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Interpolated inequalities between exponentialand Gaussian, Orliz hyperontrativity andisoperimetry.F. Barthe1, P. Cattiaux2, C. Roberto31 Universit�e Toulouse III,e-mail: barthe�math.ups-tlse.fr2 Eole Polytehnique et Universit�e Paris X,e-mail: attiaux�mapx.polytehnique.fr3 Universit�es de Marne la Vall�ee et de Paris XII Val de Marne,e-mail: roberto�math.univ-mlv.frThe date of reeipt and aeptane will be inserted by the editorAbstrat. We introdue and study a notion of Orliz hyperontra-tive semigroups. We analyze their relations with general F -Sobolevinequalities, thus extending Gross hyperontrativity theory. We pro-vide riteria for these Sobolev type inequalities and for related prop-erties. In partiular, we implement in the ontext of probability mea-sures the ideas of Maz'ja's apaity theory, and present equivalentforms relating the apaity of sets to their measure. Orliz hyper-ontrativity eÆiently desribes the integrability improving prop-erties of the Heat semigroup assoiated to the Boltzmann measures��(dx) = (Z�)�1e�2jxj�dx, when � 2 (1; 2). As an appliation we de-rive aurate isoperimetri inequalities for their produts. This om-pletes earlier works by Bobkov-Houdr�e and Talagrand, and providesa sale of dimension free isoperimetri inequalities as well as ompar-ison theorems.Key words. Isoperimetry { Orliz spaes { Hyperontrativity {Boltzmann measure { Girsanov Transform { F -Sobolev inequalities{ MSC 2000: 26D10, 47D07 , 60E15, 60G101. Introdution.Sobolev type inequalities play an essential role in the study of theonentration phenomenon for probability measures. They are also apowerful tool to analyze the regularizing e�ets and the onvergene



2 F. Barthe et al.to equilibrium of their assoiated symmetri semigroups. In parti-ular, several surveys deal with the elebrated Poinar�e (or spetralgap) inequality and the stronger logarithmi-Sobolev inequality andprovide striking appliations [33℄, [4℄, [3℄, [39℄, [34℄, [52℄.A onrete illustration an be given for the family of probabilitymeasures on the real line��(dx) = (Z�)�1e�2jxj�dx; � > 0:These measures and their produts �
n� deserved partiular atten-tion in reent years, where the fous was on dimension free proper-ties. They enter Talagrand's work on the onentration phenomenonfor produt measures. His study was ontinued by Ledoux [39℄, whostrongly put forward the use of the logarithmi Sobolev inequalityfor onentration, and more reently by Bobkov and Houdr�e [19℄ whointrodued L1 -Sobolev type inequalities in order to study the moredeliate isoperimetri problem. We review the main results onern-ing these measures and the assoiated semigroup (P�t )t�0 generatedby the operator L� suh thatL�f = 12f 00 � �jxj��1sign(x)f 0:For � > 0 the measures �� verify a Weak Spetral Gap propertyintrodued by Aida and Kusuoka as shown in [48℄. They satisfy theSpetral Gap inequality exatly when � � 1, and the logarithmiSobolev inequality if and only if � � 2.When � < 1 there is no dimension free onentration property[53℄. Oppositely, the measures enjoy very strong properties when� > 2. The orresponding semigroup is ultraontrative [36℄, mean-ing that for positive time it is ontinuous from L2(��) to L1 . Themeasures satisfy a dimension free Gaussian isoperimetri inequality[8, Theorem 9℄, and this is as bad as it gets by the Central LimitTheorem. Reently, Bobkov and Zegarlinski [18℄ obtained onen-tration inequalities for these measures but for the `n�-distane on Rn .Their results are based on appropriate modi�ation of the logarithmiSobolev inequality, and show di�erent behaviors for di�erent valuesof �. This was not the ase when onsidering the Eulidean distane.The range � 2 [1; 2℄ presents very interesting properties. We startwith the Gaussian ase, � = 2, whih is best understood. Conen-tration of measure and isoperimetry in Gauss spae are now lassial(see e.g. [39,7℄). It is remarkable that they are both dimension free.Reall that the isoperimetri inequality asserts in partiular that forA � Rn with �
n2 (A) = �2((�1; t℄) one has for all h > 0,�
n2 �A+ hBn2 � � �2�(�1; t+ h℄�: (1)July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 3Here Bn2 is the n-dimensional Eulidean ball. Taking limits one ob-tains that among sets of given Gaussian measure, half-spaes haveminimal Gaussian boundary measure.On the other hand, the Gaussian measure has remarkable ana-lyti properties: the orresponding Ornstein-Uhlenbek semigroup ishyperontrative, as disovered by Nelson [46℄. Gross proved that thisfat is equivalent to the logarithmi Sobolev inequality [32℄. Let usalso mention that the Gaussian measure is the prototype of stritlylog-onave measures. It was a suess of the Bakry-Emery formal-ism to allow the extension of most of the previous results to abstratsemigroups with positive urvature (see [6℄ for logarithmi Sobolevinequalities and [7℄ for Gaussian isoperimetry and an abstrat versionof the Levy-Gromov theorem).The two sided exponential measure � = 1 is also well understood.Talagrand's paper [53℄ provides the following very preise estimate:if A � Rn veri�es �
n1 (A) = �1((�1; t℄) then for all h � 0 it holds�
n1 (A+ hBn1 +phBn2 ) � �1((�1; t+ h=K℄);where K is a universal onstant and Bnp = fx 2 Rn ; Pni=1 jxijp � 1g.See also [42,56℄. In a slightly weaker form, suh a statement wasreovered by Bobkov and Ledoux [17℄, via a modi�ed logarithmiSobolev inequality whih is equivalent to Poinar�e inequality. Thusproduts of measures on Rd with a spetral gap satisfy a onen-tration inequality on the exponential model. Moreover, Bobkov andHoudr�e [16℄ proved that �
n1 satis�es a dimension free isoperimet-ri inequality of Cheeger. The proof relies on an L1 version of thePoinar�e inequality, and the statement an be rephrased as follows:let A � Rn with �
n1 (A) = �1((�1; t℄) then for all h � 0�
n1 �A+ hBn2 � � �1���1; t+ h2p6��: (2)This result ompletes the one of Talagrand. It is weaker for largevalues of h but gives isoperimetri information as h goes to zero.Understanding the ase � 2 (1; 2) is the task of the present paper.The onentration phenomenon is already well desribed. Indeed, Ta-lagrand's exponential inequality transfers to �� for any � > 1 [54℄and ensures that for every A � Rn and h > 0�
n� �A+ h1=�Bn� +phBn2 � � 1� 1�
n� (A)e�h=K :In partiular if � 2 (1; 2) and �n�(A) � 1=2 one gets that for h � 1,�n�(A+ hBn2 ) � 1� 2e�h�=K . A funtional approah to this fat wasreently disovered by Lata la and Oleszkiewiz [37℄. These authorsJuly 13, 2004.



4 F. Barthe et al.established the following family of Sobolev inequalities: there existsa universal onstant C suh that for all 1 < p < 2 it holdsZ f2d�� � �Z jf jpd��� 2p � C(2� p)2(1� 1� ) Z (f 0)2d�� (3)for smooth enough f . For � = 2 these inequalities are due to Bekner[13℄. Inequalities (3) interpolate between Poinar�e and log-Sobolev.They enjoy the tensorisation property and imply dimension free on-entration with deay e�Kt� as expeted. Obviously [37℄ was thestarting point of an extension of the log-Sobolev approah to on-entration, enompassing more general behaviors. Reently two of ussimpli�ed the proof of (3) and haraterized all measures on R satis-fying the same property [12℄ (suh a riterion for log-Sobolev alreadyexisted, thanks to Bobkov and G�otze [15℄). See [20℄ for other devel-opements. Inequalities (3) above are part of a more general familydenoted �-Sobolev inequalities. A study of this family in onnetionwith some aspets of semi-group theory is done in [25℄.The initial goal of this work is to obtain a preise dimension freeisoperimetri inequality for �
n� when � 2 (1; 2). Namely we want toprove that there exists a onstant C suh that for all n 2 N(�
n� )s(�A) � C�
n� (A)� log � 1�
n� (A)��1� 1� ; (4)for all A suh that �
n� (A) � 12 , where �s(�A) denotes the surfaemeasure of A (see setion 8). This bound is known for � = 1 [16℄and � = 2 [7℄ and an be dedued from [14℄ in dimension 1. So (4)is exatly what is expeted. This result is stronger than the on-entration result. Indeed it implies that for all n and A � Rn with�
n� (A) = ��((�1; t℄) one has�
n� �A+ hBn2 � � ���(�1; t+ h=K℄�:This interpolates between (2) and (1).Inequality (4) will be shown in Theorem 20 as the ahievementof a somewhat intriate story. Atually, we prove muh more anddevelop several useful methods on the way. They should �nd a �eldof appliations in the study of empirial proesses or in statistialphysis.Before desribing the organisation of the paper, let us explain thatour proof relies on a method initiated by Ledoux [38℄ and improvedin [7℄. It an be summarized as follows: any integrability improvingproperty of a semigroup with urvature bounded from below providesisoperimetri information for the invariant measure. Hene our prob-lem translates to a question on the semigroup (P�t )t�0 for � 2 (1; 2).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 5However, a theorem of H�egh-Krohn and Simon [35℄ shows that P�t isnever ontinuous from L2(��) to L2+"(��). Sine the Lp sale is toorough for our problem, we analyze the regularizing properties in ap-propriate sales of Orliz spaes and ask wether the semigroup mapsL2(��) into a smaller Orliz spae.Setion 2 ontains the required elements on Orliz spaes.Setion 3 presents a suÆient ondition on the Young funtion �for Q�t (a slightly modi�ed P�t ) to map ontinuously L2 into L� , fora �xed t. This ondition relies on the probabilisti representation ofP�t (Girsanov transformation) and on martingale methods inspiredby [36,21℄. Unfortunately the method annot reah the ontrationproperty (only boundedness, simply alled � -Orliz hyperbounded-ness) and does not easily yield expliit bounds. The riterion readilyextends to ertain perturbations of an ultraontrative semi-group.In order to get ontration results and expliit bounds, we buildin Setion 4 the full analogue of Gross theory. Following [22℄ we startwith the analogue of a result by H�egh-Krohn and Simon (Theorem4): if Pt0 is ontinuous from L2(�) into L� (�) then � satis�es a defe-tive logarithmi Orliz-Sobolev inequality (DLOSI). This is atuallya partiular F -Sobolev inequality as studied in [58,30℄ (the notionapparently goes bak to Conordet). For the jxj� Boltzmann mea-sure ��, it is equivalent (see (36)) to the following result of Rosen[50℄: there exist A and B suh that for R f2e�2jyj�dy = 1,Z f2(y)� log+(jf(y)j)�2(1� 1� )e�2jyj�dy � AZ jrf j2e�2jyj�dy +B:(5)See Adams [1℄ for extensions and Zegarlinski [60℄ for an appliationof Rosen type inequalities to the study for Gibbs measures with non-Gaussian tails.Next we onsider homogeneous F -Sobolev inequalities. One of ourmain results is Theorem 6 where we obtain the equivalene between aF -Sobolev inequality and the �q Orliz-hyperboundedness (or hyper-ontrativity) of the whole semigroup for �q(x) := xpeqF (xp). Under afew assumptions of F , the time evolution of the regularizing e�et isquanti�ed. A weak form of part of these results appeared in [30, The-orem 1.2 and Theorem 2.4℄. These authors proved that a partiulartight F -Sobolev inequality is equivalent to Orliz-hyperboundednessfor some time. Their motivation was a riterion for the generatorto have a non-empty essential spetrum (see [30,58℄ for onnetionswith super-Poinar�e inequalities). By Theorem 6, a tight F -Sobolevinequality for a nonnegative F garantees that the semigroup is Orliz-hyperontrative. We onlude this setion by extending the wellknown inequality of Rothaus [51℄: under spetral gap assumption thisallows to turn ertain defetive F -Sobolev inequalities into tight ones.July 13, 2004.



6 F. Barthe et al.Setion 5 provides a thorough study of Sobolev type inequalities.In the Gaussian ontext the log-Sobolev inequality is anonial andhas plenty of remarkable properties: it tensorizes, provides onen-tration via Herbst argument, hyperontrativity and entropy deayalong the semigroup. In our more general setting, in partiular for��, � 2 (1; 2), no suh mirale happens. Several Sobolev inequalitiesare available. However none of them onentrates all good properties.This is why we undertake a preise study of Bekner type inequali-ties, of homogeneous F -Sobolev inequalities and additive '-Sobolevinequalities also alled �-Entropy inequalities (wee shall not disussthe latter in terms of exponential deay of �-entropy. See [25,59℄).Our strategy is to provide eah inequality with a simpler reduedform relating the measure of sets to their �-apaity. This notion wasalluded to by the �rst and last-named authors in [12℄. Here we use itsystematially in the spirit of Maz'ja [43℄. Note that the probabilistisetting is deliate sine onstant funtions are equality ases in allour inequalities. Our approah is an extension to any dimension ofthe riteria on the real line reently obtained through Hardy inequali-ties [15,12℄. It provides new riteria and equivalenes between severalSobolev inequalities. A �nal �gure summarizes the situation.Setion 6 deals with the onsequenes of generalized Bekner in-equalities for the onentration of measure. They are immediate fromthe method of Lata la-Oleszkiewiz, and where disussed indepen-dently by Wang [57℄. Our ontribution here omes from our sharpriteria for these inequalities. In partiular we give general neat on-ditions for produts of measures on R to enjoy dimension free on-entration with rate e��(t) where �(t) is onvex, but less than t2.Under reasonable assumptions the riterion is satis�ed by the mea-sure e��(t)=Z itself, so the onentration is sharp. For other resultsin onnetion with mass transportation, see also [59,23,29℄.Setion 7 illustrates all the previous results in the ase of jxj�Boltzmann measures. In this onrete situation we explain how todeal with the tehnial onditions involved. We also develop a per-turbation argument similar to the one of [21, setion 4℄.The �nal setion dedues isoperimetri inequalities from semi-group hyperboundedness properties. The laimed in�nite dimensionalisoperimetri bound (4) is derived. As a onsequene a family of om-parison theorems is provided.For sake of larity we deided not to develop our argument in itsfull generality. However, most of our results easily extend to moregeneral situations, enompassing di�usion operators on Riemannianmanifolds. This is the ase of the Gross-Orliz theory, of the redu-tions to inequalities between apaity and measure. The �nal isoperi-metri lower bounds would work when the urvatures of the genera-tors is bounded from below.July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 72. Orliz hyperontrativity.In this setion we shall disuss a weakened form of hyperontrativityand hyperboundedness, replaing Lp spaes by Orliz spaes. Beforeto state the natural de�nition we have in mind, and beause Orlizspaes are somewhat intriate to use, we shall �rst introdue in thissetion the material we need. Some de�nitions are not the usual onesused e.g. in the book by Rao and Ren ([47℄).In the sequel we shall onsider a omplementary pair (��; �) of on-tinuous and even Young's funtions (i.e. �� is the Fenhel-Legendredual funtion of � , both being onvex funtions vanishing at the ori-gin) satisfyinglimy!+1 �(y)y2 = +1 and limy!+1 �(y)yp = 0 for p > 2: (6)It follows thatlimy!+1 ��(y)y2 = 0 and limy!+1 ��(y)yp = +1 for p < 2: (7)We shall also assume that � and �� both satisfy the �2 ondition(i.e. �(2y) � K �(y) for some K > 1 and y � y1 � 0, and a similarresult for �� with possibly di�erent K� and y�1). It follows that theyboth satisfy the r2 ondition too (i.e. 2l �(y) � �(ly) for some l > 1and y � �y1 � 0 and similarly for �� with l� and �y�1), see [47, p. 23℄.We also assume that the pair (�; ��) is normalized, i.e.�(0) = ��(0) = 0 and �(1) + ��(1) = 1: (8)The spae L� (�) is the spae of measurable funtions f suh thatI� (f) def= Z �(f)d� < +1: (9)Thanks to the �2 property, L� and L�� are linear spaes.We shall use two norms on eah spae,N� (f) def= inffk > 0; I� �fk � � �(1)g; (10)kfk� def= supfZ jfgjd�;N��(g) � 1g;with similar de�nitions for ��. The �rst one is alled the gauge (orLuxemburg) norm while the seond de�nition does not oinide withthe usual Orliz norm ([47, De�nition 2 page 58℄).Indeed in order to ompare Orliz norms and usual Lp(�) normsin the framework of Markov semi-groups (for a given Probabilitymeasure �), we need the norms of onstant funtions to be equal toJuly 13, 2004.



