F = log. Then, �q(x) = xp(q+1),��q �q(x) = p�q(x) log(x) = 1q + 1�q(x)F (�q(x));and thus, we 
an 
hoose `(q) = 1q+1 and m = 0. Moreover, it is easy tosee that � 00q �q = p(q+1)�1p(q+1) � 0q2 � p�1p � 0q2, hen
e k(q) = 4p�1p . Applyingthe Theorem, we get that if � satis�es a log-Sobolev inequality (30)with 
onstant CLS ( eCF = 0), then, for any fun
tion f and any t � 0,kPtfkp(~q(t)+1) � kfkp;July 13, 2004.



20 F. Barthe et al.where ~q(t) = �1+e4 (p�1)tpCLS . The fun
tion p(~q(t)+1) = pe4 (p�1)tpCLS is lessthan q(t) = 1 + (p� 1)e4t=CLS of Theorem 5.Let us make some additional remarks on the hypotheses of theTheorem.Remark 7. Let mF := jminx2(0;1) xF (x)j and assume that mF < 1.With our 
hoi
e of �q(x) in the Theorem, one 
an 
hoose l � 1 andm = mF in order to have �q(x)F (xp) � `(q)�q(x)F (�q(x)) +m.Moreover, if F is non negative, then mF = 0. Thus, in that parti
-ular 
ase, the previous Theorem states that the Orli
z hyper
ontra
-tivity is equivalent to the tight homogeneous F -Sobolev inequality.Remark 8. The 
ondition �q(x)F (xp) � `(q)�q(x)F (�q(x))+m is te
h-ni
al. It 
omes from our 
hoi
e of �q = xpeqF (xp). In view of the proofof Theorem 6 the most natural 
hoi
e for �q would be the solution of� ��q �q(x) = �q(x)F (�q(x))�0(x) = xp :Unfortunately, it is not expli
it in general. This is why we preferredthe expression xpeqF (xp) whi
h has the same asymptoti
s.Remark 9. The hypothesis � 00q �q � k(q)4 � 0q2 
an be read as: �1� k(q)4q isa 
onvex fun
tion. Note that if xF 0(x) ! 0 and xF 00(x) ! 0 whenx! 0, �1� k(q)4q is no more 
onvex if k(q) > 4(p�1)=p. Thus, we 
annothope for a better exponent than k(q) = 4(p� 1)=p (i.e. 1� k(q)4 = 1p).Now, we give a 
ondition on F whi
h ensures that �q satis�es theabove hypothesis.Proposition 1. Let F : R+ ! R be a C2 non de
reasing fun
tion sat-isfying F (1) = 0. Fix p > 1. De�ne for all q � 0, �q(x) = xpeqF (xp).Assume that there exists a 
onstant k � 4(p� 1)=p su
h that for anyx � 0, xF 00(x) + (2 + 1p � k2 )F 0(x) � 0;Then, for any q � 0, �q satis�es � 00q �q � k4 � 0q2.Proof. Note that for q = 0 the 
on
lusion is 
learly true. Supposeq > 0. It is not diÆ
ult to 
he
k that for all x > 0,� 00q (x)�q(x)� 0q2(x) = 1 + 1p�1 + qxpF 0(xp) + pqx2pF 00(xp)(1 + qxpF 0(xp))2 :July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 21Thus, it is enough to prove that for any x > 0,�1p � k4 + 1 +�qp � 2q�k4 � 1��xF 0(x)+qx2F 00(x)��k4 � 1� q2x2F 0(x)2) � 0:Note that �1p � k4 � 1 be
ause k � 4(p� 1)=p, hen
e, it is suÆ
ientto have�qp � 2q�k4 � 1��xF 0(x) + qx2F 00(x)��k4 � 1� q2x2F 0(x)2 � 0:Sin
e x > 0, k4 � 1 � 0 and F 0(x)2 � 0, it is satis�ed when�1p � 2�k4 � 1��F 0(x) + xF 00(x) � 0whi
h is our 
ondition. This a
hieves the proof. ut4.3. � -Entropy and F -Sobolev inequalities.We developed in the previous two subse
tions two separate versions ofF -Sobolev inequalities related to some hyperboundedness property.Re
all that the � -entropy involvesF (y2) = log�(��)�1(y2��(1))jyj � :It is ne
essary to relate one to the other, in parti
ular, sin
e our
riteria in Se
tion 3 are written in terms of � (or  ), we have to linkthem to our general Gross-Orli
z theory.First, for �(y) = y2 (y) = y2eF (y2), as above, it is easily seen that(��)�1(y) = p2y�(y);where � goes to +1 at in�nity. Furthermore (see [47, Proposition 1(ii) p.14℄), for all y > 0y � ��1(y)(��)�1(y) � 2y: (34)Apply the inequality (34) with y = �(z). The �rst inequality yields( (��1(z))) 12 � p2�(z). Sin
e ��1 is a non de
reasing fun
tion and��1(z) � 
"z 12�" for all 12 > " > 0 for some 
", we 
ertainly havep2�(z) � ( (
"z 12�")) 12 . Hen
e provided (y) � d"� (y 21�2" )�k" ; (35)July 13, 2004.



22 F. Barthe et al.for some positive k" and d", we get that at least for large jyj (using
ondition r2), log( (y)) � K" log(�(y)).Also note that (34) furnishes �(z) �  (p2z) � C (z). Hen
eprovided (35) holds, we have that at least for large jyj, there existstwo 
onstant 
 and C su
h that 
 log( ) � log(�) � C log( ). Inaddition log�(��)�1(y2��(1))jyj � � log ��(��(1)y2)�;so that for jyj large enoughlog�(��)�1(y2��(1))jyj � � log � (
y2)�where we re
all that a � b if there exist some universal 
onstants
1; 
2 su
h that 
1a � b � 
2a.Finally note that for a defe
tive F -Sobolev inequality we mayrepla
e F by eF that behaves like F at in�nity, up to the modi�
ationof both 
onstants CF and eCF in (31). Hen
e provided  satis�es (35)we may 
hoose F = log( ) or F = log(�):Example 2. Consider the jxj� Boltzmann measure. A

ording to Ex-ample 1, Theorem 4 and the dis
ussion above, we have obtained:there exist some A and B su
h that for R f2e�2jyj�dy = 1,Z f2(y)� log+(jf(y)j)�2(1� 1� )e�2jyj�dy � AZ jrf j2e�2jyj�dy +B:(36)The latter (36) is exa
tly the inequality shown by Rosen (see [50,Theorem 1℄). Rosen's proof lies on Sobolev inequalities in Rn and re-sults on monotone operators. Of 
ourse F = (log+)� does not satisfythe regularity assumptions in Theorem 5, so that we 
annot applyit. But smoothing this fun
tion, we may obtain similar (defe
tive)inequalities. This will be dis
ussed in details in the se
tion 7.Example 3. In the more general situation studied in Theorem 3 wemay take F (y) = G(log(y)) provided, in addition to assumptionOB(V), G is su
h that Z e�qG(jV j)d� < +1; (37)for some q > 0 and G(u) � kG(lu); (38)for some k > 0, l > 2 and all u large enough (this is sometimes 
alled
ondition r2).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 234.4. From defe
tive to tight inequalities.It is well known that a defe
tive log-Sobolev inequality and a Poin
ar�einequality together are equivalent to a tight log-Sobolev inequality.We shall �nish this se
tion with the proof of a similar statement forF -Sobolev inequalities (we refer to se
tion 5.4 for additional results).The �rst statement is straightforwardLemma 1. Let � be a probability measure on Rn . Let F : (0;+1) !R be C2 on a neighborhood of 1. Assume that F (1) = 0 and that everysmooth fun
tion f satis�esZ f2F � f2R f2d�� � Z jrf j2d�:Then for every smooth fun
tion g(4F 0(1) + 2F 00(1))Z �g � Z gd��2 d� � Z jrgj2d�:In parti
ular, setting �(x) = xF (x), if �00(1) > 0 one has CP (�) �1=(2�00(1)) where CP (�) denotes the Poin
ar�e 
onstant.Proof. We apply the F -Sobolev inequality to f = 1 + "g where g isbounded and R gd� = 0 and we let " to zero. utConversely, we prove two inequalities whi
h allow to turn defe
tiveF -Sobolev inequalities into tight ones, under a spe
tral gap hypothe-sis. The �rst one deals with fun
tions F whi
h vanish for small values.The se
ond one, an analogue of Rothaus inequality [51℄, is suited to
on
ave fun
tions F . The two 
ases will be used in forth
oming ar-guments.Lemma 2. Let � > 0 and let F : R+ ! R+ be non-de
reasing andsu
h that Fj[0;�2℄ = 0. Set G(t) = F (t�2=(� + 1)2) for t � 0. Let �be a probability measure on a spa
e X and f : X ! R+ be squareintegrable. ThenZ f2G� f2�(f2)� d� � ��+ 1� �2 Z ~f2F  ~f2�( ~f2)! d�;where ~f = f � �(f).Proof. Note that Gj[0;(�+1)2℄ = 0. Hen
e, the left integrand is non-zero only when f2 � (�+ 1)2�(f2). This 
ondition implies that f �July 13, 2004.



24 F. Barthe et al.(� + 1)�(f) and 
onsequently ~f � ��+1f . Combining this inequalitywith the 
lassi
al �( ~f2) � �(f2), we getZ f2G� f2�(f2)� d� � ��+ 1� �2 Z ~f2G ��+ 1� �2 ~f2�( ~f2)! d�:The proof is 
omplete. utTheorem 7. Let � be a probability measure on a set X. Let F be asin Lemma 2 with � > 0 and let G(t) = F (t�2=(�+ 1)2). If � satis�esa defe
tive F -Sobolev inequality and a Poin
ar�e inequality, i.e.Z f2F � f2�(f2)� d� � CF Z jrf j2d�+ eCF Z f2d�;and Z �f � Z fd��2 d� � CP Z jrf j2d�;then � satis�es a tight G-Sobolev inequality, more pre
iselyZ f2G� f2�(f2)� d� � ��+ 1� �2 (CF + CP eCF )Z jrf j2d�:Proof. It is enough to 
onsider non-negative fun
tions f . CombiningLemma 2 and the above hypotheses yieldsZ f2G� f2�(f2)� d� � ��+ 1� �2 Z ~f2F  ~f2�( ~f2)! d�� ��+ 1� �2�CF Z jr ~f j2d�+ eCF Z ~f2d��� ��+ 1� �2 (CF + CP eCF )Z jrf j2d�:utLemma 3 (Rothaus-Orli
z inequality). For any bounded fun
-tion f , denote by ~f the 
entered f � R fd�. If F is C2 on (0;+1)with F (1) = 0 and satis�es(i) F is 
on
ave non de
reasing, goes to in�nity at +1,(ii) uF 0(u) is bounded by K(F ).Then it holdsZ f2F � f2�(f2)� d� � Z ~f2F  ~f2�( ~f2)! d�+ CRot(F )k ~fk22:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 25Proof. We follow the proof in [4℄. Again it is enough to prove theresult for fun
tions f written as f = 1+tg for some bounded fun
tiong su
h that R gd� = 0 and R g2d� = 1. We introdu
eu(t)= f2�(f2) = (1 + tg)21 + t2 ; logA(t)=F (u(t) + "2); logA=F (g2 + "2);for some " > 0 and de�ne'(t) = Z f2F � f2�(f2) + "2� d�� Z ~f2F  ~f2�( ~f2) + "2! d�= Z (1 + tg)2 logA(t)d�� t2 Z g2 logAd�:The introdu
tion of " is ne
essary for avoiding problems near 0. Sim-ple 
al
ulations yield'0(t) = Z �2g(1 + tg) logA(t)� 2tg2 logA+ (1 + tg)2A0(t)A(t) �d�;and '00(t) = Z �2g2 log A(t)A + 4g(1 + tg)A0(t)A(t)+(1 + tg)2A00(t)A(t) �A02(t)A2(t) �d�:It is then easy to see that '(0) = F (1 + "2) and '0(0) = 0. Thanksto Taylor Lagrange formula,'(t) = F (1 + "2) + t22 '00(s);for some s so that what we need is an upper bound for the se
ondderivative, sin
e t2 = k ~fk22.On one hand one has for all t � 0log A(t)A = F (u(t) + "2)� F (g2 + "2) � 0if u(t) � g2, andlog A(t)A = F (u(t) + "2)� F (g2 + "2) � F 0(g2 + "2)(u(t) � g2);July 13, 2004.



