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Abstract

We present the construction of some kind of convex core for the product of two
actions of a group on R-trees. This geometric construction allows to generalize and
unify the intersection number of two curves or of two measured foliations on a surface,
Scott’s intersection number of splittings, and the apparition of surfaces in Fujiwara-
Papasoglu’s construction of the JSJ splitting. In particular, this construction allows
a topological interpretation of the intersection number analogous to the definition for
curves in surfaces. As an application of this construction, we prove that an irreducible
automorphism of the free group whose stable and unstable trees are geometric, is
actually induced a pseudo-Anosov homeomorphism on a surface.

Consider a surface Σ and two homotopy classes of simple closed curves c1, c2 ⊂ Σ.
Denote by i(c1, c2) their geometric intersection number. The nullity of the intersection
number is equivalent to the possibility of isotoping the curves apart. In terms of splittings,
i(c1, c2) = 0 if and only if the two splittings of π1(Σ) dual to these curves are compatible
(i. e. have a common refinement).

In [Sco98] (see also [SS00, SS03]) Scott generalized this notion of intersection number
to any pair of splittings of a finitely generated group G. This intersection number is
always symmetric. Moreover, when edge groups of the splittings are finitely generated
then this intersection number is finite, and it vanishes if and only if the two splittings are
compatible.

By Bass-Serre theory, two splittings of a group G correspond to two actions of G on
simplicial trees T1, T2. In this article, we give a geometric construction of a kind of convex
core for the diagonal action of G on T1 × T2 which captures the information about the
intersection number of the corresponding splittings. Because of its geometric nature, this
construction works naturally in the context of R-trees. The convexity in question here
is not the CAT(0) convexity, which would give a much too large set. The useful notion
in this context is fiberwise convexity : a subset E ⊂ T1 × T2 has convex fibers if for both
i ∈ {1, 2} and every x ∈ Ti, E ∩ p−1

i (x) is convex (where pi : T1 × T2 → Ti denotes the
canonical projection).

Main Theorem. Let T1, T2 be two minimal actions of G on R-trees having non-
homothetic length functions, or being irreducible. Assume that T1 and T2 are not the
refinement of a common simplicial non-trivial action.

Then there exists a subset C ⊂ T1×T2 which is the smallest non-empty closed invariant
connected subset of T1 × T2 having convex fibers. Moreover, C is CAT(0) for the induced
path-metric, and T1 × T2 equivariantly deformation retracts to C.

We call C the core of T1 × T2.

By definition, C is unique, and is thus invariant under automorphisms of the actions T1

and T2. Moreover, this construction is symmetric by definition so C(T1 × T2) is naturally
isomorphic to C(T2 × T1). By contrast, the symmetry of Scott’s intersection number is
something that needs a proof, and does not readily follow from the definition.

1



The hypotheses of the main theorem are weak, and we did not give optimal hypotheses
for simplicity of the statement (see Proposition 5.1 and Corollary 5.2 for more details).
For one-edge splittings, the assumption that T1 and T2 are not the refinement of a common
simplicial non-trivial action is implied by the requirement that the length functions are
distinct. Without those hypotheses, one can still give a definition for C, but two patholo-
gies may occur: C may be empty, and it may fail to be connected (see sections 3 and 4).
There is a remedy to the non-connectedness of C: there is a standard way to enlarge it to
a connected invariant set Ĉ with convex fibers (see section 4.4).

Theorem 6.1 (compare [SS00]). Let T1, T2 be two minimal actions of G on R-trees,
such that C(T1 × T2) 6= ∅.

Then T1 and T2 have a common refinement if and only if C is 1-dimensional.

The proof of this fact is very natural as C(T1 × T2) itself is a common refinement of T1

and T2.

In view of the corollary above, we define the intersection number of two actions of G
on R-trees as the covolume of C (see definition 2.4). For two actions on simplicial trees
with the combinatorial metric, this covolume coincides with the number of orbits of 2-cells
in C/G, so the vanishing of the intersection number for splittings is equivalent to the com-
patibility. Of course, without any hypothesis, the action of G on C may fail to be discrete,
and in this generality, it is not clear how useful this definition of the intersection number
can be. Note however that there are intersecting cases when the actions of G on T1 and
T2 are non-discrete whereas the action of G on T1 × T2 is discrete (see the application to
automorphisms of free groups in section 9).

Our construction of the core and intersection number generalizes and unifies several
notions:

Classical and Scott’s intersection number. Our definition of the intersection number co-
incides with the intersection number of two curves on a surface and with Scott’s
intersection number of splittings (see example 3 in section 2.2, and section 10).
However, contrary to Scott’s approach, we do not handle codimension one immer-
sions (almost-invariant sets in Scott’s terminology) since we need to start with
actions on trees.

Intersection number of measured foliations. Given two transverse measured foliations F1,
F2 on a surface Σ, there is a well defined intersection number i(F1,F2) which is the
volume of the singular euclidean metric on Σ defined by the transverse measures of
F1 and F2. Our intersection number of the actions of π1(Σ) on the R-trees T1, T2

dual to F1, F2 coincides with i(F1,F2) (see example 4 in section 2.3).
Culler-Levitt-Shalen’s core. For two trees dual to transverse measured foliations on a sur-

face as above, the core of T1 × T2 is a surface, and it is equivariantly homeomorphic
to the universal cover of Σ. In this case, Culler, Levitt and Shalen have characterized
this surface as the smallest non-empty, invariant, simply-connected subset of T1×T2

([CLS]).
Fujiwara-Papasoglu’s enclosing groups. In their construction of a JSJ splitting ([FP98]),

Fujiwara and Papasoglu produce a surface in the product of two simplicial trees
which essentially coincides with our core (Prop. 12.1). In a more general setting,
their construction is not symmetric in T1 and T2 and produces an asymmetric core
(see section 11 for a definition).
In general this asymmetric core is closely related to Scott and Swarup’s (asymmetric)
strong intersection numbers: Corollary 11.4 gives an interpretation of the strong
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intersection number as the number of orbits of two cells in the asymmetric core (see
Corollary 11.4).

A first application of our construction is a topological interpretation of the intersection
number as the minimum number of connected components of the intersection of subcom-
plexes representing the splitting:

Theorem 7.1. Assume that Y1, Y2 ⊂ X are two 2-sided subcomplexes, which intersect
transversely, and let T1, T2 be the two dual trees, endowed with the action of π1(X). Then
i(T1, T2) ≤ #π0(Y1 ∩ Y2).

Moreover, given two non-trivial actions of a group on simplicial trees T1, T2, there
exists a complex X and Y1, Y2 ⊂ X two 2-sided subcomplexes intersecting transversely
such that i(T1, T2) = #π0(Y1 ∩ Y2).

