N

N

Derived equivalences for symmetric groups and
sl__2-categorification
Joseph Chuang, Raphael Rouquier

» To cite this version:

Joseph Chuang, Raphael Rouquier. Derived equivalences for symmetric groups and sl 2-
categorification. 2005. hal-00002200v2

HAL Id: hal-00002200
https://hal.science/hal-00002200v2

Preprint submitted on 11 Mar 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00002200v2
https://hal.archives-ouvertes.fr

ccsd-00002200, version 2 - 11 Mar 2005

DERIVED EQUIVALENCES FOR SYMMETRIC GROUPS AND
slo-CATEGORIFICATION

JOSEPH CHUANG AND RAPHAEL ROUQUIER

ABSTRACT. We define and study sle-categorifications on abelian categories. We show in partic-
ular that there is a self-derived (even homotopy) equivalence categorifying the adjoint action of
the simple reflection. We construct categorifications for blocks of symmetric groups and deduce
that two blocks are splendidly Rickard equivalent whenever they have isomorphic defect groups
and we show that this implies Broué’s abelian defect group conjecture for symmetric groups.
We give similar results for general linear groups over finite fields. The constructions extend to
cyclotomic Hecke algebras. We also construct categorifications for category O of gl,(C) and
for rational representations of general linear groups over F,,, where we deduce that two blocks
corresponding to weights with the same stabilizer under the dot action of the affine Weyl group
have equivalent derived (and homotopy) categories, as conjectured by Rickard.
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1. INTRODUCTION

The aim of this paper is to show that two blocks of symmetric groups with isomorphic defect
groups have equivalent derived categories. We deduce in particular that Broué’s abelian defect
group conjecture holds for symmetric groups. We prove similar results for general linear groups
over finite fields and cyclotomic Hecke algebras.

Recall that there is an action of g[p on the sum of Grothendieck groups of categories of
kG&,-modules, for n > 0, where k is a field of characteristic p. The action of the generators
e; and f; come from exact functors between modules (“i-induction” and “i-restriction”). The
adjoint action of the simple reflections of the affine Weyl group can be categorified as functors
between derived categories, following Rickard. The key point is to show that these functors are
invertible, since two blocks have isomorphic defect groups if and only if they are in the same
affine Weyl group orbit. This involves only an sly-action and we solve the problem in a more
general framework.

We develop a notion of sly-categorification on an abelian category. This involves the data of
adjoint exact functors £ and F' inducing an sly-action on the Grothendieck group and the data
of endomorphisms X of E and T of E? satisfying the defining relations of (degenerate) affine
Hecke algebras.

Our main Theorem is a proof that the categorification © of the simple reflection is a self-
equivalence at the level of derived (and homotopy) categories. We achieve this in two steps.
First, we show that there is a minimal categorification of string (=simple) modules coming from
certain quotients of (degenerate) affine Hecke algebras : this reduces the proof of invertibility of
O to the case of the minimal categorification. There, © becomes (up to shift) a self-equivalence
of the abelian category.

Let us now describe in more detail the structure of this article. The first part §f is devoted to
the study of (degenerate) affine Hecke algebras of type A completed at a maximal ideal corre-
sponding to a totally ramified central character. We construct (in §B.9) explicit decompositions
of tensor products of ideals which we later translate into isomorphisms of functors. In §B.3,
we introduce certain quotients, that turn out to be Morita equivalent to cohomology rings of
Grassmannians. Part §f recalls elementary results on adjunctions and on representations of
5[2.

Part §f is devoted to the definition and study of sly-categorifications. We first define a weak
version (8B.1]), with functors E and F satisfying sly-relations in the Grothendieck group. This
is enough to get filtrations of the category and to introduce a class of objects that control
the abelian category. Then, in §5.9, we introduce the extra data of X and T which give the
genuine sly-categorifications. This provides actions of (degenerate) affine Hecke algebras on
powers of E/ and F. This leads immediately to two constructions of divided powers of E and
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F. In order to study sl,-categorifications, we introduce in §5.3 “minimal” categorifications of
the simple sly-representations,; based on the quotients introduced in §B.3. A key construction
(§.4.7) is a functor from such a minimal categorification to a given categorification, that
allows to reduce part of the study of an arbitrary sly-categorification to this minimal case,
where explicit computations can be carried out. This corresponds to the decomposition of
the sly-representation on K into a direct sum of irreducible representations. We use this in
§6.9 to prove a categorified version of the relation [e, f] = h and deduce a construction of
categorifications on the module category of the endomorphism ring of “stable” objects in a
given categorification.

Part §f is devoted to the categorification of the simple reflection of the Weyl group. In §f.1], we
construct a complex of functors categorifying this reflection, following Rickard. The main result
is Theorem [.4 in part §6.4, which shows that this complex induces a self-equivalence of the
homotopy and of the derived category. The key step in the proof for the derived category is the
case of a minimal categorification, where we show that the complex has homology concentrated
in one degree (§6.J). The case of the homotopy category is reduced to the derived category
thanks to the constructions of §5.5.

In part 8], we study various examples. We define (in §f.1]) sly-categorifications on represen-
tations of symmetric groups and deduce derived and even splendid Rickard equivalences. We
deduce a proof of Broué’s abelian defect group conjecture for blocks of symmetric groups. We
give similar constructions for cyclotomic Hecke algebras (§[.2) and for general linear groups
over a finite field in the non-defining characteristic case (§f.3) for which we also deduce the
validity of Broué’s abelian defect group conjecture. We also construct sly-categorifications on
category O for gl, (§.4) and on rational representations of GL,, over an algebraically closed
field of characteristic p > 0 (§.4). This answers in particular the GL case of a conjecture
of Rickard on blocks corresponding to weights with same stabilizers under the dot action of
the affine Weyl group. We also explain similar constructions for g-Schur algebras (§.g) and
provide morphisms of categorifications relating the previous constructions. A special role is
played by the endomorphism X, which takes various incarnations : the Casimir in the rational
representation case and the Jucys-Murphy elements in the Hecke algebra case. In the case of
the general linear groups over a finite field, our construction seems to be new. Our last section
(§77) provides various realizations of minimal categorifications, including one coming from the
geometry of Grassmannian varieties.

Our general approach is inspired by [LLT], [Ar])], [Gd, and [GrVa] (cf [Roud, §3.3]), and our
strategy for proving the invertibility of © is reminiscent of [DeLd, CaR]].

In a work in progress, we study the braid relations between the categorifications of the simple
reflections, in the more general framework of categorifications of Kac-Moody algebras and in
relation with Nakajima’s quiver variety constructions.

The first author was supported in this research by the Nuffield Foundation (NAL/00352/G)
and the EPSRC (GR/R91151/01).

2. NOTATIONS

Given an algebra A, we denote by A°PP the opposite algebra. We denote by A-mod the
category of finitely generated A-modules. Given an abelian category A, we denote by A-proj
the category of projective objects of A.
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Let C be an additive category. We denote by Comp(C) the category of complexes of objects
of C and by K(C) the corresponding homotopy category.

Given an object M in an abelian category, we denote by soc(M) (resp. hd(M)) the socle
(resp. the head) of M, i.e., the largest semi-simple subobject (resp. quotient) of M, when this
exists.

We denote by Ky(A) the Grothendieck group of an exact category A.

Given a functor F', we write sometimes F' for the identity endomorphism 1z of F.

3. AFFINE HECKE ALGEBRAS

3.1. Definitions. Let k be a field and ¢ € k*. We define a k-algebra H,, = H,(q).

3.1.1. Non-degenerate case. Assume q # 1. The affine Hecke algebra H,(q) is the k-algebra
with generators

Ty,..., T, X XH
subject to the relations
(Ti+1)(Ti—q) =0
TTy = T,T; (when |i— j| > 1)
LT =T TiTi
X X; =X, X,
XX '=X1X;=1
X, T; =T;X; (wheni—j#0,1)
T XiT; = qXig1.
We denote by H/(q) the subalgebra of H,(q) generated by Ti,...,T,_;. It is the Hecke
algebra of the symmetric group G,,.

Let P, = k[X;¥,..., X, a subalgebra of H,(q) of Laurent polynomials. We put also
Py = k[X;H].

3.1.2. Degenerate case. Assume ¢ = 1. The degenerate affine Hecke algebra H, (1) is the k-
algebra with generators

T17' : '7Tn717X17 - '7Xn
subject to the relations
TP =1
LT, = T,T, (when |i— j| > 1)
LT T =Tin Tl
X X; =X,X;
Xipg Ty = T;X; + 1.

Note that the degenerate affine Hecke algebra is not the specialization of the affine Hecke
algebra.
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We put P, = k[Xy,...,X,], a polynomial subalgebra of H,(1). We put also Py = k[.X;].
The subalgebra H/(1) of H,(1) generated by Ti,...,T,_; is the group algebra kS, of the
symmetric group.

3.1.3. We put H, = H,(q) and H! = HJ(q). There is an isomorphism H, — HSPP T; s
T;, Xi+— X;. It allows us to switch between right and left H,-modules. There is an automor-
phism of H,, defined by T; — T, _;, X; — X, _;11, where X; = Xi_1 if g #1and X; = —X; if
q=1.
We denote by | : &,, — N the length function. We put s; = (i,i + 1) € &,. Given
= 84, -+ 8;, a reduced decomposition of an element w € &,, (i.e., r = l(w)), we put T, =

w T

Ty, Ty, .

We have H,, = HTJ: QP,=P,® HTJ:.
We have an action of &,, on P, by permutation of the variables. Given p € P,, we have [[Lu,

Proposition 3.6]

(=D =X X ) p—sip) ifqg#1
(X1 — Xi)7H(p — si(p) ifg=1

Note that (P,)® C Z(H,) (this is actually an equality, a result of Bernstein).

(1) Tip — si(p)T; = {

3.1.4. Let 1 (resp. sgn) be the one-dimensional representation of H; given by T, — ¢ (resp.
Ts, — —1). Let 7 € {1,sgn}. We put

= q'"“r(T,)T..

weSy,

We have ¢}, € Z(H]). We have ¢, = 3 .o Tw and ¢ =3 o (—q)'™T,, and c}c#" =
cencl =0 for n > 2.

More generally, given 1 <7 < j an, we denote by &j; ;) the symmetric group on i, 7] =
L Hy; j; and we put Cf—i,j = Ewee[ q_l(w)T(Tw)Tw.

Given [ a subset of &, we put ¢f = >, ¢7'"“)7(T,)T,. We have

{i,i+1,...,7}, we define similarly H

i,

T T T T T
Cn = Ce,/&:16 = GiC6,\64]

where [S,,/6;] (resp. [6;\ &,)]) is the set of minimal length representatives of right (resp. left)
cosets.
Given M a projective H/-module, then ¢ZM = {m € M | hm = 7(h)m for all h € H/} and

the multiplication map ¢, H} ®,,; M = ¢, M is an isomorphism. Given N an H,-module, then

. T ~ T . . .
the canonical map ¢, H! @, ;N — 3 H, ®p, N is an isomorphism.

3.2. Totally ramified central character. We gather here a number of properties of (de-
generate) affine Hecke algebras after completion at a maximally ramified central character.
Compared to classical results, some extra complications arise from the possibility of n! being 0
in k.
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3.2.1. We fix a € k, with a # 0 if ¢ # 1. We put z; = X; — a. Let m,, be the maximal ideal of

P, generated by z1,...,z, and let n, = (m,)®".
Let ep(x1,...,2,) = Zl<i1<~~~<im<n Ty o, € PO be the m-th elementary symmetric
function. Then, " = Y (=1)""*laie, ;(vy,...,2,). So, o', € @I, xin, for I > n.

Via Galois theory, we deduce that PS»—1 = @?;01 x¢ PS». Using that the multiplication map
Pjgj ® Pljy1,n) Py is an isomorphism, we deduce by induction that

(2) P = @ a - Py

0<a;<r+1i
3.2.2.  We denote by EL@L the completion of P at n,,, and we put P, =P, ® pen EL@L and
H,=H,® pSn lgne\n The canonical map P& = lgne\n is an isomorphism, since f/’ngn is flat over
pS». '

We denote by N, the category of locally nilpotent H,-modules, i.c., the category of H,-
modules on which n, acts locally nilpotently : an H,-module M is in N, if for every m € M,
there is ¢ > 0 such that ni,m =0.

We put H, = H,/(H,n,) and P, = P,/(P,n,). The multiplication gives an isomorphism
P, ® H! = H,. The canonical map

0<a;<1

is an isomorphism, hence dimy H,, = (n!)2.
The unique simple object of N,, is [Kd, Theorem 2.2]

K, =H, ®p, P,/m, ~ H,c".

It has dimension n! over k. It follows that the canonical surjective map H,, — Endg(K,) is an
isomorphism, hence H,, is a simple split k-algebra.

Since K, is a free module over H/ it follows that any object of N, is free by restriction to
HI. From §8.1.4, we deduce that for any M € N, the canonical map ¢ H,, @, M = ¢l M is
an isomorphism.

Remark 3.1. We have excluded the case of the affine Weyl group algebra (the affine Hecke
algebra at ¢ = 1). Indeed, in that case K, is not simple (when n > 2) and H,, is not a simple
algebra. When n = 2, we have H,, ~ (k[z]/(2?)) % p2, where the group uy; = {#1} acts on
by multiplication.

3.2.3. Let f: M — N be a morphism of finitely generated Pf"-modules. Then, f is surjective
if and only if f ®pen PSr /n,, is surjective.