8 F. Barthe et al.the same onstant. With our de�nitions, and thanks to the regularityproperties of � and �� it is known that for f 2 L� and g 2 L�� itholds (see [47, Proposition 1 p.58℄)I�� fN� (f)� = �(1) and Z jfgjd� � N� (f)N��(g): (11)Aordingly kfk� � N� (f) and k1Ik� = N� (1I) = 1; (12)similar results being true for L�� .Note that if we replae �(1) by 1 in the de�nition of N� we getanother gauge norm N1� (the usual one) whih is atually equivalentto N� , more preiselyN1� (f) � N� (f) � 1�(1)N1� (f):It follows thanks to �2 (see [47, hapter IV℄) that (L� ; N� ) is a re-exive Banah spae with dual spae (L�� ; k�k��). Also note that N�and k�k� are equivalent (see (18) p.62 in [47℄) and that the subset ofbounded funtions is everywhere dense in L� . The same holds whenwe replae � by ��.Finally remark that if N� (f) � 1,�(1) = I�� fN� (f)� � 1N� (f)I� (f);so that N� (f) � max�1; I� (f)�(1) �: (13)Conversely if f(x) � N� (f)y1 (reall the de�nition of �2) then�(f(x)) = ��N� (f) f(x)N� (f)� � K log(K)log(2) +1�� f(x)N� (f)�:It follows that I� (f) � �(N� (f)y1) +K log(K)log(2) +1�(1): (14)De�nition 1 (Orliz-hyperboundedness). We shall say that a �-symmetri semi-group (Pt)t�0 is Orliz-hyperbounded if for somet > 0, Pt is a ontinuous mapping from L2 (�) into some Orliz spaeL� (�) for some Young funtion � satisfyinglimy!+1 �(y)y2 = +1 and limy!+1 �(y)yp = 0 for p > 2:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 9We an now give the de�nition of Orliz-hyperontrativityDe�nition 2 (Orliz-hyperontrativity). We shall say that a �-symmetri semi-group (Pt)t�0 is Orliz-hyperontrative if for somet > 0, Pt is a ontration from L2(�) into (L� (�); N� ) for someYoung funtion � as in De�nition 1. Equivalently Pt is a ontrationfrom (L�� (�); k�k��) into L2(�).Note that this de�nition is oherent. With our de�nitions andthanks to Jensen's inequality, Ps is for all s > 0 a ontration in both(L� (�); N� ) and (L�� (�); k�k��) (as well as in both (L�� (�); N��) and(L� (�); k�k� ) whose norm (equal to 1) is attained for the onstantfuntions. In partiular if the ontration property in De�nition 2holds for some t, it holds for all s > t.The next setion will give some riterion for semi-group to beOrliz-hyperbounded.3. Orliz hyperboundedness for jxj� and generalBoltzmann measures.For � 2℄1; 2[ we may onsider the C2 funtion u� de�ned on R byu�(x) = � jxj� for jxj > 1�(��2)8 x4 + �(4��)4 x2 + (1� 34�+ 18�2) for jxj � 1: (15)With this hoie it is easy to see that u� is onvex and bounded belowby 1� 34�+ 18�2 whih is positive.The assoiated Boltzmann measure on Rn is de�ned as��(dx) = Z�1� e�2Pni=1 u�(xi)dx = Z�1� e�2U�(x)dx (16)where Z� is the proper normalizing onstant suh that �� is a Prob-ability measure and U�(x) def= Pni=1 u�(xi).To the Boltzmann measure is assoiated a symmetri semi-group(P�t )t�0 generated by the operatorA� = 12��rU� � r:One an show (see [22℄ or [21℄) that the semi-group is given by�P�t h�(x) = eU�(x)EPx [h(Xt)e�U�(Xt)Mt℄; (17)where Px is the Wiener measure suh that Px�X0 = x� = 1 (i.e.under Px, X: is a n-dimensional Brownian motion starting from x)and Mt is de�ned asMt = exp�12 Z t0 (�U� � jrU�j2)(Xs)ds�: (18)July 13, 2004.



10 F. Barthe et al.(see [22, setion 7℄ for a proof). We have hosen this form of A� (with1/2 in front of �) in this setion not to introdue extra variane onthe Brownian motion.Sine eU� belongs to all Lp(��) for p < 2, an almost neessaryondition for Orliz hyperontrativity is that P�t (eU�) belongs tosome L� (��).In [21, setion 3℄, the \Well Method" originally due to Kavian,Kerkyaharian and Roynette [36℄ is further developed and allows toget estimates for P�t (eU�), but for � � 2.We shall below extend the \Well Method" to the ase 1 < � < 2.Theorem 1. Let � be a Young funtion satisfying �(y) = y2  (y)for some positive and non dereasing funtion  going to +1 atin�nity. We also assume that there exists a onstant k( ) suh that (2y) � k( ) (y) (i.e. � satis�es �2). Let �� be the Boltzmannmeasure de�ned on Rn in (16).Then for any integer n, P�t (eU�) belongs to L� (��) if there existssome onstant d� < �2 suh thatZ +1  (ejxj�)e�d�tjxj2(��1)dx < +1:The proof below an be used (or improved) to get expliit bounds.Proof. First remark that U� satis�es12�jrU�j2(x)��U�(x)� � G�(U�(x)) � � = H�(U�(x)); (19)with G�(y) = �22 jyj2(1� 1� ) and � = n(1+ 12�(��1)), with our hoieof u� for jxj � 1. Note that H� admits an inverse H�1� de�ned on[��; +1) with values in R+ .For 0 < " de�ne the stopping time Tx asTx = inffs > 0; 12(jrU�j2 ��U�)(Xs) � H��U�(x)� "�g: (20)Note that for all x 2 Rn , Tx > 0 Px a.s. provided U�(x) � " � 0and that on Tx < +1,U�(XTx) � H�1� �12(jrU�j2 ��U�)(XTx)� � U�(x)� ": (21)Introduing the previous stopping time we getEPx [Mt℄ = EPx [Mt1It<Tx ℄ + EPx [Mt1ITx�t℄ = A+B;with A = EPx [Mt1It<Tx ℄ � exp �� tH�(U�(x)� ")�; (22)July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 11andB = EPx [Mt1ITx�t℄� e�tEPx� exp�Z t0 �12(�U� � jrU�j2)� ��(Xs)ds�1ITx�t�� e�tEPx� exp�Z Tx0 �12(�U� � jrU�j2)� ��(Xs)ds�1ITx�t�� e�tEPx� exp�Z Tx0 �12(�U� � jrU�j2)�(Xs)ds�1ITx�t�= e�tEPx [MTx1ITx�t℄: (23)But e�U�(Xs)Ms is a bounded Px martingale. Hene, aording toDoob optional sampling TheoremEPx [e�U�(XTx )MTx1ITx�t℄ � EPx�e�U�(Xt^Tx)Mt^Tx� = e�U�(x): (24)Aording to (21), e�U�(XTx ) � e"e�U�(x), so that thanks to (24),EPx [MTx1ITx�t℄ � e�":Using this estimate in (23) and using (22) we �nally obtainEPx [Mt℄ � e�tH�(U�(x)�") + e�"e�t: (25)It remains to hoose " = �U�(x) for some � < 1. Inequality (25)yields for jxj > 1EPx [Mt℄ � e�t�e��t(1��)2(1� 1� ) 12�2jxj2(��1)� + e��jxj��; (26)while a rough bound for jxj � 1 is EPx [Mt℄ � e�t, sine Mt � e�taording to (19).Finally reall that P�t (eU�) = eU�EPx [Mt℄ and remark that sine� < 2 the dominating term in (26) is the �rst one in the sum, atleast for large jxj. Together with the property of  all this yields thestatement in the Theorem. utAs in [21, Theorem 2.8.℄ we shall see below that the onditionP�t (eU�) 2 L� (��) is also a suÆient ondition for � -Orliz hyper-boundedness.Theorem 2. Let � be as in Theorem 1. A suÆient ondition for(P�t )t�0 to be � -Orliz hyperbounded is that P�t (eU�) 2 L� (��) forsome t > 0.July 13, 2004.



12 F. Barthe et al.Proof. First reall that thanks to (19), Mt � e�t. On the otherhand, the Brownian semi-group (Ps)s�0 on Rn is ultraontrativeand kPskL2(dx)!L1(dx) = (4�s)�n4 .Pik some smooth funtion f on Rn with ompat support. Sinejf je�U� 2 L2(dx) and using the Markov property, for s > 0 and t > 0,it holdsEPx [Mt+s�e�U� jf j�(Xt+s)℄ = EPx [MtEPXt [Ms�e�U� jf j�(X 0s)℄℄� e�sEPx [Mt�Ps(jf je�U�)�(Xt)℄� e�s(4�s)�n4 kfkL2(��)EPx [Mt℄:HeneZ �(P�t+s(jf j))d�� = Z ��eU�EPx�Mt+s�e�U� jf j�(Xt+s)��d��� C2(�; s)kfk2L2(��)k( )1+log2 �C(�;s)kfkL2(��)�Z ��eU�EPx [Mt℄�d��;with C(�; s) = e�s(4�s)�n4 . In partiular, if kfkL2(��) = 1,Z �(P�t+s(jf j))d�� � K(t; s; �):Aording to (13), P�t+s is thus ontinuous. utExample 1. The best possible hoie of  in Theorem 1 is given by (y) = exp�(log(jyj)2(1� 1� )� for jyj large enough.Aording to Theorem 1 and 2, (P�t )t�0 is then � -Orliz hyper-bounded for t > 1�2 .The previous sheme of proof, without any hange, obviously ex-tends to the general framework we have introdued. Let us desribethe situation.Let Pt be a �-symmetri semi-group on a spae E as desribein setion 1, with generator L. For V in the domain D (L) of L, weintrodue the general Boltzmann measure d�V = e�2V d� and assumethat �V is a probability measure. Under some assumptions it is knownthat one an build a �V -symmetri semi-group (PVt )t�0, via(PVt h)(x) = eV (x)EPx�h(Xt)e�V (Xt)Mt�; (27)with Mt = exp� Z t0 �LV (Xs)� � (V; V )(Xs)�ds�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 13In the general ase these assumptions are denoted by (H.F) in [21℄.Here we have hosen the usual de�nition� (V; V ) = 12 �LV 2 � 2V LV � :When E = Rn , L = 1=2� and � = dx eah of the followingonditions (among others) is suÆient for (27) to hold:(i) there exists some  suh that  (x) ! +1 as jxj ! +1 andrV � r �� is bounded from below,(ii) R jrV j2d�V < +1.For the �rst one see e.g. [52, p.26℄ and [21, (5.1)℄, for the seondone see e.g. [24℄.Introdue the analogue of (19):Assumption (OB(V)). We shall say that V satis�es assumptionOB(V), if(i) V is bounded from below by some (possibly negative) onstant d.(ii) There exist some  2 R, u0 > 0 and a funtion G : R+ ! R+suh that G(u) ! +1 as u! +1 and G(u)=(u+ 1) is bounded foru � u0, and suh that for all x 2 E,� (V; V )(x) � LV (x) � G(jV (x)j)� :Assumption OB(V) ensures that the dominating term in the ana-logue of (26) is the former for x large enough. ThenTheorem 3. Let � be as in Theorem 1. If (Pt)t�0 is ultraontrativeand V satis�es assumption OB(V), then the perturbed semi-group(PVt )t�0 is � -Orliz hyperbounded as soon as for some C > 0Z  (eV )e�CG(jV j)d� < +1:Remark 1. The assumption OB(V) appeared �rst in Rosen's workwithG(u) = u2(1� 1� ) ([50, ondition (5) in Theorem 1℄) for jxj� Boltz-mann measures on Rn , for whih a modi�ed version of (defetive) log-arithmi Sobolev inequalities is obtained. Though Rosen proved thatthis ondition is in a sense optimal (see his Theorem 5) for his log-Sobolev like inequality for the jxj� Boltzmann measure, he did notrely this inequality to the Orliz hyperboundedness of the assoiatedsemi-group. Furthermore, we think that the meaning of assumptionOB(V) is enlightened by our probabilisti approah. We shall disusslater Rosen's results in relationship with F -Sobolev inequalities (seesetion 7).Remark 2. If E = Rn , L = 1=2� and � = dx, the seond onditionin assumption OB(V) implies the existene of a spetral gap (see e.g.[21, Proposition 5.3.(2)℄), provided V goes to in�nity at in�nity.July 13, 2004.



14 F. Barthe et al.4. Gross theory for Orliz hyperontrativity.In this setion we assume that � and �� are smooth and inreasingon R+ (hene one to one on R+). We also simply denote by kfkpthe Lp(�) norm of f (when no onfusion on the underlying measure� is possible). In this setion we shall assume for simpliity that �is a probability measure. The framework is the one desribed in theintrodution (see the notations therein).4.1. An Orliz version of H�egh-Krohn and Simon Theorem.Sine we do not a priori onsider a parametrized family of Orlizfuntions, ontrary to the family (Lp ; p � 2) used in Gross theory,the extension of this theory to our framework is not immediate. Ourde�nitions are nevertheless similar to the ones used in H�egh-Krohnand Simon result relating hyperontrativity and logarithmi Sobolevinequalities. A proof of H�egh-Krohn and Simon Theorem using semi-group tehniques is ontained in [4, Theorem 3.6℄. Another proof isgiven in [22, Corollary 2.8℄.We follow the route in [22℄ in order to get some funtional in-equality for an Orliz hyperbounded semi-group. The starting pointis the following partiular ase of Inequality (2.4) in [22℄: for all non-negative f 2 D (a nie ore algebra see [22℄, in the usual Rn asewe may hoose the smooth ompatly supported funtions plus on-stants) suh that R f2d� = 1, all positive and bounded h and allt � 0, Z f2 log hd� � t2E(f; f) + log Z fhPtfd�: (28)Reall that for (28) to hold, Ps has to be �-symmetri. If Pt maps on-tinuously L2 in some (L� ; N� ) with operator norm C(t; �), applyingH�older inequality we obtainZ f2 log hd� � t2E(f; f) + log(C(t; �)) + log(kjf jhk��):Hene if we an hoose some h suh that the last term in the abovesum is less than 0, we will obtain some funtional inequality remind-ing the (defetive) logarithmi Sobolev inequality. A natural hoieis h(f) = (��)�1(f2��(1))jf j ;sine in this ase I��(jf jh) = R ��(1)f2d� = ��(1). It follows thatN��(jf jh) = 1 and we may apply (12). This hoie is allowed providedf2 log h is � integrable and interesting provided log h is a non-negativefuntion growing to in�nity with f . Note that with our hoies ofJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 15(�; ��), (��)�1(y) � py and thus h(y) ! +1 as y ! +1. We haveshownTheorem 4. If the �-symmetri semi-group (Pt)t�0 is � -Orliz hy-perbounded (with operator norm C(t0; �) for some t0 > 0) then for allf 2 D the following (defetive) logarithmi Orliz Sobolev inequalityholds (DLOSI) Ent� (f) � aE(f; f) + bkfk22;with Ent� (f) def= R f2 log� (��)�1(��(1)(f=kfk2)2)jf=kfk2j �d�, a = t02 and b =log(C(t0; �)) provided the funtiony 7! y2 log�(��)�1(y2��(1))jyj �an be ontinuously extended up to the origin (here (��)�1 is theinverse funtion of �� and not 1=��).In partiular if (Pt)t�0 is � -Orliz hyperontrative, (DLOSI) istight i.e. beomes(TLOSI) Ent� (f) � aE(f; f):Remark 3. If we formally replae �(y) by yp for some p > 2, then(��)�1(y) behaves like y1=q for the onjugate q of p. Hene we reoverthe usual logarithmi Sobolev inequality as in H�egh-Krohn and Si-mon theorem. This is not surprising sine the previous proof is theexat analogue of the one in [22℄.Remark 4. Remark that our hoie of h is suh that N��(jf jh) � 1.Hene we may replae the operator norm of Pt as a linear operatorbetween L2 and (L� ; N� ) by the similar operator norm with (L� ; k�k� )instead. This should be interesting if Pt beomes a ontration for thisnorm, while it is not for the previous one (reall (12)).In view of Theorem 4 it is now natural to ask for a onverse, henea Gross-Orliz Theorem.Atually an inequality like (DLOSI) was already disussed in theliterature, where it appears as a partiular F -Sobolev inequality (seebelow). In addition the expliit form of Ent� is not easily tratableas it stands. For instane we annot obtain an expliit form of Ent�for the jxj� Boltzmann measure, but only an asymptoti behavior,i.e. (reall Example 1 and see Example 2 in this setion)log�(��)�1(y2��(1))jyj � � (log(jyj))2(1� 1� ) ; (29)as y ! +1 (where a � b means that a � b � Ca for some universalonstant  and C). It is thus natural to ask whether one an replaeone by the other in Theorem 4. All these reasons lead to the studyof Orliz-hyperboundedness in onnetion with general F -Sobolev in-equalities.July 13, 2004.



16 F. Barthe et al.4.2. A Gross-Orliz Theorem.Our main Theorem is Theorem 6 below. This Theorem gives theequivalene between the homogeneous F -Sobolev inequality and theOrliz hyperontrativity and gives a generalization of the standardGross Theorem [32℄.Reall that the probability measure � satis�es a log-Sobolev in-equality if there exists a onstant CLS suh that for any smoothenough funtion f ,Z f2 log� f2�(f2)� d� � CLS Z jrf j2d�; (30)where �(f2) is a short hand notation for R f2d� and jrf j2 standsfor � (f; f). The following theorem is the elebrated Gross Theorem([32℄, see also [3℄) relating this property to the hyperontrativity ofthe semi-group (Pt)t�0.Theorem 5 ([32℄). Let � be a probability measure. The followingholds:(i) Assume that � satis�es a log-Sobolev inequality (30) with onstantCLS, then, for any funtion f , any q(0) > 1,kPtfkq(t) � kfkq(0);where q(t) = 1 + (q(0)� 1)e4t=CLS .(ii) Assume that for any funtion f ,kPtfkq(t) � kfk2with q(t) = 1 + e4t= for some  > 0. Then the probability measure �satis�es a log-Sobolev inequality (30) with onstant .A natural extension of the log-Sobolev inequality is the homoge-neous F -Sobolev inequality. Let F : R+ ! R be a non-dereasingfuntion satisfying F (1) = 0. A probability measure � satis�es anhomogeneous F -Sobolev inequality if there exist two onstants CFand eCF suh that for any smooth enough funtion f ,Z f2F � f2�(f2)� d� � CF Z jrf j2d�+ eCF Z f2d�: (31)If eCF = 0 (resp. 6= 0) the inequality is tight (resp. defetive). We shalluse this terminology only when it is neessary.We have the following resultJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 17Theorem 6 (Gross-Orliz). Fix p > 1. Let F : R+ ! R be a C2non-dereasing funtion satisfying F (1) = 0. De�ne for all q � 0,�q(x) := xpeqF (xp).(i) Assume that{ there exists a non negative funtion k on R+ suh that for allq � 0: � 00q �q � k(q)4 � 0q2 (hene �q is a Young funtion),{ there exists a non negative funtion ` on R+ and a onstant m � 0suh that �q(x)F (xp) � `(q)�q(x)F (�q(x)) + m, for all q � 0 andall x � 0,{ the measure � satis�es the homogeneous F -Sobolev inequality (31)with onstants CF and eCF .Then, for all non-dereasing C1 funtions q : R+ ! R+ with q(0) = 0and satisfying q0 � k(q)`(q)CF , the following holds for all f ,N�q(t)(Ptf) � e 1p [mq(t)+ eCF R q(t)0 `(u)du℄kfkp:(ii) Conversely assume that there exist two non-dereasing fun-tions, q; r : R+ ! R+ , di�erentiable at 0, with q(0) = 0, suh thatfor any f , N�q(t)(Ptf) � er(t)kfkp: (32)Then � satis�es the following homogeneous F -Sobolev inequality: forall f smooth enoughZ f2F � f2�(f2)� d� � 4(p� 1)pq0(0) Z jrf j2d�+ pr0(0)er(0)q0(0) Z f2d�:Remark 5. Note that by our assumptions on �q, N�q(t)(f) is well de-�ned.Furthermore whenm = 0 the previous result states that the Orlizhyperontrativity is equivalent to the tight homogeneous F -Sobolevinequality ( eCF = 0).Proof. We follow the general line of the original proof by Gross [32℄,see also [3℄. It is based on di�erentiation.Without loss of generality we an assume that f is non negative.Then, for a general C1 non dereasing funtion q : R+ ! R+ satisfyingq(0) = 0, let N(t) := N�q(t)(Ptf). For simpliity, we set T (x; p) :=�p(x). Then, by de�nition of the gauge norm (10) we haveZ T � PtfN(t) ; q(t)� d� = 1 8t � 0:July 13, 2004.



