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Computing limit linear series with infinitesimal

methods

Laurent Evain (laurent.evain@univ-angers.fr)

Abstract:

Alexander and Hirschowitz [1] determined the Hilbert function of a generic union
of fat points in a projective space when the number of fat points is much bigger
than the greatest multiplicity of the fat points. Their method is based on a
lemma which determines the limit of a linear system depending on fat points
which approach a divisor.
On the other hand, Nagata [10], in connection with its counter example to the
fourteenth problem of Hilbert determined the Hilbert functionH(d) of the union
of k2 points of the same multiplicity m in the plane up to degree d = km.
We introduce a new method to determine limits of linear systems. This gener-
alizes the result by Alexander and Hirschowitz. Our main application of this
method is the conclusion of the work initiated by Nagata: we compute H(d) for
all d. As a second application, we determine the generic successive collision of
four fat points of the same multiplicity in the plane.

1 Introduction

Let X be a (quasi-)projective scheme, L a linear system on X and Z ⊂ X
a generic 0-dimensional subscheme. In this paper, we adress the problem of
determining the dimension of L(−Z), or more precisely the limit of L(−Z)
when Z specializes to a subscheme Z ′.
Our result gives an estimate of this limit when Z moves to a divisor and satisfies
suitable conditions( Z is the generic embedding of a union Z1 ∪ Z2 · · · ∪ Zs of
monomial schemes). More precisely, we introduce a combinatorical procedure
to construct a system L′, “simpler” than L in the sense that it has smaller
degree, and we settle an inclusion limL(−Z) ⊂ L′. In concrete exemples (see
the applications below), the inclusion suffices to compute dimL(−Z): there is
an expected dimension de which verifies

de ≤ dimL(−Z) = dim limL(−Z) ≤ dimL′ = de,

hence dimL(−Z) = de.
To give a flavour of the theorem, suppose for simplicity that Z is the generic
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fiber of a subscheme F ⊂ X × A1 flat over A1 = Spec k[t] and such that the
support of the fiber F (t) approaches a divisor D when t→ 0. We find an integer
r and a residual scheme Fres ⊂ F (0) such that

lim
t→0

L(−F (t)) ⊂ L(−rD − Zres).

There is a trivial inclusion

lim
t→0

L(−F (t)) ⊂ L(−F (0)),

but of course our result is more detailed and is not reductible to this trivial case.
In the examples we consider, the last inclusion of the tower

lim
t→0

L(−F (t)) ⊂ L(−rD − Zres(0)) ⊂ L(−F (0))

is always a strict inclusion.
The method to prove the result is infinitesimal in nature. There is a unique flat
family G over A1 whose fiber over a general t 6= 0 is L(−F (t)). Our theorem
is obtained with a careful analysis of the restrictions G×A1 Spec k[t]/(tni) ⊂ G
for well chosen integers n1, . . . , nr.
Our theorem generalizes the main lemma of Alexander-Hirschowitz [1]. Their
statement corresponds essentially to ours in the special case r = 1. However, the
proofs are different. In fact, when Alexander-Hirschowitz published their theo-
rem, our theorem did already exist in a weaker version where the 0-dimensional
subscheme Z moving to the divisor had to be supported by a unique point.
The current version is a merge which contains both our earlier version and
Alexander-Hirschowitz version.

As an application of our theorem, we extend results by Nagata relative to the
Hilbert functions of fat points in the plane. In connection with his construction
of the counter example to the fourteenth problem of Hilbert, Nagata proved
that the Hilbert function of a generic union Z of k2 fat points of the same

multiplicity m in P2 is HZ(d) = (d+1)(d+2)
2 if the degree is not to big, namely

if d ≤ km. This result is asymptotically optimal in m in the sense that it is
sufficient to compute the Hilbert function up to the critical degree d = km+[k2 ]
to determine the whole Hilbert function. Nagata was just missing the last ex-
treme hardest [k2 ] cases. We compute the Hilbert function for every degree:

HZ(d) = min( (d+1)(d+2)
2 , k2m(m+1)

2 ). This result was already proved when the
number of points is a power of four in [8] by methods relying on the geometry
of integrally closed ideals which we could not push further.
Putting the result in perspective, we recall that a consequence of Alexander-
Hirschowitz [1] is that the Hilbert function of a generic union of k fat points in

the plane of multiplicitym1, . . . ,mk isHZ(d) = min( (d+1)(d+2)
2 ,

∑k

i=1
mi(mi+1)

2 )
provided k >> max(mi). In view of their result, we are left with the cases when
the multiplicities are not too small with respect to the number of points. Among
these, it is known empirically that the hardest cases are those with a fixed num-
ber of points and big multiplicities. Our theorem includes such cases.
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As a second application, we compute the generic successive collision of four fat
points in the plane of the same multiplicity (recall that a successive collision of
punctual schemes Z1, . . . , Zs is a subscheme obtained as a flat limit when the
Zi’s approach one after the other, ie. you first collide Z1 and Z2 in a subscheme
Z12, then you collide Z3 with the previous collision Z12 and so on... A generic
successive collision is a successive collision where by definition the Zi’s move on
generic curves of high degree ).
Let us explain the motivations for such a computation. First, collisions deter-
mine the Hilbert function of the generic union Z of the fat points. Indeed, there
exist “universal” collisions C0 on which one can read off the Hilbert function
of Z: ∀d, HZ(d) = HC0

(d) [4]. Moreover, constructing collisions is a useful
technical tool of the Horace method (see [7]).
However, determining all collisions of any number of fat points is far beyond
our knowledge since this problem is far more difficult than the open and long
standed problem of determining the Hilbert function of a generic union of fat
points. It is thus natural to restrict our attention to special collisions. In view
of the postulation problem, one looks for collisions special enough so that it
is possible to compute them, but general enough so that they can stand for a
universal collision in the above sense. A natural class of collisions to be con-
sidered is the class of generic successive collisions. Can we compute them ? Is
there a universal collision among them ? A generic successive collision of three
fat points is universal [3], ie. this collision has the same Hilbert function as
the generic union of the three fat points. We use our theorem to compute the
generic successive collision of four fat points. Our computation proves that this
collision is not universal. Beyond this example, the computation also illustrates
how our theorem can be used to determine many collisions, thus extending the
toolbox of the Horace method.