Lemma 3.2. We have isomorphisms

n—1
T i can £y - 5,1 mult 7 o
Hycp, @y EB%JC — Hy e, ®@pen 77— Hicp g
1=0

Proof. The first isomorphism follows from the decomposition of PS»~1 in ([).
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Let us now study the second map. Note that both terms are free pf”—modules of rank n-n!,
since ﬂncg_l ~ b, ® HJc . Consequently, it suffices to show that the map is surjective.
Thanks to the remark above, it is enough to check surjectivity after applying — ®pen 157?" /Ty,

Note that the canonical surjective map k[z,,| — PS"1® pon Py /0y, factors through kfz,]/(27))

(cf §8.2.1)). So, we have to show that the multiplication map f : H,c? @ k[z,]/(z") — H,c?_, is

surjective. This is a morphism of (H,, k[z,]/(2"))-bimodules. The elements ¢, Tz, ..., o™}

n)'-n ) T n

of H, are linearly independent, hence the image of f is a faithful (k[x,]/(«7))-module. It follows
that f is injective, since H,c] is a simple H,-module. Now, dimy H,,c]_; = n - n!, hence f is
an isomorphism. O

Let M be a k&,-module. We put AS"M = M/(>°,_,,, M*). If n! € k*, then A®*M is the
largest quotient of M on which G,, acts via the sign character. Note that given a vector space

V, then AS»(V®") = A"V,
Proposition 3.3. Let {,7'} = {1,sgn} and r < n. We have isomorphisms
]:Incz—z Q0 @ xZLrJrl e "L‘ZT]{; =N an;rb ®]—C’nen pTLG[Ln_T] &lt) gncﬁ[rl,n—r}'
0<a;<n—r+i

There is a commutative diagram

A~ /\6 _
H, T @pen By
n

/
x®yr—>myc[7nir+1’n]
can

H,c™ @5 @ ) ceexk ~_ p & 5O n—r]  ~F !
_ 1 T . —_ [Ln—r] 77 T T
n nert " can ann ®P6” A =t Pn = an[l,nfr]c[nfwrl,n]
0<aj<-<ar<n "

Proof. The multiplication map H, ®p, ., H,_;c},_, — H,c}_, is an isomorphism (cf §8.1.4). Tt
follows from Lemma that multiplication is an isomorphism

n—r

T T A ~ i oT

H‘ncnfrJrl ® @ xnfrqtlk — annfr
1=0

and the first statement follows by descending induction on 7.

The surjectivity of the diagonal map follows from the first statement of the Proposition.

Letp € P’. Then, c[li’iﬂ}p = pcb7i+1]. It follows that Cliis1]PClie1] = 0, hence Pyt ) = 0
whenever ¢ > n —r 4 1. This shows the factorization property (existence of the dotted arrow).

Note that ASwn-r+in PSn=r is generated by Boca,<caon Tty - Tork as a Pon-module
(cf (@)). It follows that we have surjective maps

/

g T a1 v pOr : T ~ Spp— +1, 5 Gn—r a T T
Hyep, @y, @ Tplpyr @k = Hycp @ pen AP Py - ann—rc[n—r-i-l,n]'
0<a1<-<ar<n

Now the first and last terms above are free P,-modules of rank (:f), hence the maps are iso-
morphisms. U

Lemma 3.4. Let r < n. We have cZﬁncg = pf*c;, cﬁf[ncl = c;pf* and the multiplication

maps ¢, Hy, @p  Hpcl — ¢y Hocl and c; H, @y Hy,c, — ¢l Hycf, are isomorphisms.
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Proof. We have an isomorphism P, = FInc:L, p— pcl. Let h € FIn. We have c] he], = pc] for
some p € P,. Since Ticl = 7(T})c, it follows that Typel = 7(T;)pcr. So, (Tip — s; i(p)Th)cy, =
7(T;)(p — si(p))c, hence p — s;(p) = 0, using the formula (ﬂ]) It follows that ¢ H,cm C PSncT.
By Proposmon B.3, the multiplication map H, Cp, @pen P, 5 H, is an isomorphism. So,
the multiplication map cTH ) ® S P, 5 Hn is an isomorphism, hence the canonical map
TH ¢, @ pen ) it PG"C ® pen P, is an isomorphism. We deduce that cTH c, PG"C
Similarly (replacing n by r above), we have ¢ PS¢l = 7 PS. Since PS" = PSP, (cf
§B.2.1)), we deduce that

TH C = CTP C = CTPC P[r—i—l n] = C PgTP[H_l n] = Cp PGT.

By Proposition B3, i H, ®; H,cl is a free P -module of rank 1. So, the multiplication

map ¢, H, ®p H,c] — ¢} Hyc] is a surjective morphism between free PSr-modules of rank 1,
hence it is an isomorphism.
The cases where ¢ is on the left are similar. n

Proposition 3.5. The functors Hyc], ® psn — and ¢ H, @g, — are inverse equivalences of
categories between the category of PS"-modules that are locally nilpotent for n, and N,,.

Proof. By Proposition B.3, the multiplication map ﬂncg ® pon B, > H, is an isomorphism. It
follows that the morphism of (H,, H,)-bimodules

ﬂnc; ® pen c;]:In S H,, he® ch' — heh
is an isomorphism.

Since PO is commutative, it follows from Lemma B that the (P, PS»)-bimodules PS»
and c; H, ® 5 Hpc;, are isomorphic. O

3.3. Quotients.

3.3.1.  We denote by H;, the image of H; in H, for 0 < i < n. Let P,,, = P;/(P; N (Pny,)).

mult

We have an isomorphism H, Zf ® Py — Hip

Since P6[1+1,n] _ @0<al<n l'xl .. azPGn (Cf ()) we deduce that PZ — @Ogalgnfl x‘fl .. x?z@
(n,P,NFP,) and n, P,N P, =n,P, N PZ, hence the canonical map

(3) EBJ: a5 P,

0<a;<n—l

a;

is an isomorphism. We will identify such a monomial z{* - - - 2}

The kernel of the action of P, Si by right multiplication on H; i nCi 18 PZGZ' Mn, P,. By Proposition
B.9, we have a Morita equivalence between H;, and Z;, = PGZ' / (P,G" Nn,P,). Note that

H; ¢l is the unlque indecomposable projective HZ n-module and d1mk H;,, =i'dimy H;,c]. So,
dimy, Z; ,, = i! > dimy, H;,, = (’Z) and Z;,, = Z(H,,,).

with its image in Rn Note
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We denote by P(r,s) the set of partitions p = (3 > -+ > p,. > 0) with g3 < s. Given
p € P(r,s), we denote by m,, the corresponding monomial symmetric function

H/U(l) MO’(T‘)
my(z1, ..., 2, E T .

where o runs over left coset representatives of &, modulo the stabilizer of (u1, ..., 1) B

The isomorphism (§) shows that the canonical map from @ue Plisn—i) kmﬂ(azl, co,xi) to Py
is injective, with image contained in Z;,. Comparing dimensions, it follows that the canonical
map

@ k:mu(xl,...,xi) = Zi,n
peP(i,n—i)

is an isomorphism.

Also, comparing dimensions, one sees that the canonical surjective maps

Pi ®PGz Zi,n - Pi,n and Hz ®P61 Zi,n - Hi,n
7 K2
are isomorphisms.

3.3.2. Let G, be the Grassmannian variety of i-dimensional subspaces of C" and G,, be the
variety of complete flags in C". The canonical morphism p : G,, — G,,, induces an injective
morphism of algebras p* : H*(G;,) — H*(G,) (cohomology is taken with coefficients in k). We
identify G,, with GL,,/B, where B is the stabilizer of the standard flag (C(1,0,...,0) C --- C
Cm™). Let L; be the line bundle associated to the character of B given by the j-th diagonal
coefficient. We have an isomorphism P, = H*(G,,) sending z; to the first Chern class of L;. Tt
multiplies degrees by 2. Now, p*H*(G;,,) coincides with the image of Pi@i in P,. So, we have
obtained an isomorphism
Zim — H (G ).

Since G, is projective, smooth and connected of dimension i(n — i), Poincaré duality says
that the cup product H’(G;,,) x H*"=9=3(G, ) — H*"=)(G,,,) is a perfect pairing. Via the
isomorphism H*("=9(G,,,) = k given by the fundamental class, this provides H*(G,,,) with a
structure of a symmetric algebra.

Note that the algebra ]r]m is isomorphic to the ring of i! x il matrices over H*(G,;,,) and it
is a symmetric algebra. Up to isomorphism, it is independent of a and q.

3.3.3. Let i <j. We have

Hip=Ho,o @@ ki 2y @kT,
we[G;\ ;]
0<a;<n-—I

hence Hj,, is a free H; ,-module of rank E )),]Z :

Lemma 3.6. The H;-module c@+17n}Kn has a simple socle and head.
Proof. By Proposition B.3, multiplication gives an isomorphism

@ "L‘H—l an ‘® C[l+1 n}H[H—l,n] = H[H—l,n]a

0<a;<l
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hence gives an isomorphism of H; ,-modules

a1 Qp—i T 7 ~ 1]
D a2 @ Gy Ha = Ha.
0<a;<l

)In!

Since H,, is a free Hm—module of rank ("%, it follows that hence ¢, H, is a free Hm—

- B [i+1,n)
module of rank ?—,' We have H,, ~i!- M as H;,-modules, where M has a simple socle and
head. Since in addition H, ~ n!- K, as H,-modules, we deduce that c[Ti +17n}Kn ~ M has a

simple socle and head. ]

Lemma 3.7. Let r <[ <n. We have isomorphisms

al ar—r ]
@ it exy kE® @ mu(xl—r+1a~--7xl)k4N>CE— Hlnczr

0<aren—i e P(rn—1) a®b—abc] l—r+1,]]
Nla@)bi—»ac;@b mult | ~
H_, .l ® @ m(Ti—rs1, ..., 21k T 7 N
rnCl_y €P(r,n—l) i) C[l—r+1,l}Hl7” @, Hinc
UEP(r,n—
. al ap—r
P?"OOf. Let L = @MEP(T,n—l),OS(IiSN—i mu(l‘l—r-i-la s ,l’l)l‘l BRI A k.

We have L Nn,P, = 0 (cf (§)), hence the canonical map f : L — Plg”’r“’” @, Zin is
l
injective. Since dimy, Z;,, = (7) and PZG[H“’” is a free P'-module of rank %, it follows that f
is an isomorphism. Now, we have an isomorphism (Lemma B-4)

A6[l77‘+17l] ~ T F T T
b = g ticy, a— ac.

Consequently, the horizontal map of the Lemma is an isomorphism.
As seen in §B.3.1], the left vertical map is an isomorphism. By Lemma B.4, the right vertical
map is also an isomorphism. O

4. REMINDERS

4.1. Adjunctions.

4.1.1. Let C and C’ be two categories. Let (G, GY) be an adjoint pair of functors, G : C — C’
and G¥ : C" — C : this is the data of two morphisms 7 : Ide — GVG (the unit) and ¢ : GGY —
Ider (the counit), such that (elg) o (1gn) = 1¢ and (1gve) o (nlgv) = 1gv. We have then a
canonical isomorphism functorial in X € C and X’ € ('

Ye(X, X') : Hom(GX, X') = Hom(X,GYX"), fr GY(f)on(X), e(X")oG(f) « f.
Note that the data of such a functorial isomorphism provides a structure of adjoint pair.

4.1.2. Let (H,H") be an adjoint pair of functors, with H : C — C'. Let ¢ € Hom(G, H).
Then, we define ¢¥ : HY — GV as the composition

loven
—

oV HY 19t qva v et v gy GV
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This is the unique map making the following diagram commutative, for any X € C and X’ € C':

Hom(HX, X') — 220X gom(Gx, X)
'yH(X,X’)lN Nl’yg(X,X’)
Hom(X, HVX") Hom(X,GYX')

Hom (X" (X)

Hom(HY,GY),¢ — ¢*. We obtain in particular

We have an isomorphism Hom(G, H ) =
) — End(GY)°PP. Given f € End(G), then the following

an isomorphism of monoids End(G
diagrams commute

lele,
SN N
Ide lelte,
X %c 1% /
elle,

4.1.3. Let now (G1,GY) and (Go, GY) be two pairs of adjoint functors, with G : ¢’ — C” and
G : C — C'. The composite morphisms

Idc/

Gvn 11 1a, 521Gv

Ide 2 GYGy —— 2 GYGYG1Gy and G1GLGYGY —— 5 G1GY <5 1d,
give an adjoint pair (G1Gq, Gy GY).

414, Let F=0— F" % Frel ... — Fs — 0 be a complex of functors from C to C' (with
F* in degree 7). This defines a functor Comp(C) — Comp(C’) by taking total complexes.
Let (F', F'"V) be adjoint pairs for r <i < s. Let

szoﬁpsvﬂ)..._)p"v_)()

with F* in degree —i. This complex of functors defines a functor Comp(C’) — Comp(C).

There is an adjunction (F, FY) between functors on categories of complexes, uniquely deter-
mined by the property that given X € C and X’ € €, then v (X, X') : Homcomp(c (FX, X') =
Homcomp(c) (X, F¥X') is the restriction of

> ri(X, X') - @ Home (F'X, X') 5 @D Home (X, FY X').

This extends to the case where F' is unbounded, under the assumption that for any X € C,
then F"(X) =0 for |r| > 0 and for any X’ € C’, then F"V(X’) =0 for |r| > 0.

4.1.5. Assume C and C’ are abelian categories.

Let ¢ € End(G). We put ¢G = im(c). We assume the canonical surjection G — ¢G splits
(i.e., ¢cG = eG for some idempotent e € End(G)). Then, the canonical injection ¢'GY — GV
splits as well (indeed, ¢VGY = e"GY).
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Let X € C, X' € C"and ¢ € Hom(cGX, X’). Thereis ¢ € Hom(G X, X') such that ¢ = 9.qx.
We have a commutative diagram

Ve GV
X = Vex LS avax == gvx

v, WV
GVGX - GV

It follows that there is a (unique) map v.q(X, X’) : Hom(cGX, X’) — Hom(X, ¢'GYX') making

the following diagram commutative

Yo (X, X)

Hom(GX, X') Hom(X, GV X'")

Hom(cGX, X') ............. (;X/)> Hom(X, CVGVX’)
YeG (A,

where the vertical maps come from the canonical projection G — ¢G and injection ¢VGY — GV.
Similarly, one shows there is a (unique) map v/, (X, X’) : Hom(X, ¢"GYX’) — Hom(cGX, X’)
making the following diagram commutative

A/G(Xle)_l

Hom(GX, X’) Hom(X,GYX'")

The maps 7.¢(X, X’) and v.,(X, X') are inverse to each other and they provide (¢G,c’'G")
with the structure of an adjoint pair. If p : G — ¢G denotes the canonical surjection, then
pY : cVGY — GV is the canonical injection.

4.1.6. Let C, C', D and D’ be four categories, G : C - C', G¥ : ' - C, H: D — D’ and
HY : D' — D, and (G,GY) and (H, H") be two adjoint pairs. Let F':C — D and F':C' — D’
be two fully faithful functors and ¢ : F'G = HF be an isomorphism.