The intersection number of two simple closed curves on a surface X can be achieved
without changing the ambient space X. In [FHS83, Th. 6.7], this result was extended
to splittings dual to tori or Klein bottles in a 3-manifold by showing that for least area
representants of these submanifolds, the intersection number of the two induced splittings
equals the number of curves in their intersection. However, in general, one may need to
change the ambient space to achieve the intersection number.

A natural question about the core is its cocompactness. In [Sco98], Scott proves that
the intersection number of two splittings of a finitely generated group over finitely gener-
ated groups have a finite intersection number. However, there are examples of splittings of
a finitely presented group (a free group) over non-finitely generated groups having an infi-
nite intersection number (see Lemma 8.4). In terms of group actions on R-trees, the finite
generation of edge groups of a graph of groups means that the corresponding Bass-Serre
action is geometric, i. e. dual to a measured foliation on a finite 2-complex (see [LP97]).
In this setting, we get the following finiteness result:

Theorem 8.1. Let T1, T2 be geometric actions of a finitely generated group G on R-trees.
Then there is a set D ⊂ T1 × T2, which is a finite union of compact rectangles, and

such that C(T1 × T2) ⊂ G.D.

This does not imply the cocompactness in general because we need to take the closure
of G.D. However, if T1 and T2 are simplicial trees, G.D is automatically closed, so we
get that the core is cocompact and that i(T1, T2) is finite (Corollary 8.2). We also can
deduce the finiteness of the intersection number of two geometric actions when G is finitely
presented (Prop. 8.3).

Finally, we give an application for automorphisms of a free group. This result is
proved by showing that the core of the product of the stable and unstable trees is almost
a surface.

Corollary 9.3. Assume that α ∈ Out(Fn) is irreducible with irreducible powers. Let T1, T2

be the stable and unstable actions of Fn on R-trees corresponding to α.
If T1 and T2 are both geometric, then α is induced by a pseudo-anosov homeomorphism

of a surface with boundary.

The paper is organized as follows. Section 1 is devoted to basic definitions and prelimi-
naries. Then we give the general definition of the core C in section 2. In section 3, we study
the cases where C is empty, and we give necessary and sufficient condition characterizing
the emptiness of C. In section 4, we prove that the core is contractible whenever it is
connected, and we prove that it is connected whenever T1 and T2 are not the refinement of
a common non-trivial action on a simplicial tree. Moreover, when C is not connected, we
show a standard way to enlarge it to get an invariant contractible set Ĉ with convex fibers.
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We also prove the CAT(0) property at the end of this section. In section 5, we prove the
characterization of the core as the smallest connected non-empty closed invariant subset
with convex fibers. In section 6, we prove that the non-vanishing of the intersection num-
ber is essentially the only obstruction to the compatibility of two splittings. We give our
topological interpretation of the intersection of two splittings in section 7. In section 8,
we prove our finiteness result for the core of geometric actions. We prove our application
to automorphisms of free groups in section 9. We discuss the equality of our intersection
number with Scott’s in section 10. In section 11, we introduce an asymmetric core and
relate it to Scott and Swarup’s strong intersection number. Finally in section 12, we relate
the core with Fujiwara and Papasoglu’s construction of enclosing groups.

This paper was much inspired by Scott and Swarup’s papers on the intersection number
[Sco98, SS00]. The construction of the core followed from an attempt of a more geometric
interpretation of their definitions.
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1 Definitions and preliminaries

1.1 Basic vocabulary

An R-tree T is a metric space in which any two points are connected by a unique topological
arc, and such that this arc is actually a geodesic. Equivalently, an R-tree is a geodesic
metric space which does not contain any embedded topological circle. The geodesic joining
two points a, b is denoted by [a, b]. In an R-tree, a subset is connected if and only if it is
convex; in this case, we say that this subset is a subtree.

Consider an R-tree T . A direction at a point x ∈ T is a connected component of
T \ x. Note that y, z are in the same direction at x if and only if [x, y] ∩ [x, z] is not
reduced to {x}. In particular, the set of directions at x corresponds to the set of germs of
isometric maps from [0, ε] to T sending 0 to x. A branch point in T is a point at which
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there are at least 3 directions. The metric completion T̂ of an R-tree T is still an R-tree.
However, one usually does not work with complete R-trees because it is often prefered to
have minimality assumptions (see below): Points of T̂ \ T are terminal points of T̂ in the
sense that there is exactly one direction based at such a point.

A ray of T is an isometric embedding of R+ into T . An end of T is an equivalence
class of rays under the relation of having finite Hausdorff distance. If S is a subtree of T ,
we will denote by ∂∞S ⊂ ∂∞T the set of ends of S.

All actions of groups on R-trees we consider are actions by isometries. A group G
acting of T is elliptic if it fixes a point in T . We say that an action of a group G on an
R-tree T is trivial if every element of G is elliptic. This terminology is not really standard
as the usual convention is that the action of G is trivial if G is elliptic. However, when G
is finitely generated, G is elliptic if and only if the action of G is trivial. In general, if the
action of G is trivial but not elliptic, then G fixes a point of the completion of T , or an
end of T .

A group action on an R-tree G

�

T is minimal if it has no proper invariant subtree.
When the action is non-trivial, there is a unique minimal nonempty G-invariant subtree
of T , and this subtree is the union of translation axes of hyperbolic elements of G. We
denote this minimal subtree by MinT (G).

We will denote by AxisT (h) the axis of a hyperbolic isometry h in T . A positive semi-
axis of h is a semi-line A ⊂ Axis(h) such that h.A ⊂ A. If h is a hyperbolic isometry of
T , we will denote by ωT (h) the endpoint of T defined by any positive semi-axis A of h.

We denote by lT (g) = min{d(x, g.x)|x ∈ T} the translation length of an element g ∈ G.
The action is called abelian if there is a morphism ϕ : G → R such that lT (g) = |ϕ(g)|.
An action is abelian if and only if there is a end of T fixed by G. The action is dihedral if
T contains an invariant line, and some element acts as a reflection on this line. The action
is irreducible if it not abelian, and not dihedral. Equivalently, the action is irreducible
if and only if there are two hyperbolic elements whose axes have a compact (or empty)
intersection.

A morphism of R-trees f : T → T ′ is a 1-Lipschitz map such that for each arc I ⊂ T ,
there is a subdivision of I into finitely many sub-intervals on which f is isometric.

A map preserving alignement is a continuous map f : T → T ′ such that x ∈ [y, z]
implies f(x) ∈ [f(y), f(z)].