26 F. Barthe et al.if u(t) > g2 sin
e F 0 is non-in
reasing. For jgj � 1 it is easy to 
he
kthat u(t)�g2 � 2g2. In this 
ase we thus have log(A(t)=A) � 2K(F ).If jgj < 1, u(t)� g2 � 2, hen
eZ 2g2 log A(t)A d� � Z jgj<1;u(t)>g22g2 log A(t)A d�+ Z jgj�1;u(t)>g22g2 log A(t)A d�� Z jgj<1;u(t)>g2 2g2F 0(g2 + "2)(u(t) � g2)d�+ 4K(F )� 8K(F ):On the other hand,A1 = Z �4g(1 + tg)A0(t)A(t) � (1 + tg)2�A0(t)A(t) �2 �d� � 4:Indeed de�ne Z = �R (1 + tg)2 �A0(t)A(t) �2 d�� 12 and remark that, justusing Cau
hy-S
hwarz and R g2d� = 1, A1 � 4Z � Z2 whi
h is lessthan 4.It remains to 
ontrol the �nal term A2 = R (1 + tg)2A00(t)A(t) d�. Thisterm may be written with the help of F , namelyA2=Z (1 + tg)2�u02(t)�F 00 + F 02�(u(t) + "2) + u00(t)F 0(u(t) + "2)�d�:Sin
e F 00 � 0 we only look at terms involving F 0. Butu0(t) = 2(1 + tg)(g � t)(1 + t2)2and (1+tg)2u00(t) = 2u(t)� (3t2 � 1)� 2gt(t2 � 3)� g2(3t2 � 1)(1 + t2)2 �. A
-
ording to assumption (ii),(1 + tg)2u02(t)F 02(u(t) + "2) = u(t)2F 02(u(t) + "2)4(g � t)2(1 + t2)2� K2(F )4(g � t)2(1 + t2)2 � 4K2(F )(1 + g2)while(1 + tg)2u00(t)F 0(u(t) + "2)� 2K(F )h 3t2 + 1(1 + t2)2 + 2jgjt(t2 + 3)(1 + t2)2 + g2 (3t2 + 1)(1 + t2)2 i� 6K(F )(1 + jgj+ g2) � 12K(F )(1 + g2):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 27Integrating with respe
t to � yields that A2 is uniformly boundedfrom above, with a bound that does not depend on ". It remains tolet " go to 0. utRemark 10. Remark that a smoothed version of F = (log+)2(1� 1� ) willsatisfy the hypotheses of the Lemma, for 1 � � � 2 (see se
tion 7).Remark 11. Using the notations in the previous subse
tion, we haveseen 
onditions for F = log(�) to be an appropriate 
hoi
e. In this
ase using the fa
t that y 7! py�(y) is 
on
ave and non de
reasing,it is easy to 
he
k that y2(�00=�)(y) � 3=4 and y(�0=�)(y) � (1=2)py.Though we are not exa
tly in the situation of the Lemma one 
anhowever 
he
k with more e�orts that a similar statement for Ent� isavailable.To 
on
lude this se
tion we may stateTheorem 8. Let � be a probability measure on a set X. Let F beas in Lemma 3. If � satis�es a defe
tive F -Sobolev inequality and aPoin
ar�e inequality, i.e.Z f2F � f2�(f2)� d� � CF Z jrf j2d�+ eCF Z f2d�;and Z �f � Z fd��2 d� � CP Z jrf j2d�;then � satis�es a tight F -Sobolev inequality, more pre
iselyZ f2F � f2�(f2)� d� � C 0F Z jrf j2d�with C 0F = CF + CP ( eCF + CRot(F )).Proof. Using the notation ~f as in the previous Lemma, we haveZ f2F � f2�(f2)� d� � Z ~f2F  ~f2�( ~f2)! d�+ CRot(F )k ~fk22� CFE( ~f; ~f) + ( eCF + CRot(F ))k ~fk22� �CF + CP ( eCF + CRot(F ))�E(f; f):utJuly 13, 2004.



28 F. Barthe et al.5. Sobolev inequalitiesA measure � on Rn satis�es a logarithmi
 Sobolev inequality for theusual Diri
hlet form if there exists a 
onstant C > 0 su
h that forevery smooth fun
tionZ f2 log� f2R f2d�� d� � C Z jrf j2d�:The latter 
an be rewritten asZ f2 log f2d���Z f2 d�� log�Z f2 d�� � C Z jrf j2d�;and also as limp!2� R f2d�� �R jf jpd�� 2p2� p � 2C Z jrf j2d�:Ea
h of these forms naturally leads to 
onsidering more general in-equalities. We present them before studying their properties in de-tails. We shall say that � satis�es a homogeneous F -Sobolev inequal-ity when every smooth fun
tion satis�esZ f2F � f2R f2d�� d� � Z jrf j2d�: (39)i.e. in this se
tion we only 
onsider the tight F -Sobolev inequalityintrodu
ed in (31).The measure � is said to verify an additive '-Sobolev inequalitywhen for all f 'sZ f2'�f2�d���Z f2d��'�Z f2d�� � Z jrf j2d�: (40)Finally we 
onsider the following generalization of Be
kner's inequal-ity: for every smooth fsupp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � Z jrf j2d�: (41)This property was introdu
ed by Be
kner [13℄ for the Gaussian mea-sure and T (r) = r. It was 
onsidered by Lata la and Oleszkiewi
z [37℄for T (r) = C ra. A re
ent independent paper by Wang [57℄ studiesthe general 
ase and gives 
orresponden
es between 
ertain homoge-neous F -Sobolev inequalities and generalized Be
kner-type inequali-ties (and a
tual equivalen
es for T (r) = C ra).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 295.1. First remarks, tightness and tensorisationUsing the homogeneity property, Inequality (39) above equivalentlyasserts that for every smooth fun
tion f satisfying R f2d� = 1, onehas R f2F (f2)d� � R jrf j2d�. It is then obvious that when � veri�esan additive '-Sobolev inequality as (40) then it satis�es a homoge-neous F -Sobolev inequality with F = '� '(1).Inequality (39) is tight (it is an equality for 
onstant fun
tions)whenever F (1) = 0. Inequalities (40) and (41) are tight by 
onstru
-tion. Big di�eren
es appear about tensorisation. The homogeneousF -Sobolev inequality need not tensorise in general. The generalizedBe
kner inequality (41) has the tensorisation property. This is estab-lished in [37℄ as a 
onsequen
e of the followingLemma 4. Let � : [0;1) ! R having a stri
tly positive se
ondderivative and su
h that 1=�00 is 
on
ave. Let (
1; �1); (
2; �2) beprobability spa
es. Then for any non-negative random variable Z de-�ned on the produ
t spa
e (
;�) = (
1 � 
2; �1 
 �2) with �niteexpe
tation one hasE��(Z)� �(E�Z) � E� (E�1�(Z)��(E�1Z)+E�2�(Z)��(E�2Z)) :When �(x) = x'(x) satis�es the hypothesis of the lemma, one
an prove that the 
orresponding additive '-Sobolev inequality ten-sorises, even for very general Diri
hlet forms. In our 
ase, we 
an usethe properties of the square of the gradient to prove the tensorisationproperty for arbitrary �.Lemma 5. Consider for i = 1; 2 probability spa
es (Rni ; �i). Assumethat for i = 1; 2 and every smooth fun
tion f : Rni ! R one hasZ ��f2�d�i � ��Z f2d�i� � Z jrf j2d�i; (42)then the measure �1 
 �2 enjoys exa
tly the same property.Proof. Let f : Rn1+n2 ! R. We start with applying Inequality (42)in the se
ond variable. This givesZ �(f2)d�1d�2 = Z �Z �(f2(x; y))d�2(y)� d�1(x)� Z ���Z f2(x; y)d�2(y)�+ Z jryf j2(x; y)d�2(y)� d�1(x)= Z �(g2)d�1 + Z jryf j2d�1d�2;July 13, 2004.



30 F. Barthe et al.where we have set g(x) = qR f2(x; y)d�2(y). Next we apply (42) onthe �rst spa
e to g. Note that R g2d�1 = R f2d�1d�2 and that by theCau
hy-S
hwartz inequalityjrgj2(x) = ��R f(x; y)rxf(x; y)d�2(y)��2R f2(x; y)d�2(y) � Z jrxf j2(x; y)d�2(y):Thus we get that R �(g2)d�1 � � �R f2d�1d�2� + R jrxf j2d�1d�2.Combining this with the former inequality yields the 
laimed �-Sobolev inequality on the produ
t spa
e. ut5.2. The notion of 
apa
ity of a set with respe
t to a probabilitymeasureThere exists a wide variety of Sobolev-type inequalities in the litera-ture. It is natural to analyze 
onne
tions between them. To do so, onetries to de�ne for ea
h inequality an equivalent \redu
ed inequality",in su
h a way that it is easy to de
ide equivalen
es on the redu
edforms. For example it is known that Sobolev inequalities involving theL1 -norm of the gradient are equivalent to isoperimetri
 inequalities.There exists a 
orresponding tool for Sobolev inequalities involvingL2 -norms (and even Lp -norms) of gradients: 
apa
ities. We refer tothe book of Maz'ya [43℄ for more details. The 
lassi
al ele
trostati

apa
ity of a set A � Rn isCap(A) def= inf�Z jrf(x)j2dx; fjA = 1 and f has 
ompa
t support�where from now on the fun
tions appearing in the in�mum are lo
allyLips
hitz. The usual L2 -Sobolev inequalities on Rn 
an be redu
edto an inequality relating the 
apa
ity of sets to their volume. Thiswas extended to more general measures and inequalities (see [43℄).However, if one repla
es the dx in the latter formula by d�(x) where� is a �nite measure, then the above 
apa
ity is zero. The appropriatenotion was introdu
ed in [12℄. We re
all it after a few de�nitions. Let� be an absolutely 
ontinuous measure on Rn . Let A � 
 be Borelsets, we writeCap�(A;
) def= inf �Z jrf j2d�; fjA � 1 and f j

 = 0�= inf �Z jrf j2d�; 1IA � f � 1I
� ;July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 31where the equality follows from an easy trun
ation. If � is a proba-bility measure on Rn , then we set for A with �(A) � 1=2Cap�(A;�) def= inf�Z jrf j2d�; fjA � 1 and �(f = 0) � 12�= inf�Cap�(A;
);A � 
 and �(
) � 12� :If � is absolutely 
ontinuous, then sin
e Cap�(A;
) is non-in
reasingin 
, Cap�(A;�) = inf�Cap�(A;
);A � 
 and �(
) = 12� :We write Cap�(A) for Cap�(A;�).The redu
tion of an L2 -Sobolev inequality to an inequality be-tween 
apa
ity and measure of sets is done via level-sets de
ompo-sition. For 
ompleteness we illustrate this on the simplest possibleinequality (see [43℄).Proposition 2. Let �; � be absolutely 
ontinuous measures on Rnand let 
 � Rn . Let C denote the smallest 
onstant so that everylo
ally Lips
hitz fun
tion vanishing on 

 veri�esZ f2d� � C Z jrf j2d�:Then B � C � 4B, where B is the smallest 
onstant so that for allA � 
 one has �(A) � B Cap�(A;
).Remark 12. The 
onstant 4 in the above result is best possible, andis obtained by using a result of page 109 in [43℄. We shall prove theresult with a worse 
onstant. We follow a simpli�ed proof, writtenin page 110 of this book (this paragraph 
ontained a small mistakewhi
h we 
orre
t below).Proof. The fa
t that B � C is obvious from the de�nition of 
apa
ity.The other bounds requires level-sets de
omposition. First note thatrepla
ing f by jf j makes the inequality tighter. So we may restri
tto f � 0 vanishing outside 
. Let � > 1 and 
onsider for k 2 Z,
k = ff2 � �kg. ThenZ f2d� �Xk2Z�k+1�(f�k � f2 < �k+1g)=Xk2Z�k+1��(
k)� �(
k+1)� = �� 1� Xk2Z�k+1�(
k):July 13, 2004.



32 F. Barthe et al.We estimate the latter measures as follows:�(
k) � BCap�(
k; 
) � B Z jrgkj2d�;where we have set gk = min�1;� f��(k�1)=2�k=2��(k�1)=2�+�. Indeed this fun
-tion is 1 on 
k and vanishes outside 
k�1 so outside 
. Note thatZ jrgkj2d� = Z
k�1n
k jrf j2(�k=2 � �(k�1)=2)2d�+Zf=�k=2 jrf j2(�k=2 � �(k�1)=2)2d�:Sin
e f is lo
ally Lips
hitz, the sets ff = �k=2g \ frf 6= 0g areLebesgue negligible. So the latter integral vanishes (in the rest of thepaper, similar arguments are sometimes needed but we omit them).Thus Z f2d� � �� 1� BXk �2(p�� 1)2 Z
k�1n
k jrf j2d�� B�p�+ 1p�� 1 Z jrf j2d�:The best 
hoi
e of � leads to a 
onstant (11 + 5p5)=2 < 11:1. utRemark 13. Let us mention another possible redu
tion of Sobolevtype inequalities to inequalities of the form R(
) �  (�(
)) whereR(
) is the in�mum over fun
tions f with 
ompa
t support in 
 ofR jrf j2d�= R f2d� (Rayleigh quotient). See e.g. [5,26℄ where the fo-
us is on in�nite measures. Note that by Proposition 2 this 
riterionamounts to inequalities of the form�(A) (�(
)) � Cap�(A;
)for A � 
. Here the interest is in the behavior of the 
apa
ity interms of the outer set. We shall be rather interested in estimates ofthe form G(�(A)) � Cap�(A;
), that is in the dependen
e on themeasure of the inner sets. These two approa
hes are rather di�erent,and seem to be eÆ
ient in di�erent settings.Remark 14. Proposition 2 appears as a n-dimensional version of thegeneralized Hardy inequality (see Mu
kenhoupt [45℄), whi
h assertsthat the best A so that every smooth f on R with f(0) = 0 one hasZ +10 f2d� � AZ +10 f 02d�;July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 33veri�es B � A � 4B where B = supx>0 �([x;+1)) R x0 ��1� , and�� is the density of the absolute 
ontinuous part of �. Note thatCap�([x;+1); [0;1)) = (R x0 ��1� )�1, so B is the smallest 
onstant sothat �([x;+1)) � BCap�([x;+1); [0;1))for all x > 0. This 
riterion is simpler than the one in n dimensions,be
ause one 
an redu
e to non-de
reasing fun
tions, for whi
h levelsets are half-lines.Remark 15. It is shown in [12℄ that the Poin
ar�e 
onstant of a mea-sure � veri�es C=2 � CP � KC where C is the best 
onstant in:�(A) � CCap�(A; �) for all A with �(A) < 1=2, and K is a universal
onstant. Proposition 2 shows that one 
an take K = 4.5.3. A 
riterion for general Be
kner-type inequalitiesThe aim of this se
tion is to give a sharp 
riterion for inequalities ofthe form (41). Sin
e they appear as a 
olle
tion of Sobolev inequal-ities, the �rst step 
onsists in �nding a 
riterion for ea
h Sobolevinequality. This was done by the �rst and last-named authors in the
ase of measures on the line. We present here a slightly weaker butmore 
onvenient formulation of Theorem 11 in [12℄ and its extensionto arbitrary dimension.Theorem 9. Let p 2 (1; 2), �; � be Borel measures on Rn , with�(Rn) = 1 and d�(x) = ��(x)dx. Let C be the optimal 
onstantsu
h that for every smooth f : Rn ! R one hasZ f2d���Z jf jpd�� 2p � C Z jrf j2d�: (43)Then 12B(p) � C � 20B(p); where B(p) is the optimal 
onstant sothat every Borel set A � Rn with �(A) � 1=2 satis�es�(A) 1��1 + 1�(A)� p�2p ! � B(p)Cap�(A;�):If n = 1, one has 12 max(B�(p); B+(p)) � C � 20 max(B�(p); B+(p))whereB+(p) = supx>m�([x;+1)) 1��1 + 1�([x;1))� p�2p !Z xm 1�� ;B�(p) = supx<m�((�1; x℄) 1��1 + 1�((�1; x℄)� p�2p !Z mx 1�� ;and m is a median of �.July 13, 2004.