2 Statement of the theorem

We fix a generically smooth quasi-projective scheme X of dimension d, a locally
free sheaf L of rank one on X and a sub-vector space L ⊂ H0(X,L). Let
Z ⊂ Xk(Z) be a 0-dimensional subscheme parametrised by a non closed point
of Hilb(X) with residual field k(Z). Let L(−Z) ⊂ L be the sub-vector space
of sections which vanish on Z (see the definition below). Our goal is to give an
estimate of the dimension dimL(−Z) under suitable conditions.

A staircase E ⊂ Nd is a subset whose complement C = Nd \ E verifies
Nd+C ⊂ C. We denote by IE the ideal of k[x1, . . . , xd] (resp. of k[[x1, . . . , xd]]),
of k[[x1, . . . , xd]][t] . . . ) generated by the monomials xe11 . . . . .x

ed

d = xe whose ex-
ponent e = (e1, . . . , ed) is in C. If E is a finite staircase, the subscheme Z(E)
defined by IE is 0-dimensional and its degree is #E. The map E 7→ Z(E)
is a one-to-one correspondance between the finite staircases of N

d and the
monomial punctual subschemes of Spec k[x1, . . . , xd]. If E = (E1, . . . , Es) is
a set of finite staircases, if X is irreducible and if Z(E) is the (abstract non
embedded) disjoint union Z(E1)

∐
· · ·

∐
Z(Es), there is an irreducible scheme
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P (E) which parametrizes the embeddings Z(E) → Xs, where Xs ⊂ X is the
smooth locus ([6] and [7]). Such an embedding Z(E) → Xs determines a sub-
scheme of X , thus there is a natural morphism f : P (E) → Hilb(X) to the
Hilbert scheme of X . We denote by X(E) the subscheme parametrised by f(p)
where p is the generic point of P (E). We will say that X(E) is the generic
union of the schemes Z(E1), . . . , Z(En). If Z ⊂ X is a subscheme, denote by
L(−Z) ⊂ L the subvector space which contains the elements of L vanishing on
Z. If p is a non closed point of Hilb(X) whose residual field is k(p), and if
Z ⊂ X ×k Spec k(p) is the corresponding subscheme, the definition of L(−Z)
is as follows. Since L ⊗ k(p) ⊂ H0(L ⊗ k(p), X × k(p)), it makes sense to con-
sider the vector space V ⊂ L ⊗ k(p) containing the sections which vanish on
Z. Denoting by λ the codimension of V , we may associate with V a k(p)-point
g ∈ Grassk(p)(λ,L ⊗ k(p)) = Grassk(λ,L) × Spec k(p) ([5], prop.9.7.6). In
particular L(−Z) is well defined as a (non closed) point of Grassk(λ,L). The
goal of the theorem is to give an estimate of dimL(−X(E)).
To formulate the theorem, we need some combinatorial notations that we in-
troduce now. The kth slice of a staircase E ⊂ Nd is the staircase T (E, k) ⊂ Nd

defined by:

T (E, k) = {(0, a2, . . . , ad) such that (k, a2, . . . , ad) ∈ E}

If E = (E1, . . . , Es) is a s-tuple of staircases and t = (t1, . . . , ts), we set

T (E, t) = (T (E1, t1), T (E2, t2), . . . , T (Es, ts)).

A staircase E ⊂ Nd is characterized by a height function hE : Nd−1 → N which
verifies:

∀a, b ∈ N
d−1, hE(a+ b) ≤ hE(a)

The staircase E and hE can be deduced one from the other via the relation:

(a1, . . . , ad) ∈ E ⇔ a1 < hE(a2, . . . , an)

The staircase S(E, t) is defined by its height function:

hS(E,t)(a2, . . . , ad) = hE(a2, . . . , ad) if t ≥ hE(a2, . . . , ad)

= hE(a2, . . . , ad) − 1 if t < hE(a2, . . . , ad)

Intuitivly, it is the staircase obtained by the suppression of the tth slice, as
shown by the following figure.
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If E = (E1, . . . , Es) is a family of staircases, and t = (t1, . . . , ts) ∈ Ns, we put:

S(E, t) = (S(E1, t1), S(E2, t2), . . . , S(Es, ts)).

If (t1, . . . , tr) ∈ (Ns)r, the recursive formula

S(E, t1, . . . , tr) = S(S(E, t1, . . . , tr−1), tr)

defines the s-tuple of staircases S(E, t1, . . . , tr) obtained from the s-tuple E =
(E1, . . . , Es) by suppression of r slices in each Ei.
If p ∈ X is a smooth point, a formal neighborhood of p is a mor-
phism ϕ : Spec k[[x1, . . . , xd]] → X which induces an isomorphism between

Spec k[[x1, . . . , xd]] and the completion Ôp of the local ring of X at p. If
p = (p1, . . . , ps) is a s-tuple of smooth distinct points, a formal neighborhood of
p is a morphism (ϕ1, . . . , ϕs) : U → X from the disjoint union U = V1

∐
· · ·

∐
Vs

of s copies of Spec k[[x1, . . . , xd]] to X , where ϕi : Vi → X is a formal neigh-
borhood of pi. If D is a divisor on X , we say that ϕ and D are compatible if D
is defined by the equation x1 = 0 around each pi (in particular, pi is a smooth
point of D).
Consider the translation morphism:

Trv1 : k[[x1, . . . , xd]] → k[[x1, . . . , xd]] ⊗ k[[t]]

x1 7→ x1 ⊗ 1 − 1 ⊗ tv1

xi 7→ xi ⊗ 1 si i > 1

If E1 is a staircase, the ideal

J(E1, v1) = Trv1(I
E1)k[[x1, . . . , xd]] ⊗ k[[t]] ⊂ k[[x1, . . . , xd]] ⊗ k[[t]]

defines a flat family F1 of subschemes of Spec k[[x1, . . . , xd]] parametrised by
Spec k[[t]]. This corresponds geometrically to the family whose fiber over t is
obtained from V (IE1) by the translation x1 7→ x1 − tv1 . If ϕ1 is a formal neigh-
borhood of p1, F1 can be seen as a flat family of subschemes of X via ϕ1, thus
it defines a morphism Spec k[[t]] → Hilb(X). We denote by X(ϕ1, E1, t, v1) the
non closed point of Hilb(X) parametrised by the image of the generic point.
The first coordinate does not play any specific role, thus more generally, if
E = (E1, . . . , Es) is a family of staircases, if ϕ = (ϕ1, . . . , ϕs) is a formal neigh-
borhood of (p1, . . . , ps), if v = (v1, . . . , vs) ∈ N

s, one defines similarly families
Fi ⊂ X × Spec k[[t]] flat over Spec k[[t]]. Since Fi ∩ Fj = ∅ for i 6= j, the union
F = F1 ∪ · · · ∪ Fs is still flat over Spec k[[t]] and corresponds to a morphism
Spec k[[t]] → Hilb(X). We denote by Xϕ(E, t, v) the image of the generic point
and by Xϕ(E) = Xϕ(E, 0, v) the image of the special point (which does not
depend on v). Finally, we denote by [x] the integer part of a real x.
We are now ready to state the theorem. By the above, L(−Xϕ(E, t, v)) corre-
sponds to a morphism Spec k((t)) → G to a Grassmannian G, which can be
extended to a morphism Spec k[[t]] → G by valuative properness. The theorem
gives a control of the limit obtained under suitable conditions.
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Theorem 1. Let D be an effective divisor on a quasi-projective scheme X,
p = (p1, . . . , ps) be a s-tuple of smooth points of X, ϕ a formal neighborhood of
p compatible with D, v = (v1, . . . , vs) ∈ Ns a speed vector, E = (E1, . . . , Es) be
staircases and Xϕ(E, t, v) the generic union of subschemes defined by ϕ. Suppose
that one can find integers n1 > · · · > nr such that:

• ∀k, nk − nk+1 ≥ max(vi),

• ∀i, 1 ≤ i ≤ r, L(−(i− 1)D − Zi) = L(−iD)

where ti = ([ni

v1
], . . . , [ni

vs
]), Ti = T (E, ti) and Zi = Xϕ(Ti). Then

lim
t→0

L(−Xϕ(E, t, v)) ⊂ L(−rD −Xϕ(S(E, t1, . . . , tr)))

Remark 2. The main lemma 2.3 of [1] corresponds essentially to the above
theorem with r = 1.

If X is irreducible, X(E) is well defined and it specializes to Xϕ(E, t, v).
Thus we get by semi-continuity the inequality

dimL(−X(E)) ≤ dimL(−Xϕ(E, t, v)) = dim lim
t→0

L(−Xϕ(E, t, v)).

Combining this inequality with the theorem, we obtain the following estimate
of dimL(−X(E)) in terms of a linear system of smaller degree.

Corollary 3. dimL(−X(E)) ≤ dimL(−rD −Xϕ(S(E, t1, . . . , tr)))

Remark 4. In case L is infinite dimensional, the theorem still makes sense
since Grassmannians of finite codimensional vector spaces of L are still well
defined and the limit makes sense in such a Grassmannian.

3 Proof of theorem 1

We start with an informal explanation of the ideas in the proof in the case
s = 1. Suppose that we have of family of sections s(t) of L which vanish on a
moving punctual subscheme Z(t) = Xϕ(E, t, v) whose support p(t) tends to p(0)
as t tends to 0. Using local coordinates around p(0), the sections of L can be
considered as functions and the vanishing on Z(t) translates to s(t) ∈ J(t) where
J(t) is the ideal of Z(t). Denote by Jn1

the restriction of J(t) to the infinitesimal
neighborhood Spec k[t]/tn1 of t = 0. Suppose that the family of sections over
Spec k[t]/tn1 is a family of sections which vanish on Z1. Then it is a family
of sections vanishing on D since by hypothesis a section which vanish on Z1

automatically vanishes on D. If D is defined locally by the equation x1 = 0, this
means that s(t) = x1s

′(t) with s′(t) ∈ (Jn1
: x1). Restrict now to the smaller

infinetismal neighborhood Spec k[t]/tn2 . Suppose that over this restriction, the
family of sections, which already vanish on D, vanish also on Z2 (i.e. s′(t)
is a family of sections vanishing on Z2). Then by hypothesis, the sections
vanish twice on D. Using local coordinates, this means that s(t) = x2

1s
′′(t) with

s′′(t) ∈ ((Jn1
: x1)n2

: x1). After several restrictions, we put t = 0 and we get

6



s(0) = xr1s
(r)(0) where s(r)(0) is in a prescribed ideal. The control we get in this

way of the element s(0) ∈ limt→0 L(−Xϕ(E, t, v)) translates into the inclusion

lim
t→0

L(−Xϕ(E, t, v)) ⊂ L(−rD −Xϕ(S(E, t1, . . . , tr)))

given by the theorem.
To play the above game, one needs to be able to compute in the successive
steps ideals like ((Jn1

: x1)n2
: x1) defined using restrictions and transporters.

In view of this explanation, one can understand the conditions on the ni of
the theorem as follows. The condition n1 ≥ n2 ≥ n3 . . . comes from the fact
that we restrict successivly to smaller and smaller neighborhoods. The condition
nk−nk+1 ≥ max(vi) is a technical condition to be able to compute the successive
ideals defined via transporters and restrictions.