Lemma 1.1. Consider a continous map f : T → T ′. Then following are equivalent

1. f preserves alignment
2. the preimage of every convex set is convex.
3. for all x′ ∈ T ′, f−1(x′) is connected

Proof. Clearly, 1 implies 2 which implies 3. Now assume that 3 holds. Let x ∈ [y, z],
and assume that f(x) /∈ [f(y), f(z)]. Let y′ ∈ [y, x] by the point closest to x such that
f(y′) = f(x), and define z′ ∈ [z, x] similarly. One has y′, z′ ∈ f−1(f(x)) and x /∈ f−1(f(x))
contradicting the connexity of f−1(f(x)).

The following notion of refinement generalizes the notion of refinement of a splitting
to R-trees.

Definition 1.2 (Refinement). Consider two actions of G on R-trees T and T ′. Then one
says that T is a refinement of T ′ if there exists an equivariant map preserving alignment
from T onto T ′.
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1.2 Technical minimality statements

In what follows, given A ⊂ G, 〈A〉 denotes the group generated by A.

Lemma 1.3. Consider an action of a group G on an R-tree T , and a finitely generated
semigroup S ⊂ G acting non trivially on T such that the minimal subtree invariant by 〈S〉
is not a line. Let I be an arc contained in the axis of a hyperbolic element h ∈ S.

Then there exists a finitely generated semigroup S′ ⊂ S such that

• 〈S′〉 = 〈S〉
• every element g ∈ S′ \ {1} is hyperbolic in T , its axis contains I, and g translates in

the same direction as h on I.

Corollary 1.4. Let T1, T2 be two non-trivial actions of a group G on R-trees. Assume
that the minimal subtree of T1 is dense in T1.

Then for each direction δ1 in T1, there exists an element h which is hyperbolic in both
T1 and T2, and having a positive semi-axis in T1 contained in δ1.

Proof of Corollary 1.4. First assume that T1 contains an invariant line, which implies that
T1 itself is a line, and that δ1 is a semi-line. Then G has a subgroup G0 of index at most
2 consisting of elements hyperbolic in T1. If every element of G0 is elliptic in T2, then the
action of G on T2 is trivial, a contradiction. Take h ∈ G0 which is hyperbolic in T2, and
h or h−1 satisfies the conclusion of the corollary.

Now assume that T1 contains no invariant line. By density, δ1 intersects the minimal
subtree of T1. Let I1 be a non-degenerate arc contained in the intersection of δ1 with the
translation axis of a hyperbolic element of h ∈ G. Remember that ωT1

(h) ∈ ∂∞T1 denotes
the endpoint of a positive semiaxis of h in T1. Up to changing h to h−1 we can assume
that ωT1

(h) ∈ ∂∞δ1. Since T1 contains no invariant line, there exists an element h′ whose
axis is distinct from the axis of h. Take h2, h

′
2 two elements which are hyperbolic in T2

and having disting axes in T2.
Apply Lemma 1.3 in T1 to S = 〈h, h′, h2, h

′
2〉, I and h, to get a semigroup S′ such

that 〈S′〉 = S and whose elements are hyperbolic in T1, whose axes contain I and which
translate in the same direction as h on I. This implies that for every g ∈ S′, ωT1

(g) ∈
∂∞(δ1). Since 〈S′〉 = 〈S〉, Serre Lemma implies that S′ cannot consist only of elements
which are elliptic in T2. Now any g ∈ S′ which is hyperbolic in T2 satisfies the conclusion
of the corollary.

Proof of lemma 1.3. Let A be a finite generating set of S containing the hyperbolic element
h. We apply some transformations on A so that at each step, the semigroup generated by
A decreases, but the group generated by A remains constant.

Step 1: replacing A by hyperbolic elements. We want to replace A by a set where
all elements are hyperbolic. We leave the proof of the following easy fact to the reader
(the case where the intersection is empty is proved in [Chi01, Lem. 3.2.2]):

Fact 1.5. Let a, b be two isometries of an R-tree T , with b hyperbolic, and a elliptic. If
Fix a ∩ Axis(b) is either empty or not reduced to a point, then ab is hyperbolic.

Thus, if a ∈ A is elliptic, and if Fix a ∩ Axis(b) is either empty or not reduced to one
point for some hyperbolic b ∈ A, we may replace a by ab in A.

If Fix a ∩ Axis(b) = {O}, this is more delicate.

Case 1: a.Axis(b) 6= Axis(b).

Subcase 1.a: a.ωT (b) 6= ωT (b−1). In this case, one easily checks that bka is hyper-
bolic for large enough k ≥ 0, so we can replace a by bka in A.
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Subcase 1.b: a.ωT (b) = ωT (b−1). In this case, a.ωT (b−1) 6= ωT (b) since a.Axis(b) 6=
Axis(b). This means that the period of ωT (b) under the action of a is at least
3 (it may be infinite), so in particular, a2.ωT (b) 6= ωT (b−1) and a3.ωT (b) 6=
ωT (b−1). Thus, one can replace a by {a2, a3} in A, and we are done since a2

and a3 either fall in subcase 1.a or fix a semi-axis of b in which case the fact
1.5 above applies.

Case 2: for every elliptic element a ∈ A and every hyperbolic element b ∈ A one has
a.Axis(b) = Axis(b). Note that all the hyperbolic elements of A cannot have the
same axis since otherwise this axis would be S-invariant. So consider b, b′ ∈ A having
distinct axes. Then both bka and abk act as reflections on Axis(b) for all k, and as k
tends to +∞, their fix points converge respectively to ωT (b) and ωT (b−1). Thus, one
of those fix points is not on the axis of b′ for some k. Therefore, using fact 1.5 above,
at least one of the two elements b′(bka), b′(abk) is hyperbolic, and we can replace a
by this element.

Step 2: replacing A by a coherent set of hyperbolic elements. We now aim to
change A so that the axis of each element a ∈ A contains I, and so that a translates in
the same direction as h. The lemma will follow since if g1, g2 satisfy this property, then so
does g1g2.

Essentially, we are going to change a ∈ A to some element of the form hkahk for some
large positive k. The result directly follows from the following fact if no element a ∈ A
sends ωT (h) to ωT (h−1). If this occured, then neither a2 nor a3 would fall in this case,
and one could apply the fact after replacing a by {a2, a3} in A.

Fact. Let h, a be hyperbolic elements such that a.ωT (h) 6= ωT (h−1). Let I be a compact
interval in Axis(h).

Then for all large enough k ≥ 0, hkahk is hyperbolic, its axis contains I, and it
translates in the same direction as h.

Proof of the fact. Of course, the fact is clear if a and h have the same axis. If a fixes
ωT (h), then for any given p ∈ Axis(h), hk.p, ahk.p, and hkahk.p are in Axis(h) for k large
enough, and the fact follows easily (see figure 1).

Otherwise, the hypothesis means that if p is far enough on the positive semiaxis of h,
then a.h /∈ Axis(h). Figure 1 shows why the result holds in this case.