34 F. Barthe et al.Proof. The one dimensional result follows from [12, Theorem 11 andRemark 12℄ whi
h involve 1 + 1=(2�([x;1)). In order to derive theresult presented here we have used the following easy inequality, validfor y � 2, and p 2 (1; 2),1� (1 + y) p�2p1� (1 + y=2) p�2p � log 3log 2 : (44)Note that the left hand side is monotonous in y and p.We turn to the n-dimensional part of the theorem. We use threelemmas from [12℄ whi
h we re
all just after this proof. We start withthe lower bound on the 
onstant C. Assume that the Sobolev inequal-ity (43) is satis�ed for all fun
tions. Let A � Rn with �(A) � 1=2, andlet f : Rn ! R be lo
ally Lips
hitz, with f � 1IA and �(f = 0) � 1=2.Denote S = fx; f(x) 6= 0g. By Inequality (43) and Lemma 7, one hasCZ jrf j2d� � sup�Z f2gd�; g : Rn! (�1; 1);Z (1� g) pp�2 d� � 1�:In the latter supremum, the values of g on ff = 0g have no in
iden
eon the integral, but they have an in
iden
e on the 
onstraint. So thesupremum is a
hieved for g's being �1 on ff = 0g. ThusC Z jrf j2d� � sup�ZS f2gd�; g 2 (�1; 1);ZS(1� g) pp�2d� � 1�� sup�ZS f2gd�; g 2 [0; 1);ZS(1� g) pp�2 d� � 1�� sup�Z 1IAg1ISd�; g 2 [0; 1);Z (1� g) pp�2 1ISd� � 1�= �(A) 1��1 + 1� �(S)�(A) �p�2p ! ;where we have used f � 1IA and Lemma 8 for the measure dQ = 1ISd�.Sin
e �(S) � 1=2 and this is valid for any f larger than 1 on A andvanishing for probability 1=2 one gets�(A) 1��1 + 12�(A)� p�2p ! � CCap�(A;�):One 
on
ludes with Inequality (44).Next we prove the upper bound on C. Let f be a lo
ally Lips
hitzfun
tion. Let m be a median of the law of f under �. Set F = f �m,July 13, 2004.
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+ = ff > mg, 
� = ff < mg, F+ = F1I
+ and F� = F1I
� . Notethat �(
+); �(
�) � 1=2. We de�ne the 
lass of fun
tions I byI = �g : Rn ! [0; 1);Z (1� g) pp�2d� � 1 + (p� 1) pp�2� :Combining Lemmas 6 and 7 and observing that F 2 = F 2+ +F 2� givesZ f2d���Z jf jpd�� 2p � Z F 2d�� (p� 1)�Z jF jpd�� 2p� supg2I Z (F 2+ + F 2�)gd�� supg2I Z F 2+gd�+ supg2I Z F 2�gd�:Applying Proposition 2 with the measures g d� and d� (it is 
ru
ialhere that g � 0) gives R F 2+gd� � 4Bg R jrF+j2d�, whereBg := supA�
+ R 1IAgd�Cap�(A;
+) � sup�(A)� 12 R 1IAgd�Cap�(A;�)� sup�(A)� 12 sup�R 1IAgd�; g 2 I	Cap�(A;�)= sup�(A)� 12 �(A) 1��1 + (p�1) pp�2�(A) � p�2p !Cap�(A;�) � 5B(p):In the pre
eding lines we have used Lemma 8 and the inequality1� �1 + x(p� 1) pp�2� p�2p � 5�1� (1 + x) p�2p � ; x � 2; p 2 (1; 2);whi
h follows from Remark 12 of [12℄. We have shown thatsupg2I Z F 2+gd� � 20B(p)Z jrF+j2d�:Adding up with a similar relation for F� leads toZ f2d���Z jf jpd�� 2p � 20B(p)�Z jrF+j2d� + Z jrF�j2d��= 20B(p)Z jrf j2d�:utJuly 13, 2004.



36 F. Barthe et al.We list the three lemmas from [12℄ that we used in the previousproof.Lemma 6. Let p 2 (1; 2). Let f : X ! R be square integrable fun
-tion on a probability spa
e (X;Q). Then for all a 2 R one hasZ f2dQ��Z jf jpdQ� 2p � Z (f�a)2dQ�(p�1)�Z jf � ajpdQ� 2p :Lemma 7. Let ' be a non-negative integrable fun
tion on a proba-bility spa
e (X;P ). Let A > 0 and a 2 (0; 1), thenZ 'dP �A�Z 'adP� 1a= sup�Z 'gdP ; g : X ! (�1; 1) and Z (1� g) aa�1dP � A aa�1�� sup�Z 'gdP ; g : X ! [0; 1) and Z (1� g) aa�1dP � 1 +A aa�1� :Lemma 8. Let a 2 (0; 1). Let Q be a �nite measure on a spa
e Xand let K > Q(X). Let A � X be measurable with Q(A) > 0. Thensup�ZX 1IAgdQ; g : X ! [0; 1) and ZX(1� g) aa�1dQ � K�= Q(A) 1��1 + K �Q(X)Q(A) �a�1a ! :Theorem 9 readily implies a sharp 
riterion for inequalities gener-alizing the ones of Be
kner and Lata la-Oleszkiewi
z.Theorem 10. Let T : [0; 1℄ ! R+ . Let �; � be a Borel measures onRn , with �(Rn) = 1 and d�(x) = ��(x)dx. Let C be the optimal
onstant su
h that for every smooth f : Rn ! R one hassupp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � C Z jrf j2d�: (45)De�ne the fun
tion eT (x) = supp2(1;2) 1� x p�2pT (2� p) :Then 12B(T ) � C � 20B(T ), where B(T ) is the smallest 
onstant sothat every Borel set A � Rn with �(A) < 1=2 satis�es�(A) eT �1 + 1�(A)� � B(T )Cap�(A;�):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 37If the dimension n = 1, then12 max(B+(T ); B�(T )) � C � 20 max(B+(T ); B�(T ));where B+(T ) = supx>m�([x;+1)) eT �1 + 1�([x;+1))�Z xm 1�� ;B�(T ) = supx>m�((�1; x℄) eT �1 + 1�((�1; x℄)�Z mx 1�� ;and m is a median of �.Under fairly reasonable assumptions, the following lemma gives asimple expression of eT in terms of T . In parti
ular the lemma andthe theorem re
over the 
riterion for the Lata la-Oleszkiewi
z on thereal line and extends it to any dimension.Lemma 9. Let T : [0; 1℄ ! R+ be non-de
reasing. Then, for anyX � e, supp2(1;2) 1�X p�2pT (2� p) � 13T � 1logX� :If one also assumes that x 7! T (x)=x is non-in
reasing, then forX � e supp2(1;2) 1�X p�2pT (2� p) � 1T � 1logX� :Proof. Let b = 2�pp , 
 = b logX and note that 2�p = 2bb+1 � 2b. Sin
eT is non-de
reasing, one hassupp2(1;2) 1�X p�2pT (2� p) = supb2(0;1) 1� e�b logXT � 2bb+1� � supb2(0;1=2) 1� e�b logXT (2b)� 1�peT � 1logX� ;by 
hoosing b = 1=(2 logX) � 1=2. Finally 1�pe ' 0:393 � 13 .July 13, 2004.



38 F. Barthe et al.For the se
ond assertion, let b = 2�pp 2 (0; 1), 
 = b logX and notethat 2� p = 2bb+1 � b. Sin
e T is non-de
reasing,supp2(1;2) 1�X p�2pT (2� p) = supb2(0;1) 1� e�b logXT � 2bb+1� � supb2(0;1) 1� e�b logXT (b)� max24 sup
2(0;1℄ 1� e�
T � 
logX� ; sup
2(1;logX) 1� e�
T � 
logX�35 :Re
all that T (x)=x is non-in
reasing. So for 
 2 (0; 1℄, T � 
logX� �
T � 1logX�. Hen
e,sup
2(0;1℄ 1� e�
T � 
logX� � 1T � 1logX� sup
2(0;1℄ 1� e�

 = 1T � 1logX� :When 
 � 1, one has T � 
logX� � T � 1logX� sin
e T is non-de
reasing.Thus sup
2(1;logX) 1� e�
T � 
logX� � 1T � 1logX� sup
>1(1� e�
) � 1T � 1logX� :This a
hieves the proof. ut5.4. Homogeneous F -Sobolev inequalitiesIn the next statement, we show how to derive spe
ial homogeneousF -Sobolev inequalities, whi
h ignore the behavior of fun
tions 
loseto their average. Su
h inequalities appear in the work of Wang. Letus also note that any behavior of F at in�nity may o

ur.Theorem 11. Let D > 0 and � > 1. Let F : [0;+1) ! [0;+1) bea non-de
reasing fun
tion. Assume that F (x) = 0 if x � 2�. Let �be a probability measure on Rn su
h that every A � Rn with �(A) �1=(2�) < 1=2 �(A)F � ��(A)� � DCap�(A):Then for every smooth f : Rn ! R one hasZ f2F � f2R f2d�� d� � D� �p�� 1�2 Z jrf j2d�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 39Proof. For k � 1, set 
k = fx; f2(x) � 2�k�(f2)g. Chebi
hev in-equality gives �(
k) � 1=(2�k). Next, sin
e F vanishes on [0; 2�℄Z f2F � f2R f2d�� d� �Xk�1 Z
kn
k+1 f2F � f2R f2d�� d��Xk�1 �(
k)2�k+1�(f2)F (2�k+1):Sin
e k � 1 and F is non-de
reasing, we have�(
k)F (2�k+1) � �(
k)F � ��(
k)� � DCap�(
k):Let us 
onsider the fun
tionhk = min 1; jf j �p2�k�1�(f2)p2�k�(f2)�p2�k�1�(f2)!+! ;it is equal to 1 on 
k and zero outside 
k�1. Sin
e for k � 1,�(
k�1) � 1=2, hk vanishes with probability at least 1=2. ThusCap�(
k) � Z jrhkj2d� = R
k�1n
k jrf j2d�2�k�1 �p�� 1�2 �(f2) :Combining these estimates givesZ f2F � f2R f2d�� d� � DXk�1 2�k+1�(f2)Cap�(
k)� D� �p�� 1�2 Z jrf j2d�:utIn the following we brie
y study homogeneous F -Sobolev inequal-ities whi
h are tight but do not ignore the values of fun
tions 
loseto their L2 -norm. In this 
ase the behavior of F at 1 is 
ru
ial. Wehave already seen the next Lemma in se
tion 4.4Lemma 10. Let � be a probability measure on Rn . Let F : [0;+1) !R be C2 on a neighborhood of 1. Assume that F (1) = 0 and that everysmooth fun
tion f satis�esZ f2F � f2R f2d�� � Z jrf j2d�:July 13, 2004.



40 F. Barthe et al.Then for every smooth fun
tion g(4F 0(1) + 2F 00(1))Z �g � Z g d��2 d� � Z jrgj2d�:In parti
ular, setting �(x) = xF (x), if �00(1) > 0 one has CP (�) �1=(2�00(1)).If a measure satis�es a Poin
ar�e inequality, and a tight homoge-neous F -Sobolev inequality whi
h ignores small values of fun
tions,then one 
an modify F on small values in an almost arbitrary way:Lemma 11. Let D > 0 and � > 1. Let F : [0;+1) ! R be a non-de
reasing fun
tion, su
h that F = 0 on [0; 2�). Let � be a probabilitymeasure on Rn with Poin
ar�e 
onstant CP <1 and su
h that everysmooth fun
tion f on Rn satis�esZ f2F � f2R f2d�� d� � D Z jrf j2d�:Let eF : [0;+1) ! R be non-de
reasing su
h that eF (1) = 0, eF is C2on [0; 2�℄ and eF (x) = F (x) for x � 2�. Set �(x) = x eF (x). Then forevery smooth f : Rn ! R one hasZ f2 eF� f2R f2d��d� � �(1 +p2�)2CP�max[0;2�℄�00�+ +D�Z jrf j2d�:Proof. Note that �(1) = 0 and �0(1) = eF 0(1) � 0. We introdu
ethe fun
tion �1(x) = �(x) � �(1) � �0(1)(x � 1). Without loss ofgenerality, we 
onsider a fun
tion f � 0 with R f2d� = 1. One hasZ �(f2)d� = Z �1(f2)d� = Zf2�2� �1(f2)d�+ Zf2>2� �1(f2)d�:(46)For the �rst term, using Taylor's formula and 0 � f � p2�, we obtain�1(f2) � �max[0;2�℄�00� (f2 � 1)22 � (1 +p2�)22 �max[0;2�℄�00�+ (f � 1)2:ThereforeZf2�2� �1(f2)d� � (1 +p2�)22 �max[0;2�℄�00�+ Z (f � 1)2d�July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 41
an be upper-bounded thanks to the Poin
ar�e inequality. IndeedZ (f � 1)2d� = Z �f � �(f2) 12�2= 2 Z f2d�� Z f d��Z f2d�� 12!� 2 Z f2d���Z fd��2! � 2CP Z jrf j2d�:The se
ond term in (46) is easily handled by our hypothesis. Indeed,sin
e �0(1) � 0Zf2>2� �1(f2)d� � Zf2>2� �(f2)d� � Z f2F (f2)d� � D Z jrf j2d�:utFinally, we show that an homogeneous F -Sobolev inequality im-plies an inequality between 
apa
ity and measure. We believe thatthe result should be true in more generality.Theorem 12. Let � be a probability measure on Rn . Let F : R+ !R+ be a non-negative non-de
reasing fun
tion su
h that there exists� � 4 su
h that for x � 2, F (x)=x is non-in
reasing and F (�x) ��F (x)=4. Assume that for every smooth fun
tion, one hasZ f2F � f2�(f2)� d� � D Z jrf j2d�;then for all A � Rn with �(A) � 12 it holds�(A)F � 1�(A)� � 4�DCap�(A):Proof. Let A be a set of measure less than 1=2. In order to estimateits 
apa
ity, we may 
onsider non-negative fun
tions g � 1A and�(g = 0) � 1=2. For k 2 Z we 
onsider the fun
tiongk = min��g � 2kp�(g2)�+; 2kp�(g2)� :We also set 
k = fx; g(x) � 2kp�(g2)g. Note that on 
k+1, g2kis 
onstantly 22k�(g2) and that R g2kd� � �(
k)22k�(g2). Therefore,applying the F -Sobolev inequality (with F � 0) to gk yieldsD Z jrgj2d� � D Z jrgkj2d� � Z
k+1 g2kF � g2k�(g2k)� d�� �(
k+1)22k�(g2)F � 1�(
k)� :July 13, 2004.