We have isomorphisms

1 om —1 v, ’
Hom(GGY, 1der) &5 Hom(F'GGY, F'y 22 1T yom(HFGY, F)
G, Hom(FGY, HYF)

~

~

and let ¢ : FGY — HYF' denote the image of 5 under this sequence of isomorphisms.
Then, v is an isomorphism and we have a commutative diagram
F/GG\/ ﬂ F/
Plav l T&‘HIFI
HFGY ——= HH"F'
HY
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4.2. Representations of sl,. We put

e:<8 é),fz(? 8) andhzef—fez(é _01)

s = <_01 (1)) = exp(—f) exp(e) exp(—f)

We have

= (? —01) = exp(f) exp(—e) exp(f)

We put e, =e and e_ = f.

Let V be a locally finite representation of sly(Q) (i.e., a direct sum of finite dimensional
representations). Given A € Z, we denote by V) the weight space of V' for the weight A (i.e.,
the A\-eigenspace of h).

For v € V, let hy(v) = max{i|e’v # 0} and d(v) = h, (v) + h_(v) + 1.

Lemma 4.1. Assume V is a direct sum of isomorphic simple sls(Q)-modules of dimension d.

Let v € V. Then,

e dv)=d=14+2hy+ A\
° e(j)eg)v = (h?ﬂ) . (hji)v for 0 <j < hy.

+ J
Lemma 4.2. Let A € Z and v € V_,. Then,
S(U) — hi) &ehrrfr(v) and Sil(v) _ h+z(v) ierffﬂrr(z])
T!()\+T)! T!(—)\+T)! .

r=max(0,—\) r=max(0,\)

In the following Lemma, we investigate bases of weight vectors with positivity properties.

Lemma 4.3. Let V be a locally finite sl3(Q)-module. Let B be a basis of V' consisting of weight
vectors such that @,z Q>ob is stable under the actions of ey ande_. Let L = {b € Blezb = 0}
and given r >0, let V=" = @d(b)g Qb.

Then,

(1) Givenr >0, then V=" is a submodule of V isomorphic to a sum of modules of dimension
<r.

(2) Given b € B, we have ¢'*"b € QsoLs.
3) Given b € L4, there is ap € Qs such that ate*Op e £ and the map b — o L=
b €+ ¥ b €+
is a bijection Ly = L.
The following assertions are equivalent:
(i) Given r > 0, then V=" s the sum of all the simple submodules of V' of dimension < r.
(ii) {€§tb}b€£i,0§i§hi(b) is a basis of V.
(ili) {e’b}pers 0<i<hi(v) generates V.
Proof. Let b € B. We have eb = ) _zu.c with u, > 0. We have 0 = et ®eh = Y uel+®e

and e"+®c € @, .5 Qol', hence e"+®)c = 0 for all ¢ € B such that u. # 0. So, hy(c) < hy(b)
for all ¢ € B such that u. # 0. Hence, (1) holds.

We have e}f(b)b = > epleC with v, > 0. Since ) gvcerc = 0 and erc € @5 Qxol, it
follows that exc = 0 for all ¢ such that v, # 0, hence (2) holds.
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Let b € L. We have elf(b)b = > .epVeC With v, > 0. We have e}f(b)elf(b)b = (b for some
B >0. S0, > .5 vcegﬁ(b)c = (b. It follows that given ¢ € B with v, # 0, there is 5. > 0 with

elf(b)c = B.b. Since hi(c) = h=(b), then elf(b)e}f(b)c = ﬁcelf(b)b is a non-zero multiple of ¢,

and it follows that there is a unique ¢ such that v. # 0. This shows (3).

Assume (i). We prove by induction on r that {€’ b}per, o<i<him)<r iS & basis of V=" (this
is obvious for r = 0). Assume it holds for r = d. The image of {b € B|d(b) = d + 1} in
V=d+l //=d ig a basis. This module is a multiple of the simple module of dimension d + 1 and
{b € L.]d(b) = d+ 1} maps to a basis of the lowest (resp. highest) weight space of V=1 /1/<d
if £ =+ (resp. £ = —). It follows that {e,b}per, o<i<d—n, () maps to a basis of V=41 /=4,
By induction, it follows that {e’, b}yer, 0<i<hi(v)<a is a basis of V=41 This proves (ii).

Assume (ii). Let v be a weight vector with weight A\. We have v =}, - .\ ) Upi€Lb
for some up,; € Q. Take s maximal such that there is b € £y with hy(b) = s+ and wu,; # 0.
Then, efv = Zbeﬁi,i:hib—s ubﬂ-elf(b)b. Since the elf(b)b for b € L4 are linearly independent,
it follows that e®v # 0, hence s < hy(v). So, if d(v) < r, then hy(b) < r for all b such that
up; # 0. We deduce that (i) holds.

The equivalence of (ii) and (iii) is an elementary fact of representation theory of sly(Q). O

5. 5l5-CATEGORIFICATION
5.1. Weak categorifications.

5.1.1. Let A be an artinian and noetherian k-linear abelian category with the property that
the endomorphism ring of any simple object is k (i.e., every object of A is a successive extension
of finitely many simple objects and the endomorphism ring of a simple object is k).
A weak sly-categorification is the data of an adjoint pair (£, F') of exact endo-functors of A
such that
e the action of e = [E] and f = [F] on V = Q ® Ky(A) gives a locally finite sly-
representation
e the classes of the simple objects of A are weight vectors
e F'is isomorphic to a left adjoint of E.
We denote by ¢ : EF — Id and n : Id — FE the (fixed) counit and unit of the pair (E, F').
We don’t fix an adjunction between F' and E.

Remark 5.1. Assume A = A-mod for a finite dimensional k-algebra A. The requirement that
FE and F induce an sly-action on Ky(A) is equivalent to the same condition for Ky(.A-proj).
Furthermore, the perfect pairing Ky(A-proj) x Ko(A) — Z, ([P],[S]) — dimy Hom4(P,S)
induces an isomorphism of sly-modules between Ky(A) and the dual of Ky(A-proj).

Remark 5.2. A crucial case of application will be A = A-mod, where A is a symmetric algebra.
In that case, the choice of an adjunction (E, F') determines an adjunction (F, E).

We put £, = F and F_ = F. By the weight space of an object of A, we will mean the
weight space of its class (whenever this is meaningful).

Note that the opposite category A°PP also carries a weak sly-categorification.

Fixing an isomorphism between I’ and a left adjoint to E gives another weak categorification,
obtained by swapping £ and F. We call it the dual weak categorification.
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The trivial weak sly-categorification on A is the one given by £ = F = 0.

5.1.2. Let Aand A’ be two weak sly-categorifications. A morphism of weak sly-categorifications
from A’ to A is the data of a functor R : A’ — A and of isomorphisms of functors (4 : RE, —
E+ R such that the following diagram commutes

¢
(4) RF' FR
nRF’ l T FRe’
FERF' —~ FRE'F
F¢UUF

Note that ¢, determines {_, and conversely (using a commutative diagram equivalent to the
one above).

Lemma 5.3. The commutativity of diagram ({]) is equivalent to the commutativity of either of
the following two diagrams

R R
> 2T L
RF'E/ﬁFRE'?FER RE/F'ﬁERF'?EFR

Proof. Let us assume diagram (f) is commutative. We have a commutative diagram

nR P!
R FER FRE'
Ry l FERn'l FRE'y l \
RE'E — > FERF'E' — o> FRE'F'E' — > FRE
C-FE'

This shows the commutativity of the first diagram of the Lemma. The proof of commutativity
of the second diagram is similar.

Let us now assume the first diagram of the Lemma is commutative. We have a commutative
diagram

RF— _pp R
m TRF’&’
nRE’ RF'E'F' FRe'
FERF' e FRE'F'
+

So, diagram ([)) is commutative. The case of the second diagram is similar. O
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Note that R induces a morphism of sly-modules Ky(A'-proj) — Ko(A).

Remark 5.4. Let A’ be a full abelian subcategory of A stable under subobjects, quotients,
and stable under £ and F. Then, the canonical functor A’ — A is a morphism of weak
slo-categorifications.

5.1.3. We fix now a weak sly-categorification on A and we investigate the structure of A.

Proposition 5.5. Let V) be a weight space of V. Let Ay be the full subcategory of A of objects
whose class is in V. Then, A = @, Ax. So, the class of an indecomposable object of A is a
weight vector.

Proof. Let M be an object of A with exactly two composition factors S; and S;. Assume S
and Sy are in different weight spaces. Then, there is ¢ € {+} and {i,5} = {1,2} such that
h-(S;) > h-(S;). Let r = h.(S;). We have ETM = E"S; # 0, hence all the composition factors
of B _ETM are in the same weight space as S;. Now,

Hom(E" _E'M, M) ~ Hom(E!M, EZM) ~ Hom(M, E" _ELM)

and these spaces are not zero. It follows that M has a non-zero simple quotient and a non-zero
simple submodule in the same weight space as S;. So, 5; is both a submodule and a quotient
of M, hence M ~ S; & Ss.

We have shown that Ext'(S,T) = 0 whenever S and T are simple objects in different weight
spaces. The proposition follows. O

Let B be the set of classes of simple objects of A. This gives a basis of V' and we can apply
Lemma [.3.

We have a categorification of the fact that a locally finite sl;-module is an increasing union
of finite dimensional sl,-modules:

Proposition 5.6. Let M be an object of A. Then, there is a Serre subcategory A" of A stable
under E and F, containing M and such that Ko(A') is finite dimensional.

Proof. Let I be the set of isomorphism classes of simple objects of A that arise as composition
factors of E'F7M for some i, j. Since Ky(A) is a locally finite sly-module, then E*FVM = 0 for
i,7 > 0, hence [ is finite. Now, the Serre subcategory A’ generated by the objects of I satisfies
the requirement. O

We have a (weak) generation result for D°(A) :

Lemma 5.7. Let C € D°(A) such that Hompu 4 (E'T,C[j]) = 0 for alli >0, j € Z and T
simple object of A such that FT = 0. Then, C' = 0.

Proof. Assume C' # 0. Take n minimal such that H"(C') # 0 and S simple such that
Hom(S, H*C') # 0. Let ¢ = h_(S) and let T be a simple submodule of F'S. Then,

Hom(E'T, S) ~ Hom(T, F'S) # 0.
So, Homp4)(E'T, C[n]) # 0 and we are done, since F'T' = 0. O

There is an obvious analog of Lemma [.] using Hom(C[j], F'T) with ET = 0. Since E is
also a right adjoint of I, there are similar statements with £ and F' swapped.
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Proposition 5.8. Let A’ be an abelian category and G be a complex of exact functors from A
to A’ that have exact right adjoints. We assume that for any M € A (resp. N € A’), then
G' (M) =0 (resp. G(N) =0) for|r| > 0.

Assume G(E'T) is acyclic for all i > 0 and T simple object of A such that FT = 0. Then,
G(C) is acyclic for all C € Comp®(A).

Proof. Consider the right adjoint complex G¥ to G (cf §£.1.4). We have an isomorphism
HOHlDb(A) (C, G\/G<D)) >~ HOHlDb(_A/) (G(C), G(D))

for any C, D € D’(A). These spaces vanish for C = E'T as in the Proposition. By Lemma
B.7, they vanish for all C. The case C' = D shows that G(D) is 0 in D*(A’). O

Remark 5.9. Let F be the smallest full subcategory of A closed under extensions and direct
summands and containing £°T for all ¢ > 0 and 7T simple object of A such that F'T' = 0. Then,
in general, not every projective object of A is in F (cf the case of &3 and p = 3 in §F.1)). On
the other hand, if the representation Ky(.A) is isotypic, then one shows that every object of A
is a quotient of an object of F and in particular the projective objects of A are in F.

Let V=4 = > veB.ap)<d QU Let A=? be the full Serre subcategory of A of objects whose class
is in V=4,
Lemma [£.3(1) gives the following Proposition.

Proposition 5.10. The weak sly-structure on A restricts to one on A% and induces one on

AJ A,

So, we have a filtration of A as 0 C AS! C ... C A compatible with the weak sly-structure.
It induces the filtration 0 C V<! C ... C V. Some aspects of the study of A can be reduced to
the study of A="/A=""1. This is particularly interesting when V="/V<""1 is a multiple of the
r-dimensional simple module.

5.1.4.  We now investigate simple objects and the effect of EL on them.

Lemma 5.11. Let M be an object of A. Assume that d(S) > r whenever S is a simple subobject
(resp. quotient) of M. Then, d(T) > r whenever T is a simple subobject (resp. quotient) of
Proof. Tt is enough to consider the case where M lies in a weight space by Proposition f.5. Let
T be a simple subobject of ELM. Since Hom(ELT, M) ~ Hom(T, ELM) # 0, there is S a
simple subobject of M that is a composition factor of ELT. Hence, d(S) < d(ELT) < d(T).
The proof for quotients is similar. O

Let C, be the full subcategory of A" with objects M such that whenever S is a simple
submodule or a simple quotient of M, then d(S) = r.

Lemma 5.12. The subcategory C, s stable under E..

Proof. 1t is enough to consider the case where M lies in a single weight space by Proposition
b.3. Let M € C, lie in a single weight space. Let T" be a simple submodule of £, M. By Lemma
B.11, we have d(T) > r. On the other hand, d(T) < d(E+M) < d(M). Hence, d(T) = r.

Similarly, one proves the required property for simple quotients. O
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5.2. Categorifications.
5.2.1.  An sly-categorification is a weak sly-categorification with the extra data of ¢ € k* and
a €k with a #0if ¢ # 1 and of X € End(F) and T € End(E?) such that
[ ] (T+ 1E2) O (T— q]_EQ) = 0
gX1g ifqg#1
Xlg-—-T ifg=1
e X — a is locally nilpotent.

e To(lgX)oT =

Let A and A’ be two sly-categorifications. A morphism of sly-categorifications from A’ to A
is a morphism of weak sly-categorifications (R, (, () such that ' = a, ¢ = ¢ and the following
diagrams commute

¢ C+E EC¢
(5) RE ——= ER RE'E' —> ERE' —> EER
RX’l lXR RT’l lTR

;™ I8 /A )~
RE'——~ ER RE'E' = ERE' 4~ EER

5.2.2.  We define a morphism v, : H, — End(E™) by
TZ- = 1E‘n—i—lT1E‘i—l and XZ- — 1En—iX1Ei—1.

With our assumptions, the H,-module End(E™) (given by left multiplication) is in N,.

Let 7 € {1,sgn}. We put E(™™ = E"cT the image of ¢/ : E™ — E™. Note that the canonical
map E" @y, H,ci = E™ is an isomorphism (cf §8.2.9).