A
xis(a)

Axis(h)I
bb bbbb

p
ahk.p

hk.p
bb

hkahk.p
When a preserves the
positive semiaxis of h

Axis(h)I
bb

p

A
xis(a)

bb

hk.pbb

ahk.p
bb

hkahk.p
When a does not preserve the

positive semiaxis of h

Figure 1: Making axes meet coherently

2 The main definition and examples

2.1 Light quadrants and the core

A direction based at a point x ∈ T is a connected component of T \ x. A quadrant in
T1 × T2 is the product δ1 × δ2 of two directions δ1 ⊂ T1 and δ2 ⊂ T2. We say that the
quadrant is based at (x1, x2) where xi is the base point of δi.
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Consider two actions of a finitely generated group G on R-trees T1, T2. We choose a
base point ∗ = (∗1, ∗2) ∈ T1 × T2.

Definition (Heavy quadrant). Consider a quadrant Q = δ1 × δ2 ⊂ T1 × T2. We say
that Q is heavy if there exists a sequence γk ∈ G so that

• γk.∗ ∈ Q
• d(γk.∗1, ∗1)

k→∞−−−→ ∞ and d(γk.∗2, ∗2)
k→∞−−−→ ∞

Otherwise, we say that Q is light.

Remark. This definition does not depend on the choice of the base point. In particular, if
δ1 is a direction which does not meet the minimal subtree of T1 then for any direction δ2,
δ1 × δ2 is light: choose the first base point in the minimal subtree of T1.

The core of T1 × T2 is what remains when one has removed the light part. Here is a
more precise definition.

Definition 2.1. The core C of T1 × T2 is the subset

C = T1 × T2 \





⋃

Q light quadrant

Q



 .

Equivalently,

C =
⋂

Q=δ1×δ2 light quadrant

(δ∗1 × T2 ∪ T1 × δ2
∗).

If there is some ambiguity, we write C(T1 × T2) for C.

The definition of light quadrant might seem a little bit arbitrary. Here are two other
definitions which actually are equivalent under the weak assumption that C is non-empty
(see Remark 2.3 below and Corollary 3.8).

Definition 2.2 (Other kinds of heavy quadrants).

• A quadrant Q is weakly heavy if every orbit in T1 × T2 meets Q.
• A quadrant Q = δ1 × δ2 is made heavy by a hyperbolic element if there is an

element h ∈ G which is hyperbolic in T1 and T2, and such that for both i ∈ {1, 2},
ωTi

(h) ∈ ∂∞δi.

Remark 2.3. Clearly, a quadrant made heavy by a hyperbolic element is heavy, and a
heavy quadrant is weakly heavy. If C is non-empty, it follows conversely that any weakly
heavy quadrant is heavy. Indeed, assume that Q is weakly heavy, and let x ∈ C. Let g ∈ G
such that g.x ∈ Q. If Q was not heavy, then g.x would not lie in C, a contradiction.

2.2 Examples

Example 1: T1 = T2 = T , the action of G on T is minimal, and the set of branch
points is dense. A quadrant Q = δ1 × δ2 is light if and only if δ1 ∩ δ2 = ∅. Indeed,
if δ1 ∩ δ2 is empty, then Q is light since it does not meet the orbit of any point on the
diagonal. To prove the converse, assume that δ1 ∩ δ2 6= ∅. Since branch points are dense
in T , the minimality of the action implies there exists a hyperbolic element h ∈ G whose
axis intersects δ1 ∩ δ2 in at least a semi-line, and one of the elements h or h−1 makes Q
heavy. It follows that C(T × T ) is the diagonal of T × T .
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Example 2: T1 = T2 = T is a simplicial tree with no valence 2 vertex, and
the action of G on T is minimal. The argument above extends to prove that a
quadrant δ1 × δ2 is light if and only if δ1 ∩ δ2 is contained in an edge. It follows that
C(T × T ) = {(v, v)|v vertex in T}. This examples illustrates the typical situation where C
is disconnected (see section 4 for more details).

Example 3: T1 and T2 are dual to two non-parallel simple closed curves on a
surface. Denote by Σ a closed hyperbolic surface, and let c1, c2 be two distinct simple
closed geodesics. For i ∈ {1, 2}, the tree Ti dual to ci can be defined as follows: let
p : Σ̃ → Σ the universal cover of Σ; the vertices of Ti are the connected components of
Σ̃\p−1(ci) and its edges are the connected components of p−1(ci). The action of G = π1(Σ)
by deck transformations on Σ̃ gives a action of G on Ti.

We define an equivariant map fi : Σ̃ → Ti as follows: Choose a small open tubular
neighbourhood Ai ≃ ci×] − ε, ε[ of ci foliated by curves parallel to ci. This can be done
so that the two foliations of the annuli are transverse on A1 ∩A2. Let Ãi = p−1(Ai), and
define fi so that it sends a component of Ãi to the corresponding open edge of Ti, and it
sends a component of Σ̃\ Ãi to the corresponding vertex. Given a direction δ in Ti, f

−1
i (δ)

is at bounded Hausdorff distance from open half-plane Uδ in Σ̃ bounded by a geodesic in
p−1(ci).

Consider the map F = (f1, f2) : Σ̃ → T1 × T2. We are going to prove that C = F (Σ̃).
This will clearly follow from the fact that for any quadrant Q = δ1 × δ2 in T1 × T2, Q
is light if and only if f−1

1 (δ1) ∩ f−1
2 (δ2) = ∅. It is clear that if f−1

1 (δ1) ∩ f−1
2 (δ2) = ∅,

then Q is light since for each point ∗ ∈ Σ̃, the orbit of (f1(∗), f2(∗)) doesn’t intersect Q.
Conversely, if f−1

1 (δ1) intersects f−1
2 (δ2), then Uδ1 and Uδ2 do intersect, and there exists a

element h ∈ G whose axis in Σ̃ intersects the geodesics bounding Uδ1 and Uδ2 . It is then
clear that h is hyperbolic in both T1 and T2 and that h makes Q heavy.

It follows that F induces a bijection between the 2-cells of C and the points of p−1(c1)∩
p−1(c2). In other words, the number of two-cells of C/G coincides with the intersection
number i(c1, c2).

This observation leads to the following definition of the intersection number:

2.3 Intersection number

Definition 2.4. Let T1, T2 be two R-trees endowed with an action of a finitely generated
group G. We define the intersection number i(T1, T2) as the co-volume of the action of G
on C(T1 × T2) for the product measure on T1 × T2.

When T1 and T2 are simplicial trees with edges of length 1, then i(T1, T2) is the number
of 2-cells in C/G.