42 F. Barthe et al.Setting ak = �(
k) and C = D R jrgj2d�=�(g2), we have for k 2 Z22kak+1F (1=ak) � C:Lemma 12 guarantees that 22kakF (1=ak) � �C for every k withak > 0, that is22k�(g2)�(
k)F � 1�(
k)� � �D Z jrgj2d�:We 
hoose the largest k with 2kp�(g2) � 1. Thus 2k+1p�(g2) > 1and A � 
k. In parti
ular 2 � 1=�(
k) � 1=�(A), so these ratios arein the range where x 7! F (x)=x is non-in
reasing. Combining theseremarks with the above inequality yields14�(A)F � 1�(A)� � �D Z jrgj2d�:Sin
e this is valid for every g � 1IA and vanishing on a set of measureat least 1=2, we have shown that �(A)F (1=�(A)) � 4�DCap�(A).ut The next lemma was inspired by the argument of Theorem 10.5in [5℄.Lemma 12. Let F : [2;+1) ! [0;+1) be a non-de
reasing fun
tionsu
h that x! F (x)=x is non in
reasing and there exists � � 4 su
hthat for all x � 2 one has F (�x) � �F (x)=4. Let (ak)k2Z be a non-in
reasing (double-sided) sequen
e of numbers in [0; 1=2℄. Assume thatfor all k 2 Z with ak > 0 one has22kak+1F � 1ak� � C;then for all k 2 Z with ak > 0 one has22kakF � 1ak� � �C:Proof. Dis
arding trivial 
ases where F (1=ak) is always zero, we ob-serve that the sequen
e 22kF (1=ak) tends to +1 when k tends to+1, and tends to zero when k tends to �1. So we de�ne k0 asthe largest integer su
h that 22kF (1=ak) � 2C. Let k � k0, then2C � 22kF (1=ak) � 22kF (2) sin
e ak � 1=2 and F is non-de
reasing.Moreover sin
e F (t)=t is non-in
reasing, we also have22(k+1)ak+1F � 1ak+1� � 22(k+1)F (2)=2:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 43Combining these two inequalities yields22(k+1)ak+1F � 1ak+1� � 4C � �C;so the 
laimed result is established for k � k0+1. For larger values wepro
eed by indu
tion. Let k � k0 + 1, for whi
h the 
on
lusion holds.If ak+1 = 0 we have nothing to prove. Otherwise the hypothesis ofthe lemma gives 1ak+1 � 22kF � 1ak�C :Sin
e k > k0 we know that the term on the right is larger than 2.Using the fa
t that t � 2 7! F (t)=t is non-in
reasing, we obtainak+1F � 1ak+1� � C22kF � 1ak�F 0�22kF � 1ak�C 1A :Next, by the indu
tion hypothesis for k this is bounded from aboveby C22kF � 1ak�F � �ak� � C22k � �4where we have used F (�t) � �F (t)=4. So we have shownak+1F � 1ak+1� � 2�2k�2�C;and the 
on
lusion is valid for k + 1. utRemark 16. The alternative redu
tion of Sobolev type inequalities toestimates on the Rayleigh quotient (see Remark 13) turns out to workbetter for homogeneous F -Sobolev inequalities. See Proposition 2.2in [26℄, dealing with measures of in�nite mass, but the proof of whi
hextends to our setting.Remark 17. Applying Theorem 12 to the fun
tion F = 1I[2;+1) and� = 4 shows the following. If for every fun
tion one hasZf2�2�(f2) f2d� � C Z jrf j2d�then for all A � Rn with �(A) � 1=2, one has �(A) � 16CCap�(A).By Remark 15, the measure � satis�es a Poin
ar�e inequality with
onstant CP (�) � 64C.The 
onverse impli
ation also holds. Assume that � satis�es forall f , Var�(f) � CP (�) R jrf j2d�. Without loss of generality, weJuly 13, 2004.



44 F. Barthe et al.
onsider f � 0. If f2 � 2�(f2) then by Cau
hy-S
hwarz one hasf � p2�(f) and 
onsequently (f � �(f))2 � (1 � 1=p2)2f2. Hen
eVar�(f) � (1 � 1=p2)2 Rf2�2�(f2) f2d� and the Poin
ar�e inequalityimplies Zf2�2�(f2) f2d� � �1� 1p2��2CP (�)Z jrf j2d�� 12CP (�)Z jrf j2d�:As a 
on
lusion, Poin
ar�e inequality enters the framework of ho-mogeneous F -Sobolev inequalities and is (up to the 
onstants) equiv-alent to R f21f2�2�(f2)d� � C R jrf j2d�. Note that the number 2 is
ru
ial in our argument.Remark 18. Let us present a 
onvenient variant of Theorem 12. As-sume that � satis�es a Poin
ar�e inequality and a F -Sobolev inequal-ity as in Theorem 12. If F veri�es the assumptions F (x)=x non-in
reasing and F (�x) � �F (x)=4 only for x � x0 > 2 then one 
anhowever 
on
lude with a similar inequality between 
apa
ity and mea-sure. To see this, introdu
e a fun
tion eF on R+ with eF (x) := F (x)for x � x0, eF (x) := F (x0) for x 2 [2; x0℄, eF (1) = 0 and F isC2 and non-de
reasing on [0; x0℄. Then by Lemma 11, � satis�esa homogeneous eF -Sobolev inequality, and eF satis�es the assump-tions of Theorem 12. Therefore one obtains an inequality of the form�(A) eF (1=�(A)) � KCap�(A). In parti
ular if �(A) � 1=x0 one has�(A)F (1=�(A)) � KCap�(A).5.5. Additive �-Sobolev inequalitiesWe present an extension of a method developed by Mi
lo and Roberto[44℄ for logarithmi
 Sobolev inequalities. Throughout this se
tion, wework with a fun
tion �(x) = x'(x), where ' : (0;+1) ! R isnon-de
reasing, 
ontinuously di�erentiable. We assume that � 
anbe extended to 0. For x; t > 0 we de�ne the fun
tion�t(x) = �(x)� �(t)� �0(t)(x� t) = x('(x) � '(t)) � t'0(t)(x� t):We start with two preliminary statements about �-entropies. The�rst one is 
lassi
al and easy, and we skip its proof (see also Lemma3.4.2 in [3℄). For short, we write �(g) for R gd�.Lemma 13. For every fun
tion f ,Z �(f2) d�� ��Z f2d�� = Z ��(f2)(f2)d�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 45When � is 
onvex, one hasZ �(f2) d�� ��Z f2d�� = inft>0 Z �t(f2)d�:Lemma 14. Let the fun
tion ' be non-de
reasing and 
on
ave. As-sume that there exists 
 � 0 su
h that y'0(y) � 
 for all y > 0. Thenfor every t > 0 and every x 2 [0; 2t℄ one has�t2(x2) � 9
(x� t)2:Proof. The 
on
avity of ' ensures that '(x2) � '(t2)+'0(t2)(x2�t2):This yields�t2(x2) � '0(t2)(x2 � t2)2 = (x� t)2'0(t2)(x+ t)2� (x� t)2'0(t2)(3t)2 � 9
(x� t)2;where we have used x � 2t. utTheorem 13. Let ' be a non-de
reasing, 
on
ave, C1 fun
tion on(0;+1) with '(8) > 0. Assume that there exist 
onstants 
;M su
hthat for all x; y > 0 one hasx'0(x) � 
 and '(xy) �M + '(x) + '(y):Let � be a probability measure on Rn satisfying a Poin
ar�e inequal-ity with 
onstant CP and the following relation between 
apa
ity andmeasure: there exists D > 0 su
h that for all A � Rn with �(A) < 1=4�(A)'� 2�(A)� � DCap�(A);then for every smooth fun
tion one hasZ �(f2) d����Z f2d�� � �18
 CP + 24�1 + M'(8)�D�Z jrf j2d�;where as usual �(x) = x'(x).Proof. Without loss of generality, we may 
onsider f � 0. Set t =(�(f2)) 12 . ThenZ �(f2)d�� ��Z f2d�� = Z �t2(f2)d�= Zf2�4�(f2) �t2(f2)d�+ Zf2>4�(f2) �t2(f2)d�: (47)July 13, 2004.



46 F. Barthe et al.The �rst term is bounded from above thanks to Lemma 14, indeedZf2�4�(f2) �t2(f2)d� = Zf2[0;2t℄ �t2(f2)� 9
 Zf2[0;2t℄ �f � �(f2) 12�2d� � 9
 Z �f � �(f2) 12�2= 18
 Z f2d�� Z fd��Z f2d�� 12!� 18
 Z f2d���Z f d��2! � 18
CP Z jrf j2d�;where we have used Cau
hy-S
hwartz and the Poin
ar�e inequality for�. The se
ond term in (47) is estimated as followsZf2>4�(f2) �t2(f2)d� = Zf2>4�(f2) hf2 �'(f2)� '��(f2)����(f2)'0��(f2)��f2 � �(f2)�i d�� Zf2>4�(f2) f2 �'(f2)� '��(f2)�� d�� Zf2>4�(f2) f2�'� f2�(f2)�+M� d�:We 
on
lude by applying Theorem 11 with � = 2, F (x) = 0 if x � 4,and F (x) = '(x) +M if x > 4. Sin
e for �(A) � 1=4 one has�(A)F � 2�(A)� = �(A)'� 2�(A)�0�1 + M'� 2�(A)�1A� D�1 + M'(8)�Cap�(A);we obtainZf2>4�(f2) �t2(f2)d� � 4(p2 + 1)2D�1 + M'(8)�Z jrf j2d�:utRemark 19. As already explained, the Poin
ar�e 
onstant of the mea-sure � is bounded above by 4B where B is the best 
onstant su
h thatJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 47every set A with �(A) � 1=2 veri�es �(A) � BCap�(A). If '(4) > 0,one hasD := sup�(A)�1=2 �(A)'(2=�(A))Cap�(A) � '(4) sup�(A)�1=2 �(A)Cap�(A) = '(4)B:So CP � 4D='(4). In parti
ular, if D < +1, then � satis�es anadditive �-Sobolev inequality.Remark 20. As already mentioned, the additive '-Sobolev inequalityhas the tensorisation property. If it is valid for a measure � (withse
ond moment) then it is true for its produ
t measures, and by a
lassi
al appli
ation of the Central Limit Theorem it holds for theGaussian measure. For the latter it is known that the logarithmi
Sobolev inequality, viewed as an embedding result, is optimal. So '
annot grow faster than a logarithm. Note that both hypothesis on' assumed in Theorem 13 imply that ' is at most a logarithm.Next we present an improved 
riterion for measures on the realline.Theorem 14. Let � be a 
ontinuous 
onvex fun
tion on [0;1), with�(x) = x'(x) for x > 0. Assume that ' is non-de
reasing, 
on
ave,and C1 on (0;+1) with '(8) > 0. Assume that there exist 
onstants
;M su
h that for all x; y > 0 one hasx'0(x) � 
 and '(xy) �M + '(x) + '(y):Let � be a probability measure on R, with density ��, and median m.Let D+ = supx>m�([x;+1))'� 2�([x;+1))�Z xm 1��D� = supx<m�((�1; x℄)'� 2�((�1; x℄)�Z mx 1��B+ = supx>m�([x;+1))Z xm 1��B� = supx<m�((�1; x℄)Z mx 1�� ;and B = max(B+; B�), D = max(D+;D�). Then for every smoothfun
tionZ �(f2)d�� ��Z f2d�� � �144
B + 24�1 + M'(8)�D�Z f 02d�:July 13, 2004.