Let us start the proof itself now. In the context of the theorem, we are given
a set of staircases E = (E1, . . . , Es), a vector v = (v1, . . . , vs), a divisor D and
a formal neighborhood ϕ of (p1, . . . , ps) in which D is given by the equation
x1 = 0 around each pi. For n > 0, we put Rn = k[[x1, . . . , xd]]

s ⊗ k[[t]]/(tn)
and R∞ = k[[x1, . . . , xd]]

s ⊗ k[[t]]. We denote by ψnp : Rn → Rp the natural
projections, which exist for p ≤ n ≤ ∞. If J ⊂ R∞ is an ideal, we define we
define recursively the ideals Jn1:n2:···:nk

⊂ Rnk
and Jn1:n2:···:nk: ⊂ Rnk

using
transporters and restrictions by the formulas

• Jn1
= ψ∞n1

(J),

• Jn1:n2:···:nk: = (Jn1:n2:···:nk
: x1),

• Jn1:n2:···:nk
= ψnk−1nk

(Jn1:n2:···:nk−1:)

As explained above, the vector space L(−X(ϕ,E, t, v)) corresponds to a mor-
phism Spec k((t)) → G (where G is a Grassmannian of subvectors spaces of L)
which extends to a morphism Spec k[[t]] → G. The universal family over the
Grassmannian G pulls back to a family U ⊂ Spec k[[t]] × L. Let ei be a local
generator of L at pi. Any section σ of the line bundle L can be written down
σ = σiei around pi for some σi ∈ k[[x1, . . . , xd]]. The map:

L → k[[x1, . . . , xd]]
s

σ 7→ (σ1, . . . , σs)

identifies U with a subscheme of Spec k[[t]]× k[[x1, . . . , xd]]
s. The theorem will

be proved if we show that the special fiber U(0) contains only sections vanishing
r times on D and if, in local coordinates, U(0) is included in xr1I

S(E,t1,...,tr).
Let us denote by Uni

the restriction of U over the subscheme Spec k[[t]]/tni .
We show by induction that:

∀i ≥ 1, Uni
⊂ xi1Jn1:n2:···:ni:

where J = J(E1, v1)⊕· · ·⊕J(Es, vs) ⊂ R∞. The fibers of U contain sections of
L which vanish on Xϕ(E, t, v). Since J is the ideal of Xϕ(E, t, v), this implies
the inclusion U ⊂ J , hence Un1

⊂ J1. By corollary 8, this inclusion implies that
the fibers of Un1

are elements of L which vanish on Z1, hence they vanish on

7



D by hypothesis. It follows that elements of Un1
are dividible by x1 and we

can then write: Un1
⊂ x1Jn1: . Suppose now that Uni

⊂ xi1Jn1:n2:···:ni: . Then
Uni+1

⊂ xi1Jn1:n2:···:ni:ni+1
. By corollary 8, this inclusion implies that the fibers

of Uni+1
are elements of L(−iD) which vanish on Zi+1, hence they vanish on D

by hypothesis. It follows that elements of Uni+1
are dividible by xi+1

1 and we can

write Uni+1
⊂ xi+1

1 Jn1:n2:···:ni+1: . This ends the induction on i. In particular,
for i = r, using corollary 9 for the last equality, we have the required inclusion:

U(0) = Unr
(0) ⊂ xr1Jn1:n2:···:nr:(0) = xr1I

S(E,t1,...,tr).

We now turn to the proof of the corollaries 8 and 9 on which the above proof
relies. Note that J = (J1, . . . , Js) and ITk = ((ITk )1, . . . , (ITk)s) are defined
componentwise, the component number i corresponding to the study around the
point pi. Thus corollary 8 and 9 below can be proved for each component and
one may suppose s = 1 to prove it. We thus suppose for the rest of this section
that s = 1, that E = (E1, . . . , Es) is a staircase given by a height function h,
and that v = (v1, . . . , vs) ∈ N.
Let B (resp. C) be the set of elements m = (m2, . . . ,md) ∈ Nd−1 such that
h(m) 6= 0 (resp. h(m) = 0). Remark that B is finite due to the finitness of E.
We denote by

• C(t) ⊂ Rn the k[[x1]] ⊗ k[[t]] sub-module containing the ele-
ments

∑
am1m2...md

xm1

1 xm2

2 . . . xmd

d ⊗ f(t), where f(t) ∈ k[[t]]/tn and
(m2, . . . ,md) ∈ C

• C(0) ⊂ R1 = k[[x1, . . . , xd]] the k[[x1]] sub-module containing the series∑
am1m2...md

xm1

1 xm2

2 . . . xmd

d where (m2, . . . ,md) ∈ C

• B(m) ⊂ Rn the k[[x1]] ⊗ k[[t]] sub-module generated by fm = (x1 −
tv)h(m)xm2

2 . . . , xmd

d ,

• B(m, 0) ⊂ R1 = k[[x1, . . . , xd]] the k[[x1]] sub-module generated by
fm(0) = (x1)

h(m)xm2

2 . . . , xmd

d ,

• Bn1n2...nk
(m) ⊂ Rn the k[[x1]] ⊗ k[[t]] sub-module generated by the ele-

ments fm,
t
αk−i+1fm

xi
1

, 1 ≤ i ≤ k, where αi = max(0, ni− vh(m)) for i > 0.

In particular, for k = 0, Bn1n2...nk
(m) = B(m).

To simplify the notations, we have adopted above the same notation for distinct
submodules (leaving in distinct ambiant modules). The following lemma says
that the module Bn1n2...nk

(m) is well defined as a sub-module of Rj for j ≤ nk.