In the context of symmetric groups, the following Lemma is due to Puig. It is an immediate
consequence of Proposition B.3.

Lemma 5.13. The canonical map E™™ Q@ pen CpHy = E™ is an isomorphism. In particular,
E" ~nl- ET" and the functor ET™ is a direct summand of E™.

We denote by E™ one of the two isomorphic functors E(L7)  Esenn),

Using the adjoint pair (E, F'), we obtain a morphism H,, — End(F™)°P? and the definitions
and results above have counterparts for E replaced by F' (cf §E.1.9).

We obtain a structure of sly-categorification on the dual as follows. Put X = X! when
q# 1 (resp. X = —X when ¢ = 1). We choose an adjoint pair (F, E). Using this adjoint
pair, the endomorphisms X of E and T of E? provide endomorphisms of F' and F2. We take
these as the defining endomorphisms for the dual categorification. We define “a” for the dual
categorification as the inverse (resp. the opposite) of a for the original categorification.

Remark 5.14. The scalar a can be shifted : given o« € k* when ¢ # 1 (resp. « € k when
g = 1), then we can define a new categorification by replacing X by aX (resp. by X + alg).
This changes a into aa (resp. a+ a). So, the scalar a can always be adjusted to 1 (resp. to 0).

Remark 5.15. Assume V is a multiple of the simple 2-dimensional sl,-module. Then, a
weak slo-categorification consists in the data of A_; and A; together with inverse equivalences
E: A, > A and F: Ay = A_,. An sly-categorification is the additional data of ¢, a and
X € End(F) ~ Z(A,) with X — a nilpotent.
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Remark 5.16. As soon as V' contains a copy of a simple sl,-module of dimension 3 or more,
then a and ¢ are determined by X and T.

Example 5.17. Take for V' the three dimensional irreducible representation of sly. Let A_5 =
Ay =k and Ay = k[x]/2?. We put A; = Ai-mod. On A_,, define E to be induction A_, — Aj.
On A, F is restriction Ay — Ay and F is restriction Ay — A_,. On A,, then F' is induction
AQ — Ao.

Ind Res

klz]/z?

Res Ind

k k

Let ¢ =1 and a = 0. Let X be the multiplication by x on Res : Ay — A and multiplication
by —z on Ind : A, — Ay. Let T € Endy(k[z]/2?) be the automorphism swapping 1 and
x. This is an sly-categorification of the adjoint representation of sly. The corresponding weak
categorification was constructed in [HueKhd].

Remark 5.18. Take for V' the three dimensional irreducible representation of sly. Let A_o =
Ay = k[z]/2? and Ay = k. We put A; = A;-mod. On A_,, then F is restriction A_» — Aj.
On A, E is induction Ay — A, and F' is induction Ay — A_5. On Ay, then F' is restriction
AQ — Ao.

Res Ind

klz] /2 k klz] /2

Ind Res

This is a weak sly-categorification but not an sly-categorification, since £? : A_, — A, is
(k[x]/2?) ®) —, which is an indecomposable functor.

Remark 5.19. Let A, =k, Ay =k x kand A_, = k. We define E¥ and F' as the restriction
and induction functors in the same way as in Example p.I7. Then, V is the direct sum of
a 3-dimensional simple representation and a 1-dimensional representation. Assume there is
X € End(E) and T € End(FE?) giving an sly-categorification. We have End(FE?) = End(k?)
and X1p = 15X = alg:. But the quotient of Hy(q) by the relation X; = X5 = a is zero ! So,
we have a contradiction (note here it is crucial to exclude the affine Hecke algebra at ¢ = 1).

So, this is a weak sly-categorification but not an sly-categorification (note that we still have
E?’~FE®E).

5.3. Minimal categorification. We introduce here a categorification of the (finite dimen-
sional) simple sl;-modules.

We fix ¢ € k* and a € k with a # 0 if ¢ # 1. LethOandBi:HivnforOSign.

We put A(n)y = Bpgn)2-mod and A(n) = @, B-mod. We put £ = ,_, Indgz+1 and
F=8,., Resngl. Note that the functors Indgj“ = Bj;1 ®p, — and ResBz+1 = Bi1 ®p,,, —
are left and right adjoint.

We have EF(B;) ~ B; ®Bz Bi~i(n—i+1)B; and FE(B;) ~ Biy1 ~ (i+1)(n—1)B; as left
Bi-modules (cf 33). So, (ef — fe)([B]) = (2i —n)[B]. Now, Q& Ko(A(n)x) = QlBrsn)2):
hence ef — fe acts on Ko(.A(n),\) by A. It follows that e and f induce an action of sly on
Ko(A(n)), hence we have a weak sly-categorification.

The image of X, ; in B;;; gives an endomorphism of Ind, Bita by right multiplication on B; ;.

Taking the sum over all 7, we get an endomorphism X of E. Similarly, the image of T;,; in

Bi 5 gives an endomorphism of Indy’ Bit2 and taking the sum over all i, we get an endomorphism
T of E2.
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This provides an sly-categorification. The representation on Ky(A(n)) is the simple (n + 1)-
dimensional sly-module.

5.4. Link with affine Hecke algebras.

5.4.1. The following Proposition generalizes and strengthens results of Kleshchev [KI, KIJ]
in the symmetric groups setting and of Grojnowski and Vazirani [[GrVd] in the context of

cyclotomic Hecke algebras (cf §[.] and §[.2).

Proposition 5.20. Let S be a simple object of A, let n = h,(S) and i < n.
(a) EMS is simple.
(b) The socle and head of E®S are isomorphic to a simple object T of A. We have iso-
morphisms of (A, H;)-bimodules: soc E'S ~hd E'S ~ T ® K.
(¢) The morphism ~;(S) : H; — End(E'S) factors through H;,, and induces an isomorphism
., = End(E'S).

H;
Hi,n ................. o - End(EiS)

(d) We have [EWS] — (M)[T] € V=4T)=L,
The corresponding statements with E replaced by F' and hy(S) by h_(S) hold as well.

Proof. e Let us assume (a) holds. We will show that (b), (c), and (d) follow.

We have E"S ~ n!-T" for some T” simple. So, we have E"S ~T'® R as (A, H,)-bimodules,
where R is a right H,-module in N,,. Since dim R = dim K,,, it follows that R ~ K,,.

We have E""soc EWS ¢ E"EWS ~ T'"® K,c}. Since T'® K,,c} has a simple socle (Lemma
B-0), it follows that E"soc E® S is an indecomposable (A, H,_;)-bimodule. If T'is a non-zero
summand of soc E®S, then E" T # 0 (Lemma [.12). So, T = soc E®¥S is simple. We have
soc 'S ~ T ® R for some H;-module R in N;. Since dim R = 4!, it follows that R ~ K,. The
proof for the head is similar.

The dimension of End(E®S) is at most the multiplicity p of T as a composition factor of
E®S. Since E™~IT # 0, it follows that the dimension of End(E®S) is at most the number of
composition factors of E)E®S. We have E""IE®S ~ (") . T". So, dim End(E®S) < (7)
and dim End(E'S) < (i)(7) = dim H ..

Since ker,(S) is a proper ideal of H,, we have ker~,(S) C n,H,. We have ker;(S) C
H; Nkerv,(S) C H; N (n,H,). So, the canonical map H; — H;, factors through a surjective
map: im¥;(S) — H,,. We deduce that ;(S) is surjective and H,,, — End(E'S). So, (c) holds.
We deduce also that p = (’;) and that if L is a composition factor of E®S with E®~)L £ 0,
then L ~ T. So, (d) holds. Since the simple object hd E®S is not killed by E("~ (Lemma
F-12), we deduce that hd E®)S ~ T. We have now shown (b).

e Let us show that (a) (hence (b), (¢), and (d)) holds when F'S = 0. By Lemma (.3 (3), we
have [E™S] = r[T] for some simple object T and r > 1 integer. Since [F™E™S] = [S], we
have r = 1, so (a) holds.

e Let us now show (a) in general. Let L be a simple quotient of F'")S, where r = h_(S). Since
Hom(S, EM L) ~ Hom(F™S, L) # 0, we deduce that S is isomorphic to a submodule of E) L.
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Since F'IL = 0, we know by (a) that E®EML ~ ("I")T for some simple object T. So, B S ~
mT for some positive integer m. We have Hom(E™ S, T') ~ Hom(S, F™T). Since ET = 0, we
deduce that soc F™T is simple (we use (b) in its “F” version). So, dim Hom(S, F™T) < 1,
hence m = 1 and (a) holds. O

Corollary 5.21. The sly(Q)-module V=% is the sum of the simple submodules of V' of dimension
<d.

Proof. Let S be a simple object of A with r = h_(S). By Proposition (a), T = F"S is
simple. We deduce that S ~ soc E")T by adjunction. Now, Proposition [5.20 (d) shows that
[EOT] — ("9 [S] € y=d®)-1,

We deduce by induction on r that {[E"T]} generates V', where T runs over the isomorphism
classes of simple objects killed by F' and 0 < r < h, (7). The Corollary follows from Lemma
B3, (iil)=(). O
Remark 5.22. Let S be a simple object of A and 7 < hy(S). The action of Z;,, = Z(H,) on
E'S restricts to an action on E®S. Since E'S is a faithful right H,,-module, it follows from
Proposition B.§ that E®S is a faithful Z;,-module. Now, dim End4(E®S) = (+) dim H;,, =
dim Z; ,,, hence the morphism Z;,, — End A(E®S) is an isomorphism.

Let us now continue with the following crucial Lemma whose proof uses some of the ideas of
the proof of Proposition p.20.

Lemma 5.23. Let U be a simple object of A such that FU = 0. Let n = hy(U), i <n, and
B; = H;,,. The composition of n(E'U)®1: F'U ®p, Biy1 — FET'U ®p, B;y1 with the action
map FETU ®p, Biy — FE™U is an isomorphism

E'U ®p, Biyy — FEU.
Proof. By Proposition B.5, it is enough to prove that the map becomes an isomorphism after

. —i-1 5 :
applying — ®g,,, Bit1¢iy1- By (B), we have Biiici, = @, Pintlc¢i,. Consider the
composition

n—i—1
p=go(f®l): EVU® P ka" — FECIU
a=0
. @) I ¥ SRV . , ,
where f: EOU 20, pppey SRS pRGH T and g: FEIU @ @Z;éfl kz® —

FEYU is given by the action on F. We have to prove that ¢ is an isomorphism. We
have [FECDU] = (n — 4)[E@U], hence it suffices to prove that ¢ is injective. In order to
do that, one may restrict ¢ to a map between the socles of the objects (viewed in A). Let
¢q : soc EOU — FEWDU be the restriction of ¢ to the socle of EOU ® ka?. Since soc(EOU)
is simple (Proposition p.2(), the problem is to prove that the maps ¢, for 0 <a <n—i—1
are linearly independent. By adjunction, it is equivalent to prove that the maps

(3) xalsocE(i)U () C[IGi\Gi-H]U (i41)
Y, » Esoc BV U —=*— FEsoc E\U ——— EV""U
are linearly independent.
We have soc E'T'U ~ S ® K;;1 as (A, H;,1)-bimodules, where S = soc EC*DU is simple
Proposition . Consider the right (k[z;41]® H;)-submodule L' = Hom 4(S, soc(E soc E‘U
+
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of L = Homy(S, soc E“T'U). We have H;yy = (H; ® P[Hl])HfH, hence L = L’H-f+1 since L is

(3

a simple right H;,,-module. So, L'c}; = Lel,;, hence soc(Esoc E'U))cl,; = soc EC*DU. In

1
C[Gi+1/ei v
_

particular, the map Esoc EOU L, BOHOT i injective, since Esoc EOU has a simple

socle by Proposition p.20.

lsoc E(Z) U

So, we are left with proving that the maps Fsoc EOU Esoc EWU are linearly
independent, i.e., that the restriction of v1(7T") : Hy — End4(ET) to @Z;é_l kXY is injective,
where T = soc EOU. Let I be the kernel of ,_;(T) : H,_; — End4(E"'T). Then, as in
the proof of Proposition p.20, we have I C n,_;H,_;. So, kery; C H; Nn,_;H,_;, hence the

canonical map @Z;é_l kX® — End4(E™T) is injective (cf () and we are done. O

5.4.2. We fix U a simple object of A such that FU = 0. Let n = h, (U). We put B; = H;,
for 0 <i<n.
The canonical isomorphisms of functors

E(EZU ®B; _) — Ei—HU ®B; — = EH—lU ®Bi+l Bi+1 ®B; —

make the following diagram commutative

Ei+1U®BZ~+1 _
Bi+1-mod A
B¢+1®BiT TE
B;-mod , A
‘ EiU®p,—

The canonical isomorphism of functors from Lemma (.23
E'U ®p, Bis1 ®p,,, — — F(E*'U ®p,,, —)

make the following diagram commutative

Ei+lU®Bi+1 —
Bi+1—m0d A
Bi+1®Bi+1_\L ‘/F
Bl-—mod - A
E'U®B,—

Theorem 5.24. The construction above is a morphism of sly-categorifications Ry : A(n) — A.

Proof. The commutativity of diagram () follows from the very definition of (_ given by Lemma
F.23. The commutativity of the diagram () is obvious. O

Remark 5.25. Let I, be the set of isomorphism classes of simple objects U of A such that
FU =0 and hy(U) = n. We have a morphism of sly-categorifications

> Ry: P Aln)— A
n,UEly n,UEly
that is not an equivalence in general but that induces an isomorphism

EB Q ® Ko(A(n)-proj) = Q ® Ko(A)

n,UEIn
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giving a canonical decomposition of Q ® Ky(A) into simple summands. In that sense, the
categorifications A(n) are minimal.

The following Proposition is clear.

Proposition 5.26. Assume Q ® Ko(A) is a simple sly-module of dimension n+ 1. Let U be
the unique simple object of A with FU = 0.
Then, Ry : A(n) — A is an equivalence of categories if and only if U is projective.

Note that a categorification corresponding to an isotypic representation needs not be isomor-
phic to a sum of minimal categorifications (take for example a trivial sly-representation).

5.5. Decomposition of [E, F].
5.5.1. Let o: EF — FF be given as the composition
EF 225, pppp Y1 FERF 2 PR,
The following gives the categorification of the relation [e, f] = h.