48 F. Barthe et al.Proof. The argument is a re�nement of the proof of Theorem 13. Weexplain the points whi
h di�er. Without loss of generality we 
onsidera non-negative fun
tion f on R. We 
onsider the asso
iated fun
tiong de�ned byg(x) = f(m) + Z xm f 0(u)1f 0(u)>0du if x � mg(x) = f(m) + Z xm f 0(u)1f 0(u)<0du if x < m:Set t = (�(g2)) 12 . Then Lemma 13 ensures thatZ �(f2) d�� ��Z f2d�� � Z �t2(f2)d�= Zf2�4�(g2) �t2(f2)d�+ Zf2>4�(g2) �t2(f2)d�: (48)For the �rst term, we use Lemma 14Zf2�4�(g2) �t2(f2)d� = Zf2[0;2t℄ �t2(f2)� 9
 Zf2[0;2t℄ �f � �(g2) 12�2d� � 9
 Z �f � �(g2) 12�2d�� 18
 Z (f � g)2d�+ 18
 Z �g � �(g2) 12�2d�:Next observe thatZ (f � g)2d�= Z +1m �Z xm[f 0 � f 01f 0>0℄�2d�(x) + Z m�1�Z xm [f 0 � f 01f 0<0℄�2d�(x)= Z +1m �Z xm f 01f 0�0�2 d�(x) + Z m�1�Z xm f 01f 0�0�2 d�(x)� 4B+ Z +1m f 021f 0�0d�+ 4B� Z m�1 f 021f 0�0d�where the last inequality relies on Hardy inequality (see Remark 14).As in the proof of Theorem 13,Z �g � �(g2) 12�2d� � 2CP Z g02d�= 2CP �Z +1m f 021f 0>0d�+ Z m�1 f 021f 0<0d�� ;July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 49and we also use the fa
t that the Poin
ar�e 
onstant CP of � satis�esCP � 4B. Combining the previous three estimates givesZf2�4�(g2) �t2(f2) d� � 144
B Z f 02d�:Now we evaluate the se
ond term in equation (48): sin
e �t(x) �x('(x) � '(t)) for x � t,Zf2>4�(g2) �t2(f2) d� � Zf2>4�(g2) f2 �'(f2)� '��(g2)�� d�� Zg2>4�(g2) g2 �'(g2)� '��(g2)�� d�� Zg2>4�(g2) g2�'� g2�(g2)�+M� d�where we have used g � f � 0 and the fa
t that ' is non-de
reasing.At this stage, we apply the de
omposition into level sets performedin the proof of Theorem 11, on
e on (m;+1) and on
e on (�1;m).Note that the fun
tion g being non-in
reasing before m and non-de
reasing after, the level sets appearing in the proof are of the form(�1; x℄, x < m, and [x;+1), x > m for whi
h the �-
apa
ity is
ontrolled by the hypothesis of the theorem. utThe previous two theorems apply to logarithmi
 Sobolev inequal-ity when '(x) = log(x), this is how Mi
lo and Roberto re
overed thesuÆ
ien
y part of the Bobkov-G�otze 
riterion. The next result givesan appli
ation to tight versions of Rosen's inequality.Theorem 15. Let � 2 (0; 1℄. Let � be a probability measure on Rn .Assume that one of the following hypotheses holds:(i) There exists a 
onstant D so that every A � Rn with �(A) � 1=2satis�es �(A) log� �1 + 2�(A)� � DCap�(A):(ii) The dimension n = 1, � has density ��. Let m be a median of �and D+ = supx>m�([x;+1)) log� �1 + 2�([x;+1))�Z xm 1��D� = supx<m�((�1; x℄) log� �1 + 2�((�1; x℄)�Z mx 1�� :Assume that D = max(D+;D�) is �nite.July 13, 2004.



50 F. Barthe et al.Then for every smooth f : Rn ! R one hasZ f2 log� �1 + f2� d���Z f2d�� log� �1+Z f2d�� � KD Z jrf j2d�;where one 
an take K = 96 in 
ase (i) and K = 168 in 
ase (ii).Proof. In view of Theorems 13, 14 and Remark 19 all we have todo is to 
he
k a few properties of ��(x) = x��(x) where '�(x) =log�(1 + x). We insist on the more signi�
ant ones. The fun
tion '�is in
reasing, and sin
e � � 1 it is also 
on
ave. From the obviousrelationlog(1+xy) � log �(1+x)(1+y)� � log(1+x)+log(1+y); x; y > 0and the sub-additivity of x 7! x� for � 2 (0; 1℄ we dedu
e that'�(xy) � '�(x) + '�(y). Finally we 
he
k the di�erential proper-ties. Dire
t 
al
ulation givesx'0�(x) = �x log��1(1 + x)1 + x � � � x1 + x�� � � � 1;where we have used (1 + x) log(1 + x) � x for x � 0. Finally, �� is
on
ave sin
e�00�(x) = � log��2(1 + x)(1 + x)2 ((2 + x) log(1 + x) + (� � 1)x)is non-negative due to (2 +x) log(1 + x) � (1 +x) log(1 + x) � x. utRemark 21. From the above 
apa
ity 
riterion it is plain that theLata la-Oleszkiewi
z inequality (with T (p) = (2 � p)�, (� 2 (0; 1)implies the tight Rosen inequality. The 
onverse is also true: to seethis starting from a tight Rosen inequality we may obtain Poin
ar�einequality and a defe
tive F -Sobolev inequality for F � 0. This in-equality may be tightened by Theorem 7. Next by the results of thelatter se
tion on homogeneous F -Sobolev inequality, one may obtainan inequality between 
apa
ity and measure.5.6. A summaryIn �gure 1 we summarize the various impli
ations between the in-equalities studied in this se
tion. We hope that it will help the readerto have an overview of the pi
ture.First remark that thanks to Lemma 9, in �gure 1, if T : [0; 1℄ ! R+is non-de
reasing and x 7! T (x)=x non-in
reasing, then,13T (1= log x) �  (x) = supp2(1;2) 1� x p�2pT (2� p) � 1T (1= log x) :July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 51PSfrag repla
ements
Be
kner-type inequality (T ) (41)(==) See Theorem 10: (x) = supp2(1;2) 1� x p�2pT (2� p) ; � = 128A su
h that �(A) � �; Cap�(A) � C �(A) ( 1�(A) )(==Under assumptions(H1) or (H2) on F (== Under assumption(H3) on F (========= Under assumption(H4) on �Homogenous F -Sobolev inequality (39)

Additive '-Sobolev inequality (40)
(== F = '� '(1)(== Under assumption(H5) on FPoin
ar�e inequality (==Under (H6)on '

(==(Take p = 1)Poin
ar�e inequality(==) See Remark 15: (x) � 1; � = 12

Fig. 1. The various impli
ations.Assumption (H1, see Theorem 11). F : [0;+1) ! R is a non-de
reasing fun
tion satisfying F � 0 on [0; 2�) for some � > 1. FinallyF (x) =  (x=�) for x � 2� and � = 1=(2�).Assumption (H2, see Theorem 11). F : [0;+1) ! R is a non-de
reasing fun
tion satisfying F (1) = 0 and F is C2 on [0; 2�℄. Themeasure � satis�es a Poin
ar�e inequality. Finally F (x) =  (x=�) forx � 0 and � = 1=(2�).Assumption (H3, see Theorem 12). F : [0;+1) ! R is a non-de
reasing fun
tion su
h that there exists a 
onstant 
 > 4 su
h thatfor x � 2, x 7! F (x)=x is non-in
reasing and F (
x) � 
F (x)=4.Then,  = F and � = 1=2.Assumption (H4, see Theorem 13). The fun
tion ' is non-de
reasing, 
on
ave and C1 on (0;+1) with '(8) > 0. Furthermore,there exists two 
onstants M and 
 su
h that for any x; y > 0 onehas x'0(x) � 
 and '(xy) �M + '(x) + �(y):July 13, 2004.



52 F. Barthe et al.The measure � satis�es a Poin
ar�e inequality. Finally '(x) =  (x=2)and � = 1=4.Assumption (H5, see Lemma 1). F : [0;+1) ! R is a C2fun
tion on a neighborhood of 1, F (1) = 0 and if �(x) := xF (x),�00(1) > 0.Assumption (H6). ' : [0;+1) ! R is a C2 fun
tion on a neigh-borhood of 1. Let �(x) := x'(x). The same proof as in Lemma 1gives that � satis�es a Poin
ar�e inequality if �00(1) > 0.6. Con
entration property and generalized Be
kner-Lata la-Oleszkiewi
z inequality.Re
all that a probability measure � on Rn satis�es a generalizedBe
kner inequality if there is a 
onstant CT su
h that for any smoothfun
tion f , supp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � CT Z jrf j2d�: (49)Here T : [0; 1℄ ! R+ is non de
reasing, positive on (0; 1℄ and T (0) =0. This se
tion explores the 
on
entration results implied by su
h aproperty.Herbst argument, see [28,40,3℄, derives Gaussian 
on
entrationfor measures � satisfying a log-Sobolev inequality along the follow-ing lines: let h be a 1-Lips
hitz fun
tion. Applying the inequality toexp(�h=2) provides the next di�erential inequality for the Lapla
etransform H(�) = R exp(�h) d��H 0(�)�H(�) logH(�) � CLS4 �2H(�):Here CLS is the log-Sobolev 
onstant. It 
an be expli
itly solved andgives the subgaussian bound H(�) � exp(��(h) + (CLS=4)�2). Thiseasily yields Gaussian 
on
entration.On the other hand, Poin
ar�e inequality only implies exponential
on
entration of Lips
hitz fun
tions. This fa
t goes ba
k to Gromovand Milman [31℄ (see e.g. [39℄ for subsequent developments). In this
ase, the Lapla
e transform method works [2℄, but provides a relationbetween H(�) and H(�=2). This approa
h was performed by Lata laand Oleszkiewi
z for their inequality (i.e. (49) with T (u) = u2(1� 1� ),1 < � < 2). See [37℄, where optimization over p is 
ru
ial. As alsonoted in [57℄, their argument extends as it is to general T . It yieldsJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 53Proposition 3. Let T : [0; 1℄ ! R+ be a non de
reasing fun
tionsu
h that T (0) = 0 and positive elsewhere. De�ne �(x) = 1=T ( 1x) forx 2 [1;1). let � be a probability measure on Rn and assume thatthere exists a 
onstant CT � 0 su
h that for any smooth fun
tion fsatis�es Inequality (49). Then any 1-Lips
hitz fun
tion h : Rn ! Rveri�es R jhjd� <1, and(i) for any t 2 [0;pT (1)℄,�(fx : h(x)� �(h) � tpCT g) � e� t23T (1) ;(ii) for any t �pT (1),�(fx : h(x)� �(h) � tpCT g) � e�p2 supy�1ftp�(y)�yg:Proof. We follow the argument of [37℄. If H(�) = �(e�h) is theLapla
e transform of a 1-Lips
hitz fun
tion h, Inequality (49) forf = exp(�h=2) givesH(�)�H �p2��2=p � CT4 T (2� p)�2H(�):Then, by indu
tion, we get (see [57℄) for any � < 2=pCTT (2� p),��e�(h��(h))� � �1� CT4 T (2� p)��2=(2�p) :Chebi
hev inequality ensures that for any p 2 [1; 2), and any � <2=pCTT (2� p),�(fx : h(x)��(h) � tpCT g) � e��tpCT �1� CT�24 T (2� p)�� 22�p :(50)For t < 2pT (1), we set p = 1 and � = tT (1)pCT in the latter inequal-ity. We get�(fx : h(x)� �(h) � tpCT g) � e� t2T (1) �1� t24T (1)��2 :In parti
ular, for t <pT (1) we have 1� t24T (1) � e� t23T (1) . Thus,�(fx : h(x)� �(h) � tpCT g) � e� t23T (1) :For the se
ond regime, 
hoose � su
h that 1 � C�24 T (2 � p) = 12 . Itfollows from (50) that for any p 2 (1; 2)�(fx : h(x) � �(h) � tpCT g) � e� p2tpT (2�p)+ 2 ln 22�p :July 13, 2004.



54 F. Barthe et al.Note that 2 ln 2 � p2. Thus, if y := 12�p , we get� p2tpT (2� p) + 2 ln 22� p � �p2( tpT (2� p) � 12� p)= �p2ftp�(y)� yg:One 
on
ludes the proof by optimizing in p 2 (1; 2) or equivalentlyin y 2 (1;1). utThe next statement provides an appli
ation of the latter result to
on
entration with rate e��(t) for a general 
onvex �. When �(t) =t�, � 2 (1; 2), it redu
es to the result by Lata la and Oleszkiewi
z.Corollary 1. Let � : R+ ! R+ be an in
reasing 
onvex fun
tion,with �(0) = 0. De�ne �(x) = ��0(��1(x))�2 for x 2 R+ and T (x) =1=�( 1x) for x 2 R+ n f0g, T (0) = 0. Here �0 is the right derivative of�. Let � be a probability measure on Rn and assume that there existsa 
onstant CT su
h that it satis�es the generalized Be
kner inequality(49). Then, for any 1-Lips
hitz fun
tion h : Rn ! R, R jhj <1 andfor any t �pT (1) _ 2��1(1),�(fx : h(x) � �(h) � tpCT g) � e�p2�( t2):Proof. Thanks to Proposition 3, it is enough to bound from belowsupy�1ftp�(y) � yg. By assumption t � 2��1(1), so �(t=2) � 1. Itfollows that for y = �(t=2),supy�1ftp�(y)� yg � tp�(�(t=2))� �(t=2) = t�0(t=2)� �(t=2):Sin
e � is 
onvex and �(0) = 0, one has x�0(x) � �(x) for all x � 0.Hen
e, supy�1ftp�(y)� yg � �(t=2). utTheorem 10 of Se
tion 5 provides a 
riterion for a measure onthe line to satisfy a generalized Be
kner inequality. Under mild as-sumptions, and if one is not interested in estimating the 
onstant,the 
ondition may be further simpli�ed.Proposition 4. Let V : R ! R be 
ontinuous. Assume that d�(x) =Z�1V e�V (x)dx is a probability measure. Let T : [0; 1℄ ! R+ be non-de
reasing with T (0) = 0 and positive elsewhere. Assume that x 7!T (x)=x is non-in
reasing. De�ne �(x) = 1=T (1=x) for x 2 [1;1).Furthermore, assume that(i) there exists a 
onstant A > 0 su
h that for jxj � A, V is C2 andsign(x)V 0(x) > 0,(ii) limjxj!1 V 00(x)V 0(x)2 = 0,July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 55(iii) lim supjxj!1 �(V (x) + log V 0(x) + logZV )V 0(x)2 <1.Then � satis�es the following Be
kner-type inequality: there exists a
onstant CT � 0 su
h that for any smooth fun
tion f ,supp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � CT Z f 02d�:Proof. The proof is similar to the one of [12, Proposition 15℄. Let mbe a median of �. Under Hypotheses (i) and (ii), when x tends to1, one has (see e.g. [3, 
hapter 6℄)Z xm eV (t)dt � eV (x)V 0(x) and Z 1x e�V (t)dt � e�V (x)V 0(x) :Thus, for x � m,�([x;1))T � 1log(1+ 1�([x;1)) )� Z xmZV eV (t)dt � ZV �(V (x) + log V 0(x) + logZV )V 0(x)2 :By Hypothesis (iii), this quantity is bounded on [A0;1) for some A0.Sin
e the left hand side is 
ontinuous in x 2 [m;A0℄, it is bounded on(m;1). It follows from Lemma 9 that the quantity B+(T ) de�nedin Theorem 10 is �nite. Similarly B�(T ) < +1. We 
on
lude withTheorem 10. utThe latter results provide a very general 
ondition for dimensionfree 
on
entration. Starting with an in
reasing 
onvex 
on
entra-tion rate � : R+ ! R+ with �(0) = 0, we introdu
e the fun
tionT (x) = 1=(�0(��1(x)))2. Under the additional assumption that p�is 
on
ave, we know that T (x)=x is non-in
reasing. Therefore, un-der the assumptions of Proposition 4, a probability measure d�(x) =Z�1V e�V (x)dx on R satis�es the Be
kner inequality with fun
tion T .By the tensorization property, the measures �
n verify the same in-equality and by Corollary 1, they satisfy a dimension free 
on
entra-tion inequality with rate e�p2�(t=2). Note that our 
ondition aboutp� is quite natural sin
e, by the Central Limit Theorem, a dimensionfree 
on
entration inequality has at most a Gaussian rate.The next appli
ation of our 
riterion provides the best expe
ted
on
entration rate for 
ertain log-
on
ave distributions.Corollary 2. Let � : R+ ! R+ be an in
reasing 
onvex fun
tion with�(0) = 0 and 
onsider the probability measure d�(x) = Z�1� e��(jxj) dx.Assume that � is C2 on [��1(1);1) and that p� is 
on
ave.July 13, 2004.