Lemma 5. Let j ≤ nk. If i ≤ k, the element t
αk−i+1fm

xi
1

∈ Rj. In particular

Bn1n2...nk
(m) ⊂ Rj is well defined for j ≤ nk. If in addition, j ≤ nk+1, then

t
αk−i+1fm

xi
1

is a multiple of x1.

Proof. First, if l < i, the coefficient of xl1 in tαk−i+1fm is a multiple of
tαk−i+1tv(h(m)−l). This term is zero in Rj since the exponent of t is at least

nk−i+1 − vl ≥ nk + (i − 1)v − vl ≥ nk ≥ j. It follows that t
αk−i+1fm

xi
1

∈ Rj

is well defined. A similar estimate shows that for l ≤ i, the coefficient of

8



xl1 in tαk−i+1fm is zero in Rj for j ≤ nk+1. Thus t
αk−i+1fm

xi
1

is a multiple of x1.

Lemma 6. • As k[[x1]]-modules, IE =
⊕

m∈B B(m, 0) ⊕ C(0) ⊂
k[[x1, . . . , xd]]

• As k[[x1]] ⊗ k[[t]]-modules, J =
⊕

m∈B B(m) ⊕ C(t) ⊂ Rn

Proof : This is a straightforward verification left to the reader.

Lemma 7. We have the equality of k[[x1]] ⊗ k[[t]]-modules:

• Jn1:···:nk
=

⊕
m∈B Bn1n2...nk−1

(m) ⊕ C(t) ⊂ Rnk

• Jn1:···:nk: =
⊕

m∈B Bn1n2...nk
(m) ⊕ C(t) ⊂ Rnk

Proof. Let us say that the number of indexes of Jn1:···:nk
and Jn1:···:nk: is re-

spectivly 2k − 1 and 2k. We prove the lemma by induction on the number i of
indexes. If i = 1, we get from the preceding lemma the equality

Jn1
= ψ∞n1

(J) =
∑

m∈B

ψ∞n1
(B(m)) + ψ∞n1

(C(t))

=
∑

m∈B

B(m) + C(t) in Rn1
.

The last sum is obviously direct, thus it is the required equality.
Suppose now that we want to prove the lemma for i = 2k − 1. This is exactly
the same reasoning as in the case i = 1, substituting Jn1:···:nk

, Jn1:···:nk−1: and
ψnk−1nk

for Jn1
, J , and ψ∞,n1

.
For the last case i = 2k. Taking the transporter from the expression of Jn1:···:nk

coming from induction hypothesis, we get:

Jn1:···:nk: =
⊕

m∈B

(Bn1n2...nk−1
(m) : x1) ⊕ (C(t) : x1)

The equality (C(t) : x1) = C(t) is obvious, so we are done if we prove the
equality (Bn1n2...nk−1

(m) : x1) = Bn1n2...nk
(m) in the ambiant module Rnk

.
The inclusion ⊃ is clear since for every generator g of Bn1n2...nk

(m), x1g is a
multiple of one of the generators of Bn1n2...nk−1

(m). As for the reverse inclusion,
if z ∈ (Bn1n2...nk−1

(m) : x1), one can write down

x1z =
∑

1≤i≤k−1

Pi
tαk−i+1fm

xi1
+ x1P0fm +Q0fm (∗)

where Pi ∈ k[[x1]] ⊗ k[[t]] and Q0 ∈ k[[t]]. By lemma 5, the terms
t
αk−i+1fm

xi
1

∈ Rnk
are dividible by x1, thus x1 divides Q0fm. It follows that the

coefficient Q0t
vh(m)xm2

2 . . . xmd

d of x0
1 in Q0fm is zero, which happens only if

9



Q0 is a multiple of tmax(0,nk−vh(m)) = tαk . Writing down Q0 = tαk−1+1 and di-
viding the displayed equality (∗) by x1 shows that z ∈ Bn1n2...nk

, as expected.

Corollary 8. Jn1:n2:···:nk
⊂ ITk

Proof. In view of the previous lemma, and since the inclusion C ⊂ ITk is
obvious, one simply has to check that the generators of Bn1:n2:···:nk

(m) verify
the inclusion. The generators are explicitly given thus this is a straightforward
verification.

Corollary 9. Jn1:n2:···:nk
(0) = IS(E,t1,...,tk).

Proof. According to lemmas 7 and 6, it suffices to show that

Bn1n2...nk
(m, 0) ⊂ k[[x1]] is the submodule generated by x

h(m)−p(m)
1 where p(m)

is the number of ti’s verifying ti < h(m). Since the generators of Bn1n2...nk
(m)

are explicitely given, the corollary just comes from the evaluation of these
generators at t = 0.

4 The Hilbert function of k
2 fat points in P2

In this section, we compute the Hilbert function of the generic union of k2 fat
points in P2 of the same multiplicity m.
We work over a field of characteristic 0.

Definition 10. If Z ⊂ P2 is a zero-dimensional subscheme of degree deg(Z),
we denote by Hv(Z) : N → N the virtual Hilbert function of Z defined by the

formula Hv(Z, d) = min( (d+1)(d+2)
2 , deg(Z)). The critical degree for Z, denoted

by dc(Z) is the smallest integer d such that Hv(Z, d) > deg(Z).

Theorem 11. Let Z be the generic union of k2 fat points of multiplicity m.
Then H(Z) = Hv(Z).

Let us recall the following well known lemma:

Lemma 12. If H(Z, d) ≥ Hv(Z, d) for d = dc(Z) and d = dc(Z) − 1, then
H(Z) = Hv(Z).

Definition 13. The regular staircase Rm ⊂ N2 is the set defined by the relation
(x, y) ∈ Rm ⇔ x + y < m. A quasi-regular staircase E is a staircase such that
Rm ⊂ E ⊂ Rm+1 for some m. A right specialized staircase is a staircase such
that ((x, y) ∈ E and y > 0) ⇒ (x+ 1, y− 1) ∈ E. A monomial subscheme of P2

with staircase E is a punctual subscheme supported by a point p which is defined
by the ideal IE in some formal neighborhood of p.