Let’s be more precise about this co-volume. We say that E ⊂ T1 × T2 is measurable if
for every finite subtrees1 K1 ⊂ T1 and K2 ⊂ T2, E ∩ I1 × I2 is a borel set in K1 ×K2. We
denote by µK1,K2

the product of the Lebesgue measures on K1 and K2. If E ⊂ T1 × T2 is
measurable, we define

µ(E) = sup
K1,K2

µK1,K2
(E ∩ (K1 ×K2)).

Note that a compact set may have infinite volume.
The co-volume of a measurable invariant set C is then

inf
{

µ(E) | G.E ⊃ C, E measurable
}

1a finite subtree is the convex hull of finitely many points.
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Example 4: trees dual to two transverse measured foliations on a surface.
Given F1,F2 two transverse measured foliations on a closed surface Σ, one can define two
R-trees Ti dual to Fi by lifting Fi to the universal covering Σ̃ of Σ, and taking Ti the space
of leaves of F̃i, endowed with the metric given by integration of the transverse measure.
The action of G = π1(Σ) on Σ̃ provides an isometric action of G on T1 and T2. Denote
by fi : Σ̃ → Ti the canonical projection, and consider F = (f1, f2) : Σ̃ → T1 × T2. The
argument of Example 3 above extends easily to this situation, so we get that C(T1 ×T2) =
F (Σ̃). In particular, C/G is isometric to Σ endowed with the singular euclidean metric
defined by F1 and F2. Since the intersection number of F1 and F2 is the volume of this
singular metric, we get that i(F1,F2) = i(T1, T2).

2.4 Basic properties of the core

Definition 2.5 (Convex fibers). Say that a subset C ⊂ T1 × T2 has convex fibers (or
connected fibers) if for all i ∈ {1, 2} and all x ∈ Ti, p

−1
i (x) ∩C is convex (maybe empty).

The following properties of the core are easy:

Proposition 2.6. Let T1, T2 bet two R-trees with a non-trivial action of G, and let C be
the core of T1 × T2. Then

• C is closed
• C has convex fibers
• C ⊂ MinT1

(G) × MinT2
(G)

• if both T1 and T2 are simplicial, then C is a subcomplex of T1 × T2

Remark. If T ′
i ⊂ Ti is the minimal subtree of Ti, then C ⊂ T

′
1 × T

′
2

Proof. The core is closed by definition. To prove that the fibers of C are convex, just
check that the fibers of the complement of a quadrant are convex, and use the fact that
an intersection of convex sets is convex.

For the third point, assume for instance that x1 /∈ MinT1
(G). Then there is a direction

δ1 containing x1 and not intersecting MinTi
(G). Any quadrant of the form δ1 × δ2 is

therefore light since it does not meet the orbit of a base point (∗1, ∗2) with ∗1 ∈ MinT1
(G).

Finally, assume that T1 and T2 are simplicial trees. Let Q be a quadrant, and let Q̂
be the union of open cells of T1 × T2 having a non-empty intersection with Q. One easily
checks that Q̂ is a quadrant, that T1 ×T2 \ Q̂ is a subcomplex of T1 ×T2 (it is the product
of two directions based at vertices of the trees), and since Q̂ is contained in a bounded
neighbourhood of Q, Q̂ is light if and only if Q is light.

3 When is the core empty ?

Proposition 3.1. Let T1, T2 be two non-trivial actions of a finitely generated group G.
Then C is empty if and only if T1 and T2 have homothetic length functions, and

• either T1 (and therefore T2) are dihedral
• or there are two ends ω1 and ω2 in T1 and T2 respectively, which are fixed by G, and

such that h translates towards ω1 in T1 if and only if h−1 translates towards ω2 in
T2.

In particular, if T1 or T2 is irreducible, then C is non-empty.

Remark. A particular example of the second case is when T1 or T2 is a line, and T1 and
T2 have homothetic length functions.

If T1 and T2 are geometric (i. e. if edge stabilizers are finitely generated in the simplicial
case) then the second case can only occur if T1 and T2 are both lines on which G acts by
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translation (see penultimate corollary in [Lev94]). In particular, if T1 and T2 are geometric
and if C(T1 × T2) = ∅, then there is an equivariant homothety between T1 and T2.

We will use the two following criteria:

Criterion 3.2. Assume that a, b, c ∈ G are hyperbolic in both T1 and T2, and that for both
i ∈ {1, 2}, the three endpoints ωTi

(a), ωTi
(b) and ωTi

(c) are pairwise distinct.
Let xi be the center of the triangle {ωTi

(a), ωTi
(b), ωTi

(c)}. Then any quadrant con-
taining the point x = (x1, x2) is made heavy by a hyperbolic element.

Proof. Consider a quadrant δ1 × δ2 containing x. Since the complement δ∗i of δi is con-
vex, ∂∞δi must contain at least two of the three endpoints {ωTi

(a), ωTi
(b), ωTi

(c)} since
otherwise, δ∗i would contain xi. Thus, there is an element γ ∈ {a, b, c} such that for both
i ∈ {1, 2}, ωTi

(γ) ∈ ∂∞δi. Therefore, γ makes δ1 × δ2 heavy.

Criterion 3.3. Assume that there exist a, b ∈ G which are hyperbolic in both T1 and T2,
such that one of the two following hypotheses hold:

1. either the axes of a and b in some Ti intersect in at most one point
2. or the axes of a and b in both trees intersect in more than one point and

• a and b translate in the same direction in T1

• a and b translate in opposite directions in T2;

Then there is a point x ∈ T1 × T2 such that any quadrant containing x is made heavy
by a hyperbolic element.

Proof. Consider the point x = (x1, x2) defined as follows: if AxisTi
(a) ∩ AxisTi

(b) 6=
∅, choose xi in this intersection, and otherwise, take xi the projection of AxisTi

(b) on
AxisTi

(a). Let E(δi) = {γ ∈ {a, b, a−1, b−1}|ωTi
(γ) ∈ ∂∞δi}. We are going to prove that

for all quadrant Q = δ1 × δ2 containing x, E(δ1)∩E(δ2) 6= ∅. It will follow that Q is made
heavy by an element in E(δ1) ∩ E(δ2), which will conclude the proof of the criterion.

For any direction δi containing xi, the choice of xi implies that if AxisTi
(a)∩AxisTi

(b)
is reduced to a point, then E(δi) contains three elements. If AxisTi

(a) ∩ AxisTi
(b) = ∅,

E(δi) contains either {a, a−1}, {a, b, b−1} or {a−1, b, b−1}. If AxisTi
(a)∩AxisTi

(b) 6= ∅ and
if a and b translate in the same direction, then E(δi) contains either {a, b} or {a−1, b−1}.
If AxisTi

(a) ∩ AxisTi
(b) 6= ∅ and if a and b translate in opposite directions, then E(δi)

contains either {a, b−1} or {a−1, b}.
Now the criterion follows easily: since #E(Ti) ≥ 2, the only possibility allowing E(T1)∩

E(T2) = ∅ is that E(T1) and E(T2) both have two elements and are the complement of
each other. This can only occur if the axes of a and b have a non-degenerate intersection
in T1 and T2. But the hypothesis on the direction of translations prevents E(T1) ∩ E(T2)
from being empty.