Theorem 5.27. Let A > 0. Then, we have isomorphisms

A—1
o+ (1pXi)on + EFIdy, ®1dF 5 FEId,,
7=0
and
A—1
o+ eo(X'1p) : EFIdy, = FEIdy &1d$7 .
j=0

Proof. By Proposition [p.g, it is enough to check that the maps are isomorphisms after evaluating
the functors at E'U, where ¢ > 0 and U is a simple object of A_y_o; (resp. of Ay_o;) such
that F'U = 0. Thanks to Lemma [.3 and Theorem [.24, we can do this with 4 replaced by a
minimal categorification A(n) and this is the content of Proposition .37 below. O

In the case of cyclotomic Hecke algebras, Vazirani [Va] had shown that the values of the
functors on simple objects are isomorphic.

Corollary 5.28. The functors E and F induce an action of sly on the Grothendieck group of
A, viewed as an additive category.

(¢—Da ifqg#1

5.5.2. We put v = {1 £ ]
if ¢ =

Zj§d1<---<di,j7c§ifl Tgy Ty, ife<i—j
and m;;(c) =141 ifc=1—7
0 ifc>1—j.
Lemma 5.29. Let 7 <1 and ¢ > 0. We have
TiTjir -+ - Ticaxf = y"myj(c)  (mod myH;).
In particular, T;Tjyq - - T € myH; if ¢ > 11— j.
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Proof. By (), we have

Tigaf — ol Tiy = { ¢— V(@i +a) (o) +aie+ - +ai) ifg#l

R T if g = 1.
Hence
TiTj - Ticaa = TiTj - - Tiowf Ty + 9T T4 -+ - Tipay~]  (mod m;H;).
Since m;;(c) = m;_1 j(c — 1) +m;_1 j(c)T;—1, the Lemma follows by induction. O

Lemma 5.30. Let j <i, ¢c>1 and e =inf(c —1,i — j). Then, we have

TiTjg - Tiwg =TT - Tiaai 15 =

e—1_.c—e

a (Yeafy T mi(e) + T e ime (e — 1) + -+ afymg(0)  (mod myHiy)

where o = {<1 — )(xi41 + a) z:fq #1
- ifq=1.

Proof. We have
TjTjr - Taf =TTy - Tiaai T = Ty - Tia (a7 4+ 2y))

and the result follows from Lemma [.29. O
The following is a Mackey decomposition for the algebras B; = H; ,,.

Proposition 5.31. Let i < n/2. Then, we have an isomorphism of (B;, B;)-bimodules

~

B; ®p, , B; ® B?n_% — B
n—21
(b®V, by, byni) — DTV + > b X7
j=1
Let now i > n/2. Then, we have an isomorphism of (B;, B;)-bimodules
B, ®p, , B; = Biy1 & Bi@%*n
b b — (BT, b, bX0, ..., bX 2 1),
Proof. Let us consider the first map. We know already that both sides are free B;-modules of
the same rank (cf §6.9), hence it is enough to show surjectivity.
Let M = (P;/m;) ®p, B;y1. This is a right B;-module quotient of B;;1. Let L be the right
B;-submodule of M generated by B;T; + Z;.:gz_l X, k. The first isomorphism will follow from
the proof that M = L. From now on, all elements are viewed in M.

We have

n—i—1

n—i __ n—i—1+75 J
Tig1 = E (—1) in—l—len*i*j(xileu ey X))
Jj=0
Given r > 2 and j <n —i— 1, we have
€n7i7j<xr7 e Jn) = €n7ifj(£17r—1, Lpy e ,SUn) - xrflenfifjfl(xra e 7l’n)-

Since e,,—;—;(z1,...,2,) =0, it follows that e,_;_;(x;41,...,2,) = 0. So, we have :E::ff = 0.
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Take 1 <r <. Then, r <n — i and we have (Lemma [.30)

n—i
Crz‘frqtlcrif?d& T Crzx@ =
n—i rlnzr r2nz7"+1 n—i—1
Tipt Lirr - T+ ( Tiv1 T T M1 (1 —2) + -+ T mi,i—r+1(0)) .
So,
r—1 e i—r § n—i—r+1+j
ﬂfr+1nfr+2 e ESL’ + a”y z+1 € H—l H
j=0

Since 27} = 0, we deduce by induction on r that 2/ ™" € L for 1 <r <. So, 2., € L for all
a > 0. We deduce from Lemma [.3( that z{,,7;---T; € L for all 1 < j < i and a > 0. Since

Biv1 = @ocucn—i-tweisin/6)] Pi,nx?HTle-f (cf §B:3.)), we obtain finally M = L and we are
done.

Let us now consider the second isomorphism. Let us fix an adjunction (F, E) with unit 7’
and counit ¢ and consider the dual categorification A’ of A(n). We denote by X’ and T” its
defining endomorphisms. Define o’ : FE 12— I prrE PYE prre B g

Let G = FE and H = EF. There is an adjoint pair (E'F, EF) with counit ey : EFEF 225,
EF 5 1d and an adjoint pair (FE, FE) with unit ng : Id - FE —=» PE, FEFE. Consider the
canonical isomorphism

¢ :Hom(FE,EF) =Hom(G, H) = Hom(H",G") = Hom(EF, FE)
corresponding to these adjunctions. The commutativity of the following diagram shows that
(o) =o0.
EF

nEFl/
! FEnFEEF

FyEEF
FEEF FEFEEF FEEFFEEF

Fn'EEF EET'EEF
FEnWFEEF FTFFEEF

FEFEEF FEEFFEEF — FEEFFEEF

FEEF
lFEe’EF \LFEEF.E’EF FEEFeEF
FEYEF
FEEF FEEFEF FEEFEF
\ \LFEEé/F FEEEIF

FEEF

FEEF — FEEF

FEe

FE

Similarly, using the canonical adjoint pair (Id,Id), we get a canonical isomorphism
(' : Hom(Id, EF) = Hom(Id, H) = Hom(H",Id) = Hom(EF,1d).
We have ¢'((1p(X')) o) = £ 0 (X715).
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We have shown that the adjoint to
A-1
o+ eo(X'1p) : EFldy, = FEId,, @1d%"
=0
is

o'+ Z(lF,(X')J‘) onf © E'F'ldy, @1d§* — F'E'ldy

One checks easily that the first map of the Proposition remains an isomorphism if X;;; is
replaced by X,+1 Since the categorification A’ is isomorphic to A(n), this shows that the map

o+ Zj 0(1F/( ’)7) o is an isomorphism, hence o + Z o e 0 (X71p) is an isomorphism as
well. 0

5.5.3. Let us fix a family {M), € A, },. Let M, be the full subcategory of A, whose objects
are finite direct sums of direct summands of M. We assume that M = @, M, is stable under
E and F.

Let A\ = End4(M,), A\, = A\-mod and A" = @, A}. We put

= @ Homu(Mys0, EMy) @4 —: A — A
A

and F' = @D Homu(M_o, FM)) @4, —: A — A,
A

We have Hom (M) o, EM)) ~ Homy(F Mo, My) and FM,,o € M,. It follows that
Hom4(My42, EM,) is a projective right A)-module, so E’ is an exact functor. Similarly, F” is
an exact functor. Also, they send projectives to projectives.

Consider the functor R = @, My®a; — : A" — A. Its restriction to A’-proj is an equivalence

A’-proj = M. So, the functor G — RG from the category of exact functors A’ — A’ sending
projectives to projectives to the category of functors A" — A is fully faithful.

The canonical map
Mtz @ay,, Homu (M2, EMy) = EMy\, m® [+ f(m)
is an isomorphism, since EM) € Mj,». The induced map
Mz @, Homa(Myyo, EMy) @4, U = E(My @4, U), m@ f @u— E(m' > m' @u)(f(m))

for U € A)\-mod is an isomorphism, since it is an isomorphism for U = A).

We obtain an isomorphism RE’ = ER and we construct similarly an isomorphism RF’ =
FR.

Let X’ (resp. T’) be the inverse image of X idg (resp. Tidg) via the canonical isomor-
phisms End(E’) = End(RE') = End(ER) (resp. End(E?) = End(RE?) = End(ERE') =
End(E?R)).

Proceeding similarly, the adjoint pair (E, F') gives an adjoint pair (E’, F’) and the functor
F' is isomorphic to a left adjoint of E’.

Theorem 5.32. The data above defines an sly-categorification on A’ and a morphism of sly-
categorifications A’ — A.
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Proof. The sly-relations in Ky(A’-proj) hold thanks to Theorem applied to the restriction
of functors to M. The local finiteness follows from the case of A. The commutativity of
the diagrams of Lemma [.J follows immediately from the construction of the adjoint pair
(E', F'). This shows that A’ is a weak categorification and that R defines a morphism of weak
categorifications.

By construction, this weak categorification is a categorification and the morphism of weak
categorifications is actually a morphism of categorifications. U

Corollary 5.33. Let M € A. Then, there exists a finite dimensional algebra A, an sly-
categorification on A-mod and a morphism of sly-categorifications R : A-mod — A such that
M is a direct summand of R(A).

Proof. Let N = @, ;5o E'F/M, a finite sum. Let Ny be the projection of N on A,. Now,
we can apply the constructions and results above, the stability being provided by Corollary
O

6. CATEGORIFICATION OF THE REFLECTION

6.1. Rickard’s complexes. Let A € Z. We construct a complex of functors
O, : Comp(A_,) — Comp(A,),

following Rickard [Ridl] (originally, for blocks of symmetric groups).
We denote by (©,)™" the restriction of EG#" MMM t6 A_y for r, A +r > 0 and we put
(©,)™" = 0 otherwise.
Consider the map
[ EMTET = prrl gt IR et prot
We have EEsmATr) — pAtrsen &g C peenM =1 Band similarly FO7) C FRGL=1D

[Gatr/Satn] [22+7] =
hence f restricts to a map

A" - E(sgn,)\—l—r)F(l,r) N E(sgn,)\-l—r—l)F(l,r—l).
We put
Oy = — (0y)7 L5 (0 = ...

Lemma 6.1. ©, is a complex. The map [©,] : V_y = Ko(A_)) — Vi = Ko(A)) coincides with
the action of s.

Proof. The map d*~"d"" is the restriction of 1 grsr 2891 gz, Where &, : EEFF 2225, B 2 1d.
Since ¥, = c?giw /e, G2 and cl = céc[l@\er], it follows that
E(sgn,)\—l—r)F(l,r) C E)\+T_2E(Sgn’2)F(1’2)FT_Q.
So, in order to prove that d'="d~" = 0, it is enough to show that the composition
E2F? N g g
vanishes, where ¢;*" acts on £? and ¢} acts on F'2. This composition is equal to the composition

(3" eh)1p2 &2 :
E?F? ——5 E?F? =% 1d, where ¢;*"c) acts now on E?. We are done, since ¢;*"c = 0.
The last statement is given by Lemma 3. O
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Remark 6.2. Let M € A_,. Let | = max{r > 0|/F"M # 0}, a finite integer. Then,
(©))7Y(M) = 0 when i ¢ [max(0,—\), ].

6.2. Derived equivalence from the simple reflection. Let © = P, O,.
The following Lemma follows easily from Lemma [.3.

Lemma 6.3. Let R : A — A be a morphism of sly-categorifications. Then, there is an
isomorphism of complexes of functors OR = RO'.

We can now state our main Theorem

Theorem 6.4. The complex of functors © induces a self-equivalence of K*(A) and of D°(A)
and induces by restriction equivalences K°(A_y) = K°(A\) and D*(A_y) = D°(A,). Further-
more, [O] = s.

Remark 6.5. In the context of symmetric groups, the invertibility of @, when the complex
has only one (resp. two) non-zero term is due to Scopes [Scd] (resp. Rickard [Ril]).

Proof of Theorem [6.4. Since E and F' have right adjoints, there is a complex of functors O
that gives a right adjoint to ©, (cf §EI4). Let € : ©,07 — Id be the counit of adjunction and
Z its cone. So, Z is a complex of exact functors A_, — A,.

Pick U € A with FU = 0 and E'U € A_y and put n = h(U). The fully faithful functor
Ry : K°(A(n)-proj) — K°(A) commutes with © (Lemma [.3), hence commutes with ©) and
with Z (cf §f.1.6). By Theorem p.6, we have Z(FE'U) = 0. Now, Proposition p.§ shows that
Z(M)=0in D"(A_,) for all M € D°(A_,). So, ¢ is an isomorphism in D(A_,). One shows
similarly that ©) has a left inverse in D*(A_,).

Let us now prove that ¢ is still an isomorphism in K*(A_y). Let M € Comp®(A_,). By Corol-
lary p.33, there is a finite dimensional k-algebra A, an sl,-categorification on A" = A-mod and a
morphism of sly-categorifications R : A" — A such that the terms of M are direct summands of
R(A). The functor R induces a fully faithful triangulated functor R’ : K*(A’-proj) — K®°(A).
The derived category case of the Theorem shows that ¢’ is an isomorphism in K*(A’ ,-proj) —
Db(A" ). As above, we deduce that e is an isomorphism in the image of R, hence (M) is

an isomorphism in K°(A_,). One proceeds similarly to show that ©) has a left inverse in
KP(AL)). O

6.3. Equivalences for the minimal categorification.

Theorem 6.6. Let n > 0 and A = A(n) be the minimal categorification. Fiz X\ > 0 and

let | = ”—5/\ The homology of the complex of functors ©) is concentrated in degree —l and

H7'O, : A_\ = A, is an equivalence.