56 F. Barthe et al.Then there exits 
 > 0 su
h that for all n � 1, every 1-Lips
hitzfun
tion h : Rn ! R is �
n-integrable and satis�es�
n(fx : h(x)� �
n(h) � tp
g) � e�p2�( t2 )provided t � 2��1(1) _ 1=(�0(��1(1))).Proof. Set �(u) = (�0(��1(u)))2 and T (u) = 1=�(1=u) for u > 0.The hypotheses on � ensure that T is non-de
reasing and T (u)=u isnon-in
reasing. We 
he
k below that � satis�es a Be
kner-type in-equality with rate fun
tion T . By the above argument this impliesthe 
laimed 
on
entration inequality for produ
ts. Let us 
he
k thatV (x) = �(jxj) satis�es the three 
onditions in Proposition 4. Bysymmetry it is enough to work on R+ . Condition (i) is obvious. Con-dition (ii) is easily 
he
ked. Indeed sin
e p� is 
on
ave, its se
ondderivative is non-positive when it is de�ned. So for large x we have�00=�02 � 1=(2�). So lim+1� = +1 implies that lim+1 �00=�02 = 0.Now we prove that Condition (iii) of the latter proposition isveri�ed. Our aim is to bound from above the quantityK(x) := �(�(x) + log�0(x) + logZ�)�0(x)2 :By 
on
avity of p�, the fun
tion �02=� is non-in
reasing. Thus forx � ��1(1), one has �0(x)2 � �0(��1(1))2�(x). Hen
e for x largeenough log�0(x) + logZ� � �(x), and K(x) � �(2�(x))=�0(x)2.Sin
e � is 
onvex, the slope fun
tion (�(x) � �(0))=x = �(x)=xis non-de
reasing. Comparing its values at x and 2x shows the in-equality 2�(x) � �(2x). Thus �(2�(x)) � �0(2x)2 and for x largeenough K(x) � �0(2x)2=�0(x)2. As �02=� is non-in
reasing we knowthat �0(2x)2 � �(2x)�(x) �0(x)2. On the other hand, p� being 
on
ave,the slope fun
tion p�(x)=x is non-in
reasing so p�(2x) � 2p�(x).Finally for x large K(x) � �0(2x)2�0(x)2 � �(2x)�(x) � 4:The proof is 
omplete. utRemark 22. The hypotheses of Corollary 2 are simple but 
ould bemore general. It is plain from Proposition 4 that we need the 
onvex-ity assumptions only for large values. The argument 
an be adaptedto show that the measures with potential �(x) = jxj� log(1 + jxj)�with 1 < � < 2 and � � 0 satify a dimension free 
on
entrationinequality with de
ay e�C�(t).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 57Remark 23. Other 
on
entration results for produ
ts of log-
on
avemeasures on the line follow from Talagrand exponential inequality,see [55, Theorem 2.7.1, Proposition 2.7.4℄. They involve a di�erentnotion of enlargement depending on the log-
on
ave density itself.However, they imply an analogue of Corollary 2, under the similarassumption that �(pt) is subadditive.7. ExamplesIn this se
tion we study fundamental examples, starting with jxj�Boltzmann's measures in relation with Be
kner's type inequalities.We shall show in parti
ular how to get dimension free inequalities.7.1. jxj� Boltzmann's measures.In this subse
tion we are looking at the following probability measured�
n� (x) = Qni=1 Z�1� e�2u�(x)dxi on Rn , where as in se
tion 3, 1 <� < 2 andu�(x) = � jxj� for jxj > 1�(��2)8 x4 + �(4��)4 x2 + (1� 34�+ 18�2) for jxj � 1: (51)We will study two kind of F fun
tionals, starting from the 
apa
ity-measure point of view. For ea
h of them we give fun
tional inequal-ities and derive hyper
ontra
tivity (or hyperboundedness) propertysatis�ed by the semi-group.The �rst fun
tion of interest for us isF� : R+ ! Rx 7! (log(1 + x))2(1� 1� ) � (log 2)2(1� 1� ): (52)Note that it is a C2 non-de
reasing fun
tion satisfying F�(1) = 0. Itis negative for x < 1 and positive for x > 1.The se
ond fun
tion of interest iseF� : R+ ! Rx 7! �0 if x 2 [0; 2�℄(log(x))2(1� 1� ) � (log 2�)2(1� 1� ) if x � 2� ; (53)where � > 1 is a �xed parameter. Note that eF� is 
ontinuous but notC2. On the other hand, it is always non-negative.Proposition 5. Let 1 < � < 2. Let F� and eF� de�ned in (52) and(53) respe
tively. Denote by �
n� = 
ni=1��;i the produ
t measure ofn 
opies of d��(x) = Z�1� e�2u�(x)dx.July 13, 2004.



58 F. Barthe et al.Then, there exist two 
onstants C = C(�) and eC = eC(�; �) su
hthat for any integer n, for any smooth enough fun
tion f : Rn ! R,Z f2F�� f2�
n� (f2)� d�
n� � C Z jrf j2d�
n� ;and Z f2 eF�� f2�
n� (f2)� d�
n� � eC Z jrf j2d�
n� :Proof. We start with F�. Fix n = 1. Then 0 is a median of ��. Whenx tends to in�nity, it is easy to 
he
k thatZ x0 e2u�(t)dt � e2x�2�x��1 and Z 1x e�2u�(t)dt � e�2x�2�x��1 :It follows that the two 
onstants D+ and D� introdu
ed in Theorem15 with � = 2(1 � 1� ) are �nite. Then, we 
on
lude by Theorem 15that there exists a 
onstant C� su
h that for every fun
tion f on R,Z f2 log� �1 + f2� d�� ��Z f2d��� log� �1 + Z f2d��� (54)� C� Z jrf j2d��:Then, for any integer n, by Lemma 5 the latter inequality holds for�
n� in Rn . Finally, applying the inequality to f2=�
n� (f2) gives theexpe
ted result.The 
ase of eF� is a bit more diÆ
ult. Let � = 2(1 � 1� ) andT (x) = jxj� . It is easy to 
he
k that the hypotheses of Proposition4 are satis�ed (for � = 2u�) and thus that there exists a 
onstanteC = eC(�) su
h that for any fun
tion f : R ! R,supp2(1;2) R f2d�� � �R jf jpd��� 2p(2� p)� � eC Z jrf j2d��:Now, by tensorization property (see [37℄), the same inequality holdsfor �
n� with the same 
onstant eC (independent of n). Thus, by The-orem 10 together with Lemma 9 (re
all that T (x) = jxj�), it followsthat for any integer n, any Borel set A � Rn with �
n� (A) � 1=2,�
n� (A)�log(1 + 1�
n� (A) )�� � 2 eCCap�
n� (A):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 59Now, for any x � 2�, eF�(�x) � (log(1+x))� . Therefore, for any Borelset A � Rn with �
n� (A) � 1=(2�),�
n� (A) eF� � ��
n� (A)� � 2 eCCap�
n� (A):The expe
ted result follows from Theorem 11. This a
hieves the proof.utRemark 24. It is not diÆ
ult to 
he
k that0 < inf�2(1;2)C(�) < sup�2(1;2)C(�) < +1:This means that the 
onstant C(�) appearing in Proposition 5 
anbe 
hosen independently of � 2 (1; 2). This uniformity will be usefulfor appli
ations.Corollary 3. Let 1 < � < 2. Let F� de�ned in (52). Denote by�
n� = 
ni=1��;i the produ
t measure of n 
opies of the probabilitymeasure d��(x) = Z�1� e�2u�(x)dx. De�ne for any q � 0, any x � 0,� (�)q (x) = x2eqF�(x2).Then, there exists a universal 
onstant C su
h that for any integern, any fun
tion f : Rn ! R and any t � 0,N� (�)q(t)(Ptf) � eC2 tkfk2where q(t) = Ct and N�(g) := inff� : R �(g=�)d�
n� � 1g.Proof. The result is a dire
t 
onsequen
e of Theorem 6, using Propo-sition 5 and Lemma 15 below. utLemma 15. Let 1 < � < 2. Let F� de�ned in (52). De�ne for anyq � 0, any x � 0, � (�)q (x) = x2eqF�(x2). Then,(i) For any x � 0, any q � 0,(� (�)q )00� (�)q � 5� (4=�)4 (� (�)q )02 � 14(� (�)q )02;(ii) for any x � 0, any q � 0,� (�)q (x)F (x2) � � (�)q (x)F (� (�)q (x)) + 1:Proof. Let � = 2(1� 1�). Then 0 < � < 1. It is easy to 
he
k that forany x > 0, �xF 00�(x)F 0�(x) = x(1� � + log(1 + x))(1 + x) log(1 + x) � 2� �:July 13, 2004.



60 F. Barthe et al.We 
on
lude the proof of point (i) applying Proposition 1 (note that2 + 12 � 5�(4=�)2 = 2� �).Note that mF� := jminx2(0;1) xF�(x)j � 1. Hen
e, using remark 9
on
ludes the proof of point (ii). utThe proof of a similar result than Corollary 3 for eF� is a bit morediÆ
ult due to di�erentiation problem at x = 2�. The result is thefollowing:Corollary 4. Let 1 < � < 2. Let eF� de�ned in (53). Denote by�
n� = 
ni=1��;i the produ
t measure of n 
opies of the probabilitymeasure d��(x) = Z�1� e�2u�(x)dx. De�ne for any q � 0, any x � 0,e� (�)q (x) = x2eq eF�(x2).Then, there exists a 
onstant eC = eC(�; �) su
h that for any integern, any fun
tion f : Rn ! R and any t � 0,Ne� (�)q(t)(Ptf) � kfk2where q(t) = eCt and N�(g) := inff� : R �(g=�)d�
n� � 1g.Proof. Let g be a C1 non-negative fun
tion with 
ompa
t supportin [�1; 0℄ and su
h that R g(y)dy = 1. For any " > 0 de�ne g"(x) =1"g(x" ) and note that eF��g"(x) := R eF�(x�y)g"(y)dy is a C1 fun
tion.De�ne for any " > 0, any q � 0, e� (�)q;" (x) = x2eq eF��g"(x2).Thanks to Lemma 16 below, eF� � g" satis�es the hypothesis ofTheorem 6, uniformly in n. Thus, by Theorem 6 there exists two
onstants eC = eC(�; �) and eC 0 = eC 0(�; �) (maybe di�erent from thoseone of Lemma 16) su
h that for any integer n, any fun
tion f : Rn !R and any t � 0,Ne� (�)q(t);"(Ptf) � e 12 ( eF�(2�+")+" eC0)tkfk2:Then, it is easy to verify that for any fun
tion f , any t, when " tendsto 0,Ne� (�)q(t);"(Ptf) ! Ne� (�)q(t)(Ptf) and e 12 ( eF�(2�+")+" eC0)t ! 1:This a
hieves the proof. utLemma 16. Let 1 < � < 2. Let eF� de�ned in (53). Denote by �
n� =
ni=1��;i the produ
t measure of n 
opies of d��(x) = Z�1� e�2u�(x)dx.De�ne for any q � 0, any x � 0, e� (�)q (x) = x2eq eF�(x2).Let g be a C1 non-negative fun
tion with 
ompa
t support in[�1; 0℄ and su
h that R g(y)dy = 1. De�ne g"(x) = 1"g(x" ), andJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 61eF� � g"(x) := R eF�(x � y)g"(y)dy for any " > 0, and for any q � 0,e� (�)q;" (x) = x2eq eF��g"(x2). Then,(i) for any " > 0 and any q � 0,(e� (�)q;" )00e� (�)q;" � 3� 2(2� �)=(� log(2�))4 (e� (�)q;" )02:(ii) For any " > 0 small enough, any q � 0, and any x � 0,eF� � g"(x2) � eF� � g"(e� (�)q;" (x)):(iii) There exist two 
onstants eC = eC(�; �) and eC 0 = eC 0(�; �) su
hthat for any integer n, any fun
tion f : Rn ! R and any " > 0 smallenough,Z f2 eF� � g"� f2�
n� (f2)�d�
n� � eCZ jrf j2d�
n�+( eF�(2�+ ") + " eC 0)Z f2d�
n� :Proof. Let � = 2(1 � 1� ).We start with (i). The result is obviously true for x � 2�. Forx > 2�, an easy 
omputation gives�x eF 00�(x)eF 0�(x) = 1� � + log xlog x � 1 + 1� �log(2�) = 1 + 2� �� log 2�:Thus, by Lemma 17 below we get that for any " > 0, any x � 0,x( eF� � g")00(x) +�1 + 2� �� log 2�� ( eF� � g")0(x) � 0:The result follows from Proposition 1.For (ii) note that for any " � 2� � 1, eF� � g" � 0 on [0; 1℄. Thusthe result be
omes obvious thanks to Remark 9.Next we deal with (iii). First note that eF� � g" � 0 on [0; 2�� "℄.Then, for x 2 [2�� "; 2�℄, sin
e eF� is non-de
reasing,eF� � g"(x) = Zf�"�y�0g eF�(x� y)g"(y)dy � eF�(2�+ "):Finally, for x > 2�, sin
e eF 0� is non-in
reasing, if we set eF 0�(2�+) :=limx!2�+ F 0�(x),eF� � g"(x) = eF�(x) + Zf�"�y�0g( eF�(x� y)� eF�(x))g"(y)dy� eF�(x) + " maxfx�z�x+"g eF 0�(z)� eF�(x) + " eF 0�(2�+):July 13, 2004.