18 F. Barthe et al.Thus, by di�erentiation, we getN 0(t)N2(t)Z Ptf�1T �PtfN(t) ; q(t)� d� = 1N(t)Z LPtf�1T �PtfN(t) ; q(t)� d�+q0(t)Z �2T � PtfN(t) ; q(t)� d�;or equivalently, if g := PtfN(t) ,N 0N Z g �1T (g; q)d� = Z Lg �1T (g; q)d� + q0 Z �2T (g; q)d�: (33)Here �1 and �2 are short hand notations for the partial derivativewith respet to the �rst and seond variable respetively.Let us start with the proof of the seond part (ii) of the Theorem.For simpliity, assume that N(0) = kfkp = 1. Take t = 0 in the latterequality givespN 0(0)Z fpd� = pZ Lf � fp�1d�+ q0(0)Z fpF (fp)d�;beause g(0) = f , �1T (f; q(0)) = pfp�1 and �2T (f; q(0)) = fpF (fp)(reall that q(0) = 0 and N(0) = 1). Using the integration by partsformula R Lf � �(f)d� = � R jrf j2�0(f)d�, we getpZ Lf � fp�1d� = �p(p� 1)Z jrf j2fp�2d� = 4(p� 1)p Z jrfp=2j2d�:Now, it follows from the bound (32) that N 0(0) � r0(0)er(0)kfkp. Thisimpliespr0(0)er(0)kfkpZ fpd� � �4(p� 1)p Z jrfp=2j2d�+q0(0)Z fpF (fp)d�:Sine kfkp = 1, this ahieves the proof of (ii).The proof of part (i) is more tehnial. A simple omputation givesx�1T (x; q) = pT (x; q)+pqx2pF 0(xp)eqF (xp). Sine F is non dereasingand g � 0, we get when N 0(t) � 0N 0N Z g�1T (g; q)d� � pN 0N Z T (g; q)d� = pN 0N :July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 19On the other hand, using one again the integration by parts formulaR Lf � �(f)d� = � R jrf j2�0(f)d�, and our assumption on �q,Z Lg�1T (g; q)d� = �Z jrgj2�11T (g; q)d�� �k(q)Z jrgj2 �1T (g; q)24T (g; q) d�= �k(q)Z jrpT (g; q)j2d�:Next, �2T (x; q) = T (x; q)F (xp) � `(q)T (x; q)F (T (x; q)) + m by hy-pothesis. Thus, (33) beomespN 0N � �k(q)Z jrpT (g; q)j2d�+ `(q)q0Z T (g; q)F (T (g; q))d� +mq0:Note that the right hand side of this inequality ontains the threeterms appearing in the homogeneous F -Sobolev inequality (31) ap-plied to pT (g; q) (reall that R (pT (g; q))2d� = 1). In onsequene,applying the homogeneous F -Sobolev inequality (31) to pT (g; q)givespN 0N � q0(m+ eCF `(q)) + [�k(q) + q0`(q)CF ℄Z jrpT (g; q)j2d�:If q0 � k(q)CF `(q) , it follows that pN 0N � q0(m+ eCF `(q)). This we provedwhen N 0(t) � 0. It is obviously true when N 0(t) < 0. Thus by inte-gration N(t) � N(0)e 1p [mq(t)+ eCF R q(t)0 `(u)du℄:Noting that N(0) = kfkp ahieves the proof. utRemark 6. Sine the homogeneous F -Sobolev inequality (31) reoverthe log-Sobolev inequality (30) (with F = log and eCF = 0), it isnatural to ask whether the previous Theorem reover the lassialGross Theorem or not.So, take F = log. Then, �q(x) = xp(q+1),��q �q(x) = p�q(x) log(x) = 1q + 1�q(x)F (�q(x));and thus, we an hoose `(q) = 1q+1 and m = 0. Moreover, it is easy tosee that � 00q �q = p(q+1)�1p(q+1) � 0q2 � p�1p � 0q2, hene k(q) = 4p�1p . Applyingthe Theorem, we get that if � satis�es a log-Sobolev inequality (30)with onstant CLS ( eCF = 0), then, for any funtion f and any t � 0,kPtfkp(~q(t)+1) � kfkp;July 13, 2004.



20 F. Barthe et al.where ~q(t) = �1+e4 (p�1)tpCLS . The funtion p(~q(t)+1) = pe4 (p�1)tpCLS is lessthan q(t) = 1 + (p� 1)e4t=CLS of Theorem 5.Let us make some additional remarks on the hypotheses of theTheorem.Remark 7. Let mF := jminx2(0;1) xF (x)j and assume that mF < 1.With our hoie of �q(x) in the Theorem, one an hoose l � 1 andm = mF in order to have �q(x)F (xp) � `(q)�q(x)F (�q(x)) +m.Moreover, if F is non negative, then mF = 0. Thus, in that parti-ular ase, the previous Theorem states that the Orliz hyperontra-tivity is equivalent to the tight homogeneous F -Sobolev inequality.Remark 8. The ondition �q(x)F (xp) � `(q)�q(x)F (�q(x))+m is teh-nial. It omes from our hoie of �q = xpeqF (xp). In view of the proofof Theorem 6 the most natural hoie for �q would be the solution of� ��q �q(x) = �q(x)F (�q(x))�0(x) = xp :Unfortunately, it is not expliit in general. This is why we preferredthe expression xpeqF (xp) whih has the same asymptotis.Remark 9. The hypothesis � 00q �q � k(q)4 � 0q2 an be read as: �1� k(q)4q isa onvex funtion. Note that if xF 0(x) ! 0 and xF 00(x) ! 0 whenx! 0, �1� k(q)4q is no more onvex if k(q) > 4(p�1)=p. Thus, we annothope for a better exponent than k(q) = 4(p� 1)=p (i.e. 1� k(q)4 = 1p).Now, we give a ondition on F whih ensures that �q satis�es theabove hypothesis.Proposition 1. Let F : R+ ! R be a C2 non dereasing funtion sat-isfying F (1) = 0. Fix p > 1. De�ne for all q � 0, �q(x) = xpeqF (xp).Assume that there exists a onstant k � 4(p� 1)=p suh that for anyx � 0, xF 00(x) + (2 + 1p � k2 )F 0(x) � 0;Then, for any q � 0, �q satis�es � 00q �q � k4 � 0q2.Proof. Note that for q = 0 the onlusion is learly true. Supposeq > 0. It is not diÆult to hek that for all x > 0,� 00q (x)�q(x)� 0q2(x) = 1 + 1p�1 + qxpF 0(xp) + pqx2pF 00(xp)(1 + qxpF 0(xp))2 :July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 21Thus, it is enough to prove that for any x > 0,�1p � k4 + 1 +�qp � 2q�k4 � 1��xF 0(x)+qx2F 00(x)��k4 � 1� q2x2F 0(x)2) � 0:Note that �1p � k4 � 1 beause k � 4(p� 1)=p, hene, it is suÆientto have�qp � 2q�k4 � 1��xF 0(x) + qx2F 00(x)��k4 � 1� q2x2F 0(x)2 � 0:Sine x > 0, k4 � 1 � 0 and F 0(x)2 � 0, it is satis�ed when�1p � 2�k4 � 1��F 0(x) + xF 00(x) � 0whih is our ondition. This ahieves the proof. ut4.3. � -Entropy and F -Sobolev inequalities.We developed in the previous two subsetions two separate versions ofF -Sobolev inequalities related to some hyperboundedness property.Reall that the � -entropy involvesF (y2) = log�(��)�1(y2��(1))jyj � :It is neessary to relate one to the other, in partiular, sine ourriteria in Setion 3 are written in terms of � (or  ), we have to linkthem to our general Gross-Orliz theory.First, for �(y) = y2 (y) = y2eF (y2), as above, it is easily seen that(��)�1(y) = p2y�(y);where � goes to +1 at in�nity. Furthermore (see [47, Proposition 1(ii) p.14℄), for all y > 0y � ��1(y)(��)�1(y) � 2y: (34)Apply the inequality (34) with y = �(z). The �rst inequality yields( (��1(z))) 12 � p2�(z). Sine ��1 is a non dereasing funtion and��1(z) � "z 12�" for all 12 > " > 0 for some ", we ertainly havep2�(z) � ( ("z 12�")) 12 . Hene provided (y) � d"� (y 21�2" )�k" ; (35)July 13, 2004.



22 F. Barthe et al.for some positive k" and d", we get that at least for large jyj (usingondition r2), log( (y)) � K" log(�(y)).Also note that (34) furnishes �(z) �  (p2z) � C (z). Heneprovided (35) holds, we have that at least for large jyj, there existstwo onstant  and C suh that  log( ) � log(�) � C log( ). Inaddition log�(��)�1(y2��(1))jyj � � log ��(��(1)y2)�;so that for jyj large enoughlog�(��)�1(y2��(1))jyj � � log � (y2)�where we reall that a � b if there exist some universal onstants1; 2 suh that 1a � b � 2a.Finally note that for a defetive F -Sobolev inequality we mayreplae F by eF that behaves like F at in�nity, up to the modi�ationof both onstants CF and eCF in (31). Hene provided  satis�es (35)we may hoose F = log( ) or F = log(�):Example 2. Consider the jxj� Boltzmann measure. Aording to Ex-ample 1, Theorem 4 and the disussion above, we have obtained:there exist some A and B suh that for R f2e�2jyj�dy = 1,Z f2(y)� log+(jf(y)j)�2(1� 1� )e�2jyj�dy � AZ jrf j2e�2jyj�dy +B:(36)The latter (36) is exatly the inequality shown by Rosen (see [50,Theorem 1℄). Rosen's proof lies on Sobolev inequalities in Rn and re-sults on monotone operators. Of ourse F = (log+)� does not satisfythe regularity assumptions in Theorem 5, so that we annot applyit. But smoothing this funtion, we may obtain similar (defetive)inequalities. This will be disussed in details in the setion 7.Example 3. In the more general situation studied in Theorem 3 wemay take F (y) = G(log(y)) provided, in addition to assumptionOB(V), G is suh that Z e�qG(jV j)d� < +1; (37)for some q > 0 and G(u) � kG(lu); (38)for some k > 0, l > 2 and all u large enough (this is sometimes alledondition r2).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 234.4. From defetive to tight inequalities.It is well known that a defetive log-Sobolev inequality and a Poinar�einequality together are equivalent to a tight log-Sobolev inequality.We shall �nish this setion with the proof of a similar statement forF -Sobolev inequalities (we refer to setion 5.4 for additional results).The �rst statement is straightforwardLemma 1. Let � be a probability measure on Rn . Let F : (0;+1) !R be C2 on a neighborhood of 1. Assume that F (1) = 0 and that everysmooth funtion f satis�esZ f2F � f2R f2d�� � Z jrf j2d�:Then for every smooth funtion g(4F 0(1) + 2F 00(1))Z �g � Z gd��2 d� � Z jrgj2d�:In partiular, setting �(x) = xF (x), if �00(1) > 0 one has CP (�) �1=(2�00(1)) where CP (�) denotes the Poinar�e onstant.Proof. We apply the F -Sobolev inequality to f = 1 + "g where g isbounded and R gd� = 0 and we let " to zero. utConversely, we prove two inequalities whih allow to turn defetiveF -Sobolev inequalities into tight ones, under a spetral gap hypothe-sis. The �rst one deals with funtions F whih vanish for small values.The seond one, an analogue of Rothaus inequality [51℄, is suited toonave funtions F . The two ases will be used in forthoming ar-guments.Lemma 2. Let � > 0 and let F : R+ ! R+ be non-dereasing andsuh that Fj[0;�2℄ = 0. Set G(t) = F (t�2=(� + 1)2) for t � 0. Let �be a probability measure on a spae X and f : X ! R+ be squareintegrable. ThenZ f2G� f2�(f2)� d� � ��+ 1� �2 Z ~f2F  ~f2�( ~f2)! d�;where ~f = f � �(f).Proof. Note that Gj[0;(�+1)2℄ = 0. Hene, the left integrand is non-zero only when f2 � (�+ 1)2�(f2). This ondition implies that f �July 13, 2004.



24 F. Barthe et al.(� + 1)�(f) and onsequently ~f � ��+1f . Combining this inequalitywith the lassial �( ~f2) � �(f2), we getZ f2G� f2�(f2)� d� � ��+ 1� �2 Z ~f2G ��+ 1� �2 ~f2�( ~f2)! d�:The proof is omplete. utTheorem 7. Let � be a probability measure on a set X. Let F be asin Lemma 2 with � > 0 and let G(t) = F (t�2=(�+ 1)2). If � satis�esa defetive F -Sobolev inequality and a Poinar�e inequality, i.e.Z f2F � f2�(f2)� d� � CF Z jrf j2d�+ eCF Z f2d�;and Z �f � Z fd��2 d� � CP Z jrf j2d�;then � satis�es a tight G-Sobolev inequality, more preiselyZ f2G� f2�(f2)� d� � ��+ 1� �2 (CF + CP eCF )Z jrf j2d�:Proof. It is enough to onsider non-negative funtions f . CombiningLemma 2 and the above hypotheses yieldsZ f2G� f2�(f2)� d� � ��+ 1� �2 Z ~f2F  ~f2�( ~f2)! d�� ��+ 1� �2�CF Z jr ~f j2d�+ eCF Z ~f2d��� ��+ 1� �2 (CF + CP eCF )Z jrf j2d�:utLemma 3 (Rothaus-Orliz inequality). For any bounded fun-tion f , denote by ~f the entered f � R fd�. If F is C2 on (0;+1)with F (1) = 0 and satis�es(i) F is onave non dereasing, goes to in�nity at +1,(ii) uF 0(u) is bounded by K(F ).Then it holdsZ f2F � f2�(f2)� d� � Z ~f2F  ~f2�( ~f2)! d�+ CRot(F )k ~fk22:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 25Proof. We follow the proof in [4℄. Again it is enough to prove theresult for funtions f written as f = 1+tg for some bounded funtiong suh that R gd� = 0 and R g2d� = 1. We introdueu(t)= f2�(f2) = (1 + tg)21 + t2 ; logA(t)=F (u(t) + "2); logA=F (g2 + "2);for some " > 0 and de�ne'(t) = Z f2F � f2�(f2) + "2� d�� Z ~f2F  ~f2�( ~f2) + "2! d�= Z (1 + tg)2 logA(t)d�� t2 Z g2 logAd�:The introdution of " is neessary for avoiding problems near 0. Sim-ple alulations yield'0(t) = Z �2g(1 + tg) logA(t)� 2tg2 logA+ (1 + tg)2A0(t)A(t) �d�;and '00(t) = Z �2g2 log A(t)A + 4g(1 + tg)A0(t)A(t)+(1 + tg)2A00(t)A(t) �A02(t)A2(t) �d�:It is then easy to see that '(0) = F (1 + "2) and '0(0) = 0. Thanksto Taylor Lagrange formula,'(t) = F (1 + "2) + t22 '00(s);for some s so that what we need is an upper bound for the seondderivative, sine t2 = k ~fk22.On one hand one has for all t � 0log A(t)A = F (u(t) + "2)� F (g2 + "2) � 0if u(t) � g2, andlog A(t)A = F (u(t) + "2)� F (g2 + "2) � F 0(g2 + "2)(u(t) � g2);July 13, 2004.



26 F. Barthe et al.if u(t) > g2 sine F 0 is non-inreasing. For jgj � 1 it is easy to hekthat u(t)�g2 � 2g2. In this ase we thus have log(A(t)=A) � 2K(F ).If jgj < 1, u(t)� g2 � 2, heneZ 2g2 log A(t)A d� � Z jgj<1;u(t)>g22g2 log A(t)A d�+ Z jgj�1;u(t)>g22g2 log A(t)A d�� Z jgj<1;u(t)>g2 2g2F 0(g2 + "2)(u(t) � g2)d�+ 4K(F )� 8K(F ):On the other hand,A1 = Z �4g(1 + tg)A0(t)A(t) � (1 + tg)2�A0(t)A(t) �2 �d� � 4:Indeed de�ne Z = �R (1 + tg)2 �A0(t)A(t) �2 d�� 12 and remark that, justusing Cauhy-Shwarz and R g2d� = 1, A1 � 4Z � Z2 whih is lessthan 4.It remains to ontrol the �nal term A2 = R (1 + tg)2A00(t)A(t) d�. Thisterm may be written with the help of F , namelyA2=Z (1 + tg)2�u02(t)�F 00 + F 02�(u(t) + "2) + u00(t)F 0(u(t) + "2)�d�:Sine F 00 � 0 we only look at terms involving F 0. Butu0(t) = 2(1 + tg)(g � t)(1 + t2)2and (1+tg)2u00(t) = 2u(t)� (3t2 � 1)� 2gt(t2 � 3)� g2(3t2 � 1)(1 + t2)2 �. A-ording to assumption (ii),(1 + tg)2u02(t)F 02(u(t) + "2) = u(t)2F 02(u(t) + "2)4(g � t)2(1 + t2)2� K2(F )4(g � t)2(1 + t2)2 � 4K2(F )(1 + g2)while(1 + tg)2u00(t)F 0(u(t) + "2)� 2K(F )h 3t2 + 1(1 + t2)2 + 2jgjt(t2 + 3)(1 + t2)2 + g2 (3t2 + 1)(1 + t2)2 i� 6K(F )(1 + jgj+ g2) � 12K(F )(1 + g2):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 27Integrating with respet to � yields that A2 is uniformly boundedfrom above, with a bound that does not depend on ". It remains tolet " go to 0. utRemark 10. Remark that a smoothed version of F = (log+)2(1� 1� ) willsatisfy the hypotheses of the Lemma, for 1 � � � 2 (see setion 7).Remark 11. Using the notations in the previous subsetion, we haveseen onditions for F = log(�) to be an appropriate hoie. In thisase using the fat that y 7! py�(y) is onave and non dereasing,it is easy to hek that y2(�00=�)(y) � 3=4 and y(�0=�)(y) � (1=2)py.Though we are not exatly in the situation of the Lemma one anhowever hek with more e�orts that a similar statement for Ent� isavailable.To onlude this setion we may stateTheorem 8. Let � be a probability measure on a set X. Let F beas in Lemma 3. If � satis�es a defetive F -Sobolev inequality and aPoinar�e inequality, i.e.Z f2F � f2�(f2)� d� � CF Z jrf j2d�+ eCF Z f2d�;and Z �f � Z fd��2 d� � CP Z jrf j2d�;then � satis�es a tight F -Sobolev inequality, more preiselyZ f2F � f2�(f2)� d� � C 0F Z jrf j2d�with C 0F = CF + CP ( eCF + CRot(F )).Proof. Using the notation ~f as in the previous Lemma, we haveZ f2F � f2�(f2)� d� � Z ~f2F  ~f2�( ~f2)! d�+ CRot(F )k ~fk22� CFE( ~f; ~f) + ( eCF + CRot(F ))k ~fk22� �CF + CP ( eCF + CRot(F ))�E(f; f):utJuly 13, 2004.