10



Our first intermediate goal is lemma 15 which says that under suitable con-
ditions, if Z = L∪R ⊂ P2 is a subscheme with L included in a line, the Hilbert
function of Z is determined by that of R.

Proposition 14. Let Z be a generic union of fat points. The following condi-
tions are equivalent.

• H(Z) = Hv(Z)

• there exists a quasi-regular right-specialized staircase E and a collision C
of the fat points which is monomial with staircase E.

• there exists a quasi-regular staircase E and a collision C of the fat points
which is monomial with staircase E.

Proof. 1 ⇒ 2. Let ρt be the automorphism of P
2 = Proj(k[X,Y,H ])

defined for t 6= 0 by ft : X 7→ X
t
, Y 7→ Y

t
, H 7→ H . Consider the collision

C = limt→0 ft(Z). It is a subscheme of the affine plane Spec k[x = X
H
, y = Y

H
]

supported by the origin (0, 0). It is shown in [4] that if H(Z) = Hv(Z), then
there is an integer m such that the ideal of C verifies IRm+1 ⊂ I(C) ⊂ IRm .
Thus I(C) = V ⊕ k[x, y]≥m+1 where k[x, y]≥m+1 stands for the vector space
generated by the monomials of degree at least m + 1, and V ⊂ k[x, y]m.
Let now gt : x 7→ x − ty, y 7→ y. Then the ideal of D = limt→∞ gt(C) is
I(D) = W ⊕ k[x, y]≥m+1 where W = limt→∞ gt(V ) is a vector space which
admits a base of the form ym, xym−1, . . . , xkym−k. Thus I(D) = IE for some
quasi-regular right-specialized staircase E. And D is a collision of the fat
points since it is a specialisation of the collision C and since being a collision is
a closed condition.
2 ⇒ 3 is obvious.
3 ⇒ 1. If there exists a collision C associated with a quasi-regular staircase

E, then by semi-continuity H(Z, d) ≥ H(C, d) = min( (d+1)(d+2)
2 ,#E) =

min( (d+1)(d+2)
2 , deg(C)) = min( (d+1)(d+2)

2 , deg(Z)) = Hv(Z, d). Since the
well known reverse inequality Hv(Z, d) ≥ H(Z, d) is always true, we have the
required equality Hv(Z, d) = H(Z, d).

Lemma 15. Let R ⊂ P2 be a generic union of fat points, D ⊂ plp be a generic
line, L ⊂ D be a subscheme whose support is generic in D. Let Z = R ∪L and
suppose that the degree of L satisfies deg(L) ≤ dc(R). Then H(R) = Hv(R)
implies H(Z) = Hv(Z).

Proof. By the above lemma and its proof, there exists a quasi-regular right
specialized staircase E and a collision C of the fat points supported by the
origin of A2 = Spec k[x, y] such that the ideal of C ⊂ A2 is I(C) = IE .
By the genericity hypothesis, L can be specialized to the subscheme L(t)
with equation (y − t, xdeg(L)). Obviously L(t) is monomial with staircase
F = {(0, 0), (1, 0), . . . , (r, 0)}. Let D = limt→0 C ∪ L(t). By [7], I(D) = IG for
some monomial staircase G. Moreover, the explicit description of G given in
[7] ( G is the “vertical collision” of E and F ) shows that G is quasi-regular.

11



Since Z = R ∪ L can be specialized to a scheme D defined by a quasi regular
staircase, H(Z) = Hv(Z).

Lemma 16. Let Z ⊂ P2 be a union of k2 fat points of multiplicity m with
k ≥ 4. The critical degree dc(Z) verifies km+ 1 < dc(Z) ≤ km+ k − 2.

Proof : Direct calculation.

Proof of theorem 11.
We show by induction on k that the Hilbert function of the generic union Z of k2

fat points of multiplicity m is the virtual Hilbert function Hv(Z). If k ≤ 3, this
is known by [9]. So we may suppose k ≥ 4. According to lemma 12, we only need
to check that H(Z, d) ≥ Hv(Z, d) for d = dc(Z) or d = dc(Z)−1, and, by lemma
16, such a d verifies d = km+ s for some s satisfying 0 ≤ s ≤ k − 2. By semi-
continuity, it suffices to specialize Z to a scheme Z ′ with H(Z ′, d) ≥ Hv(Z, d).
First, we choose a generic line D and generic points p1, . . . , p2k−1 on D. We
divide the k2 fat points into three subsets E1, E2, E3 of respective cardinal
k, k−1, (k−1)2. We specialize the k fat points of E1 on the points pk, . . . , p2k−1.
We leave the generic (k−1)2 +(k−1) points of E3∪E2 in their generic position.
We denote by L the set of sections of O(d) which vanish on the fat points of
E1∪E3. Since the points of E1 have been specialised, we have by semi-continuity
the inequality:

(∗) H(Z, d) ≥
(d+ 1)(d+ 2)

2
− dimL(−X(E))

where
E = (Rm, . . . , Rm︸ ︷︷ ︸

(k−1) copies

).

We now make a further specialisation, moving the k − 1 fat points of E2 on
the points p1, . . . , pk−1 using theorem 1. To this end, we fix the notations. We
choose a formal neighborhood ϕ of p = (p1, . . . , pk−1), a number N >> 0 and
we take the speed vector

v = ( N, . . . , N︸ ︷︷ ︸
k−s−2 times

, N + 1, . . . , N + 1︸ ︷︷ ︸
s+1 times

).

Finally, we let
ni = (N + 1)(m− i+ 1) − 1, 1 ≤ i ≤ m.