62 F. Barthe et al.Hen
e, for any integer n, for any fun
tion f : Rn ! R and any " > 0small enough,Z f2 eF� � g"� f2�
n� (f2)�d�
n� � Z f2 eF�� f2�
n� (f2)�d�
n�+( eF�(2�+ ") + " eF 0�(2�+))Z f2d�
n� :The 
laimed result follows from Proposition 5, with eC 0 = eF 0�(2�+) =��1�� (log 2�)��2� . utLemma 17. Let F : R+ ! R+ be a 
ontinuous non-de
reasing fun
-tion su
h that F � 0 on [0; 2�℄, for some � > 1, and F > 0 on(2�;1). Assume that F is C2 on (2�;1) and that limx!2�+ F 0(x) andlimx!2�+ F 00(x) exist. Furthermore, assume that F 00 � 0 on (2�;1).Let g be a C1 non-negative fun
tion with 
ompa
t support in[�1; 0℄ and su
h that R g(y)dy = 1. De�ne g"(x) = 1"g(x" ) for any" > 0.Assume that for some � > 0, F satis�es for all x 6= 2�xF 00(x) + �F 0(x) � 0:Then, for any " > 0 small enough, any x � 0,x(F � g")00(x) + �(F � g")0(x) � 0: (55)Here, F � g"(x) := R F (x� y)g"(y)dy.Proof. Note �rst that for any " > 0, F � g" is a C1 fun
tion. Fix" > 0.If x 2 (0; 2� � "), then it is easy to 
he
k that (F � g")0(x) =(F � g")00(x) = 0. Thus (55) holds for any x 2 (0; 2� � ") and by
ontinuity for any x 2 [0; 2� � ").Now �x x 2 (2�;1) and note that for any y 2 supp(g") � [�"; 0℄,x� y > 2�. Thus F 0(x� y) and F 00(x� y) are well de�ned. It followsthatx(F � g")00(x) + �(F � g")0(x) = Z [xF 00(x� y) + �F 0(x� y)℄g"(y)dy:Sin
e F 00 � 0 and y � 0, xF 00(x� y) � (x� y)F 00(x� y). Hen
e, theleft hand side of the latter inequality is bounded below byZ [(x� y)F 00(x� y) + �F 0(x� y)℄g"(y)dy � 0just using our assumption on F . Thus (55) holds for any x > 2� andit remains the 
ase x 2 [2�� "; �℄. By 
ontinuity, it is enough to dealwith x 2 (2�� "; 2�).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 63Fix x 2 (2�� "; 2�). Choose h su
h that x+h < 2� and note thatif x� y � 2�, then F (x� y) = 0. Hen
e,Z F (x� y + h)� F (x� y)h g(y)dy =Z�"�y<�(2��x)F (x� y + h)� F (x� y)h g(y)dy+Z�(2��x)�y�0F (x� y + h)h g(y)dy:The se
ond term in the latter equality is non-negative be
ause F isnon-negative. It follows by Lebesgue Theorem that(F � g")0(x) � Zf�"�y<�(2��x)g F 0(x� y)g(y)dy:The same holds for (F � g")00(x) be
ause F 0 is non-negative. Now, asin the previous argument, by our hypothesis on F , x(F � g")00(x) +�(F � g")0(x) is bounded below byZf�"�y<�(2��x)g[xF 00(x� y) + �F 0(x� y)℄g"(y)dy� Zf�"�y<�(2��x)g[(x� y)F 00(x� y) + �F 0(x� y)℄g"(y)dy � 0:ut7.2. A general perturbation argument.In Se
tion 3 we dis
ussed a perturbation argument in order to provethe hyperboundedness of P(�)t the semi group asso
iated to ��. In theprevious subse
tion we re
overed and improved these results by usingthe 
apa
ity-measure approa
h and the Gross-Orli
z theory. We shallbelow show that one 
an also derive the results in Proposition 5 by aperturbation argument on F�-Sobolev inequalities (see [21, se
tion4℄ for a similar argument for usual log-Sobolev inequalities). Theargument 
an be easily generalized to others situations, but we shallnot develop a 
omplete perturbation theory here.Re
all that Lebesgue measure on Rn satis�es a family of loga-rithmi
 Sobolev inequalities i.e. for all � > 0 and all f belonging toL1(dx) \ L1(dx) su
h that R f2 dx = 1Z f2 log f2 dx � 2� Z jrf j2dx + n2 log� 14��� ; (56)July 13, 2004.



64 F. Barthe et al.see e.g. [27℄ Theorem 2.2.3.Set � = 2(1� 1�) whi
h is less than 1. A

ording to Lemma 21 inthe next se
tion log�(1 + x)� log�(2) � log x for x � 1. Sin
e F�(x)is non positive for x � 1, it followsZ f2F�(f2)dx � Zff2�1g f2 log f2 dx (57)� Z f2 log f2 dx+ 1=e :Let V be smooth and satisfying the 
onditions stated in Se
tion 3.Denote by �V the asso
iated Boltzmann measure (�V (dx) = e�2V dx),and introdu
e g = eV f (remark that R g2d�V = 1) . A

ording to (56)and (57), a simple 
al
ulation yieldsZ g2F� �g2e�2V � d�V � 2� Z jrgj2d�V + n2 log� 14��� (58)+ 1=e+ 2� Z g2 ��V � jrV j2� d�V :But sin
e � < 1, (A+B)� � A� +B� for positive A and B. Hen
eif V � 0log�(1 + g2e�2V ) + log�(e2V ) � log�(e2V + g2) � log�(1 + g2) ;while for V � 0log�(1 + g2e�2V ) + log�(e2jV j) � log�(1 + g2e�2V ) � log�(1 + g2) :It followsZ g2F�(g2)d�V � 2� Z jrgj2d�V + n2 log� 14���+ 1=e (59)+ Z g2 �log�(e2jV j) + 2���V � jrV j2�� d�V :Finally introdu
e the 
onvex 
onjugate fun
tion H� of x! xF�(x).Using Young's inequalityxy � "xF�(x) +H�(y=")in (59) we obtainZ g2F�(g2)d�V � 2�1� " Z jrgj2d�V + 
(n; �; ")+ (60)+ 11� " Z H� �(1=")�(2jV j)� + 2���V � jrV j2��� d�V :We have thus obtainedJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 65Theorem 16. Let �V be a Boltzmann measure de�ned for a smoothV as in se
tion 3. Denote by H� the 
onvex 
onjugate of x! xF�(x).Assume that �V satis�es the following two 
onditions(i) there exist some � > 0 and some � > 0 su
h thatZ H� �((2 + �)jV j)� + ���V � jrV j2�� d�V < +1;(ii) �V satis�es a Poin
ar�e inequality.Then the 
on
lusions of Proposition 5 for F� are still true justrepla
ing �� by �V . As a 
onsequen
e the 
on
lusions of Corollary 3are also still true.Both 
onditions (i) and (ii) are satis�ed when V satis�es assump-tion OB(V) in se
tion 3 with G(y) = 
jyj2(1� 1� ) for some 
 and Vgoes to in�nity at in�nity.Proof. (60) and Hypothesis (i) ensure that �V satis�es a defe
tivehomogeneous F� Sobolev inequality. But it is easily seen that F�ful�lls the hypotheses of the Rothaus-Orli
z Lemma 3. Hen
e (ii) andTheorem 8 allow to tight the homogeneous F� Sobolev inequality. Butsin
e log�(1 + g2) � log�(1 + g2R g2 ) + log�(1 + Z g2)(54) holds when we repla
e �� by �V . Hen
e we may use the tensori-sation property.Finally (i) is 
learly implied by OB(V), while (ii) follows fromRemark 2. utAgain the situation is more deli
ate when dealing with eF�.8. Isoperimetri
 inequalitiesIn this se
tion we show that the Orli
z-hyper
ontra
tivity propertyimplies isoperimetri
 inequalities. These results are more pre
ise thanthe 
on
entration inequalities derived in the previous se
tion (via theBe
kner type inequalities). Let us re
all the basi
 de�nitions. Let �be a Borel measure on Rn . For a measurable set A � Rn we de�neits �-boundary measure as�s(�A) = lim infh!0+ �(Ah)� �(A)h ;where Ah = fx 2 Rn ; d(x;A) � hg = A + hBn2 is the h-enlargementof A in the Eu
lidean distan
e (here Bn2 = fx 2 Rn ; jxj � 1g). Theisoperimetri
 fun
tion (or pro�le) of a probability measure on Rn isI�(a) = inff�s(�A); �(A) = ag; a 2 [0; 1℄:July 13, 2004.



66 F. Barthe et al.We shall write I�k for the isoperimetri
 fun
tion of the produ
t mea-sure (on Rnk the enlargements are for the Eu
lidean distan
e, thatis the `2 
ombination of the distan
es on the fa
tors). Finally we setI�1 := infk�1 I�k .We follow Ledoux's approa
h of an inequality by Buser [38℄ bound-ing from below the Cheeger 
onstant of a 
ompa
t Riemannian man-ifold in terms of its spe
tral gap and of a lower bound on its 
urva-ture. Ledoux also dedu
ed a Gaussian isoperimetri
 inequality froma logarithmi
 Sobolev inequality. The argument was extended to theframework of Markov di�usion generators by Bakry and Ledoux [7℄.Moreover these authors obtained dimension free 
onstants. The fol-lowing result is a parti
ular 
ase of [7, Inequality (4.3)℄. It allows toturn hyper
ontrativity properties into isoperimetri
 inequalities.Theorem 17. Let � be a probability measure on Rn with d�(x) =e�V (x)dx with V 00 � 0. Let (Pt)t�0 be the 
orresponding semi-groupwith generator � � rV:r. Then for every t � 0 and every smoothand bounded fun
tion, one haskfk22 � kPt=2fk22 � p2tkfk1 Z jrf jd�:In parti
ular (applying this to approximations of 
hara
teristi
 fun
-tions) for any Borel set A � Rn one has�(A)� kPt=21IAk22 � p2t�s(�A):Remark 25. If one only assumes that V 00 � �R �Id for R > 0 then thestatement is valid with an additional fa
tor (2tR=(1�exp(�2tR)))1=2on the right-hand side. This fa
tor is essentially a 
onstant whent � 1=R.In order to exploit this result we need the following two lemmas.Lemma 18. Let the measure � and the semi-group (Pt)t�0 be as be-fore. Let � be a Young fun
tion, and assume that for all f 2 L2(�)one has N� (Ptf) � Ckfk2. Then for every Borel subset A of Rn onehas kPt1IAk2 � C�(A)��1 � 1�(A)�, where ��1 stands for the re
ipro
alfun
tion of � .Proof. Sin
e Pt is symmetri
 for �, one gets by duality that Pt mapsthe dual of (L� (�); N� ) into L2(�) with norm at most C. So for everyA, kPt1IAk2 � Ck1IAk�� . Re
all that the latter norm isk1IAk�� = sup�ZA gd�; Z �(g)d� � 1�= sup�ZA gd�; ZA �(g)d� � 1� = �(A)��1(1=�(A)):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 67Indeed Jensen inequality yields RA �(g) d��(A) � � �RA g d��(A)� ; whi
h istight for g = 1IA��1(1=�(A)). utLemma 19. Let F : R+ ! R be a non-de
reasing fun
tion withF (1) = 0, and 
ontinuous on [1;+1). Consider for q; x � 0, thefun
tion �q(x) = x2eqF (x2). Assume there exists 
onstants 
1; 
2 su
hthat for all x � 1 one has F (x) � 
1 log x and F (x2) � 
2F (x). Thenfor all q 2 [0; 1=
1℄ one has��1q (y) � pye� q2
2 F (y); y � 1:Proof. Set �(x) = exp(�qF (x)=(2
2)). Setting x = �q(y), y � 1 the
laimed inequality 
an be rephrased as:x � �q(x) 12�(�q(x)) = xe q2F (x2)e� q2
2 F (x2 exp(qF (x2))); x � 1:This is equivalent to F (x2 exp(qF (x2))) � 
2F (x2). The latter followsfrom the hypotheses: for q � 1=
1, F (x2 exp(qF (x2))) � F (x2+2q
1) �F (x4) � 
2F (x2). utTheorem 18. Let � be a probability measure on Rn with d�(x) =e�V (x)dx and V 00 � 0. Assume that the 
orresponding semi-group(Pt)t�0 with generator � �rV � r satis�es for every t 2 [0; T ℄ andevery fun
tion in L2 (Rn ; �),N�kt(Ptf) � Ckfk2;where k > 0; C � 1 and for q � 0; x 2 R, �q(x) = x2 exp(qF (x2)).Here F : [0;1) ! R is non-de
reasing and satis�es F (1) = 0, and forx � 1, F (x) � 
1 log x, F (x2) � 
2F (x). Then if A � Rn has smallmeasure in the sense that F (1=�(A)) � 
2 log(2C2)=min(kT; 1=
1)one has the following isoperimetri
 inequality:�s(�A) � 14 � k
2 log(2C2)� 12 �(A)F � 1�(A)� 12 :The symmetri
 inequality holds for large sets: if F � 11� �(A)� �
2 log(2C2)min(kT; 1=
1) , then�s(�A) � 14 � k
2 log(2C2)� 12 (1� �(A))F � 11� �(A)� 12 :July 13, 2004.