Proof of Proposition 3.1. Let’s first prove the direct implication. We are going to exhibit
a point x ∈ C such that every quadrant containing x is heavy. This will imply that x ∈ C
so C 6= ∅.
Fact 3.4. Assume that T1 is irreducible. Then there is a point x ∈ T1×T2 such that every
quadrant containing x is made heavy by a hyperbolic element.

Proof. If T1 is irreducible (T1 is not a line and has no fix end), then one can find a, b ∈ G
which are hyperbolic in T1 and whose axes don’t intersect. If a and b are hyperbolic in T2,
Criterion 3.3 implies that C 6= ∅. Otherwise, by Corollary 1.4 one can find and element
h which is hyperbolic both in T1 and T2. Now it is easy to check that there are two
conjugates of h by powers of a or b whose axes are disjoint in T1: let p be the midpoint
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of the bridge joining AxisT1
(a) to AxisT1

(b), and let δa and δb be the directions based at
p containg the axis of a and b respectively; there are at most two integers k such that
ak.Axis(h) 6⊂ δa (resp. such that bk.Axis(h) 6⊂ δb). Thus Criterion 3.3 applies to a pair
akha−k, bk

′

hb−k
′

.

Fact 3.5. Assume that T1 and T2 are reducible (i. e. are dihedral or abelian), and that the
length functions l1 and l2 of T1 and T2 are not homothetic.

Then there is a point x ∈ T1 ×T2 such that every quadrant containing x is made heavy
by a hyperbolic element.

Proof. We restrict to a subgroup G′ of G of index at most 4 so that T1 and T2 have a fixed
end (we thus get two abelian actions). Since a translation length satisfies l(g2) = 2l(g), the
length functions restricted to G′ are not homothetic. The length function li on G′ is the
absolute value of a group morphism ϕi : G′ → R. Note that two elements a, b translate
in the same direction in Ti if and only if ϕi(a) and ϕi(b) have the same sign. Since l1
and l2 are not homothetic, consider g, h ∈ G′ such that |ϕ1(g)

ϕ1(h) | 6= |ϕ2(g)
ϕ2(h) |. If the signs

inside the absolute values are opposite, then g, h satisfy Criterion 3.3 and we are done.
Otherwise, up to exchanging the role of T1 and T2, we can find non-zero integers p, q such

that 0 < ϕ1(g)
ϕ1(h) < p/q < ϕ2(g)

ϕ2(h) . Then ϕ1(gq)
ϕ1(hp) < 1 < ϕ2(gq)

ϕ2(hp) , so ϕ1(gqh−p)
ϕ1(hp) < 0 < ϕ2(gqh−p)

ϕ2(hp) , so

Criterion 3.3 applies to a = hp, b = gqh−p.

Fact 3.6. Assume that T1 and T2 are reducible, have homothetic length functions, that
there is no invariant line in T1 nor in T2, and that for all g ∈ G, the same elements
translate towards the fix end in T1 and T2.

Then there is a point x ∈ T1 ×T2 such that every quadrant containing x is made heavy
by a hyperbolic element.

Proof. One easily checks that one can find g, h ∈ G whose axes in T1 and T2 are distinct.
Up to changing g and h to their inverses, we may assume that ωT1

(g) = ωT1
(h). By

hypothesis, ωT2
(g) = ωT2

(h). Therefore, Criterion 3.2 applies to a = g, b = g−1, c =
h−1.

This ends the proof of the direct implication of the Proposition. We now prove that C
is empty in the exceptional cases. First, if T1 is dihedral and if T1 and T2 have homothetic
length functions, then T2 is also dihedral, and one easily checks that C is empty. Therefore,
let ω1, ω2 be two ends in T1 and T2 respectively, which are fixed by G, and such that h
translates towards ω1 in T1 if and only if h−1 translates towards ω2 in T2. In other words,
ωT1

(h) = ω1 if and only if ωT2
(h−1) = ω2. We prove that for any quadrant Q = δ1 × δ2

such that ωi /∈ ∂∞δi, then Q is light. This will clearly imply that C = ∅. Let xi be the
point at which δi is based, and take x = (x1, x2) as a basepoint. Consider g ∈ G such
that g.x1 ∈ δ1. Since ω1 ∈ ∂∞ Char(g), one gets that x1 ∈ Char(g): otherwise, the subtree
δ1 would not intersect Char(g) and would thus be disjoint from its image under g. In
particular, g is hyperbolic translates away from ω1. The symmetric argument in T2 says
that if g.x2 ∈ δ2, then g translates away ω2. Therefore, δ1 × δ2 does not meet the orbit
of the basepoint, and δ1 × δ2 is light. Thus C is empty, and this ends the proof of the
proposition.

Remark 3.7. Assume that T1 and T2 are simplicial, and given an oriented edge e ∈ Ti
denote by δ(e) the direction based at the origin of e and containing the terminus of e.
Then the end of the proof shows that if T1 and T2 satisfy the second hypothesis of the
proposition, then for each pair of non-oriented edges e1, e2, there is a choice of orientations
of e1, e2 (namely, not pointing towards ωi) and choice of base point ∗ (namely ∗i is the
origin of ei), such that the orbit of ∗ does not meet δ(e1) × δ(e2). This fact implies that
Scott’s intersection number is also zero in this case (see section 10).
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Corollary 3.8. Let T1, T2 be two actions of a finitely generated group G on R-trees.
Assume that C(T1 × T2) 6= ∅.

Then each heavy quadrant is made heavy by a hyperbolic element.

Proof. It follows from one of the three facts above that there is a point x ∈ C such that
each quadrant containing x is made heavy by a hyperbolic element. Now consider any
heavy quadrant Q = δ1 × δ2. Since Q is heavy, there is a translate g.x of x contained in
Q. Since x ∈ g−1.Q, consider a hyperbolic element h making g−1.Q heavy. Then ghg−1

makes Q heavy.

4 Contractibility of the core

In all this section, we assume without loss of generality that T1 and T2 have a dense
minimal subtree. The goal of this section is to understand when the core can fail to be
connected. We saw that this occured when T1 = T2 is a simplicial tree without valence
2 vertex since in this case, C = {(v, v)|v vertex in T}. We will see that this is essentially
the only case when it happens: Proposition 4.14 claims that this happens if and only if T1

and T2 refine a common simplicial G-tree T ′ as in the following diagram:

T1 T2

T ′

.