Let us check that the conditions of theorem 1 apply. The condition nk −
nk+1 ≥ max(vi) is obviously satisfied. As for the remaining condition, re-
mark that L(−(i − 1)D) is a set of sections of O(d − i + 1) which vanish on
pm−i+1
k , . . . , pm−i+1

2k−1 . In particular, if Zi is a punctual subscheme of D of cardi-
nal d− i+2− k(m− i+1) = s+1+(i− 1)(k− 1) whose support does not meet
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the union pk ∪ · · · ∪ p2k−1, then L(−iD−Zi) = L(−(i+1)D). In our case, Zi is
a union of one-dimensional fat points of the line D. Let us compute its degree.
The subscheme Zi is supported by p1 ∪ · · · ∪ pk−1 and we denote by dj the
degree of the part (Zi)pj

supported by pj . It is the cardinal m− [ni

vj
] of the slice

T (Rm, [
ni

vj
]), that is dj = i−1 if j ≤ k−s−2 and dj = i if k−s−1 ≤ j ≤ k−1.

Thus the degree of Zi is the sum of the dj , that is s + 1 + (i − 1)(k − 1). We
can then apply theorem 1 and its corollary. We conclude that:

(∗∗) dimL(−X(E)) ≤ dimL(−mD −Xϕ(S(E, t1, . . . , tm)).

The linear system L(−mD) is the set of sections of O(d − m) which vanish
on the union Z ′ of the fat points of E3. Moreover, Xϕ(S(E, t1, . . . , tm)) is the
union L of the one-dimensional fat points of pm1 ∩D, . . . , pmk−s−2 ∩D. It follows
that

(∗∗∗) dimL(−mD−Xϕ(S(E, t1, . . . , tm)) =
(d−m)(d−m+ 1)

2
H(Z ′∪L, d−m)

. By lemma 15 and the induction, we have

(∗ ∗ ∗∗) H(Z ′ ∪ L, d−m) = Hv(Z
′ ∪ L, d−m)

Now, by construction (or by an easy direct calculation),

(∗ ∗ ∗ ∗ ∗) Hv(Z
′ ∪ L, d−m) −

(d−m)(d−m+ 1)

2
= Hv(Z, d) −

d(d+ 1)

2

Putting together the displayed equalities and inequalities (*). . . (*****) gives
the required inequality H(Z, d) ≥ Hv(Z, d).

5 Collisions of fat points

We start with a definition of a generic successive collision of fat points in A
2.

We proceed by induction. A generic successive collision of one fat point pm is
the fat point itself. Suppose defined the generic successive collision Zm1...mk−1

of pm1

1 , . . . , p
mk−1

k−1 . Let C(d) be the generic curve of degree d containing the
support O of Zm1...mk−1

. Let

Zm1...mk
(d) = lim

p∈C(d), p→O
Zm1...mk−1

∪ pmk .

Proposition 17. There exists an integer d0 such that ∀d ≥ d0, Zm1...mk
(d) =

Zm1...mk
(d0). We denote this subscheme by Zm1...mk

and this is by definition
the generic successive collision of pm1

1 , . . . , pmk

k .

Proof. Consider the morphism f : A
2\{O} → Hilb(A2) ⊂ Hilb(P2) which sends

the point p ∈ A2 to the subscheme Zm1...mk−1
∪pmk . It extends to a morphism f̃ :
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S → Hilb(P2), where π : S → A2 is a composition of blowups (of simple points).
The embeddings Spec k[t]/(td) → A2 sending the support of Spec k[t]/(td) to
O ∈ A2 form an irreducible variety and we denote by g : Spec k[t]/td → A2 the
corresponding generic embedding. For p ≥ d, the intersection C(p) ∩Od of the
curve with the fat point is isomorphic as an abstract scheme to Spec k[t]/(td);
since for any embedding i : Spec k[t]/(td) → A2, there exists a curve of degree
d which contains the image Im(i), it follows that C(p) ∩ Od is the subscheme
associated with the generic embedding g. In particular, C(p)∩Od0 = C(d0)∩Od0

if p ≥ d0. Choose d0 > n where n is the number of blowups in π. Since the order
of contact of C(p) andC(d0) is at least d0, the number of blowups is not sufficient
to separate the curves and the strict transforms C̃(p) ⊂ S and C̃(d0) ⊂ S
intersect in a point s. It follows that Zm1...mk

(p) = Zm1...mk
(d0) = f̃(s).

Our goal is to compute the generic collision Zmmmm of 4 fat points of multiplicity
m.

Remark 18. With the notations of proposition 17, the integers d0 which appear
in the definition of Zmmmm will always be equal to 1. In other words, the colli-
sion will be shown to depend only on the tangent directions of the approaching
fat points.

We will describe Zmmmm as a pushforward via a blowup π : S̃ → A2, where
π is the blowup defined by the following Enriques diagram .

q1

q0

q2

q3

q4

q5 q6 q7

We recall for convenience what this means. Let q0 ∈ A2, q1, q2, q3 be three
distinct tangent directions at q0. Let

η : S1 → S0 = A
2

be the blowup of q0, and Q0 ⊂ S1 the exceptional divisor. Let

S2 → S1

be the blowup of (q1 ∪ q2 ∪ q3) ⊂ Q0, and Q1, Q2, Q3 ⊂ S2 the respective
exceptional divisors. If Qi ⊂ Sni

is an exceptional divisor, and if Sj → Sni

is a sequence of blowups, we still denote by Qi ⊂ Sj (resp. we denote by
Ei ⊂ Sj) the strict transform (resp. the total transform) of Qi in Sj . With this
convention, let q4 = Q0 ∩Q2 ∈ S2, q5 = Q0 ∩Q3 ∈ S2. Let

S3 → S2
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be the blowup of q4 ∪ q5, Q4, Q5 the corresponding exceptionnal divisors. Let
q6 = Q3 ∩Q5 ∈ S3, S4 → S3 the blowup of q6, Q6 its exceptional divisor. Let
q7 = Q6 ∩Q3 ∈ S4 and S̃ = S5 → S4 the blowup of q7. We denote by

ρ : S̃ → S1 and π : S̃ → A
2

the compositions of the blowups introduced above. As explained, each point qi
defines a divisor Ei ⊂ S̃. If (m0, . . . ,m7) ∈ N8, the ideal π∗(OS̃(−

∑
miEi))

is a punctual subscheme supported by q0 which we will represent graphically
with a label mi at the point of the Enriques diagram corresponding to qi. For
instance, the subscheme π∗(OS̃(−8E0 − 2E1 − E2 − E4 − 3E3)) is associated
with the following diagram.