68 F. Barthe et al.Proof. We 
ombine the above results and 
hoose an appropriate valueof the time parameter. If t � min(2T; 2=(k
1) then�s(�A) � �(A)� kPt=21IAk22p2t� �(A)� �C�(A)��1kt=2� 1�(A)��2p2t� �(A)1� C2 exp�� kt2
2F � 1�(A)��p2t :At this point we wish to 
hoose t so that 12 = C2 exp�� kt2
2F � 1�(A)��.This is 
ompatible with the 
ondition t � min(2T; 2=(k
1) providedF (1=�(A)) � 
2 log(2C2)=min(kT; 1=
1). Under this 
ondition, thisvalue of time yields the 
laimed isoperimetri
 inequality for smallsets. For large sets note that applying the fun
tional inequality ofTheorem 17 to suitable approximations of the 
hara
teristi
 fun
tionof A
 gives p2t�s(�A) � �(A
) � kPt=21IA
k22, so the study of smallsets apply. utRemark 26. Under the weaker assumption V 00 � �R for R > 0 wehave similar results with 
onstants depending on R.Remark 27. Under spe
i�
 assumptions on F we have shown thatCap�(A) � �(A)F (1=�(A)) for all A implies 
ontinuity of the semi-group in the Orli
z s
ale �q(x) = x2 exp(qF (x2)), whi
h implies, atleast for small sets, �s(�A) � K�(A)pF (1=�(A)). Note the analogybetween these relations and also the inequality�s(�A) � Cap(1)� (A) := inf �Z jrf jd�; f � 1IA and�(f = 0) � 1=2�:The previous theorem provides a lower bound on the isoperimet-ri
 pro�le for small and large values of the measure only. We dealwith the remaining values, away from 0 and 1, by means of Cheeger'sinequality. The dimension free version of Buser's inequality for di�u-sion generator, 
ontained in the work of Bakry and Ledoux allows toderive Cheeger's inequality from Poin
ar�e inequality.Theorem 19. Let � be a probability measure on Rn with d�(x) =e�V (x)dx and V 00 � 0. Assume that the 
orresponding semi-group(Pt)t�0 with generator � � rV � r satis�es the following Poin
ar�einequality: for all f�Z (f � �(f))2d� � Z jrf j2d�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 69Then for every Borel set A � Rn one has�s(�A) � 1� e�1p2 p��(A)(1 � �(A)):The argument is written in the setting of Riemannian manifoldsin [41, Theorem 5.2℄. We sket
h the proof for 
ompleteness.Proof. The spe
tral gap inequalities 
lassi
ally implies the exponen-tial de
ay of the norm of Pt on the spa
e of zero mean. ThereforekPt=21IAk22 = kPt=2�(A)k22 + kPt=2(1IA � �(A))k22� �(A)2 + e��tk1IA � �(A)k22= �(A)2 + e��t�(A)(1� �(A)):By Theorem 17, one hasp2t�s(�A) � (1� e��t)�(A)(1 � �(A)):Choosing t = 1=� 
on
ludes the proof. utFinally we apply the previous results to in�nite produ
ts of expo-nential measures: m�(dx) = exp(�jxj�)=(2� (1+1=�))dx; x 2 R. Forte
hni
al reasons, we also 
onsider the measures �� de�ned in se
tion7 up to the irrelevant 
onstant 2. They also have a log-
on
ave den-sity, but more regular. The isoperimetri
 fun
tion of a symmetri
 log-
on
ave density on the line (with the usual metri
) was 
al
ulated byBobkov [14℄. He showed that half-lines have minimal boundary amongsets of the same measure. Sin
e the boundary measure of (�1; t℄ isgiven by the density of the measure at t, the isoperimetri
 pro�le iseasily 
omputed. They are readily 
ompared to the fun
tionsL�(t) = min(t; 1� t) log1� 1� � 1min(t; 1� t)� :We omit the details, some of them are written in [9℄.Lemma 20. There are 
onstants k1; k2 su
h that for all � 2 [1; 2℄,t 2 [0; 1℄ one has k1L�(t) � Im�(t) � k2L�(t);k1L�(t) � I��(t) � k2L�(t):Our goal is to show the following in�nite dimensional isoperimetri
inequality.Theorem 20. There exists a 
onstant K > 0 su
h that for all � 2[1; 2℄ and t 2 [0; 1℄, one hasI�1� (t) � KL�(t):July 13, 2004.



70 F. Barthe et al.Sin
e I�1� � I�� � k2L�, we have, up to a 
onstant, the value ofthe isoperimetri
 pro�le of the in�nite produ
t.Proof. As shown in Corollary 3 of Se
tion 7 the semi-group asso
iatedto �
n� is Orli
z-hyperbounded. Thus we may apply Theorem 18 withF = F�(�) de�ned in (52), and �(�) = 2(1� 1=�) and get an isoperi-metri
 inequality for small and large sets, with 
onstants independentof the dimension n. This step requires to 
he
k a few properties ofthe fun
tion F�(�). They are established in the following Lemma 21.More pre
isely there are 
onstants K1;K2 > 0 independent of � andn su
h thatI�
n� (t) � K1 min(t; 1�t) �log�(�)�1 + 1min(t; 1� t)�� log�(�)(2)� 12(61)provided�log�(�) �1 + 1min(t; 1� t)�� log�(�)(2)� 12 � K2:We 
an prove (61) in the remaining range as well. Indeed, it is plainthat supx>0 ��([x;+1))Z x0 1��� �M;so that the measures (��)�2[1;2℄ satisfy a Poin
ar�e inequality with auniform 
onstant. The latter inequality has the tensorisation prop-erty, so the measures �
n� also share a 
ommon Poin
ar�e inequality.By Theorem 19, there exists a 
onstant K3 > 0 su
h that for all n,all � 2 [1; 2℄ and all t 2 [0; 1℄I�
n� (t) � K3 min(t; 1� t): (62)Sin
e the exponential measure has a spe
tral gap, the latter argu-ment reproves, with a slightly worse 
onstant, the result of [16℄. Nowassume thatlog�(�) �1 + 1min(t; 1� t)�� log�(�)(2) < K22 ;thenI�
n� (t) � K3K2 min(t; 1� t)K2� K3K2 min(t; 1�t)hlog�(�)�1+ 1min(t; 1�t)�� log�(�)(2)i 12:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 71So Inequality (61) is valid for all t provided one repla
es K1 byK4 := min(K1;K3=K2). Finally, the uniform Cheeger inequality (62),implies that 1K3 I�
n� (t) � log�(�)=2(2) min(t; 1� t):Adding up this relation to1K4 I�
n� (t) � min(t; 1�t)�log�(�)�1+ 1min(t; 1�t)�� log�(�)(2)� 12� min(t; 1� t) �log�(�)=2 �1 + 1min(t; 1 � t)�� log�(�)=2(2)�yields the 
laimed inequality. This manipulation was important inorder to get a non-trivial inequality when � tends to 1, i.e. when�(�) tends to 0. utThe following te
hni
al result was used in the above proof.Lemma 21. Let � 2 [0; 1℄ then for all x � 1 one haslog�(1 + x)� log�(2) � log x; (63)log�(1 + x2)� log�(2) � 8�log�(1 + x)� log�(2)� : (64)Proof. Note that (63) is an equality for x = 1. It is enough to provethe inequality between derivatives, that is � log��1(1 + x)=(1 + x) �1=x for x � 1. If x � e� 1 then log��1(1 + x) � 1 and the inequalityis obvious. If x < e� 1, then log�(1 + x) � 1, therefore� log��1(1 + x)(1 + x) � 1(1 + x) log(1 + x) � 1x:Next we address (64). One easily 
he
ks that for A � B � 1 themap � > 0 7! (A� � 1)=(B� � 1) is non-de
reasing. Applying this toA = log(1 + x2)= log(2) and B = log(1 + x)= log(2) shows that it isenough to prove (64) for � = 1. Let x � 1, sin
e 1 + x2 � (1 + x)2one haslog(1 + x2)� log(2) � 2 log(1 + x)� log(2)= 2 (log(1 + x)� log(2)) + log(2):If x � 3 then log(1 + x)� log(2) � log(2) and the 
laimed inequalityis proved. For x 2 (1; 3℄, we use the fundamental relation of 
al
ulus.It provides t1 2 (1; 9) and t2 2 (1; 3) withlog(1 + x2)� log(2) = (x2 � 1) 11 + t1 � 2(x� 1)July 13, 2004.



72 F. Barthe et al.and log(1 + x)� log(2) = (x� 1) 11 + t2 � (x� 1)=4:So the ratio is bounded from above by 8. A smarter 
hoi
e than 3would give a better result. utRemark 28. A

ording to Theorem 16 the 
on
lusion of Theorem 20is still true with the same L� when repla
ing �� by �V , provided Vis 
onvex and the hypotheses in Theorem 16 are ful�lled.We 
on
lude the paper with 
onsequen
es of Theorem 20. The�rst one is a 
omparison theorem. It 
ould be stated in a more gen-eral framework of metri
 probability spa
es satisfying a smoothnessassumption (see e.g. [10℄). For simpli
ity we write it in the settingof Riemannian manifolds where the de�nition of isoperimetri
 pro�legiven in the beginning of the se
tion applies.Theorem 21. Let (X; d; �) be a Riemannian manifold, with the geo-desi
 metri
, and a probability measure whi
h has a density with re-spe
t to the volume. On the produ
t manifold we 
onsider the geodesi
distan
e, whi
h is the `2 
ombination of the distan
es on the fa
tors.There exists a universal 
onstant K > 0 su
h that if for some 
 > 0,
 2 [0; 12 ℄ and all t 2 [0; 1℄ one hasI�(t) � 
min(t; 1� t) log
 � 1min(t; 1� t)� ;then for all n � 1, t 2 [0; 1℄ one hasI�
n(t) � 
K min(t; 1� t) log
 � 1min(t; 1� t)� :Remark 29. This provides a s
ale of in�nite dimensional isoperimet-ri
 inequalities. Both ends of the s
ale where previously known. Astandard argument based on the 
entral limit theorem shows thatif � is a measure on R with se
ond moment then infn I�
n is dom-inated by a multiple of the Gaussian isoperimetri
 fun
tion, whi
his 
omparable to min(t; 1 � t) log1=2(1=min(t; 1 � t)). On the otherhand an argument of Talagrand [53℄ shows that the weakest possi-ble dimension free 
on
entration result for � implies that it has atmost exponential tails. The isoperimetri
 fun
tion of the exponentialdensity is min(t; 1 � t). So the above s
ale 
overs the whole rangeof in�nite isoperimetri
 inequalities. Of 
ourse �ner s
ales 
ould beobtained from our methods, with more e�ort.Remark 30. A similar statement was proved in [11℄ for the 
ase whenthe distan
e on the produ
t spa
e is the `1 
ombination of the dis-tan
es on the fa
tors (i.e. the maximum). This 
ase was mu
h easierJuly 13, 2004.
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t stru
ture of balls in the produ
t spa
e. Also, thisnotion leads to bigger enlargement, and the s
ale of in�nite dimensionbehaviour was larger, the values 
 2 [0; 1℄ being allowed.Proof (of Theorem 21). The hypothesis implies that I� � 
k2 I�� for� = 1=(1 � 
) 2 [1; 2℄. Theorem 10 in [10℄ asserts that among mea-sures having the same 
on
ave isoperimetri
 behaviour, the even log-
on
ave one minimizes the isoperimetri
 pro�le for the produ
t mea-sures, see also [49℄. So we have I�
n � 
k2 I�
n� . By the previous resultsI�
n� � KL� and the proof is 
omplete. utThe se
ond 
onsequen
e that we wish to put forward deals withthe measures dm�(x) = exp(�jxj�)dx=(2� (1 + 1=�)), � 2 [1; 2℄. Itshows that among sets of pres
ribed measure for m
n� in Rn , 
oor-dinate half-spa
es have enlargements of minimal measure, up to auniversal fa
tor. The result was known for � 2 1; 2.Theorem 22. There exists a universal 
onstant K su
h that for ev-ery � 2 [1; 2℄, n � 1 and every Borel set A � Rn , if m
n� (A) =m�((�1; t℄) then for h � 0,m
n� �A+ hBn2 � � m����1; t+ hK �� :Proof. This fa
t is proved by integrating the inequality Im
n� � Im�Kwhi
h provides a similar information about boundary measure (this
orresponds to in�nitesimal enlargements). This isoperimetri
 ine-quality is a 
onsequen
e of the fa
t that Im� is 
omparable to I�� .The 
omparison theorem of [10℄ implies that Im
n� is larger than auniversal 
onstant times I�
n� � KL� � Kk2 Im� . utA
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