Proof. In order to show that the homology of ©, is concentrated in degree —I, it suffices to
show that ©,(Bjc}) is homotopy equivalent to a complex concentrated in degree —I, since Byc;
is a progenerator for Bi-mod. This is equivalent to the property that H*(C') = 0 for x # —I,
where C = ¢*" H,, ;®p5, ,0x(Bicl), since ¢, H,,_; is the unique simple right B,,_;-module and

C"=0forr >I.
We have

—r __ _sgn sgn 1 1
C =, Hni @B, By i1 ®Bi, Cieri1, B @B, Bicy-
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Lemma B.7 gives an isomorphism
—r ~ sen [ & 1
C 5 Hy 1 ®p,, BaiC it ® D mu(mie, )k
neP(rn—1)

Proposition B.3 and Lemma B.4 give isomorphisms

al aj—p ~ S 6[l—r+1,n—l]
@ Ty Xy, k z A T(Pnfl ®Penl—l k:)
0<a1 < <aj—r<n—l "

&i_r ( POli—r+1,n—1] ~  sgn 7 sgn 1
A <Pn—l ®Pejll_l k) — Cn—lHn*l ®Bn—l anlc[l—r-i-l,n—l}c[l,l*?’}

—s ngn
y n—ly

and these induce isomorphisms £E~" —— D~" —= C~", where
o U

E T = @ :L'(lll gj‘?i_rrk‘(@ @ mu(:pl_r+1,...,l‘l)k

0<ai<--<a;_,.<n—l neP(rn—1)

n—I

., L Siriim
and D" = ASi-r(p trttnl ®Pfﬁ_l k) ® EB My (T1—pg1, - .-, Tk

neP(rn—1)

Let pe P(r,n—1)and 0 < ay < --- < a;—, < n—I. Given a positive integer b, we write b <
when b appears in p and we denote then by p\ b the partition obtained from p by removing one
instance of b. We have m,(z;_y11,...,2;) = wa xf’frﬂmﬂ\b(xl_,urg, ..., xy). It follows that

—r_j—r/_a1 aj—r _ —r+1 ay aj—r b
da"y ("7 ® mﬂ) = <§ Tyl W @ mu\b> .

b=<pu
Assume b = n — [. Since 2]\, € n, Py, it follows that x{*-- 2772} ., is 0 in
Sl rt2m :

ASt=rsr(p izt ® s, k). One gets the same conclusion when b € {ai, ..., a,}.

So,

/

—r =T =T a1 aj_p —g=r4+1  —r41 al A _ry1

A"~ o7 (@)t L ©@my) =TT > sgn(op)ey -2, 50 @ myne

b<“7b€{a17"'7al77‘7nil}

where o, € &;_,, is the permutation such that, putting a;_,,; = b and a;» = G, (j), We have
ay <ah <o <ap_y,.

Let L = k™!, with canonical basis {ei}1<i<n—1. The Koszul complex K of L is a bigraded
k-vector space given by KP? = APL ® S?L, with a differential of bidegree (—1,1) given by

p
(eal Ce eap) R x— Z<_1)Z+p+1(€a1 e eaifleazkrl Ce eap) ® €a; T-
i=1

Its dual Homy (K, k) is isomorphic to J defined as follows. We put J»4 = AP(L*) ® SI(L*).
Let {fi} be the dual basis of L* and f, = fuq) - fuq) € SUL*¥) for p € P(q,n —1). Then, the
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differential d; : JP? — JPtL9471 ig given by

(fa1"'fap)®fu'_> Z (_1)i+p(fa1"'faifbfai+1"'fap)®fu\b-

b<p,a1<<a;<b<a;41<-<ap

The homology of J is concentrated in bidegree (0,0) and isomorphic to k. Note that J*49
is a graded right A(L*)-module, with action given by right multiplication. This provides J
with the structure of a complex of free graded A(L*)-modules (the degree —¢q term is J*9),
hence of free graded k[f,_]/(f> ;)-modules by restriction. So, the (—g)-th homology group
of J ®pr, 4l (72, k is a one-dimensional graded k-vector space which is in degree q. The
complexes of vector spaces J @y J(s2_ k and J fn_ are isomorphic, with a shift by one
in the grading. The complex Jf,_; decomposes as the direct sum (over i) of the complexes
@D, A (L*) fat ® SY(L*) and the cohomology of such a complex is concentrated in degree —i.

We have an isomorphism

E7" 5 (ALY fol @ STLY C JITLT g0 T @my = (fay e fa faet) © fu

This induces an isomorphism between E and the the subcomplex @ (A""L*)f,_; ® S"L* of
JiH#+L=* Tt follows that the homology of E is concentrated in degree —l.

The complex of functors ©_, is given by tensor product by a bounded complex of (B,,_;, B)-
bimodules which are projective as B,_;-modules and as B;-modules. The homology of that
complex is concentrated in the lowest degree where the complex has a non zero component,
hence the homology M is still projective as a B, _;-module and as a Bj-module. Lemma
shows that M ®p, — sends the unique simple Bj-module to the unique simple B,,_;-module. By
Morita theory, M induces an equivalence. O

7. EXAMPLES

In this section §ff, the field k& will always be assumed to be big enough so that the simple
modules considered are absolutely simple.

In most of our examples, sly-categorifications are constructed in families, using the following
recipe. We start with left and right adjoint functors £ and F' on an abelian category A, together
with X € End(F) and T € End(E?) satisfying the defining relations of (possibly degenerate)
affine Hecke algebras. We obtain for each a € k (with a # 0 if ¢ # 1) an sly-categorification on
A given by E = E, and F = F,, the generalised a-cigenspaces of X acting on £ and F. While
we need to check in each example that E and F' do indeed give an action of sly on Ky(.A), it is
automatic that X and T restrict to endomorphisms of £ and E? with the desired properties.
That T restricts is a consequence of the identity (a special case of (1))

Tl(XQ — G,)N — (X1 — a)NT1

_ @ =1)X[(Xi —a)" T+ (X —a)V (X —a) + -+ (X — )V i g # L
(X1 —a) " 1+ (X —a)V 2 Xy —a)+ -+ (X —a)V ! if ¢ = 1.

in Hy(q).

7.1. Symmetric groups.
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7.1.1. Let p be a prime number and k& = F,. The quotient of H,(1) by the ideal generated
by X is the group algebra kS,,. The images of T; and X; in kG,, are s; = (7,7 + 1) and the
Jucys-Murphy element L; = (1,7) + (2,4) +--- + (i — 1,4).

Let a € k. Given M a k&,-module, we denote by F,, (M) the generalized a-eigenspace
of X,. This is a £k&,,_;-module. We have a decomposition ReskG" = @aek F, . There is

a corresponding decomposition Indken = @aek E, n, where E,, is left and right adjoint to
F,,. We put E, @nzl E,, and F, = 69@1 Fop.
Recall the following classical result [CLT].

Theorem 7.1. The functors E, and F, for a € F, give rise to an action of the affine Lie
algebra 5A[p on P, Ko(kS,-mod).

The decomposition of Ko(k&,-mod) in blocks coincides with its decomposition in weight
spaces.

Two blocks of symmetric groups have the same weight if and only if they are in the same
orbit under the adjoint action of the affine Weyl group.

In particular for each a € F, the functors E, and F, give a weak sly-categorification on
A=, kS,-mod.

We denote by X the endomorphism of E, given on FE,, by right multiplication by L,
(on the (k&,, k&, _1)-bimodule k&,,). We denote by T the endomorphism of E? given on
EonFEqn—1 by right multiplication by s, (on the (k&,, k&,,_2)-bimodule £&,,). This gives an
sly-categorification on A (here, ¢ = 1).

7.1.2.

Theorem 7.2. Let R =k or Z,. Let A and B be two blocks of symmetric groups over R with
isomorphic defect groups. Then, A and B are splendidly Rickard equivalent (in particular, they
are derived equivalent).

Proof. Two blocks of symmetric groups over k have isomorphic defect groups if and only if
they have equal weights (cf §7.1.3 below). By Theorem [1], there is a sequence of blocks
Ag = A Ay, ..., A, = B such that A; is the image of A; ; by some simple reflection o,,; of
the affine Weyl group. By Theorem [6.4, the complex of functors © associated with a = a;
induces a self-equivalence of K*(A). It restricts to a splendid Rickard equivalence between A;
and A; ;. By composing these equivalences, we obtain a splendid Rickard equivalence between
A and B (note that the composition of splendid equivalences can easily be seen to be splendid,

cf eg [Rou?, Lemma 2.6]).

The constructions of £ and F' lift uniquely to Z, Indgi";g: = Docr E,, Resé“’;g"
@aek Fa, where F, Rz, )k; = F,, where F, Rz, )k = F and E, and F,, are left and right adjoint.
We denote by T the endomorphism of E2 given on Ea nEa n—1 by the action of s,_;.

The construction of © in §5.]) lifts to a complex © of functors on A = D, >0 Zy)S,-mod.
By , end of proof of Theorem 5.2|, the lift O of © is a splendid self Rickard_equivalence of
D(A) and we conclude as before. O

Remark 7.3. The equivalence depends on the choice of a sequence of simple reflections whose
product sends one block to the other. If, as expected, the categorifications of the simple
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reflections give rise to a braid group action on the derived category of @, ., k&,-mod, then
one can choose the canonical lifting of the affine Weyl group element in the braid group to get
a canonical equivalence.

Remark 7.4. Theorem [7.d gives isomorphisms between Grothendieck groups of the blocks
(taken over Q) satisfying certain arithmetical properties (perfect isometries or even isotypies).
These arithmetical properties were shown already by Enguehard [[En].

Remark 7.5. Two blocks of symmetric groups over k have isomorphic defect groups if and
only if they have the same number of simple modules, up to the exception of blocks of weights
0 and 1 for p = 2 — note that a block of weight 0 is simple whereas a block of weight 1 is
not simple, so two such blocks are not derived equivalent. So, one can restate Theorem [[.9 as
follows :

Let A and B be two blocks of symmetric groups over k. Then, A and B are derived equivalent
if and only if they have isomorphic defect groups. Assume A and B are not simple if p = 2.
Then, A and B are derived equivalent if and only if rank Ky(A) = rank Ky(B).

We can now deduce a proof of Broué’s abelian defect group conjecture for blocks of symmetric
groups :

Theorem 7.6. Let A be a block of a symmetric group G over Z,y, D a defect group and B the
corresponding block of No(D). If D is abelian, then A and B are splendidly Rickard equivalent.

Proof. By [ChK{], there is a block A" of a symmetric group which is splendidly Morita equivalent
to the principal block of Z,)(&,16,,), where w is the weight of A. We have a splendid Rickard
equivalence between the principal block of Z, &, and Z,) N, where N is the normalizer of
a Sylow p-subgroup of &, by [Rou?, Theorem 1.1]. By [Mg, Theorem 4.3] (cf also [Rou3,
Lemma 2.8] for the Rickard /derived equivalence part), we deduce a splendid Rickard equivalence
between the principal blocks of Z) (6,1 6,,) and Z,)(N16,,). Now, we have an isomorphism
B ~Z)(N16,)® By, where By is a matrix algebra over Z,), hence there is a splendid Morita
equivalence between B and Z,)(N1&,,). So, we obtain a splendid Rickard equivalence between
B and A’.

By Theorem [7.9, we have a splendid Rickard equivalence between A and A’ and the Theorem
follows. O

Remark 7.7. The existence of an isotypy between A and B in Theorem [(.§ was known by
[Roul].

7.1.3. Let us analyze more precisely the categorification.

Given A a partition of m, we denote by |A| = m the size of A\. Let k be a p-core and n
an integer such that p|(n — |k|) and n > |k|. We denote by b, the corresponding block of
kS,, (the irreducible characters of that block are associated to the partitions having k as their

"_TM is the weight of the block (this notion of weight is not to be confused
with the weights relative to Lie algebra actions).

Let X be a partition with p-core k and X a partition obtained from A by adding an a-node.
Then, the p-core of A" depends only on x and a and we denote it by e,(x). Similarly, we define

fa(K) by removing an a-node.

p-core). The integer
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We will freely identify a functor M ® — with the bimodule M. We have

(6) Ea,n-l—l = @ bea(n),nqtlkgn—l—lbm,n

where k runs over the p-cores such that |k| < n, |k] =n (mod p) and |e, (k)| < n + 1.

Let b, 1,0k, 941, - - -5 s, 140 be a chain of blocks with |fo(k_r)| > 1 =1, |eq(kr)| > 1 +7r+1
and f,(kj) = K;_o.

Put n;, =1+ (i —r)/2 and B; = kG,,,by, n, for —r <i <r and i=r (mod 2).

Let A = ), B;-mod. The action of £ = E, and F' = F, on Ky(A) gives a representation of
sly. This gives an sly-categorification (here, ¢ = 1).

The complex of functors © restricts to a splendid Rickard equivalence between B; and B_;.

Let us recall some results of the local block theory of symmetric groups (cf [Pull] or [Bi, §2]).

Let P be a p-subgroup of &,,. Up to conjugacy, we can assume [1,n]” = [np + 1, n] for some

integer np (we call such a P a standard p-subgroup). Then, Cs,(P) = H X G, ,11,, Where
H = Cs, ,(P). The algebra kH has a unique block.

Given G a finite group and P a p-subgroup of G, we denote by brp : (kG)Y — kCq(P) the
Brauer morphism (restriction of the morphism of k-vector spaces kG — kCq(P) which is the
identity on Cg(P) and 0 on G — Cg(P)). We denote by Brp : kG-mod — kCq(P)-mod the
Brauer functor given by M — M”/(37,_p Try, M@), where Trj(z) = > gersq 9(@).

We will use the following result of Puig and Marichal
Theorem 7.8. We have

1 X bfe,n—np Zf %_‘Kl S ZZO
0 otherwise.

brP(bn,n) = {

Note in particular that a standard p-subgroup P is a defect group of b, ,, if and only if P is
a Sylow p-subgroup of &,,_ .. In particular, two blocks of symmetric groups have isomorphic
defect groups if and only if they have equal weights.

So, we deduce from (fj) and Theorem [-§ :
Lemma 7.9. We have an isomorphism of (kH ® kS,_pnp1:), (kH @ kS, ,—1))-bimodules
BrAP<Ea,n+i e Ea,n+1Ea,n) ; kH X Ea,nfanri T Ea,nfnpquEa,nfnp-

For i =1, it is compatible with the action of T'.
Let P be a non-trivial standard p-subgroup of &,,_,. If brp(bs, »,) is not 0, then

BrAP (bf@—mn—i@bmmi) ~kH ® bf@—mn—i—nP@bf%m—nP'

Note that this Lemma permits to deduce a proof of the Rickard equivalence in Theorem [7-3
from that of the derived equivalence, by induction on the size of the defect group : By induction,
b m_i—npObs, ni—np induces a Rickard equivalence. Now, © induces a derived equivalence, so,
it follows from Theorem below that © induces a Rickard equivalence between B; and B_;.

If a splendid complex induces local derived equivalences, then it induces a Rickard equivalence
[Roud), Theorem 5.6] (in a more general version, but whose proof extends with no modification) :
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Theorem 7.10. Let G be a finite group, b a block of kG and D a defect group of b. We assume
b is of principal type, i.e., brp(b) is a block of kCq(D). Let H be a subgroup of G containing
D and controlling the fusion of p-subgroups of D. Let ¢ be the block of kH corresponding to b.