28 F. Barthe et al.5. Sobolev inequalitiesA measure � on Rn satis�es a logarithmi Sobolev inequality for theusual Dirihlet form if there exists a onstant C > 0 suh that forevery smooth funtionZ f2 log� f2R f2d�� d� � C Z jrf j2d�:The latter an be rewritten asZ f2 log f2d���Z f2 d�� log�Z f2 d�� � C Z jrf j2d�;and also as limp!2� R f2d�� �R jf jpd�� 2p2� p � 2C Z jrf j2d�:Eah of these forms naturally leads to onsidering more general in-equalities. We present them before studying their properties in de-tails. We shall say that � satis�es a homogeneous F -Sobolev inequal-ity when every smooth funtion satis�esZ f2F � f2R f2d�� d� � Z jrf j2d�: (39)i.e. in this setion we only onsider the tight F -Sobolev inequalityintrodued in (31).The measure � is said to verify an additive '-Sobolev inequalitywhen for all f 'sZ f2'�f2�d���Z f2d��'�Z f2d�� � Z jrf j2d�: (40)Finally we onsider the following generalization of Bekner's inequal-ity: for every smooth fsupp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � Z jrf j2d�: (41)This property was introdued by Bekner [13℄ for the Gaussian mea-sure and T (r) = r. It was onsidered by Lata la and Oleszkiewiz [37℄for T (r) = C ra. A reent independent paper by Wang [57℄ studiesthe general ase and gives orrespondenes between ertain homoge-neous F -Sobolev inequalities and generalized Bekner-type inequali-ties (and atual equivalenes for T (r) = C ra).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 295.1. First remarks, tightness and tensorisationUsing the homogeneity property, Inequality (39) above equivalentlyasserts that for every smooth funtion f satisfying R f2d� = 1, onehas R f2F (f2)d� � R jrf j2d�. It is then obvious that when � veri�esan additive '-Sobolev inequality as (40) then it satis�es a homoge-neous F -Sobolev inequality with F = '� '(1).Inequality (39) is tight (it is an equality for onstant funtions)whenever F (1) = 0. Inequalities (40) and (41) are tight by onstru-tion. Big di�erenes appear about tensorisation. The homogeneousF -Sobolev inequality need not tensorise in general. The generalizedBekner inequality (41) has the tensorisation property. This is estab-lished in [37℄ as a onsequene of the followingLemma 4. Let � : [0;1) ! R having a stritly positive seondderivative and suh that 1=�00 is onave. Let (
1; �1); (
2; �2) beprobability spaes. Then for any non-negative random variable Z de-�ned on the produt spae (
;�) = (
1 � 
2; �1 
 �2) with �niteexpetation one hasE��(Z)� �(E�Z) � E� (E�1�(Z)��(E�1Z)+E�2�(Z)��(E�2Z)) :When �(x) = x'(x) satis�es the hypothesis of the lemma, onean prove that the orresponding additive '-Sobolev inequality ten-sorises, even for very general Dirihlet forms. In our ase, we an usethe properties of the square of the gradient to prove the tensorisationproperty for arbitrary �.Lemma 5. Consider for i = 1; 2 probability spaes (Rni ; �i). Assumethat for i = 1; 2 and every smooth funtion f : Rni ! R one hasZ ��f2�d�i � ��Z f2d�i� � Z jrf j2d�i; (42)then the measure �1 
 �2 enjoys exatly the same property.Proof. Let f : Rn1+n2 ! R. We start with applying Inequality (42)in the seond variable. This givesZ �(f2)d�1d�2 = Z �Z �(f2(x; y))d�2(y)� d�1(x)� Z ���Z f2(x; y)d�2(y)�+ Z jryf j2(x; y)d�2(y)� d�1(x)= Z �(g2)d�1 + Z jryf j2d�1d�2;July 13, 2004.



30 F. Barthe et al.where we have set g(x) = qR f2(x; y)d�2(y). Next we apply (42) onthe �rst spae to g. Note that R g2d�1 = R f2d�1d�2 and that by theCauhy-Shwartz inequalityjrgj2(x) = ��R f(x; y)rxf(x; y)d�2(y)��2R f2(x; y)d�2(y) � Z jrxf j2(x; y)d�2(y):Thus we get that R �(g2)d�1 � � �R f2d�1d�2� + R jrxf j2d�1d�2.Combining this with the former inequality yields the laimed �-Sobolev inequality on the produt spae. ut5.2. The notion of apaity of a set with respet to a probabilitymeasureThere exists a wide variety of Sobolev-type inequalities in the litera-ture. It is natural to analyze onnetions between them. To do so, onetries to de�ne for eah inequality an equivalent \redued inequality",in suh a way that it is easy to deide equivalenes on the reduedforms. For example it is known that Sobolev inequalities involving theL1 -norm of the gradient are equivalent to isoperimetri inequalities.There exists a orresponding tool for Sobolev inequalities involvingL2 -norms (and even Lp -norms) of gradients: apaities. We refer tothe book of Maz'ya [43℄ for more details. The lassial eletrostatiapaity of a set A � Rn isCap(A) def= inf�Z jrf(x)j2dx; fjA = 1 and f has ompat support�where from now on the funtions appearing in the in�mum are loallyLipshitz. The usual L2 -Sobolev inequalities on Rn an be reduedto an inequality relating the apaity of sets to their volume. Thiswas extended to more general measures and inequalities (see [43℄).However, if one replaes the dx in the latter formula by d�(x) where� is a �nite measure, then the above apaity is zero. The appropriatenotion was introdued in [12℄. We reall it after a few de�nitions. Let� be an absolutely ontinuous measure on Rn . Let A � 
 be Borelsets, we writeCap�(A;
) def= inf �Z jrf j2d�; fjA � 1 and f j
 = 0�= inf �Z jrf j2d�; 1IA � f � 1I
� ;July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 31where the equality follows from an easy trunation. If � is a proba-bility measure on Rn , then we set for A with �(A) � 1=2Cap�(A;�) def= inf�Z jrf j2d�; fjA � 1 and �(f = 0) � 12�= inf�Cap�(A;
);A � 
 and �(
) � 12� :If � is absolutely ontinuous, then sine Cap�(A;
) is non-inreasingin 
, Cap�(A;�) = inf�Cap�(A;
);A � 
 and �(
) = 12� :We write Cap�(A) for Cap�(A;�).The redution of an L2 -Sobolev inequality to an inequality be-tween apaity and measure of sets is done via level-sets deompo-sition. For ompleteness we illustrate this on the simplest possibleinequality (see [43℄).Proposition 2. Let �; � be absolutely ontinuous measures on Rnand let 
 � Rn . Let C denote the smallest onstant so that everyloally Lipshitz funtion vanishing on 
 veri�esZ f2d� � C Z jrf j2d�:Then B � C � 4B, where B is the smallest onstant so that for allA � 
 one has �(A) � B Cap�(A;
).Remark 12. The onstant 4 in the above result is best possible, andis obtained by using a result of page 109 in [43℄. We shall prove theresult with a worse onstant. We follow a simpli�ed proof, writtenin page 110 of this book (this paragraph ontained a small mistakewhih we orret below).Proof. The fat that B � C is obvious from the de�nition of apaity.The other bounds requires level-sets deomposition. First note thatreplaing f by jf j makes the inequality tighter. So we may restritto f � 0 vanishing outside 
. Let � > 1 and onsider for k 2 Z,
k = ff2 � �kg. ThenZ f2d� �Xk2Z�k+1�(f�k � f2 < �k+1g)=Xk2Z�k+1��(
k)� �(
k+1)� = �� 1� Xk2Z�k+1�(
k):July 13, 2004.



32 F. Barthe et al.We estimate the latter measures as follows:�(
k) � BCap�(
k; 
) � B Z jrgkj2d�;where we have set gk = min�1;� f��(k�1)=2�k=2��(k�1)=2�+�. Indeed this fun-tion is 1 on 
k and vanishes outside 
k�1 so outside 
. Note thatZ jrgkj2d� = Z
k�1n
k jrf j2(�k=2 � �(k�1)=2)2d�+Zf=�k=2 jrf j2(�k=2 � �(k�1)=2)2d�:Sine f is loally Lipshitz, the sets ff = �k=2g \ frf 6= 0g areLebesgue negligible. So the latter integral vanishes (in the rest of thepaper, similar arguments are sometimes needed but we omit them).Thus Z f2d� � �� 1� BXk �2(p�� 1)2 Z
k�1n
k jrf j2d�� B�p�+ 1p�� 1 Z jrf j2d�:The best hoie of � leads to a onstant (11 + 5p5)=2 < 11:1. utRemark 13. Let us mention another possible redution of Sobolevtype inequalities to inequalities of the form R(
) �  (�(
)) whereR(
) is the in�mum over funtions f with ompat support in 
 ofR jrf j2d�= R f2d� (Rayleigh quotient). See e.g. [5,26℄ where the fo-us is on in�nite measures. Note that by Proposition 2 this riterionamounts to inequalities of the form�(A) (�(
)) � Cap�(A;
)for A � 
. Here the interest is in the behavior of the apaity interms of the outer set. We shall be rather interested in estimates ofthe form G(�(A)) � Cap�(A;
), that is in the dependene on themeasure of the inner sets. These two approahes are rather di�erent,and seem to be eÆient in di�erent settings.Remark 14. Proposition 2 appears as a n-dimensional version of thegeneralized Hardy inequality (see Mukenhoupt [45℄), whih assertsthat the best A so that every smooth f on R with f(0) = 0 one hasZ +10 f2d� � AZ +10 f 02d�;July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 33veri�es B � A � 4B where B = supx>0 �([x;+1)) R x0 ��1� , and�� is the density of the absolute ontinuous part of �. Note thatCap�([x;+1); [0;1)) = (R x0 ��1� )�1, so B is the smallest onstant sothat �([x;+1)) � BCap�([x;+1); [0;1))for all x > 0. This riterion is simpler than the one in n dimensions,beause one an redue to non-dereasing funtions, for whih levelsets are half-lines.Remark 15. It is shown in [12℄ that the Poinar�e onstant of a mea-sure � veri�es C=2 � CP � KC where C is the best onstant in:�(A) � CCap�(A; �) for all A with �(A) < 1=2, and K is a universalonstant. Proposition 2 shows that one an take K = 4.5.3. A riterion for general Bekner-type inequalitiesThe aim of this setion is to give a sharp riterion for inequalities ofthe form (41). Sine they appear as a olletion of Sobolev inequal-ities, the �rst step onsists in �nding a riterion for eah Sobolevinequality. This was done by the �rst and last-named authors in thease of measures on the line. We present here a slightly weaker butmore onvenient formulation of Theorem 11 in [12℄ and its extensionto arbitrary dimension.Theorem 9. Let p 2 (1; 2), �; � be Borel measures on Rn , with�(Rn) = 1 and d�(x) = ��(x)dx. Let C be the optimal onstantsuh that for every smooth f : Rn ! R one hasZ f2d���Z jf jpd�� 2p � C Z jrf j2d�: (43)Then 12B(p) � C � 20B(p); where B(p) is the optimal onstant sothat every Borel set A � Rn with �(A) � 1=2 satis�es�(A) 1��1 + 1�(A)� p�2p ! � B(p)Cap�(A;�):If n = 1, one has 12 max(B�(p); B+(p)) � C � 20 max(B�(p); B+(p))whereB+(p) = supx>m�([x;+1)) 1��1 + 1�([x;1))� p�2p !Z xm 1�� ;B�(p) = supx<m�((�1; x℄) 1��1 + 1�((�1; x℄)� p�2p !Z mx 1�� ;and m is a median of �.July 13, 2004.



34 F. Barthe et al.Proof. The one dimensional result follows from [12, Theorem 11 andRemark 12℄ whih involve 1 + 1=(2�([x;1)). In order to derive theresult presented here we have used the following easy inequality, validfor y � 2, and p 2 (1; 2),1� (1 + y) p�2p1� (1 + y=2) p�2p � log 3log 2 : (44)Note that the left hand side is monotonous in y and p.We turn to the n-dimensional part of the theorem. We use threelemmas from [12℄ whih we reall just after this proof. We start withthe lower bound on the onstant C. Assume that the Sobolev inequal-ity (43) is satis�ed for all funtions. Let A � Rn with �(A) � 1=2, andlet f : Rn ! R be loally Lipshitz, with f � 1IA and �(f = 0) � 1=2.Denote S = fx; f(x) 6= 0g. By Inequality (43) and Lemma 7, one hasCZ jrf j2d� � sup�Z f2gd�; g : Rn! (�1; 1);Z (1� g) pp�2 d� � 1�:In the latter supremum, the values of g on ff = 0g have no inideneon the integral, but they have an inidene on the onstraint. So thesupremum is ahieved for g's being �1 on ff = 0g. ThusC Z jrf j2d� � sup�ZS f2gd�; g 2 (�1; 1);ZS(1� g) pp�2d� � 1�� sup�ZS f2gd�; g 2 [0; 1);ZS(1� g) pp�2 d� � 1�� sup�Z 1IAg1ISd�; g 2 [0; 1);Z (1� g) pp�2 1ISd� � 1�= �(A) 1��1 + 1� �(S)�(A) �p�2p ! ;where we have used f � 1IA and Lemma 8 for the measure dQ = 1ISd�.Sine �(S) � 1=2 and this is valid for any f larger than 1 on A andvanishing for probability 1=2 one gets�(A) 1��1 + 12�(A)� p�2p ! � CCap�(A;�):One onludes with Inequality (44).Next we prove the upper bound on C. Let f be a loally Lipshitzfuntion. Let m be a median of the law of f under �. Set F = f �m,July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 35
+ = ff > mg, 
� = ff < mg, F+ = F1I
+ and F� = F1I
� . Notethat �(
+); �(
�) � 1=2. We de�ne the lass of funtions I byI = �g : Rn ! [0; 1);Z (1� g) pp�2d� � 1 + (p� 1) pp�2� :Combining Lemmas 6 and 7 and observing that F 2 = F 2+ +F 2� givesZ f2d���Z jf jpd�� 2p � Z F 2d�� (p� 1)�Z jF jpd�� 2p� supg2I Z (F 2+ + F 2�)gd�� supg2I Z F 2+gd�+ supg2I Z F 2�gd�:Applying Proposition 2 with the measures g d� and d� (it is ruialhere that g � 0) gives R F 2+gd� � 4Bg R jrF+j2d�, whereBg := supA�
+ R 1IAgd�Cap�(A;
+) � sup�(A)� 12 R 1IAgd�Cap�(A;�)� sup�(A)� 12 sup�R 1IAgd�; g 2 I	Cap�(A;�)= sup�(A)� 12 �(A) 1��1 + (p�1) pp�2�(A) � p�2p !Cap�(A;�) � 5B(p):In the preeding lines we have used Lemma 8 and the inequality1� �1 + x(p� 1) pp�2� p�2p � 5�1� (1 + x) p�2p � ; x � 2; p 2 (1; 2);whih follows from Remark 12 of [12℄. We have shown thatsupg2I Z F 2+gd� � 20B(p)Z jrF+j2d�:Adding up with a similar relation for F� leads toZ f2d���Z jf jpd�� 2p � 20B(p)�Z jrF+j2d� + Z jrF�j2d��= 20B(p)Z jrf j2d�:utJuly 13, 2004.