8

2

1

1

3

0 0 0

The following theorem describes the successive collision of four fat points which
approach on curves Ci with distinct tangent directions. This includes in partic-
ular the generic successive collision.

Theorem 19. Let q0 ∈ A2, q1, q2, q3 three distinct tangent directions at q0
and C1, C2, C3 be three smooth curves passing through p0 with tangent direction
q1, q2, q3. Let Zmmmm be the collision of the fat points pm0 , p

m
1 , p

m
2 , p

m
3 where:

• p0 is located at q0,

• p1 moves on the curve C1 (resp. p2 on C2, p3 on C3).

Then Zmmmm is defined by the following Enriques diagram, which depends on
m modulo 4.

k

k

k

3k

k

k

k

k

k

k

k

k

k

m = 4k m = 4k + 1 m = 4k + 2 m = 4k + 3

3k + 1 3k + 1 3k + 2

k k k k k k − 1

7k + 4

k + 1k k k k k

7k + 67k + 27k

Proof. All cases are similar and we prove the theorem in the case m = 4k.
We choose a formal neighborhood ξ of p = (q1, q2, q3) ∈ (S1)

3 such that
Q0 ⊂ S1 is defined by the equation x1 = 0 around each qi and such that
C3 is defined by x2 = 0 around q3 (this is possible since C3 is smooth). Let
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n = (m− 1,m− 5, . . . , 3). Let Fm be the staircase defined by the height func-
tion hFm

(d) = hRm
([d2 ]), and let G = S(Rm, n) be the staircase obtained from

Rm by suppression of the slices indexed by n. Let Xξ(Rk, Fk, Gk) ⊂ S1 be the
subscheme defined by the formal neighborhood ξ and the staircases Rk, Fk, Gk.
According to the correspondance between complete ideals and monomial sub-
schemes formulated in [8], if the mi’s are the integers defined in the Enriques
diagram,

ρ∗OS̃(−
∑

miEi)) = OS1
(−m0Q0 −Xξ(Rk, Fk, G))) (∗)

Let J(p3) denote the ideal of Zmmm ∪ pm3 . I claim that we are done if we prove
the inclusion

lim
p3→p0

η∗J(p3) ⊂ H0(OS1
(−m0Q0 −Xξ(Rk, Fk, G)) (∗∗).

Indeed, we would then have the inclusions

IZmmmm
⊂ η∗η

∗IZmmmm
= η∗η

∗ lim
p3→p0

J(p3)

⊂ η∗ lim
p3→p0

η∗J(p3)

⊂ η∗H
0(OS1

(−7kQ0 −Xϕ(Rk, Fk, G)) by (∗∗)

⊂ H0(η∗(OS1
(−7kQ0 −Xϕ(Rk, Fk, G))

⊂ H0(η∗ρ∗OS̃(−
∑

miEi)) by (∗)

⊂ IZ where IZ = π∗OS̃(−
∑
miEi).

According to [2], since the Enriques diagram defining Z is unloaded, deg(Z) =∑ mi(mi+1)
2 which is immediatly checked to be 4 4k(4k+1)

2 = deg(Zmmmm). Sum-
ming up, Z and Zmmmm are two punctual subschemes of the same degree with
IZmmmm

⊂ IZ , thus they are equal.
It remains to prove the displayed inclusion (∗∗) using our theorem. By [3] or
[11],

η∗IZmmm
= H0OS1

(−6kQ0 −Xψ(R2k, F2k))

where ψ is the formal neighborhood of (q1, q2) induced by the formal neighbor-
hood ξ of (q1, q2, q3). Thus

lim
p3→p0

η∗J(p3) = lim
t→0

L(−Xϕ(Rm, t, v = 1))

where ϕ is the formal neighborhood of p3 induced by the formal neighborhood
ξ of (q1, q2, q3) and L = H0(OS1

(−6kQ0 −Xψ(R2k, F2k))). To apply theorem
1 with X = S1, s = 1,D = Q0, and n = (m − 1,m− 5, . . . , 3), the verification
L((−i + 1)D − Zi) = L(−iD) is needed. Elements of L((−i + 1)D − Zi) are
sections of OS1

((−6k − i+ 1)Q0) that vanish on

Xψ(R2k−i+1, F2k−i+1) ∪ Zi = Xξ(R2k−i+1, F2k−i+1, T (Rm,m− 1 − 4(i− 1))).
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Since the intersection

Q0 ∩Xξ(R2k−i+1, F2k−i+1, T (Rm,m− 1 − 4(i− 1)))

has degree 3(2k−i+1)+(4i−3) greater than the degre 6k+i−1 of the restriction
OS((−6k−i+1)Q0)|Q0

, it follows that any section of L((−i+1)D−Zi) vanishes
on D. Thus we can apply the theorem and we get:

lim
t→0

L(−Xϕ(Rm, t, 1)) ⊂ L(−kQ0 −Xϕ(S(Rm, n)))

=

H0(OS1
(−7kQ0 −Xψ(Rk, Fk) −Xϕ(S(Rm, n))))

=

H0(OS1
(−m0Q0 −Xξ(Rk, Fk, S(Rm, n))),

which concludes the proof.
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Prépublication 412, Univ. Nice, pages 1–7, 1995.

18