Let C be a bounded complex of (kGb, kHc)-bimodules. We assume C' is splendid, i.e., the

components M of C' are direct summands of modules IndgEHo N, where N is a permutation

AD-module.
Assume
e Brap(C) induces a Rickard equivalence between kCq(P)brp(b) and kCy(P)brp(c) for
P a non trivial p-subgroup of D and
e C induces a derived equivalence between kGb and kHc.

Then, C' induces a Rickard equivalence between kGb and kHc.
7.2. Cyclotomic Hecke algebras.

7.2.1.  We consider here the non-degenerate case ¢ # 1. We fix vq,...,v5 € kK*.

We denote by H, = H,(v,q) the quotient of H,(q) by the ideal generated by (X; —
v1) -+ (X1 —vg). This is the Hecke algebra of the complex reflection group G(d, 1,n) (cf e.g.
[Ar3, §13.1)).

The algebra H,, is free over k with basis {X{* -+ X2 Ty }o<a;<dwes, [ArKJ. In particular
H,_1 embeds as a subalgebra of H,,, and H, is free as a left and as a right H,,_;-module, for
the multiplication action. The algebra H,, is symmetric [MalMaf].

7.2.2. Let a € k*. Given M an H,-module, we denote by F, ,M the generalized a-eigenspace
of X,. This is an H,,_;-module. We have a decomposition ResHZ_1 = @aekx F, . There is

a corresponding decomposition Ind%’;_l = @aekx E, ,, where E,, is left and right adjoint to
Fon. Weput E, =@@,o; Eun and F, = D,,o; Fun-

Now fix a € k*. The functors E = E, and F = F, give an action of sl on @, Ko(H,-mod)
in which the classes of simple modules are weight vectors [Ard, Theorem 12.5] (only the case
where each parameter if a power of ¢ is considered there, but the proof extends immediately
to our more general setting). We obtain an sl,-categorification on @, -, H,-mod, where the
endomorphism X of E is given on E,, by right multiplication by X,,, and the endomorphism
T of E? is given on E,, F,,_1 by right multiplication by 7}, ;.

Remark 7.11. Let e be the multiplicative order of ¢ in k*. Fix ag € £~ and let I = {¢™ay |
m € Z}. Then the functors E, and F, for a € I define an action of sl, on ®n20 Ko(H,-mod).

7.2.3. Consider here the case d = 1. Then, H,, = H,(1,q) is the Hecke algebra of &,,. Let
e be the multiplicative order of ¢ in k. We have a notion of weight of a block as in §f.1.1],
replacing p by e in the definitions.

We obtain a g-analog of Theorem [7.2:

Theorem 7.12. Assume d = 1. Let A be a block of H,, and B a block of H,,. Then, A and B
are derived equivalent if and only they are Rickard equivalent if and only if they have the same
weight.

Remark 7.13. All of the constructions and results of §7.9 hold for degenerate cyclotomic
Hecke algebras as well, under the assumption that they are symmetric algebras (which should
be provable along the lines of [MalMaf)).
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7.3. General linear groups over a finite field.

7.3.1. Let ¢ be a prime power, n > 0 and G,, = GL,(q). We assume that k£ has characteristic
¢>0and lfq(q —1). Let A, = kG,b, be the sum of the unipotent blocks of kG,
Given H a finite group, we put ey = ‘—él > nem b We denote by ‘g the transpose of a matrix
g.
We denote by V,, the subgroup of upper triangular matrices of GG,, with diagonal coefficients
1 and whose off-diagonal coefficients vanish outside the n-th column. We denote by D,, the
subgroup of G,, of diagonal matrices with diagonal entries 1 except the (n,n)-th one.

1 * 1
1 = 1
1 *
Let i« < n. We view G; as a subgroup of G,, via the first ¢ coordinates.
We put
Ei,n = ane(Vn><1~~~><1V1-+1)><1(D1-+1><~~~><Dn) ®kG’i — Ai—mod — An—mod
and E,n = e(vn>4...>4Vi+1)>4([)i+1X...XD")/{?Gn ®an — An—mod — Ai—mod .

These functors are canonically left and right adjoint. Furthermore, there are canonical isomor-
phisms E;, o F; ; = E;,, and F; o F;,, = F;,, fori < j <n.

Let A=, Av-mod, £ =,oq Enni1 and F =@, og Funt1

We denote by T the endomorphism of F given on E,_s,, by right multiplication by

A

Th-1 = qev,v,_ D, D, (N — 1,n)ev, v, 1D, 1D,

We denote by X the endomorphism of E? given on E,_1, by right multiplication by

X, =q¢" ey, p.evev.p,.
Lemma 7.14. We have
(1T)o (T1g)o (1gT) = (T1g) o (1gT) o (T1g), (T +1g2)o (T —qlgz) =10
and To(1gX)oT =¢X1g.
Proof. The first statements involving only 7”’s are the classical results of Iwahori.

Let U be the subgroup of GG, with diagonal coefficients 1 and whose off-diagonal coefficients
vanish except the (n,n — 1)-th. We have

7 % 7 n
TananlTnfl =dq eVnVn_1Dn_1Dn€U<n - 17 'n')etVn—l (n - 17 n)eUeVn—IVnDn—an

_.n _ ¥
= 4" €V, V1 Dp_1Dn €tV €V Vo1 D1 Dy = Q€Vys_1 Dy X1n€Vi_1 Dp_y

and this induces the same endomorphism of F,_5, as an. ]

Lemma [(.14 shows that we have a morphism H,(q) — End(FE,) = Endxg, (kG,/B,,) which
sends T; to the endomorphism given by right multiplication by gep, (i — 1,7)ep, and X; to the
identity, where B, is the subgroup of G,, of upper triangular matrices (cf § p.2.9). The classical
result of Iwahori states that the restriction of this morphism to H/ is an isomorphism. This
gives us a surjective morphism p : H,, — HJ whose restriction to HJ is the identity. Since X
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maps to 1 in End(E},,) and the quotient of H,, by X; —1 is isomorphic to HJ, it follows that p is
the canonical map H,, — HZ. In particular, the image of X; is (up to an affine transformation)
a Jucys-Murphy element :

p(X)=¢" Ty T Tima =14 ¢ (g = 1) (T + qTop + -+ ¢ Tiz1) -

We put R, = Homyg, (kGrep,, —) = ep, kG, @rg, — : Ap-mod — HJ/-mod. The multiplica-
tion maps
GBZ.I{JG,‘ QkG; €Vyy--Vip1 Dp-Diy1 kG, — ep, kG,
and
eBnaneBn ®€BikGi€Bi eBikGi — eBnanevn”"/i+1Dn”'Di+1
are isomorphisms. They induce isomorphisms of functors

~ Hf Hf ~
R,F,, — Rest; R, and IndH? R, — R, E; .
1 1

Remark 7.15. The constructions carried out here make sense more generally for finite groups
with a BN-pair and for arbitrary standard parabolic subgroups, the transpose operation corre-
sponding to passing from the unipotent radical of a parabolic subgroup to the unipotent radical
of the opposite parabolic subgroup. This produces a very general kind of “Jucys-Murphy ele-
ment” in Hecke algebras of finite Weyl groups. In type B or C, we should recover the usual
Jucys-Murphy elements.

Given a € k*, let E, be the generalized a-eigenspace of X acting on E.

Lemma 7.16. The action of [E,] and [F,] on @D, 5, Ko(An,-mod) gives a representation of sly.
Furthermore, the classes of simple objects are weight vectors.

Proof. Let O be a complete discrete valuation ring with field of fractions K and residue field
k. We consider the setting above where k is replaced by K. The functor Homgq, (KGnep,, —)
induces an isomorphism from the Grothendieck group L, of the category of unipotent repre-
sentations of K G, to the Grothendieck group of the category of representations of the Hecke
algebra of type G,, with parameter ¢ over K. This isomorphism is compatible with the ac-
tions of E, and F,. Tt follows from §7.2.9 that E, and F, give a representation of sly on
D,,~¢ L» and the class of a simple unipotent representation of KG, is a weight vector. Now,
the decomposition map L, — Ky(A,) is an isomorphism [Jam], Theorem 16.7] and the result
follows. U

So, we have constructed an sly-categorification on €, ., A,-mod and a morphism of sl,-
categorifications @9, -, A,-mod — €D, -, H;-mod.

Remark 7.17. Note that we deduce from this that the blocks of A,, correspond to the blocks
of HY.

7.3.2.  We assume here only that fg. Let O be the ring of integers of a finite extension of Qy
and k be the residue field of O.

Let us recall [FoSri] that the ¢-blocks of GL,(¢) are parametrized by pairs ((s), (B, ..., B;))
where s is a conjugacy class of semi-simple ¢'-elements of GL,(q) and B; is a block of H,,, (¢%),
where Cqr, (g)(s) = GLy, (¢™) X - - - x GL,, (¢%"). Let w; be the e;~weight of the block B;, where
e; is the multiplicative order of ¢% in k*. We define the weight of the block as the family

{(wiadi)}lgigr-
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Theorem 7.18. Let R =k or O. Two blocks of general linear groups over R with same weights
are splendidly Rickard equivalent.

Proof. The results on the local block theory of symmetric groups generalize to unipotent blocks
of general linear groups [Bi, §3] and we conclude as in the proof of Theorem [.J that the
Theorem holds for unipotent blocks.

By [BoRoud], a block of a general linear group is splendidly Rickard equivalent to a unipotent
block of a product GL,, (¢%) x --- x GL,, (¢%) ([BoRoull, Théoréeme B| already provides a
complex with homology only in one degree inducing a Morita equivalence). Such a block is
splendidly Rickard equivalent to the principal block of GLg,u, (%) X - -+ x GLe,4, (¢%") by the
unipotent case of the Theorem. O

Remark 7.19. Assume [|(¢ — 1). Then, k£ GL,(¢) has a unique unipotent block, the principal
block. The number of simple modules for such a block is the number of partitions of n.
Consequently, a unipotent block of GL,(g) is not derived equivalent to a unipotent block of
GL,,(¢q) when n # m.

Theorem 7.20. Let A be a block of a general linear group G over R =k or O, let D be a defect
group and B the corresponding block of Ng(D). If D is abelian, then A and B are splendidly
Rickard equivalent.

Proof. By the result of [BoRoud] stated above, we may assume that A is a unipotent block.
Then we proceed as in the proof of Theorem [/.6, using the fact that there is a unipotent block of
a general linear group with defect group isomorphic to D that is splendidly Morita equivalent
to the principal block of R(GL.(¢) ! &,) for some w > 0, where e is the order of ¢ in k*

[Pu3, P, [Tu]. 0
7.4. Category O.

7.4.1. We construct here sly-categorifications on category O of gl,. In particular we show
that the weak sl,-categorification on singular blocks given by Bernstein, Frenkel and Khovanov
B Khq| is an sl,-categorification.

We denote by h the Cartan subalgebra of diagonal matrices and n the nilpotent algebra of
strictly upper trangular matrices of the complex Lie algebra g = gl,,. We denote by O the BGG
category of finitely generated U(g)-modules that are diagonalisable for h and locally nilpotent
for U(n).

Let {e;;} be the standard basis of g, and let €1, ..., ¢, be the basis of h* dual to ey, ..., €pny.
For each A € h* we denote by Aq,..., A\, the coefficients of \ with respect to e1,...,&,. We
write A\ —, p if there exists j such that \; —j+1=a—1, y;—j+1=aand A\, = p; for i # j.

For each A € h* let M(A) be the Verma module with highest weight A and let L(\) be its
unique irreducible quotient. Recall that M(X) = U(g) ®u() Cx, where b is the subalgebra
of upper-triangular matrices and C, is the one-dimensional b-module on which e; acts as
multiplication by A;.

Let © be the set of maximal ideals of the center Z of U(g). For each 6§ € © denote by Oy the
full subcategory of O consisting of modules annihilated by some power of . The category O
splits as a direct sum of the subcategories Op. Let pr, : O — O denote the projection onto Oy.
Each Verma module belongs to some Op, and M (\) and M (u) belong to the same subcategory
if and only if A and p are in the same orbit in the dot action of the Weyl group of g on h*,



38 JOSEPH CHUANG AND RAPHAEL ROUQUIER

i.e., if and only if (A, Ao —1,..., A\, —n+1) and (u1,p2 —1,..., 4, —n + 1) are in the same
S,-orbit. We write 0 —, 6’ if there exist A\, u € h* such that M(\) € Oy, M(u) € Oy and
A =4 [

Let V' be the natural n-dimensional representation of g. The functor V@ — : O — O
decomposes as a direct sum @, F,, where

E, = EB pry o(V ® —) o pry.
0,0'ce
0—,0'

Each summand FE, has a left and right adjoint

Fom @ yolV* &) opry.
0,60'cO
0—,0"

Let A € b*. We have V@ M(A) =V ® (U(g) ®ue) Cr) ~ U(g) ®up) (V @ C,), and therefore
V ® M(A) has a filtration with quotients isomorphic to the modules M(A +¢;), i = 1,...,n.
Similarly V* ® M(A) has a filtration with quotients isomorphic to the modules M (X — ¢;),
1=1,...,n. It follows that

[EMN]= Y M), [FMA)]= ) [M(w)]

neh* ueh”
A—alb BU—aq A

in Ko(O). Hence
[EaFaM(N)] — [FoEM(N)] = exa[M(N)],
where ¢y, = #{i | \i —i+1=0a} —#{i | \; —i+ 1 =a — 1}. Because the classes of Verma

modules are a basis for Ky(Q), we deduce that for each a € C the functors E, and F, give a
weak sly-categorification on O in which the simple module L(A) has weight c) ,.

7.4.2. Given M a g-module, we have an action map g ® M — M. Let X, € Endy(V ® M)
be the corresponding adjoint map. This defines an endomorphism X of the functor V® —. We
have Xy (v®@m) = Q(v®@m) where Q =" e;; ®ej €g@g.
Define Ty € Endg (V@V@M) by Ty (v@v' @m) = v'@v®@m. This defines an endomorphism
T of the functor V@V ® —.
Lemma 7.21. We have the following equality in Endg(V @V @ M):
Ty o (v ® Xu) = Xvem o T — lveven:

Proof. We have

XveuTy(v@v @m) = Z eV ® eji(v @ m)

ij=1

n n
/ /
= E €V ® e @ m + E €V @V K ejm
i,j=1 4,j=1

=@V @m+ Ty(ly @ Xy)(vev @m).
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The lemma implies that for each | we can define a morphism H;(1) — Endy(V® ® M) by
T, — 197 @ Tyeigy and X; — 197 ® Xyei15y. Jon Brundan has pointed out to us that
this coincides up to shift (cf Remark p.T14) with an action described by Arakawa and Suzuki
[ArSd, §2.2].