36 F. Barthe et al.We list the three lemmas from [12℄ that we used in the previousproof.Lemma 6. Let p 2 (1; 2). Let f : X ! R be square integrable fun-tion on a probability spae (X;Q). Then for all a 2 R one hasZ f2dQ��Z jf jpdQ� 2p � Z (f�a)2dQ�(p�1)�Z jf � ajpdQ� 2p :Lemma 7. Let ' be a non-negative integrable funtion on a proba-bility spae (X;P ). Let A > 0 and a 2 (0; 1), thenZ 'dP �A�Z 'adP� 1a= sup�Z 'gdP ; g : X ! (�1; 1) and Z (1� g) aa�1dP � A aa�1�� sup�Z 'gdP ; g : X ! [0; 1) and Z (1� g) aa�1dP � 1 +A aa�1� :Lemma 8. Let a 2 (0; 1). Let Q be a �nite measure on a spae Xand let K > Q(X). Let A � X be measurable with Q(A) > 0. Thensup�ZX 1IAgdQ; g : X ! [0; 1) and ZX(1� g) aa�1dQ � K�= Q(A) 1��1 + K �Q(X)Q(A) �a�1a ! :Theorem 9 readily implies a sharp riterion for inequalities gener-alizing the ones of Bekner and Lata la-Oleszkiewiz.Theorem 10. Let T : [0; 1℄ ! R+ . Let �; � be a Borel measures onRn , with �(Rn) = 1 and d�(x) = ��(x)dx. Let C be the optimalonstant suh that for every smooth f : Rn ! R one hassupp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � C Z jrf j2d�: (45)De�ne the funtion eT (x) = supp2(1;2) 1� x p�2pT (2� p) :Then 12B(T ) � C � 20B(T ), where B(T ) is the smallest onstant sothat every Borel set A � Rn with �(A) < 1=2 satis�es�(A) eT �1 + 1�(A)� � B(T )Cap�(A;�):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 37If the dimension n = 1, then12 max(B+(T ); B�(T )) � C � 20 max(B+(T ); B�(T ));where B+(T ) = supx>m�([x;+1)) eT �1 + 1�([x;+1))�Z xm 1�� ;B�(T ) = supx>m�((�1; x℄) eT �1 + 1�((�1; x℄)�Z mx 1�� ;and m is a median of �.Under fairly reasonable assumptions, the following lemma gives asimple expression of eT in terms of T . In partiular the lemma andthe theorem reover the riterion for the Lata la-Oleszkiewiz on thereal line and extends it to any dimension.Lemma 9. Let T : [0; 1℄ ! R+ be non-dereasing. Then, for anyX � e, supp2(1;2) 1�X p�2pT (2� p) � 13T � 1logX� :If one also assumes that x 7! T (x)=x is non-inreasing, then forX � e supp2(1;2) 1�X p�2pT (2� p) � 1T � 1logX� :Proof. Let b = 2�pp ,  = b logX and note that 2�p = 2bb+1 � 2b. SineT is non-dereasing, one hassupp2(1;2) 1�X p�2pT (2� p) = supb2(0;1) 1� e�b logXT � 2bb+1� � supb2(0;1=2) 1� e�b logXT (2b)� 1�peT � 1logX� ;by hoosing b = 1=(2 logX) � 1=2. Finally 1�pe ' 0:393 � 13 .July 13, 2004.



38 F. Barthe et al.For the seond assertion, let b = 2�pp 2 (0; 1),  = b logX and notethat 2� p = 2bb+1 � b. Sine T is non-dereasing,supp2(1;2) 1�X p�2pT (2� p) = supb2(0;1) 1� e�b logXT � 2bb+1� � supb2(0;1) 1� e�b logXT (b)� max24 sup2(0;1℄ 1� e�T � logX� ; sup2(1;logX) 1� e�T � logX�35 :Reall that T (x)=x is non-inreasing. So for  2 (0; 1℄, T � logX� �T � 1logX�. Hene,sup2(0;1℄ 1� e�T � logX� � 1T � 1logX� sup2(0;1℄ 1� e� = 1T � 1logX� :When  � 1, one has T � logX� � T � 1logX� sine T is non-dereasing.Thus sup2(1;logX) 1� e�T � logX� � 1T � 1logX� sup>1(1� e�) � 1T � 1logX� :This ahieves the proof. ut5.4. Homogeneous F -Sobolev inequalitiesIn the next statement, we show how to derive speial homogeneousF -Sobolev inequalities, whih ignore the behavior of funtions loseto their average. Suh inequalities appear in the work of Wang. Letus also note that any behavior of F at in�nity may our.Theorem 11. Let D > 0 and � > 1. Let F : [0;+1) ! [0;+1) bea non-dereasing funtion. Assume that F (x) = 0 if x � 2�. Let �be a probability measure on Rn suh that every A � Rn with �(A) �1=(2�) < 1=2 �(A)F � ��(A)� � DCap�(A):Then for every smooth f : Rn ! R one hasZ f2F � f2R f2d�� d� � D� �p�� 1�2 Z jrf j2d�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 39Proof. For k � 1, set 
k = fx; f2(x) � 2�k�(f2)g. Chebihev in-equality gives �(
k) � 1=(2�k). Next, sine F vanishes on [0; 2�℄Z f2F � f2R f2d�� d� �Xk�1 Z
kn
k+1 f2F � f2R f2d�� d��Xk�1 �(
k)2�k+1�(f2)F (2�k+1):Sine k � 1 and F is non-dereasing, we have�(
k)F (2�k+1) � �(
k)F � ��(
k)� � DCap�(
k):Let us onsider the funtionhk = min 1; jf j �p2�k�1�(f2)p2�k�(f2)�p2�k�1�(f2)!+! ;it is equal to 1 on 
k and zero outside 
k�1. Sine for k � 1,�(
k�1) � 1=2, hk vanishes with probability at least 1=2. ThusCap�(
k) � Z jrhkj2d� = R
k�1n
k jrf j2d�2�k�1 �p�� 1�2 �(f2) :Combining these estimates givesZ f2F � f2R f2d�� d� � DXk�1 2�k+1�(f2)Cap�(
k)� D� �p�� 1�2 Z jrf j2d�:utIn the following we briey study homogeneous F -Sobolev inequal-ities whih are tight but do not ignore the values of funtions loseto their L2 -norm. In this ase the behavior of F at 1 is ruial. Wehave already seen the next Lemma in setion 4.4Lemma 10. Let � be a probability measure on Rn . Let F : [0;+1) !R be C2 on a neighborhood of 1. Assume that F (1) = 0 and that everysmooth funtion f satis�esZ f2F � f2R f2d�� � Z jrf j2d�:July 13, 2004.



40 F. Barthe et al.Then for every smooth funtion g(4F 0(1) + 2F 00(1))Z �g � Z g d��2 d� � Z jrgj2d�:In partiular, setting �(x) = xF (x), if �00(1) > 0 one has CP (�) �1=(2�00(1)).If a measure satis�es a Poinar�e inequality, and a tight homoge-neous F -Sobolev inequality whih ignores small values of funtions,then one an modify F on small values in an almost arbitrary way:Lemma 11. Let D > 0 and � > 1. Let F : [0;+1) ! R be a non-dereasing funtion, suh that F = 0 on [0; 2�). Let � be a probabilitymeasure on Rn with Poinar�e onstant CP <1 and suh that everysmooth funtion f on Rn satis�esZ f2F � f2R f2d�� d� � D Z jrf j2d�:Let eF : [0;+1) ! R be non-dereasing suh that eF (1) = 0, eF is C2on [0; 2�℄ and eF (x) = F (x) for x � 2�. Set �(x) = x eF (x). Then forevery smooth f : Rn ! R one hasZ f2 eF� f2R f2d��d� � �(1 +p2�)2CP�max[0;2�℄�00�+ +D�Z jrf j2d�:Proof. Note that �(1) = 0 and �0(1) = eF 0(1) � 0. We introduethe funtion �1(x) = �(x) � �(1) � �0(1)(x � 1). Without loss ofgenerality, we onsider a funtion f � 0 with R f2d� = 1. One hasZ �(f2)d� = Z �1(f2)d� = Zf2�2� �1(f2)d�+ Zf2>2� �1(f2)d�:(46)For the �rst term, using Taylor's formula and 0 � f � p2�, we obtain�1(f2) � �max[0;2�℄�00� (f2 � 1)22 � (1 +p2�)22 �max[0;2�℄�00�+ (f � 1)2:ThereforeZf2�2� �1(f2)d� � (1 +p2�)22 �max[0;2�℄�00�+ Z (f � 1)2d�July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 41an be upper-bounded thanks to the Poinar�e inequality. IndeedZ (f � 1)2d� = Z �f � �(f2) 12�2= 2 Z f2d�� Z f d��Z f2d�� 12!� 2 Z f2d���Z fd��2! � 2CP Z jrf j2d�:The seond term in (46) is easily handled by our hypothesis. Indeed,sine �0(1) � 0Zf2>2� �1(f2)d� � Zf2>2� �(f2)d� � Z f2F (f2)d� � D Z jrf j2d�:utFinally, we show that an homogeneous F -Sobolev inequality im-plies an inequality between apaity and measure. We believe thatthe result should be true in more generality.Theorem 12. Let � be a probability measure on Rn . Let F : R+ !R+ be a non-negative non-dereasing funtion suh that there exists� � 4 suh that for x � 2, F (x)=x is non-inreasing and F (�x) ��F (x)=4. Assume that for every smooth funtion, one hasZ f2F � f2�(f2)� d� � D Z jrf j2d�;then for all A � Rn with �(A) � 12 it holds�(A)F � 1�(A)� � 4�DCap�(A):Proof. Let A be a set of measure less than 1=2. In order to estimateits apaity, we may onsider non-negative funtions g � 1A and�(g = 0) � 1=2. For k 2 Z we onsider the funtiongk = min��g � 2kp�(g2)�+; 2kp�(g2)� :We also set 
k = fx; g(x) � 2kp�(g2)g. Note that on 
k+1, g2kis onstantly 22k�(g2) and that R g2kd� � �(
k)22k�(g2). Therefore,applying the F -Sobolev inequality (with F � 0) to gk yieldsD Z jrgj2d� � D Z jrgkj2d� � Z
k+1 g2kF � g2k�(g2k)� d�� �(
k+1)22k�(g2)F � 1�(
k)� :July 13, 2004.



42 F. Barthe et al.Setting ak = �(
k) and C = D R jrgj2d�=�(g2), we have for k 2 Z22kak+1F (1=ak) � C:Lemma 12 guarantees that 22kakF (1=ak) � �C for every k withak > 0, that is22k�(g2)�(
k)F � 1�(
k)� � �D Z jrgj2d�:We hoose the largest k with 2kp�(g2) � 1. Thus 2k+1p�(g2) > 1and A � 
k. In partiular 2 � 1=�(
k) � 1=�(A), so these ratios arein the range where x 7! F (x)=x is non-inreasing. Combining theseremarks with the above inequality yields14�(A)F � 1�(A)� � �D Z jrgj2d�:Sine this is valid for every g � 1IA and vanishing on a set of measureat least 1=2, we have shown that �(A)F (1=�(A)) � 4�DCap�(A).ut The next lemma was inspired by the argument of Theorem 10.5in [5℄.Lemma 12. Let F : [2;+1) ! [0;+1) be a non-dereasing funtionsuh that x! F (x)=x is non inreasing and there exists � � 4 suhthat for all x � 2 one has F (�x) � �F (x)=4. Let (ak)k2Z be a non-inreasing (double-sided) sequene of numbers in [0; 1=2℄. Assume thatfor all k 2 Z with ak > 0 one has22kak+1F � 1ak� � C;then for all k 2 Z with ak > 0 one has22kakF � 1ak� � �C:Proof. Disarding trivial ases where F (1=ak) is always zero, we ob-serve that the sequene 22kF (1=ak) tends to +1 when k tends to+1, and tends to zero when k tends to �1. So we de�ne k0 asthe largest integer suh that 22kF (1=ak) � 2C. Let k � k0, then2C � 22kF (1=ak) � 22kF (2) sine ak � 1=2 and F is non-dereasing.Moreover sine F (t)=t is non-inreasing, we also have22(k+1)ak+1F � 1ak+1� � 22(k+1)F (2)=2:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 43Combining these two inequalities yields22(k+1)ak+1F � 1ak+1� � 4C � �C;so the laimed result is established for k � k0+1. For larger values weproeed by indution. Let k � k0 + 1, for whih the onlusion holds.If ak+1 = 0 we have nothing to prove. Otherwise the hypothesis ofthe lemma gives 1ak+1 � 22kF � 1ak�C :Sine k > k0 we know that the term on the right is larger than 2.Using the fat that t � 2 7! F (t)=t is non-inreasing, we obtainak+1F � 1ak+1� � C22kF � 1ak�F 0�22kF � 1ak�C 1A :Next, by the indution hypothesis for k this is bounded from aboveby C22kF � 1ak�F � �ak� � C22k � �4where we have used F (�t) � �F (t)=4. So we have shownak+1F � 1ak+1� � 2�2k�2�C;and the onlusion is valid for k + 1. utRemark 16. The alternative redution of Sobolev type inequalities toestimates on the Rayleigh quotient (see Remark 13) turns out to workbetter for homogeneous F -Sobolev inequalities. See Proposition 2.2in [26℄, dealing with measures of in�nite mass, but the proof of whihextends to our setting.Remark 17. Applying Theorem 12 to the funtion F = 1I[2;+1) and� = 4 shows the following. If for every funtion one hasZf2�2�(f2) f2d� � C Z jrf j2d�then for all A � Rn with �(A) � 1=2, one has �(A) � 16CCap�(A).By Remark 15, the measure � satis�es a Poinar�e inequality withonstant CP (�) � 64C.The onverse impliation also holds. Assume that � satis�es forall f , Var�(f) � CP (�) R jrf j2d�. Without loss of generality, weJuly 13, 2004.



44 F. Barthe et al.onsider f � 0. If f2 � 2�(f2) then by Cauhy-Shwarz one hasf � p2�(f) and onsequently (f � �(f))2 � (1 � 1=p2)2f2. HeneVar�(f) � (1 � 1=p2)2 Rf2�2�(f2) f2d� and the Poinar�e inequalityimplies Zf2�2�(f2) f2d� � �1� 1p2��2CP (�)Z jrf j2d�� 12CP (�)Z jrf j2d�:As a onlusion, Poinar�e inequality enters the framework of ho-mogeneous F -Sobolev inequalities and is (up to the onstants) equiv-alent to R f21f2�2�(f2)d� � C R jrf j2d�. Note that the number 2 isruial in our argument.Remark 18. Let us present a onvenient variant of Theorem 12. As-sume that � satis�es a Poinar�e inequality and a F -Sobolev inequal-ity as in Theorem 12. If F veri�es the assumptions F (x)=x non-inreasing and F (�x) � �F (x)=4 only for x � x0 > 2 then one anhowever onlude with a similar inequality between apaity and mea-sure. To see this, introdue a funtion eF on R+ with eF (x) := F (x)for x � x0, eF (x) := F (x0) for x 2 [2; x0℄, eF (1) = 0 and F isC2 and non-dereasing on [0; x0℄. Then by Lemma 11, � satis�esa homogeneous eF -Sobolev inequality, and eF satis�es the assump-tions of Theorem 12. Therefore one obtains an inequality of the form�(A) eF (1=�(A)) � KCap�(A). In partiular if �(A) � 1=x0 one has�(A)F (1=�(A)) � KCap�(A).5.5. Additive �-Sobolev inequalitiesWe present an extension of a method developed by Milo and Roberto[44℄ for logarithmi Sobolev inequalities. Throughout this setion, wework with a funtion �(x) = x'(x), where ' : (0;+1) ! R isnon-dereasing, ontinuously di�erentiable. We assume that � anbe extended to 0. For x; t > 0 we de�ne the funtion�t(x) = �(x)� �(t)� �0(t)(x� t) = x('(x) � '(t)) � t'0(t)(x� t):We start with two preliminary statements about �-entropies. The�rst one is lassial and easy, and we skip its proof (see also Lemma3.4.2 in [3℄). For short, we write �(g) for R gd�.Lemma 13. For every funtion f ,Z �(f2) d�� ��Z f2d�� = Z ��(f2)(f2)d�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 45When � is onvex, one hasZ �(f2) d�� ��Z f2d�� = inft>0 Z �t(f2)d�:Lemma 14. Let the funtion ' be non-dereasing and onave. As-sume that there exists  � 0 suh that y'0(y) �  for all y > 0. Thenfor every t > 0 and every x 2 [0; 2t℄ one has�t2(x2) � 9(x� t)2:Proof. The onavity of ' ensures that '(x2) � '(t2)+'0(t2)(x2�t2):This yields�t2(x2) � '0(t2)(x2 � t2)2 = (x� t)2'0(t2)(x+ t)2� (x� t)2'0(t2)(3t)2 � 9(x� t)2;where we have used x � 2t. utTheorem 13. Let ' be a non-dereasing, onave, C1 funtion on(0;+1) with '(8) > 0. Assume that there exist onstants ;M suhthat for all x; y > 0 one hasx'0(x) �  and '(xy) �M + '(x) + '(y):Let � be a probability measure on Rn satisfying a Poinar�e inequal-ity with onstant CP and the following relation between apaity andmeasure: there exists D > 0 suh that for all A � Rn with �(A) < 1=4�(A)'� 2�(A)� � DCap�(A);then for every smooth funtion one hasZ �(f2) d����Z f2d�� � �18 CP + 24�1 + M'(8)�D�Z jrf j2d�;where as usual �(x) = x'(x).Proof. Without loss of generality, we may onsider f � 0. Set t =(�(f2)) 12 . ThenZ �(f2)d�� ��Z f2d�� = Z �t2(f2)d�= Zf2�4�(f2) �t2(f2)d�+ Zf2>4�(f2) �t2(f2)d�: (47)July 13, 2004.