We will then prove that except in this pathological case, C is contractible and that
there is an equivariant retraction by deformation of T1 × T2 onto C (Proposition 4.17).
In general, we will prove that one can enlarge C into a natural G-invariant subset Ĉ (the
augmented core) by adding some diagonals, so that Ĉ is contractible.

4.1 Twice-light rectangles

We are interested in the case where a point in T1 × T2 is removed twice from C like in
figure 2. This phenomenon occured in the example where T1 = T2 is a simplicial tree.

Q1

Q2

Figure 2: Two facing quadrants intersect in a twice-light rectangle

We need a little bit of terminology.

Definition 4.1 (Facing directions and facing quadrants). Say that two directions
δ, δ′ ⊂ T , based at two distinct points x, x′ face each other if one of the following equivalent
conditions hold:

1. δ ∪ δ′ = T
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2. δ∗ ∩ δ′∗ = ∅
3. ]x, x′[⊂ δ ∩ δ′

Say that the quadrants Q = δ1 × δ2 ⊂ T1 × T2 and Q′ = δ′1 × δ′2 ⊂ T1 × T2 are facing
each other if for both i ∈ {1, 2}, δi faces δ′i.

The proof of the statements contained in this definition is straightforward and left to
the reader.

Definition 4.2 (Twice-light points and rectangles). Consider Q,Q′ two light quad-
rants facing each other. Then we say that Q ∩Q′ is a twice-light rectangle.

Consider Q,Q′ two light quadrants facing each other, and let x = (x1, x2) and x′ =
(x′1, x

′
2) their base points. Let R be the rectangle ]x1, x

′
1[×]x2, x

′
2[. The fact that Q and Q′

face each other means that R ⊂ Q∩Q′. We are going to prove that actually, R = Q∩Q′.

Proposition 4.3 (A twice light rectangle is a rectangle). Assume that the minimal
subtrees of T1 and T2 are dense in T1 and T2. Consider Q,Q′ two light quadrants facing
each other, and let x = (x1, x2) and x′ = (x′1, x

′
2) their base points. Let Q ∩ Q′ be the

corresponding twice light rectangle, and let R be the rectangle ]x1, x
′
1[×]x2, x

′
2[.

Then R = Q ∩Q′, and none of the intervals ]xi, x
′
i[= pi(R) contains a branch point.

Proof. Since Q and Q′ face each other, R ⊂ Q ∩ Q′. Now consider (t1, t2) ∈ R, assume
that there at least three directions at t1 and argue towards a contradiction (a symmetric
argument will apply to t2). Let η1 be a direction at t1 which does not contain the base
points of δ1 and δ′1. Thus, η1 ⊂ δ1 ∩ δ′1. Since the minimal subtree of T1 is dense in T1,
Corollary 1.4 implies that there exists an element h ∈ G which is hyperbolic in T1 and
T2 and such that ωT1

(h) ∈ ∂∞δ1. In particular, for k large enough, hk.∗1 ∈ η1. Since
δ2 ∪ δ′2 = T2, up to taking a subsequence, we may assume for instance that for k large
enough, hk.∗2 ∈ δ2. Since η1 ⊂ δ1, this contradicts the fact that δ1 × δ2 is light.

4.2 Connectedness without twice light rectangles

Let’s start with the following remark: if C has some twice light rectangles, then C cannot
be connected (at least if it is non-empty). Indeed, let Q,Q′ be two light quadrants facing
each other based at x = (x1, x2) and x′ = (x′1, x

′
2) respectively. Then Q ∪ Q′ contains

]x1, x
′
1[×T2, so p1(C) does not meet ]x1, x

′
1[. However, if C was connected, then p1(C)

would be a non-empty connected G-invariant subset of T1, so it would be dense by our
minimality hypothesis, a contradiction.

We now prove that this is the only obstruction to the connectedness of C.

Proposition 4.4. Let T1, T2 be two actions of G on R-trees, with dense minimal subtrees,
such that C(T1 × T2) 6= ∅.

Then C is connected if and only if C has no twice light rectangle.
In this case, for each rectangle R of T1 × T2, the trace of C on R is either empty or

connected.

Proof. We already proved that the presence of twice light squares prevents the connect-
edness of C.

Let x, x′ ∈ R ∩ C, and let R0 be the rectangle [x1, x
′
1] × [x2, x

′
2] ⊂ R. We denote by

a = (x1, x
′
2) and b = (x′1, x2) the two other corners of R0. We are going to prove that

R0 ∩ C is connected, which will prove the proposition. Consider a light quadrant Q which
meets R0. Since Q cannot contain x nor x′, its trace on R0 is an open rectangle containing
a or b. Moreover, if Q and Q′ are light quadrants which intersect and such that a ∈ Q and
b ∈ Q′, then Q and Q′ face each other. Since there is no twice light rectangle, this means
that any light quadrant containing a does not intersect a light quadrant containing b.
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Let A ⊂ R0 (resp. B) be the union of the traces on R0 of the light quadrants containing
a (resp. b). Write A (resp. B) as an increasing union A = ∪kAk where Ak is a finite union
of traces of light quadrants containing a. Since C has no twice light rectangle, then for
each k, Ak ∩Bk = ∅. Clearly, R0 \Ak and R0 \Bk are contractible (they are star-shaped),
so R0 \ Ak ∪Bk is contractible.Thus R0 \ A ∪B is connected as a decreasing intersection
of compact connected spaces.

The proposition can be reformulated in a more general setting, which will be useful
later:

Definition 4.5 (Coherent family of quadrants, Core). A family of quadrants Q of
T1 × T2 is called coherent if it contains no pair of quadrants facing each other.

Its core CQ is defined by CQ = T1 × T2 \ ∪Q∈QQ.

Proposition 4.6. The core CQ of a coherent family of quadrants Q is connected (maybe
empty). Moreover, for each rectangle R of T1 × T2, the trace of CQ on R is either empty
or connected.

4.3 The corners of a twice light rectangle

We now study in more detail twice light rectangles in order to define the augmented core
Ĉ.

Lemma 4.7. Let T1, T2 be two actions of G on R-trees, such that C(T1 × T2) 6= ∅. Then
any twice light rectangle is contained in a unique maximal twice light rectangle.

Proof. We first rule out the case where either T1 or T2 is a line, since in this case, the
existence of a twice light rectangle implies that C(T1 × T2) = ∅.

Let R =]x1, x
′
1[×]x2, x

′
2[ be a twice light rectangle. Let ]yi, y

′
i[⊂ Ti be the maximal

open interval containing ]xi, x
′
i[, and containing no branch point (equivalently, ]yi, y

′
i[ is

open in Ti and yi, y
′
i are branch points). Then it is clear that ]y1, y

′
1[×]y2, y

′
2[ is twice light,

and that it is maximal for this property because of proposition 4.3.