7.4.3. We shall now show that X and T restrict to give endomorphisms of the functors E,
and E? which define sl,-categorifications on O. In view of Lemma [.21), it suffices to identify
E, as the generalised a-eigenspace of X acting on V ® —.

To this end we observe that Q = $(6(C) = C®1—-1® CO), where C = Y7 ejje; € Z
is the Casimir element and ¢ : U(g) — U(g) ® U(g) is the comultiplication. Furthermore
C = Yl eh + D icicien(ii = €j5) + D cicjcn €jitij acts on the Verma module M(X) as
multiplication by by = Z?:l N+ e i <n()‘_i_)‘_j)' It follows that €2 stabilizes any g-submodule
of V@ M(\) = L(e;) ® M()\) and that the induced action on any subquotient isomorphic to
M (A+e¢;) is as multiplication by $(baye, —bs, —by) = Ai—i+1. Since VOM(N) = @,cc EM (),
this identifies £, M () as the generalised a-eigenspace of Xj(»). We deduce that for any M € O,
the generalized a-eigenspace of X, is E, M.

Remark 7.22. The canonical adjunction between V ® — and V* ® — is given by the canonical
maps 7 : C = V*@Vande: VR V* - Cov®¢& — £(v). Let Xpy € Endg(V* ® M) and
Ty € Endy(V* @ V* @ M) be the induced endomorphisms (cf §L.1.9). Then Xy (¢ ® m) =
(=2 =n)(p@m) and Ty (e ® ¢’ @m) =¢' @ p @ m.

7.5. Rational representations.

7.5.1. The construction of sly-categorifications in §f.4 works, more or less in the same way, on
the category G-mod of finite-dimensional rational representations of G = GL,(k), where k is
an algebraically closed field of characteristic p > 0.

Denote by &X' the character group of the subgroup of diagonal matrices in G. We identify
X with Z" via the isomorphism sending (A1,...,A,) € Z" to A = >, \ie; € X, where ¢;
is defined by ¢;(diag(t1,...,t,)) = t;. This identifies the set Xy of dominant weights with
{ A1y ) €ZM | Ay > ... > A\, ). Foreach A € X, let L(\) be the unique simple G-module
with highest weight .

Let B be the Borel subgroup of upper triangular matrices in G. For each A € X, the cohomol-
ogy groups H*(\) of the associated line bundle on GG/ B are objects of G-mod. The alternating
sums x(A) = > ..o ch(H (X)) € Z[X] span the image of the embedding ch : Ky(G-mod) —
Z]X].

The Weyl group W = &,, of G acts on X = Z" by place permutations. This extends
to an action of the affine Weyl group W, generated by W together with the translations by
pei—peit1,1 <i <n—1. Let Y be the group of permutations of Z generated by d, 0, ..., 0,1,
where md = m + 1 and

m+1 ifm=a—-1 (modp)
mo,=<m—1 ifm=a (modp)

m otherwise.

The action of W, on X = Z" commutes with the diagonal action of Y.
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Lemma 7.23. Two elements A, € X have the same stabilizer in W), if and only of they are
in the same Y -orbit.

Proof. Both conditions are equivalent to the following: for all ¢, j, and r, we have \; — \; = pr
if and only if p; — p; = pr. U

We shall use the corresponding ‘dot actions’ obtained by conjugating by the translation by
p=(0,—-1,....,—m+1) e X:

w-A=wA+p)—p,  A-y=A+py—p

Let © be the set of orbits of the dot action of W, on X. For each 6 € O, let M, be
the full subcategory of G-mod consisting of modules whose composition factors are all of the
form L(X\) for A € #. The Linkage Principle [[Calld] implies that G-mod decomposes as a
direct sum G-mod = @,.qo Ms. Let pry : G-mod — G-mod denote the projection onto
My. Given \,;u € X and a € 0,...,p—1, we write A\ —, p if there exists j such that
ANj—j+1)+1=p;—j+1=a (mod p) and \; = y, for i # j. Note that A\ —, p implies that
w- A —,w-pforal we W, For 6,6 € ©, we write § —, 0’ if there exist A € § and p € ¢
such that A —, u.

Let V' be the natural n-dimensional representation of G. The left and right adjoint func-
tors V® — : G-mod — G-mod and V* ® — : G-mod — G-mod decompose as direct sums
@0@9—1 E, and @ogagp—l F,, where E, and F, are sums of translation functors, defined in
the same way as in §[(.4 The functors E, and F|, have been studied extensively by Brundan
and Kleshchev [BrK]].

Let e, and f, be the maps on characters induced by E, and F,. For each A\ € X, we have
(eg using [Jad, Proposition 7.8])

(7) eax(N) = > x(w),  fax(N) = > x(n
in Z[X]. Hence
eafaX(N) = faaX(N) = craX(N),

where o = #{i | i —i+1=a (mod p)} —#{i | s —i+1=a—1 (mod p)}. We deduce
that for each a € {0,...,p—1} the functors E, and F, give a weak sly-categorification in which
the simple module L(\) has weight ¢y ,.

7.5.2. These weak sly-categorifications can be improved to sl,-categorifications using the same
procedure as in the characteristic zero case §[.4. We first define endomorphisms X of V®— and
T of V@V ®—. Note that to define X, we first pass from G-modules to modules over Lie(G) =

gl,,(k). One small modification to the argument is required when p=2: in order to identify £,
n(n+1)

with the generalized a-eigenspace of X, we write 2 = —0(Z2) +1® Zy + Zo @1+ 2, ® 7, — =5,

where Zy = 7 ;o eiand Zy = 37 ;i (€i—i)(€55—5) = D 1<icj<n €ji€ij are central elements

of Dist(G) (cf [Calu, §2.2]).

By composing the derived (and homotopy) equivalences arising from these sly-categorifications
on G-mod, we obtain many equivalences.
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Theorem 7.24. Let A\ and pu be any two weights in X with the same stabilizer under the dot
action of W,. Then there are equivalences

Kb(MWp.A) = Kb(MWp.M) and Db(MWp.)\) = Db(MWp.M)
that induce the map

X(w - A) = x(w-p)
on characters.

Remark 7.25. Rickard conjectured the existence of such equivalences for any connected re-
ductive group having a simply-connected derived subgroup and whose root system has Coxeter
number h < p [Rig, Conjecture 4.1]. He proved the truth of his conjecture in the case of trivial
stabilizers (under the weaker assumption h < p). We do not place any restriction on p in

Theorem [.24].

Proof. By Lemma [[.2] we may assume that = X -y where y € {d,0¢,...,0p,_1}. f p=X\-d,
then we have an equivalence L(1,...,1) ® — : My, .5 = My, given by tensoring with the
determinant representation, that induces the desired map on characters.

Suppose that © = A - 0,. Using the sly-categorification on G-mod provided by E = E, and
F = F,, we obtain a self-equivalence © of K*(G-mod) and of D’(G-mod) such that [©] = s
(Theorem [.4). We define an sly-module U = €, ., Zu; by eu; = u;y fori = a—1 (mod p) and
eu; = 0 otherwise, and fu; = w;_; for i = a (mod p) and fu; = 0 otherwise. Then su; = w44 if
i=a—1 (mod p), su; = —u;_; if i = a (mod p), and su; = u; otherwise. Thus on the tensor
power U®" we have su, = (—1)"-"u,,, , where u, = u,, ® --- @u,, and h_(v) =#{i |v; =a
(mod p)}.

By ([) we have a homomorphism of sly-modules U*" — Ky(G-mod), u,4, — x(v). It follows
that sy(v) = (—=1)"-+2)x(v-0,). Hence sy(w-\) = (—=1)"x(w-p), where h_ = h_(w-A+p) =
h_(XA+ p). We conclude that ©[—h_] restricts to equivalences K*(Myy, ) = K*(My,.,.) and
DP(Myy,.») = D"(Myy,.,,) that induce the desired map on characters. O

7.6. g-Schur algebras. We explain in this part how to obtain sly-categorifications, and hence
derived equivalences, for g-Schur algebras.

Let ¢ € k*. Let Y,, = @, Indﬁé k, where A = (A > .-+ > )\,) runs over the partitions of n

and H { =P
corresponds to the representation 1. We define the ¢g-Schur algebra S, = End, s (V).

T,k is the corresponding parabolic subalgebra of H/ and k

w€6[17)\1] X---X(‘B[n,)\rﬂ’n]

Let ), be the full subcategory of H/-mod whose objects are direct sums of direct summands
of Y, (“¢g-Young modules”) and let Y = @, -, Vn. Mackey’s formula shows that ) is stable
under E and F. For each of the sl,-categorifications on @D, -, HI-mod constructed in §7-3
we deduce from Theorem an sly-categorification on @n>0 S,.-mod and a morphism of sl,-
categorifications @9, -, Sp-mod — @, -, H-mod. This provides a version of Theorem for
g-Schur algebras.

Remark 7.26. We go back to the setting of §[.3 (in particular, ¢ is a prime power). The
canonical map A, — End o (kGrep, ) is surjective and its image S, is Morita equiva-
lent to S, (“double centralizer Theorem”, cf [Id]). This gives by restriction a fully faith-
ful functor S,-mod = S-mod — A,-mod. Since E(kG,ep,) ~ kGniiep,,,, it follows
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that €,~,S,-mod is stable under E. Mackey’s formula shows that it is also stable un-
der F. This gives a morphism of weak sly-categorifications €9, -, S,-mod — €, -, A,-mod
and the composition with the morphism &, ., A,-mod — GBWO_H}:—mOd of §@_18 isomor-
phic to the morphism &, ., S,-mod — @n;) H/-mod constructed above. One deduces that
D,~ Sn-mod — P, -, A,-mod is actually a morphism of sl,-categorifications.

Note also that we get another proof of Lemma using the fact that the canonical map
Ko(S,-mod) = Ky(A,-mod) is an isomorphism.

Remark 7.27. The interested reader will extend the results of §7.§ to the quantum case and
show that the categorification of ¢g-Schur algebras can be realized as a subcategorification of
the quantum group case.

7.7. Realizations of minimal categorifications.

7.7.1.  We now show that the minimal categorification of §5.3 is a special case of the categori-
fication on representations of blocks of cyclotomic Hecke algebras.

Fix a € k* and put v = (vq,...,v,) = (a,...,a). Then H; = H;(q,v) is the quotient of H;
be the ideal generated by z} (where z; = X; —a). The kernel of the action of H; on the simple
module K; = H; ®p, P;/m; contains 27 if and only if i < n (cf §B.2.1)); let A; be the block of H;
containing K; for 0 < ¢ < n. A finitely generated H;-module M is in A; if and only if n; acts
nilpotently on M (equivalently m; acts nilpotently on M), and K; is the unique simple module
in Az

We have F'M = 0 for M € Ap-mod and FFM = Resy;! M € A;_;-mod for M € A;-mod and
0<i1<n.

Likewise EM = 0 for M € A,-mod. Let M € A;-mod with 0 < i < n. Consider N a simple
H;.1-quotient of EM. We have Hom(EM, N) ~ Hom(M, FN) # 0. In particular, F'N has a
non-zero H;-submodule M’ on which zy, ..., z; act nilpotently. Let M” be the (k[z;11] ® H,)-
submodule of FFN generated by M’. Then, x1,...,x;;1 act nilpotently on M”. Now, N is
a simple H,,;-module, hence it is generated by M” as a H,; ;-module, so xy,..., ;11 act
nilpotently on N. We deduce that they act nilpotently on EM as well. So, EM € A;;-mod.

So A = @, Ai-mod is an sly-categorification and Q ® Ky(A) is a simple sl;-module of
dimension n + 1. Let U = Ky = k, the simple (projective) module for Ay = k. The morphism
of sly-categorifications Ry : A(n) — A is an equivalence (Proposition f-26). In particular H;,,
and A; are isomorphic, as each has an i!-dimensional simple module.

7.7.2.  We explained in §B.3.9 that H;, is Morita equivalent to its center, which is isomorphic
to the cohomology of certain Grasmmannian varieties. We sketch here a realization of the
minimal categorification in that setting. We consider only the case ¢ = 1; the case ¢ # 1 can
be dealt with similarly, replacing cohomology by G,,-equivariant K-theory.

Let G, ; be the variety of pairs (V7,V5) of subspaces of C* with V; C V5, dimV; = 4 and
dimV, = j. We put A; = H*(G;). The (A;41, A;)-bimodule H*(G;;41) defines by tensor
product a functor E; : A;-mod — A;;;-mod and switching sides, a left and right adjoint
F;: Ajy1-mod — A;-mod. Let E =@ E; and F = @ F;. This gives a weak sly-categorification
that has been considered by Khovanov as a way of categorifying irreducible sly-representations.
It is a special case of the construction of irreducible finite dimensional representations of s,

due to Ginzburg [[G].
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We denote by X the endomorphism of E given on H*(G;,11) by cup product by ¢1(Lit1).
We have a P!-fibration 7 : Giiv1 XGisy Gigrire — Gigiyo given by first and last projection. It
induces a structure of H*(G;;2)-module on H*(Giip1 X,y Gitriv2) = H* (Giiv1) @b+ (Giss)
H*(Git1,i+2). There is a unique endomorphism 7' of H*(G;;42)-module on H*(G; 41 Xa,y,
Glit14+2) satisfying T'(¢;(Liy1)) = c1(Lit2) — 1. This provides us with an endomorphism of
F; .1 E; and taking the sum over all i, we get an endomorphism 7" of £2. One checks easily that
this gives an sly-categorification (with a = 0) that is isomorphic to the minimal categorification.

The functor E*7) : A;-mod — A;,,-mod is isomorphic to the functor given by the bimodule
H*(Gitr).

Take i < n/2 and let us now consider ©[—i], restricted to a functor D°(H*(G;)-mod) —

DY(H*(G,_;)-mod). It is probably isomorphic to the functor given by the cohomology of the
subvariety {(V,V')|[V NV’ = 0} of G; x G,,_;, the usual kernel for the Grassmannian duality

(cf eg [KaScha, Exercice I11.15]).
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