46 F. Barthe et al.The �rst term is bounded from above thanks to Lemma 14, indeedZf2�4�(f2) �t2(f2)d� = Zf2[0;2t℄ �t2(f2)� 9 Zf2[0;2t℄ �f � �(f2) 12�2d� � 9 Z �f � �(f2) 12�2= 18 Z f2d�� Z fd��Z f2d�� 12!� 18 Z f2d���Z f d��2! � 18CP Z jrf j2d�;where we have used Cauhy-Shwartz and the Poinar�e inequality for�. The seond term in (47) is estimated as followsZf2>4�(f2) �t2(f2)d� = Zf2>4�(f2) hf2 �'(f2)� '��(f2)����(f2)'0��(f2)��f2 � �(f2)�i d�� Zf2>4�(f2) f2 �'(f2)� '��(f2)�� d�� Zf2>4�(f2) f2�'� f2�(f2)�+M� d�:We onlude by applying Theorem 11 with � = 2, F (x) = 0 if x � 4,and F (x) = '(x) +M if x > 4. Sine for �(A) � 1=4 one has�(A)F � 2�(A)� = �(A)'� 2�(A)�0�1 + M'� 2�(A)�1A� D�1 + M'(8)�Cap�(A);we obtainZf2>4�(f2) �t2(f2)d� � 4(p2 + 1)2D�1 + M'(8)�Z jrf j2d�:utRemark 19. As already explained, the Poinar�e onstant of the mea-sure � is bounded above by 4B where B is the best onstant suh thatJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 47every set A with �(A) � 1=2 veri�es �(A) � BCap�(A). If '(4) > 0,one hasD := sup�(A)�1=2 �(A)'(2=�(A))Cap�(A) � '(4) sup�(A)�1=2 �(A)Cap�(A) = '(4)B:So CP � 4D='(4). In partiular, if D < +1, then � satis�es anadditive �-Sobolev inequality.Remark 20. As already mentioned, the additive '-Sobolev inequalityhas the tensorisation property. If it is valid for a measure � (withseond moment) then it is true for its produt measures, and by alassial appliation of the Central Limit Theorem it holds for theGaussian measure. For the latter it is known that the logarithmiSobolev inequality, viewed as an embedding result, is optimal. So 'annot grow faster than a logarithm. Note that both hypothesis on' assumed in Theorem 13 imply that ' is at most a logarithm.Next we present an improved riterion for measures on the realline.Theorem 14. Let � be a ontinuous onvex funtion on [0;1), with�(x) = x'(x) for x > 0. Assume that ' is non-dereasing, onave,and C1 on (0;+1) with '(8) > 0. Assume that there exist onstants;M suh that for all x; y > 0 one hasx'0(x) �  and '(xy) �M + '(x) + '(y):Let � be a probability measure on R, with density ��, and median m.Let D+ = supx>m�([x;+1))'� 2�([x;+1))�Z xm 1��D� = supx<m�((�1; x℄)'� 2�((�1; x℄)�Z mx 1��B+ = supx>m�([x;+1))Z xm 1��B� = supx<m�((�1; x℄)Z mx 1�� ;and B = max(B+; B�), D = max(D+;D�). Then for every smoothfuntionZ �(f2)d�� ��Z f2d�� � �144B + 24�1 + M'(8)�D�Z f 02d�:July 13, 2004.



48 F. Barthe et al.Proof. The argument is a re�nement of the proof of Theorem 13. Weexplain the points whih di�er. Without loss of generality we onsidera non-negative funtion f on R. We onsider the assoiated funtiong de�ned byg(x) = f(m) + Z xm f 0(u)1f 0(u)>0du if x � mg(x) = f(m) + Z xm f 0(u)1f 0(u)<0du if x < m:Set t = (�(g2)) 12 . Then Lemma 13 ensures thatZ �(f2) d�� ��Z f2d�� � Z �t2(f2)d�= Zf2�4�(g2) �t2(f2)d�+ Zf2>4�(g2) �t2(f2)d�: (48)For the �rst term, we use Lemma 14Zf2�4�(g2) �t2(f2)d� = Zf2[0;2t℄ �t2(f2)� 9 Zf2[0;2t℄ �f � �(g2) 12�2d� � 9 Z �f � �(g2) 12�2d�� 18 Z (f � g)2d�+ 18 Z �g � �(g2) 12�2d�:Next observe thatZ (f � g)2d�= Z +1m �Z xm[f 0 � f 01f 0>0℄�2d�(x) + Z m�1�Z xm [f 0 � f 01f 0<0℄�2d�(x)= Z +1m �Z xm f 01f 0�0�2 d�(x) + Z m�1�Z xm f 01f 0�0�2 d�(x)� 4B+ Z +1m f 021f 0�0d�+ 4B� Z m�1 f 021f 0�0d�where the last inequality relies on Hardy inequality (see Remark 14).As in the proof of Theorem 13,Z �g � �(g2) 12�2d� � 2CP Z g02d�= 2CP �Z +1m f 021f 0>0d�+ Z m�1 f 021f 0<0d�� ;July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 49and we also use the fat that the Poinar�e onstant CP of � satis�esCP � 4B. Combining the previous three estimates givesZf2�4�(g2) �t2(f2) d� � 144B Z f 02d�:Now we evaluate the seond term in equation (48): sine �t(x) �x('(x) � '(t)) for x � t,Zf2>4�(g2) �t2(f2) d� � Zf2>4�(g2) f2 �'(f2)� '��(g2)�� d�� Zg2>4�(g2) g2 �'(g2)� '��(g2)�� d�� Zg2>4�(g2) g2�'� g2�(g2)�+M� d�where we have used g � f � 0 and the fat that ' is non-dereasing.At this stage, we apply the deomposition into level sets performedin the proof of Theorem 11, one on (m;+1) and one on (�1;m).Note that the funtion g being non-inreasing before m and non-dereasing after, the level sets appearing in the proof are of the form(�1; x℄, x < m, and [x;+1), x > m for whih the �-apaity isontrolled by the hypothesis of the theorem. utThe previous two theorems apply to logarithmi Sobolev inequal-ity when '(x) = log(x), this is how Milo and Roberto reovered thesuÆieny part of the Bobkov-G�otze riterion. The next result givesan appliation to tight versions of Rosen's inequality.Theorem 15. Let � 2 (0; 1℄. Let � be a probability measure on Rn .Assume that one of the following hypotheses holds:(i) There exists a onstant D so that every A � Rn with �(A) � 1=2satis�es �(A) log� �1 + 2�(A)� � DCap�(A):(ii) The dimension n = 1, � has density ��. Let m be a median of �and D+ = supx>m�([x;+1)) log� �1 + 2�([x;+1))�Z xm 1��D� = supx<m�((�1; x℄) log� �1 + 2�((�1; x℄)�Z mx 1�� :Assume that D = max(D+;D�) is �nite.July 13, 2004.



50 F. Barthe et al.Then for every smooth f : Rn ! R one hasZ f2 log� �1 + f2� d���Z f2d�� log� �1+Z f2d�� � KD Z jrf j2d�;where one an take K = 96 in ase (i) and K = 168 in ase (ii).Proof. In view of Theorems 13, 14 and Remark 19 all we have todo is to hek a few properties of ��(x) = x��(x) where '�(x) =log�(1 + x). We insist on the more signi�ant ones. The funtion '�is inreasing, and sine � � 1 it is also onave. From the obviousrelationlog(1+xy) � log �(1+x)(1+y)� � log(1+x)+log(1+y); x; y > 0and the sub-additivity of x 7! x� for � 2 (0; 1℄ we dedue that'�(xy) � '�(x) + '�(y). Finally we hek the di�erential proper-ties. Diret alulation givesx'0�(x) = �x log��1(1 + x)1 + x � � � x1 + x�� � � � 1;where we have used (1 + x) log(1 + x) � x for x � 0. Finally, �� isonave sine�00�(x) = � log��2(1 + x)(1 + x)2 ((2 + x) log(1 + x) + (� � 1)x)is non-negative due to (2 +x) log(1 + x) � (1 +x) log(1 + x) � x. utRemark 21. From the above apaity riterion it is plain that theLata la-Oleszkiewiz inequality (with T (p) = (2 � p)�, (� 2 (0; 1)implies the tight Rosen inequality. The onverse is also true: to seethis starting from a tight Rosen inequality we may obtain Poinar�einequality and a defetive F -Sobolev inequality for F � 0. This in-equality may be tightened by Theorem 7. Next by the results of thelatter setion on homogeneous F -Sobolev inequality, one may obtainan inequality between apaity and measure.5.6. A summaryIn �gure 1 we summarize the various impliations between the in-equalities studied in this setion. We hope that it will help the readerto have an overview of the piture.First remark that thanks to Lemma 9, in �gure 1, if T : [0; 1℄ ! R+is non-dereasing and x 7! T (x)=x non-inreasing, then,13T (1= log x) �  (x) = supp2(1;2) 1� x p�2pT (2� p) � 1T (1= log x) :July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 51PSfrag replaements
Bekner-type inequality (T ) (41)(==) See Theorem 10: (x) = supp2(1;2) 1� x p�2pT (2� p) ; � = 128A suh that �(A) � �; Cap�(A) � C �(A) ( 1�(A) )(==Under assumptions(H1) or (H2) on F (== Under assumption(H3) on F (========= Under assumption(H4) on �Homogenous F -Sobolev inequality (39)

Additive '-Sobolev inequality (40)
(== F = '� '(1)(== Under assumption(H5) on FPoinar�e inequality (==Under (H6)on '

(==(Take p = 1)Poinar�e inequality(==) See Remark 15: (x) � 1; � = 12

Fig. 1. The various impliations.Assumption (H1, see Theorem 11). F : [0;+1) ! R is a non-dereasing funtion satisfying F � 0 on [0; 2�) for some � > 1. FinallyF (x) =  (x=�) for x � 2� and � = 1=(2�).Assumption (H2, see Theorem 11). F : [0;+1) ! R is a non-dereasing funtion satisfying F (1) = 0 and F is C2 on [0; 2�℄. Themeasure � satis�es a Poinar�e inequality. Finally F (x) =  (x=�) forx � 0 and � = 1=(2�).Assumption (H3, see Theorem 12). F : [0;+1) ! R is a non-dereasing funtion suh that there exists a onstant  > 4 suh thatfor x � 2, x 7! F (x)=x is non-inreasing and F (x) � F (x)=4.Then,  = F and � = 1=2.Assumption (H4, see Theorem 13). The funtion ' is non-dereasing, onave and C1 on (0;+1) with '(8) > 0. Furthermore,there exists two onstants M and  suh that for any x; y > 0 onehas x'0(x) �  and '(xy) �M + '(x) + �(y):July 13, 2004.



52 F. Barthe et al.The measure � satis�es a Poinar�e inequality. Finally '(x) =  (x=2)and � = 1=4.Assumption (H5, see Lemma 1). F : [0;+1) ! R is a C2funtion on a neighborhood of 1, F (1) = 0 and if �(x) := xF (x),�00(1) > 0.Assumption (H6). ' : [0;+1) ! R is a C2 funtion on a neigh-borhood of 1. Let �(x) := x'(x). The same proof as in Lemma 1gives that � satis�es a Poinar�e inequality if �00(1) > 0.6. Conentration property and generalized Bekner-Lata la-Oleszkiewiz inequality.Reall that a probability measure � on Rn satis�es a generalizedBekner inequality if there is a onstant CT suh that for any smoothfuntion f , supp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � CT Z jrf j2d�: (49)Here T : [0; 1℄ ! R+ is non dereasing, positive on (0; 1℄ and T (0) =0. This setion explores the onentration results implied by suh aproperty.Herbst argument, see [28,40,3℄, derives Gaussian onentrationfor measures � satisfying a log-Sobolev inequality along the follow-ing lines: let h be a 1-Lipshitz funtion. Applying the inequality toexp(�h=2) provides the next di�erential inequality for the Laplaetransform H(�) = R exp(�h) d��H 0(�)�H(�) logH(�) � CLS4 �2H(�):Here CLS is the log-Sobolev onstant. It an be expliitly solved andgives the subgaussian bound H(�) � exp(��(h) + (CLS=4)�2). Thiseasily yields Gaussian onentration.On the other hand, Poinar�e inequality only implies exponentialonentration of Lipshitz funtions. This fat goes bak to Gromovand Milman [31℄ (see e.g. [39℄ for subsequent developments). In thisase, the Laplae transform method works [2℄, but provides a relationbetween H(�) and H(�=2). This approah was performed by Lata laand Oleszkiewiz for their inequality (i.e. (49) with T (u) = u2(1� 1� ),1 < � < 2). See [37℄, where optimization over p is ruial. As alsonoted in [57℄, their argument extends as it is to general T . It yieldsJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 53Proposition 3. Let T : [0; 1℄ ! R+ be a non dereasing funtionsuh that T (0) = 0 and positive elsewhere. De�ne �(x) = 1=T ( 1x) forx 2 [1;1). let � be a probability measure on Rn and assume thatthere exists a onstant CT � 0 suh that for any smooth funtion fsatis�es Inequality (49). Then any 1-Lipshitz funtion h : Rn ! Rveri�es R jhjd� <1, and(i) for any t 2 [0;pT (1)℄,�(fx : h(x)� �(h) � tpCT g) � e� t23T (1) ;(ii) for any t �pT (1),�(fx : h(x)� �(h) � tpCT g) � e�p2 supy�1ftp�(y)�yg:Proof. We follow the argument of [37℄. If H(�) = �(e�h) is theLaplae transform of a 1-Lipshitz funtion h, Inequality (49) forf = exp(�h=2) givesH(�)�H �p2��2=p � CT4 T (2� p)�2H(�):Then, by indution, we get (see [57℄) for any � < 2=pCTT (2� p),��e�(h��(h))� � �1� CT4 T (2� p)��2=(2�p) :Chebihev inequality ensures that for any p 2 [1; 2), and any � <2=pCTT (2� p),�(fx : h(x)��(h) � tpCT g) � e��tpCT �1� CT�24 T (2� p)�� 22�p :(50)For t < 2pT (1), we set p = 1 and � = tT (1)pCT in the latter inequal-ity. We get�(fx : h(x)� �(h) � tpCT g) � e� t2T (1) �1� t24T (1)��2 :In partiular, for t <pT (1) we have 1� t24T (1) � e� t23T (1) . Thus,�(fx : h(x)� �(h) � tpCT g) � e� t23T (1) :For the seond regime, hoose � suh that 1 � C�24 T (2 � p) = 12 . Itfollows from (50) that for any p 2 (1; 2)�(fx : h(x) � �(h) � tpCT g) � e� p2tpT (2�p)+ 2 ln 22�p :July 13, 2004.



54 F. Barthe et al.Note that 2 ln 2 � p2. Thus, if y := 12�p , we get� p2tpT (2� p) + 2 ln 22� p � �p2( tpT (2� p) � 12� p)= �p2ftp�(y)� yg:One onludes the proof by optimizing in p 2 (1; 2) or equivalentlyin y 2 (1;1). utThe next statement provides an appliation of the latter result toonentration with rate e��(t) for a general onvex �. When �(t) =t�, � 2 (1; 2), it redues to the result by Lata la and Oleszkiewiz.Corollary 1. Let � : R+ ! R+ be an inreasing onvex funtion,with �(0) = 0. De�ne �(x) = ��0(��1(x))�2 for x 2 R+ and T (x) =1=�( 1x) for x 2 R+ n f0g, T (0) = 0. Here �0 is the right derivative of�. Let � be a probability measure on Rn and assume that there existsa onstant CT suh that it satis�es the generalized Bekner inequality(49). Then, for any 1-Lipshitz funtion h : Rn ! R, R jhj <1 andfor any t �pT (1) _ 2��1(1),�(fx : h(x) � �(h) � tpCT g) � e�p2�( t2):Proof. Thanks to Proposition 3, it is enough to bound from belowsupy�1ftp�(y) � yg. By assumption t � 2��1(1), so �(t=2) � 1. Itfollows that for y = �(t=2),supy�1ftp�(y)� yg � tp�(�(t=2))� �(t=2) = t�0(t=2)� �(t=2):Sine � is onvex and �(0) = 0, one has x�0(x) � �(x) for all x � 0.Hene, supy�1ftp�(y)� yg � �(t=2). utTheorem 10 of Setion 5 provides a riterion for a measure onthe line to satisfy a generalized Bekner inequality. Under mild as-sumptions, and if one is not interested in estimating the onstant,the ondition may be further simpli�ed.Proposition 4. Let V : R ! R be ontinuous. Assume that d�(x) =Z�1V e�V (x)dx is a probability measure. Let T : [0; 1℄ ! R+ be non-dereasing with T (0) = 0 and positive elsewhere. Assume that x 7!T (x)=x is non-inreasing. De�ne �(x) = 1=T (1=x) for x 2 [1;1).Furthermore, assume that(i) there exists a onstant A > 0 suh that for jxj � A, V is C2 andsign(x)V 0(x) > 0,(ii) limjxj!1 V 00(x)V 0(x)2 = 0,July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 55(iii) lim supjxj!1 �(V (x) + log V 0(x) + logZV )V 0(x)2 <1.Then � satis�es the following Bekner-type inequality: there exists aonstant CT � 0 suh that for any smooth funtion f ,supp2(1;2) R f2d�� �R jf jpd�� 2pT (2� p) � CT Z f 02d�:Proof. The proof is similar to the one of [12, Proposition 15℄. Let mbe a median of �. Under Hypotheses (i) and (ii), when x tends to1, one has (see e.g. [3, hapter 6℄)Z xm eV (t)dt � eV (x)V 0(x) and Z 1x e�V (t)dt � e�V (x)V 0(x) :Thus, for x � m,�([x;1))T � 1log(1+ 1�([x;1)) )� Z xmZV eV (t)dt � ZV �(V (x) + log V 0(x) + logZV )V 0(x)2 :By Hypothesis (iii), this quantity is bounded on [A0;1) for some A0.Sine the left hand side is ontinuous in x 2 [m;A0℄, it is bounded on(m;1). It follows from Lemma 9 that the quantity B+(T ) de�nedin Theorem 10 is �nite. Similarly B�(T ) < +1. We onlude withTheorem 10. utThe latter results provide a very general ondition for dimensionfree onentration. Starting with an inreasing onvex onentra-tion rate � : R+ ! R+ with �(0) = 0, we introdue the funtionT (x) = 1=(�0(��1(x)))2. Under the additional assumption that p�is onave, we know that T (x)=x is non-inreasing. Therefore, un-der the assumptions of Proposition 4, a probability measure d�(x) =Z�1V e�V (x)dx on R satis�es the Bekner inequality with funtion T .By the tensorization property, the measures �
n verify the same in-equality and by Corollary 1, they satisfy a dimension free onentra-tion inequality with rate e�p2�(t=2). Note that our ondition aboutp� is quite natural sine, by the Central Limit Theorem, a dimensionfree onentration inequality has at most a Gaussian rate.The next appliation of our riterion provides the best expetedonentration rate for ertain log-onave distributions.Corollary 2. Let � : R+ ! R+ be an inreasing onvex funtion with�(0) = 0 and onsider the probability measure d�(x) = Z�1� e��(jxj) dx.Assume that � is C2 on [��1(1);1) and that p� is onave.July 13, 2004.



56 F. Barthe et al.Then there exits  > 0 suh that for all n � 1, every 1-Lipshitzfuntion h : Rn ! R is �
n-integrable and satis�es�
n(fx : h(x)� �
n(h) � tpg) � e�p2�( t2 )provided t � 2��1(1) _ 1=(�0(��1(1))).Proof. Set �(u) = (�0(��1(u)))2 and T (u) = 1=�(1=u) for u > 0.The hypotheses on � ensure that T is non-dereasing and T (u)=u isnon-inreasing. We hek below that � satis�es a Bekner-type in-equality with rate funtion T . By the above argument this impliesthe laimed onentration inequality for produts. Let us hek thatV (x) = �(jxj) satis�es the three onditions in Proposition 4. Bysymmetry it is enough to work on R+ . Condition (i) is obvious. Con-dition (ii) is easily heked. Indeed sine p� is onave, its seondderivative is non-positive when it is de�ned. So for large x we have�00=�02 � 1=(2�). So lim+1� = +1 implies that lim+1 �00=�02 = 0.Now we prove that Condition (iii) of the latter proposition isveri�ed. Our aim is to bound from above the quantityK(x) := �(�(x) + log�0(x) + logZ�)�0(x)2 :By onavity of p�, the funtion �02=� is non-inreasing. Thus forx � ��1(1), one has �0(x)2 � �0(��1(1))2�(x). Hene for x largeenough log�0(x) + logZ� � �(x), and K(x) � �(2�(x))=�0(x)2.Sine � is onvex, the slope funtion (�(x) � �(0))=x = �(x)=xis non-dereasing. Comparing its values at x and 2x shows the in-equality 2�(x) � �(2x). Thus �(2�(x)) � �0(2x)2 and for x largeenough K(x) � �0(2x)2=�0(x)2. As �02=� is non-inreasing we knowthat �0(2x)2 � �(2x)�(x) �0(x)2. On the other hand, p� being onave,the slope funtion p�(x)=x is non-inreasing so p�(2x) � 2p�(x).Finally for x large K(x) � �0(2x)2�0(x)2 � �(2x)�(x) � 4:The proof is omplete. utRemark 22. The hypotheses of Corollary 2 are simple but ould bemore general. It is plain from Proposition 4 that we need the onvex-ity assumptions only for large values. The argument an be adaptedto show that the measures with potential �(x) = jxj� log(1 + jxj)�with 1 < � < 2 and � � 0 satify a dimension free onentrationinequality with deay e�C�(t).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 57Remark 23. Other onentration results for produts of log-onavemeasures on the line follow from Talagrand exponential inequality,see [55, Theorem 2.7.1, Proposition 2.7.4℄. They involve a di�erentnotion of enlargement depending on the log-onave density itself.However, they imply an analogue of Corollary 2, under the similarassumption that �(pt) is subadditive.7. ExamplesIn this setion we study fundamental examples, starting with jxj�Boltzmann's measures in relation with Bekner's type inequalities.We shall show in partiular how to get dimension free inequalities.7.1. jxj� Boltzmann's measures.In this subsetion we are looking at the following probability measured�
n� (x) = Qni=1 Z�1� e�2u�(x)dxi on Rn , where as in setion 3, 1 <� < 2 andu�(x) = � jxj� for jxj > 1�(��2)8 x4 + �(4��)4 x2 + (1� 34�+ 18�2) for jxj � 1: (51)We will study two kind of F funtionals, starting from the apaity-measure point of view. For eah of them we give funtional inequal-ities and derive hyperontrativity (or hyperboundedness) propertysatis�ed by the semi-group.The �rst funtion of interest for us isF� : R+ ! Rx 7! (log(1 + x))2(1� 1� ) � (log 2)2(1� 1� ): (52)Note that it is a C2 non-dereasing funtion satisfying F�(1) = 0. Itis negative for x < 1 and positive for x > 1.The seond funtion of interest iseF� : R+ ! Rx 7! �0 if x 2 [0; 2�℄(log(x))2(1� 1� ) � (log 2�)2(1� 1� ) if x � 2� ; (53)where � > 1 is a �xed parameter. Note that eF� is ontinuous but notC2. On the other hand, it is always non-negative.Proposition 5. Let 1 < � < 2. Let F� and eF� de�ned in (52) and(53) respetively. Denote by �
n� = 
ni=1��;i the produt measure ofn opies of d��(x) = Z�1� e�2u�(x)dx.July 13, 2004.



58 F. Barthe et al.Then, there exist two onstants C = C(�) and eC = eC(�; �) suhthat for any integer n, for any smooth enough funtion f : Rn ! R,Z f2F�� f2�
n� (f2)� d�
n� � C Z jrf j2d�
n� ;and Z f2 eF�� f2�
n� (f2)� d�
n� � eC Z jrf j2d�
n� :Proof. We start with F�. Fix n = 1. Then 0 is a median of ��. Whenx tends to in�nity, it is easy to hek thatZ x0 e2u�(t)dt � e2x�2�x��1 and Z 1x e�2u�(t)dt � e�2x�2�x��1 :It follows that the two onstants D+ and D� introdued in Theorem15 with � = 2(1 � 1� ) are �nite. Then, we onlude by Theorem 15that there exists a onstant C� suh that for every funtion f on R,Z f2 log� �1 + f2� d�� ��Z f2d��� log� �1 + Z f2d��� (54)� C� Z jrf j2d��:Then, for any integer n, by Lemma 5 the latter inequality holds for�
n� in Rn . Finally, applying the inequality to f2=�
n� (f2) gives theexpeted result.The ase of eF� is a bit more diÆult. Let � = 2(1 � 1� ) andT (x) = jxj� . It is easy to hek that the hypotheses of Proposition4 are satis�ed (for � = 2u�) and thus that there exists a onstanteC = eC(�) suh that for any funtion f : R ! R,supp2(1;2) R f2d�� � �R jf jpd��� 2p(2� p)� � eC Z jrf j2d��:Now, by tensorization property (see [37℄), the same inequality holdsfor �
n� with the same onstant eC (independent of n). Thus, by The-orem 10 together with Lemma 9 (reall that T (x) = jxj�), it followsthat for any integer n, any Borel set A � Rn with �
n� (A) � 1=2,�
n� (A)�log(1 + 1�
n� (A) )�� � 2 eCCap�
n� (A):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 59Now, for any x � 2�, eF�(�x) � (log(1+x))� . Therefore, for any Borelset A � Rn with �
n� (A) � 1=(2�),�
n� (A) eF� � ��
n� (A)� � 2 eCCap�
n� (A):The expeted result follows from Theorem 11. This ahieves the proof.utRemark 24. It is not diÆult to hek that0 < inf�2(1;2)C(�) < sup�2(1;2)C(�) < +1:This means that the onstant C(�) appearing in Proposition 5 anbe hosen independently of � 2 (1; 2). This uniformity will be usefulfor appliations.Corollary 3. Let 1 < � < 2. Let F� de�ned in (52). Denote by�
n� = 
ni=1��;i the produt measure of n opies of the probabilitymeasure d��(x) = Z�1� e�2u�(x)dx. De�ne for any q � 0, any x � 0,� (�)q (x) = x2eqF�(x2).Then, there exists a universal onstant C suh that for any integern, any funtion f : Rn ! R and any t � 0,N� (�)q(t)(Ptf) � eC2 tkfk2where q(t) = Ct and N�(g) := inff� : R �(g=�)d�
n� � 1g.Proof. The result is a diret onsequene of Theorem 6, using Propo-sition 5 and Lemma 15 below. utLemma 15. Let 1 < � < 2. Let F� de�ned in (52). De�ne for anyq � 0, any x � 0, � (�)q (x) = x2eqF�(x2). Then,(i) For any x � 0, any q � 0,(� (�)q )00� (�)q � 5� (4=�)4 (� (�)q )02 � 14(� (�)q )02;(ii) for any x � 0, any q � 0,� (�)q (x)F (x2) � � (�)q (x)F (� (�)q (x)) + 1:Proof. Let � = 2(1� 1�). Then 0 < � < 1. It is easy to hek that forany x > 0, �xF 00�(x)F 0�(x) = x(1� � + log(1 + x))(1 + x) log(1 + x) � 2� �:July 13, 2004.



60 F. Barthe et al.We onlude the proof of point (i) applying Proposition 1 (note that2 + 12 � 5�(4=�)2 = 2� �).Note that mF� := jminx2(0;1) xF�(x)j � 1. Hene, using remark 9onludes the proof of point (ii). utThe proof of a similar result than Corollary 3 for eF� is a bit morediÆult due to di�erentiation problem at x = 2�. The result is thefollowing:Corollary 4. Let 1 < � < 2. Let eF� de�ned in (53). Denote by�
n� = 
ni=1��;i the produt measure of n opies of the probabilitymeasure d��(x) = Z�1� e�2u�(x)dx. De�ne for any q � 0, any x � 0,e� (�)q (x) = x2eq eF�(x2).Then, there exists a onstant eC = eC(�; �) suh that for any integern, any funtion f : Rn ! R and any t � 0,Ne� (�)q(t)(Ptf) � kfk2where q(t) = eCt and N�(g) := inff� : R �(g=�)d�
n� � 1g.Proof. Let g be a C1 non-negative funtion with ompat supportin [�1; 0℄ and suh that R g(y)dy = 1. For any " > 0 de�ne g"(x) =1"g(x" ) and note that eF��g"(x) := R eF�(x�y)g"(y)dy is a C1 funtion.De�ne for any " > 0, any q � 0, e� (�)q;" (x) = x2eq eF��g"(x2).Thanks to Lemma 16 below, eF� � g" satis�es the hypothesis ofTheorem 6, uniformly in n. Thus, by Theorem 6 there exists twoonstants eC = eC(�; �) and eC 0 = eC 0(�; �) (maybe di�erent from thoseone of Lemma 16) suh that for any integer n, any funtion f : Rn !R and any t � 0,Ne� (�)q(t);"(Ptf) � e 12 ( eF�(2�+")+" eC0)tkfk2:Then, it is easy to verify that for any funtion f , any t, when " tendsto 0,Ne� (�)q(t);"(Ptf) ! Ne� (�)q(t)(Ptf) and e 12 ( eF�(2�+")+" eC0)t ! 1:This ahieves the proof. utLemma 16. Let 1 < � < 2. Let eF� de�ned in (53). Denote by �
n� =
ni=1��;i the produt measure of n opies of d��(x) = Z�1� e�2u�(x)dx.De�ne for any q � 0, any x � 0, e� (�)q (x) = x2eq eF�(x2).Let g be a C1 non-negative funtion with ompat support in[�1; 0℄ and suh that R g(y)dy = 1. De�ne g"(x) = 1"g(x" ), andJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 61eF� � g"(x) := R eF�(x � y)g"(y)dy for any " > 0, and for any q � 0,e� (�)q;" (x) = x2eq eF��g"(x2). Then,(i) for any " > 0 and any q � 0,(e� (�)q;" )00e� (�)q;" � 3� 2(2� �)=(� log(2�))4 (e� (�)q;" )02:(ii) For any " > 0 small enough, any q � 0, and any x � 0,eF� � g"(x2) � eF� � g"(e� (�)q;" (x)):(iii) There exist two onstants eC = eC(�; �) and eC 0 = eC 0(�; �) suhthat for any integer n, any funtion f : Rn ! R and any " > 0 smallenough,Z f2 eF� � g"� f2�
n� (f2)�d�
n� � eCZ jrf j2d�
n�+( eF�(2�+ ") + " eC 0)Z f2d�
n� :Proof. Let � = 2(1 � 1� ).We start with (i). The result is obviously true for x � 2�. Forx > 2�, an easy omputation gives�x eF 00�(x)eF 0�(x) = 1� � + log xlog x � 1 + 1� �log(2�) = 1 + 2� �� log 2�:Thus, by Lemma 17 below we get that for any " > 0, any x � 0,x( eF� � g")00(x) +�1 + 2� �� log 2�� ( eF� � g")0(x) � 0:The result follows from Proposition 1.For (ii) note that for any " � 2� � 1, eF� � g" � 0 on [0; 1℄. Thusthe result beomes obvious thanks to Remark 9.Next we deal with (iii). First note that eF� � g" � 0 on [0; 2�� "℄.Then, for x 2 [2�� "; 2�℄, sine eF� is non-dereasing,eF� � g"(x) = Zf�"�y�0g eF�(x� y)g"(y)dy � eF�(2�+ "):Finally, for x > 2�, sine eF 0� is non-inreasing, if we set eF 0�(2�+) :=limx!2�+ F 0�(x),eF� � g"(x) = eF�(x) + Zf�"�y�0g( eF�(x� y)� eF�(x))g"(y)dy� eF�(x) + " maxfx�z�x+"g eF 0�(z)� eF�(x) + " eF 0�(2�+):July 13, 2004.



62 F. Barthe et al.Hene, for any integer n, for any funtion f : Rn ! R and any " > 0small enough,Z f2 eF� � g"� f2�
n� (f2)�d�
n� � Z f2 eF�� f2�
n� (f2)�d�
n�+( eF�(2�+ ") + " eF 0�(2�+))Z f2d�
n� :The laimed result follows from Proposition 5, with eC 0 = eF 0�(2�+) =��1�� (log 2�)��2� . utLemma 17. Let F : R+ ! R+ be a ontinuous non-dereasing fun-tion suh that F � 0 on [0; 2�℄, for some � > 1, and F > 0 on(2�;1). Assume that F is C2 on (2�;1) and that limx!2�+ F 0(x) andlimx!2�+ F 00(x) exist. Furthermore, assume that F 00 � 0 on (2�;1).Let g be a C1 non-negative funtion with ompat support in[�1; 0℄ and suh that R g(y)dy = 1. De�ne g"(x) = 1"g(x" ) for any" > 0.Assume that for some � > 0, F satis�es for all x 6= 2�xF 00(x) + �F 0(x) � 0:Then, for any " > 0 small enough, any x � 0,x(F � g")00(x) + �(F � g")0(x) � 0: (55)Here, F � g"(x) := R F (x� y)g"(y)dy.Proof. Note �rst that for any " > 0, F � g" is a C1 funtion. Fix" > 0.If x 2 (0; 2� � "), then it is easy to hek that (F � g")0(x) =(F � g")00(x) = 0. Thus (55) holds for any x 2 (0; 2� � ") and byontinuity for any x 2 [0; 2� � ").Now �x x 2 (2�;1) and note that for any y 2 supp(g") � [�"; 0℄,x� y > 2�. Thus F 0(x� y) and F 00(x� y) are well de�ned. It followsthatx(F � g")00(x) + �(F � g")0(x) = Z [xF 00(x� y) + �F 0(x� y)℄g"(y)dy:Sine F 00 � 0 and y � 0, xF 00(x� y) � (x� y)F 00(x� y). Hene, theleft hand side of the latter inequality is bounded below byZ [(x� y)F 00(x� y) + �F 0(x� y)℄g"(y)dy � 0just using our assumption on F . Thus (55) holds for any x > 2� andit remains the ase x 2 [2�� "; �℄. By ontinuity, it is enough to dealwith x 2 (2�� "; 2�).July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 63Fix x 2 (2�� "; 2�). Choose h suh that x+h < 2� and note thatif x� y � 2�, then F (x� y) = 0. Hene,Z F (x� y + h)� F (x� y)h g(y)dy =Z�"�y<�(2��x)F (x� y + h)� F (x� y)h g(y)dy+Z�(2��x)�y�0F (x� y + h)h g(y)dy:The seond term in the latter equality is non-negative beause F isnon-negative. It follows by Lebesgue Theorem that(F � g")0(x) � Zf�"�y<�(2��x)g F 0(x� y)g(y)dy:The same holds for (F � g")00(x) beause F 0 is non-negative. Now, asin the previous argument, by our hypothesis on F , x(F � g")00(x) +�(F � g")0(x) is bounded below byZf�"�y<�(2��x)g[xF 00(x� y) + �F 0(x� y)℄g"(y)dy� Zf�"�y<�(2��x)g[(x� y)F 00(x� y) + �F 0(x� y)℄g"(y)dy � 0:ut7.2. A general perturbation argument.In Setion 3 we disussed a perturbation argument in order to provethe hyperboundedness of P(�)t the semi group assoiated to ��. In theprevious subsetion we reovered and improved these results by usingthe apaity-measure approah and the Gross-Orliz theory. We shallbelow show that one an also derive the results in Proposition 5 by aperturbation argument on F�-Sobolev inequalities (see [21, setion4℄ for a similar argument for usual log-Sobolev inequalities). Theargument an be easily generalized to others situations, but we shallnot develop a omplete perturbation theory here.Reall that Lebesgue measure on Rn satis�es a family of loga-rithmi Sobolev inequalities i.e. for all � > 0 and all f belonging toL1(dx) \ L1(dx) suh that R f2 dx = 1Z f2 log f2 dx � 2� Z jrf j2dx + n2 log� 14��� ; (56)July 13, 2004.



64 F. Barthe et al.see e.g. [27℄ Theorem 2.2.3.Set � = 2(1� 1�) whih is less than 1. Aording to Lemma 21 inthe next setion log�(1 + x)� log�(2) � log x for x � 1. Sine F�(x)is non positive for x � 1, it followsZ f2F�(f2)dx � Zff2�1g f2 log f2 dx (57)� Z f2 log f2 dx+ 1=e :Let V be smooth and satisfying the onditions stated in Setion 3.Denote by �V the assoiated Boltzmann measure (�V (dx) = e�2V dx),and introdue g = eV f (remark that R g2d�V = 1) . Aording to (56)and (57), a simple alulation yieldsZ g2F� �g2e�2V � d�V � 2� Z jrgj2d�V + n2 log� 14��� (58)+ 1=e+ 2� Z g2 ��V � jrV j2� d�V :But sine � < 1, (A+B)� � A� +B� for positive A and B. Heneif V � 0log�(1 + g2e�2V ) + log�(e2V ) � log�(e2V + g2) � log�(1 + g2) ;while for V � 0log�(1 + g2e�2V ) + log�(e2jV j) � log�(1 + g2e�2V ) � log�(1 + g2) :It followsZ g2F�(g2)d�V � 2� Z jrgj2d�V + n2 log� 14���+ 1=e (59)+ Z g2 �log�(e2jV j) + 2���V � jrV j2�� d�V :Finally introdue the onvex onjugate funtion H� of x! xF�(x).Using Young's inequalityxy � "xF�(x) +H�(y=")in (59) we obtainZ g2F�(g2)d�V � 2�1� " Z jrgj2d�V + (n; �; ")+ (60)+ 11� " Z H� �(1=")�(2jV j)� + 2���V � jrV j2��� d�V :We have thus obtainedJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 65Theorem 16. Let �V be a Boltzmann measure de�ned for a smoothV as in setion 3. Denote by H� the onvex onjugate of x! xF�(x).Assume that �V satis�es the following two onditions(i) there exist some � > 0 and some � > 0 suh thatZ H� �((2 + �)jV j)� + ���V � jrV j2�� d�V < +1;(ii) �V satis�es a Poinar�e inequality.Then the onlusions of Proposition 5 for F� are still true justreplaing �� by �V . As a onsequene the onlusions of Corollary 3are also still true.Both onditions (i) and (ii) are satis�ed when V satis�es assump-tion OB(V) in setion 3 with G(y) = jyj2(1� 1� ) for some  and Vgoes to in�nity at in�nity.Proof. (60) and Hypothesis (i) ensure that �V satis�es a defetivehomogeneous F� Sobolev inequality. But it is easily seen that F�ful�lls the hypotheses of the Rothaus-Orliz Lemma 3. Hene (ii) andTheorem 8 allow to tight the homogeneous F� Sobolev inequality. Butsine log�(1 + g2) � log�(1 + g2R g2 ) + log�(1 + Z g2)(54) holds when we replae �� by �V . Hene we may use the tensori-sation property.Finally (i) is learly implied by OB(V), while (ii) follows fromRemark 2. utAgain the situation is more deliate when dealing with eF�.8. Isoperimetri inequalitiesIn this setion we show that the Orliz-hyperontrativity propertyimplies isoperimetri inequalities. These results are more preise thanthe onentration inequalities derived in the previous setion (via theBekner type inequalities). Let us reall the basi de�nitions. Let �be a Borel measure on Rn . For a measurable set A � Rn we de�neits �-boundary measure as�s(�A) = lim infh!0+ �(Ah)� �(A)h ;where Ah = fx 2 Rn ; d(x;A) � hg = A + hBn2 is the h-enlargementof A in the Eulidean distane (here Bn2 = fx 2 Rn ; jxj � 1g). Theisoperimetri funtion (or pro�le) of a probability measure on Rn isI�(a) = inff�s(�A); �(A) = ag; a 2 [0; 1℄:July 13, 2004.



66 F. Barthe et al.We shall write I�k for the isoperimetri funtion of the produt mea-sure (on Rnk the enlargements are for the Eulidean distane, thatis the `2 ombination of the distanes on the fators). Finally we setI�1 := infk�1 I�k .We follow Ledoux's approah of an inequality by Buser [38℄ bound-ing from below the Cheeger onstant of a ompat Riemannian man-ifold in terms of its spetral gap and of a lower bound on its urva-ture. Ledoux also dedued a Gaussian isoperimetri inequality froma logarithmi Sobolev inequality. The argument was extended to theframework of Markov di�usion generators by Bakry and Ledoux [7℄.Moreover these authors obtained dimension free onstants. The fol-lowing result is a partiular ase of [7, Inequality (4.3)℄. It allows toturn hyperontrativity properties into isoperimetri inequalities.Theorem 17. Let � be a probability measure on Rn with d�(x) =e�V (x)dx with V 00 � 0. Let (Pt)t�0 be the orresponding semi-groupwith generator � � rV:r. Then for every t � 0 and every smoothand bounded funtion, one haskfk22 � kPt=2fk22 � p2tkfk1 Z jrf jd�:In partiular (applying this to approximations of harateristi fun-tions) for any Borel set A � Rn one has�(A)� kPt=21IAk22 � p2t�s(�A):Remark 25. If one only assumes that V 00 � �R �Id for R > 0 then thestatement is valid with an additional fator (2tR=(1�exp(�2tR)))1=2on the right-hand side. This fator is essentially a onstant whent � 1=R.In order to exploit this result we need the following two lemmas.Lemma 18. Let the measure � and the semi-group (Pt)t�0 be as be-fore. Let � be a Young funtion, and assume that for all f 2 L2(�)one has N� (Ptf) � Ckfk2. Then for every Borel subset A of Rn onehas kPt1IAk2 � C�(A)��1 � 1�(A)�, where ��1 stands for the reiproalfuntion of � .Proof. Sine Pt is symmetri for �, one gets by duality that Pt mapsthe dual of (L� (�); N� ) into L2(�) with norm at most C. So for everyA, kPt1IAk2 � Ck1IAk�� . Reall that the latter norm isk1IAk�� = sup�ZA gd�; Z �(g)d� � 1�= sup�ZA gd�; ZA �(g)d� � 1� = �(A)��1(1=�(A)):July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 67Indeed Jensen inequality yields RA �(g) d��(A) � � �RA g d��(A)� ; whih istight for g = 1IA��1(1=�(A)). utLemma 19. Let F : R+ ! R be a non-dereasing funtion withF (1) = 0, and ontinuous on [1;+1). Consider for q; x � 0, thefuntion �q(x) = x2eqF (x2). Assume there exists onstants 1; 2 suhthat for all x � 1 one has F (x) � 1 log x and F (x2) � 2F (x). Thenfor all q 2 [0; 1=1℄ one has��1q (y) � pye� q22 F (y); y � 1:Proof. Set �(x) = exp(�qF (x)=(22)). Setting x = �q(y), y � 1 thelaimed inequality an be rephrased as:x � �q(x) 12�(�q(x)) = xe q2F (x2)e� q22 F (x2 exp(qF (x2))); x � 1:This is equivalent to F (x2 exp(qF (x2))) � 2F (x2). The latter followsfrom the hypotheses: for q � 1=1, F (x2 exp(qF (x2))) � F (x2+2q1) �F (x4) � 2F (x2). utTheorem 18. Let � be a probability measure on Rn with d�(x) =e�V (x)dx and V 00 � 0. Assume that the orresponding semi-group(Pt)t�0 with generator � �rV � r satis�es for every t 2 [0; T ℄ andevery funtion in L2 (Rn ; �),N�kt(Ptf) � Ckfk2;where k > 0; C � 1 and for q � 0; x 2 R, �q(x) = x2 exp(qF (x2)).Here F : [0;1) ! R is non-dereasing and satis�es F (1) = 0, and forx � 1, F (x) � 1 log x, F (x2) � 2F (x). Then if A � Rn has smallmeasure in the sense that F (1=�(A)) � 2 log(2C2)=min(kT; 1=1)one has the following isoperimetri inequality:�s(�A) � 14 � k2 log(2C2)� 12 �(A)F � 1�(A)� 12 :The symmetri inequality holds for large sets: if F � 11� �(A)� �2 log(2C2)min(kT; 1=1) , then�s(�A) � 14 � k2 log(2C2)� 12 (1� �(A))F � 11� �(A)� 12 :July 13, 2004.



68 F. Barthe et al.Proof. We ombine the above results and hoose an appropriate valueof the time parameter. If t � min(2T; 2=(k1) then�s(�A) � �(A)� kPt=21IAk22p2t� �(A)� �C�(A)��1kt=2� 1�(A)��2p2t� �(A)1� C2 exp�� kt22F � 1�(A)��p2t :At this point we wish to hoose t so that 12 = C2 exp�� kt22F � 1�(A)��.This is ompatible with the ondition t � min(2T; 2=(k1) providedF (1=�(A)) � 2 log(2C2)=min(kT; 1=1). Under this ondition, thisvalue of time yields the laimed isoperimetri inequality for smallsets. For large sets note that applying the funtional inequality ofTheorem 17 to suitable approximations of the harateristi funtionof A gives p2t�s(�A) � �(A) � kPt=21IAk22, so the study of smallsets apply. utRemark 26. Under the weaker assumption V 00 � �R for R > 0 wehave similar results with onstants depending on R.Remark 27. Under spei� assumptions on F we have shown thatCap�(A) � �(A)F (1=�(A)) for all A implies ontinuity of the semi-group in the Orliz sale �q(x) = x2 exp(qF (x2)), whih implies, atleast for small sets, �s(�A) � K�(A)pF (1=�(A)). Note the analogybetween these relations and also the inequality�s(�A) � Cap(1)� (A) := inf �Z jrf jd�; f � 1IA and�(f = 0) � 1=2�:The previous theorem provides a lower bound on the isoperimet-ri pro�le for small and large values of the measure only. We dealwith the remaining values, away from 0 and 1, by means of Cheeger'sinequality. The dimension free version of Buser's inequality for di�u-sion generator, ontained in the work of Bakry and Ledoux allows toderive Cheeger's inequality from Poinar�e inequality.Theorem 19. Let � be a probability measure on Rn with d�(x) =e�V (x)dx and V 00 � 0. Assume that the orresponding semi-group(Pt)t�0 with generator � � rV � r satis�es the following Poinar�einequality: for all f�Z (f � �(f))2d� � Z jrf j2d�:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 69Then for every Borel set A � Rn one has�s(�A) � 1� e�1p2 p��(A)(1 � �(A)):The argument is written in the setting of Riemannian manifoldsin [41, Theorem 5.2℄. We sketh the proof for ompleteness.Proof. The spetral gap inequalities lassially implies the exponen-tial deay of the norm of Pt on the spae of zero mean. ThereforekPt=21IAk22 = kPt=2�(A)k22 + kPt=2(1IA � �(A))k22� �(A)2 + e��tk1IA � �(A)k22= �(A)2 + e��t�(A)(1� �(A)):By Theorem 17, one hasp2t�s(�A) � (1� e��t)�(A)(1 � �(A)):Choosing t = 1=� onludes the proof. utFinally we apply the previous results to in�nite produts of expo-nential measures: m�(dx) = exp(�jxj�)=(2� (1+1=�))dx; x 2 R. Fortehnial reasons, we also onsider the measures �� de�ned in setion7 up to the irrelevant onstant 2. They also have a log-onave den-sity, but more regular. The isoperimetri funtion of a symmetri log-onave density on the line (with the usual metri) was alulated byBobkov [14℄. He showed that half-lines have minimal boundary amongsets of the same measure. Sine the boundary measure of (�1; t℄ isgiven by the density of the measure at t, the isoperimetri pro�le iseasily omputed. They are readily ompared to the funtionsL�(t) = min(t; 1� t) log1� 1� � 1min(t; 1� t)� :We omit the details, some of them are written in [9℄.Lemma 20. There are onstants k1; k2 suh that for all � 2 [1; 2℄,t 2 [0; 1℄ one has k1L�(t) � Im�(t) � k2L�(t);k1L�(t) � I��(t) � k2L�(t):Our goal is to show the following in�nite dimensional isoperimetriinequality.Theorem 20. There exists a onstant K > 0 suh that for all � 2[1; 2℄ and t 2 [0; 1℄, one hasI�1� (t) � KL�(t):July 13, 2004.



70 F. Barthe et al.Sine I�1� � I�� � k2L�, we have, up to a onstant, the value ofthe isoperimetri pro�le of the in�nite produt.Proof. As shown in Corollary 3 of Setion 7 the semi-group assoiatedto �
n� is Orliz-hyperbounded. Thus we may apply Theorem 18 withF = F�(�) de�ned in (52), and �(�) = 2(1� 1=�) and get an isoperi-metri inequality for small and large sets, with onstants independentof the dimension n. This step requires to hek a few properties ofthe funtion F�(�). They are established in the following Lemma 21.More preisely there are onstants K1;K2 > 0 independent of � andn suh thatI�
n� (t) � K1 min(t; 1�t) �log�(�)�1 + 1min(t; 1� t)�� log�(�)(2)� 12(61)provided�log�(�) �1 + 1min(t; 1� t)�� log�(�)(2)� 12 � K2:We an prove (61) in the remaining range as well. Indeed, it is plainthat supx>0 ��([x;+1))Z x0 1��� �M;so that the measures (��)�2[1;2℄ satisfy a Poinar�e inequality with auniform onstant. The latter inequality has the tensorisation prop-erty, so the measures �
n� also share a ommon Poinar�e inequality.By Theorem 19, there exists a onstant K3 > 0 suh that for all n,all � 2 [1; 2℄ and all t 2 [0; 1℄I�
n� (t) � K3 min(t; 1� t): (62)Sine the exponential measure has a spetral gap, the latter argu-ment reproves, with a slightly worse onstant, the result of [16℄. Nowassume thatlog�(�) �1 + 1min(t; 1� t)�� log�(�)(2) < K22 ;thenI�
n� (t) � K3K2 min(t; 1� t)K2� K3K2 min(t; 1�t)hlog�(�)�1+ 1min(t; 1�t)�� log�(�)(2)i 12:July 13, 2004.



Interpolated inequalities between exponential and Gaussian. 71So Inequality (61) is valid for all t provided one replaes K1 byK4 := min(K1;K3=K2). Finally, the uniform Cheeger inequality (62),implies that 1K3 I�
n� (t) � log�(�)=2(2) min(t; 1� t):Adding up this relation to1K4 I�
n� (t) � min(t; 1�t)�log�(�)�1+ 1min(t; 1�t)�� log�(�)(2)� 12� min(t; 1� t) �log�(�)=2 �1 + 1min(t; 1 � t)�� log�(�)=2(2)�yields the laimed inequality. This manipulation was important inorder to get a non-trivial inequality when � tends to 1, i.e. when�(�) tends to 0. utThe following tehnial result was used in the above proof.Lemma 21. Let � 2 [0; 1℄ then for all x � 1 one haslog�(1 + x)� log�(2) � log x; (63)log�(1 + x2)� log�(2) � 8�log�(1 + x)� log�(2)� : (64)Proof. Note that (63) is an equality for x = 1. It is enough to provethe inequality between derivatives, that is � log��1(1 + x)=(1 + x) �1=x for x � 1. If x � e� 1 then log��1(1 + x) � 1 and the inequalityis obvious. If x < e� 1, then log�(1 + x) � 1, therefore� log��1(1 + x)(1 + x) � 1(1 + x) log(1 + x) � 1x:Next we address (64). One easily heks that for A � B � 1 themap � > 0 7! (A� � 1)=(B� � 1) is non-dereasing. Applying this toA = log(1 + x2)= log(2) and B = log(1 + x)= log(2) shows that it isenough to prove (64) for � = 1. Let x � 1, sine 1 + x2 � (1 + x)2one haslog(1 + x2)� log(2) � 2 log(1 + x)� log(2)= 2 (log(1 + x)� log(2)) + log(2):If x � 3 then log(1 + x)� log(2) � log(2) and the laimed inequalityis proved. For x 2 (1; 3℄, we use the fundamental relation of alulus.It provides t1 2 (1; 9) and t2 2 (1; 3) withlog(1 + x2)� log(2) = (x2 � 1) 11 + t1 � 2(x� 1)July 13, 2004.



72 F. Barthe et al.and log(1 + x)� log(2) = (x� 1) 11 + t2 � (x� 1)=4:So the ratio is bounded from above by 8. A smarter hoie than 3would give a better result. utRemark 28. Aording to Theorem 16 the onlusion of Theorem 20is still true with the same L� when replaing �� by �V , provided Vis onvex and the hypotheses in Theorem 16 are ful�lled.We onlude the paper with onsequenes of Theorem 20. The�rst one is a omparison theorem. It ould be stated in a more gen-eral framework of metri probability spaes satisfying a smoothnessassumption (see e.g. [10℄). For simpliity we write it in the settingof Riemannian manifolds where the de�nition of isoperimetri pro�legiven in the beginning of the setion applies.Theorem 21. Let (X; d; �) be a Riemannian manifold, with the geo-desi metri, and a probability measure whih has a density with re-spet to the volume. On the produt manifold we onsider the geodesidistane, whih is the `2 ombination of the distanes on the fators.There exists a universal onstant K > 0 suh that if for some  > 0, 2 [0; 12 ℄ and all t 2 [0; 1℄ one hasI�(t) � min(t; 1� t) log � 1min(t; 1� t)� ;then for all n � 1, t 2 [0; 1℄ one hasI�
n(t) � K min(t; 1� t) log � 1min(t; 1� t)� :Remark 29. This provides a sale of in�nite dimensional isoperimet-ri inequalities. Both ends of the sale where previously known. Astandard argument based on the entral limit theorem shows thatif � is a measure on R with seond moment then infn I�
n is dom-inated by a multiple of the Gaussian isoperimetri funtion, whihis omparable to min(t; 1 � t) log1=2(1=min(t; 1 � t)). On the otherhand an argument of Talagrand [53℄ shows that the weakest possi-ble dimension free onentration result for � implies that it has atmost exponential tails. The isoperimetri funtion of the exponentialdensity is min(t; 1 � t). So the above sale overs the whole rangeof in�nite isoperimetri inequalities. Of ourse �ner sales ould beobtained from our methods, with more e�ort.Remark 30. A similar statement was proved in [11℄ for the ase whenthe distane on the produt spae is the `1 ombination of the dis-tanes on the fators (i.e. the maximum). This ase was muh easierJuly 13, 2004.



Interpolated inequalities between exponential and Gaussian. 73due to the produt struture of balls in the produt spae. Also, thisnotion leads to bigger enlargement, and the sale of in�nite dimensionbehaviour was larger, the values  2 [0; 1℄ being allowed.Proof (of Theorem 21). The hypothesis implies that I� � k2 I�� for� = 1=(1 � ) 2 [1; 2℄. Theorem 10 in [10℄ asserts that among mea-sures having the same onave isoperimetri behaviour, the even log-onave one minimizes the isoperimetri pro�le for the produt mea-sures, see also [49℄. So we have I�
n � k2 I�
n� . By the previous resultsI�
n� � KL� and the proof is omplete. utThe seond onsequene that we wish to put forward deals withthe measures dm�(x) = exp(�jxj�)dx=(2� (1 + 1=�)), � 2 [1; 2℄. Itshows that among sets of presribed measure for m
n� in Rn , oor-dinate half-spaes have enlargements of minimal measure, up to auniversal fator. The result was known for � 2 1; 2.Theorem 22. There exists a universal onstant K suh that for ev-ery � 2 [1; 2℄, n � 1 and every Borel set A � Rn , if m
n� (A) =m�((�1; t℄) then for h � 0,m
n� �A+ hBn2 � � m����1; t+ hK �� :Proof. This fat is proved by integrating the inequality Im
n� � Im�Kwhih provides a similar information about boundary measure (thisorresponds to in�nitesimal enlargements). This isoperimetri ine-quality is a onsequene of the fat that Im� is omparable to I�� .The omparison theorem of [10℄ implies that Im
n� is larger than auniversal onstant times I�
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