Definition 4.8. Two quadrants Q = δ1 × δ2 and Q′ = δ′1 × δ′2 weakly face each other if δ1
faces δ′1 or δ2 faces δ′2.

Lemma 4.9. Let T1, T2 be two actions of G on R-trees, whose minimal subtrees are dense.
Assume that Q and Q′ are two light quadrants having a non-empty intersection. If Q weakly
faces Q′, then Q faces Q′.

Proof. Let Q = δ1 × δ2 and Q′ = δ′1 × δ′2, and assume that δ1 faces δ′1. We need to prove
that δ2 faces δ′2. If this wasn’t the case, then δ2 and δ′2 would be nested since δ2 ∩ δ′2 6= ∅.
So we assume for instance that δ2 ⊂ δ′2. Take a an element γ ∈ G which is hyperbolic in
T1 and T2 and such that ωT2

(γ) ∈ ∂∞δ2 (Corollary 1.4). Since δ1 × δ2 is light, γk.∗1 /∈ δ1
for k large enough, and since δ′1 × δ′2 is light, γk.∗1 /∈ δ′1 for k large enough. But since δ1
faces δ′1, δ1 ∪ δ′1 = T1, a contradiction.

Lemma 4.10. Let T1, T2 be two actions of G on R-trees, whose minimal subtrees are
dense, and such that C(T1 ×T2) 6= ∅. Let R be the closure a maximal twice light rectangle.
Then C ∩R consists of exactly two opposite corners of R.

Proof. Let Q = δ1 × δ2 and Q′ = δ′1 × δ′2 be two light quadrants facing each other such
that Q ∩ Q′ is the interior of R. Let (x1, x2) and (x′1, x

′
2) the base points of Q and Q′.

We prove that R ∩ C consists of the two points a = (x1, x
′
2) and b = (x′1, x2). Clearly,

R ∩ C ⊂ {a, b} since R \ (Q ∪Q′) = {a, b}. Now assume that a /∈ C, and let P = η1 × η2

be a light quadrant and containing a.
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Since R is the closure of a maximal twice light rectangle, both coordinates of a and b
are branch points. This implies that P cannot face Q since otherwise, P ∩Q would be a
twice light rectangle, but p1(P ∩Q) would contain the branch point p1(a), a contradiction.
Similarly, P cannot face Q′.

On the other hand, P weakly faces Q or Q′; more precisely, one has that η1 faces δ1
or δ′1. Indeed, δ∗1 ∩ δ′1∗ = ∅ since δ1 faces δ′1. Now if η1 does not face δ1 nor δ′1, then η∗1
intersects the two subtrees δ∗1 and δ′1

∗, and must therefore contain the bridge joining them,
which contradicts the fact that P contains a.

Since P contains a neighbourhood of a, P intersects both Q and Q′. Therefore, by
lemma 4.9, we deduce that P faces Q or Q′, a contradiction.

4.4 The augmented core

In this section, we define the augmented core, and prove its connectedness by showing
that it is the core of a coherent family of quadrants.

Definition 4.11. Let T1, T2 be two actions of G on R-trees, such that C(T1 × T2) 6= ∅,
and let R be a maximal twice light rectangle. The main diagonal ∆R is the diagonal of R
joining its two corners lying in C.

The augmented core Ĉ of T1 × T2 is the union of C and of the main diagonal of its
maximal twice light rectangles.

Proposition 4.12. Let T1, T2 be two actions of G on R-trees, such that C(T1 × T2) 6= ∅.
Then Ĉ is the core of a coherent family of quadrants. In particular, Ĉ is connected, and it
intersects each rectangle into a connected set.

Proof. Let Q be the family of quadrants of T1 × T2 which don’t intersect Ĉ. Note that
each quadrant of Q is light as it does not intersect C. Moreover, Q is coherent. Indeed,
assume that Q,Q′ ∈ Q face each other. Then Q ∩Q′ is a twice light rectangle, and let R
be the maximal twice light rectangle containing Q ∩ Q′. Since the trace of Q ∪ Q′ on R
separates its two main corners, one deduces that Q∪Q′ intersects the main diagonal ∆R,
a contradiction.

There remains to prove that Ĉ is the core of Q. We will prove the following fact later:

Fact 4.13. A light quadrant Q meets at most one maximal twice light rectangle R. More-
over, in this case, the basepoint of Q lies in R.

By definition, Ĉ ⊂ CQ = T1×T2 \
⋃

Q∈QQ. Moreover, it is clear that if R = Q∩Q′ is a

maximal twice light rectangle, then any element x ∈ R \ ∆R lies in a quadrant contained
in Q or Q′ and which does not meet ∆R.

R

δ1

δ2

η2 ∈ D2
P ∈ P

Q

η1 ∈ D
1

P
∈
P

Figure 3: The quadrants of P.
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Now, let x /∈ Ĉ and which doesn’t lie in the closure of a twice light rectangle. Let
Q = δ1 × δ2 be a light quadrant containing x. We will prove that x lies in a light quadrant
which does not meet any twice light rectangle. Assume that Q intersects a maximal twice
light rectangle R. The fact above claims that the base point of Q lies in R. Since R
contains no branch point, Q \R can be written as the following union of quadrants

Q \R =
⋃

P∈P

P

where P is defined as follows (see figure 3): let Di be the set of connected components of
δi \ pi(R) (these connected components are actually directions), and let P be the set of
quadrants defined by

P = {δ1 × η2, η1 × δ2 | η1 ∈ D1, η2 ∈ D2}.

Since x ∈ P for some P ∈ P, there remains to check that the quadrants of P are light and
don’t intersect a twice light rectangle.

The quadrants of P are clearly light since they are contained in Q. Moreover, if a
twice light rectangle R′ intersects a quadrant P ∈ P, then it also intersects Q, so R = R′

a contradiction. Therefore, the quadrants of P don’t meet any twice light rectangle, and
hence don’t intersect Ĉ. In other words, P ⊂ Q and x /∈ CQ.

Proof of Fact 4.13. Let R be a maximal twice light rectangle contained in a light quadrant
Q = δ1 × δ2. We only need to prove that the base point b = (b1, b2) of Q lies in R.
Indeed, it follows that two maximal twice light rectangles contained in Q have a nonempty
intersection (they have the same germ at b since they intersect the same quadrant) and
must therefore coincide.

We have to prove that for both i ∈ {1, 2}, bi ∈ pi(R). So assume for instance that,
b1 /∈ p1(R). Then by connexity, either p1(R) ⊂ δ1 or p1(R) ⊂ δ∗1 . The latter being
impossible since R meets Q, it follows that p1(R) ⊂ δ1. Now since R meets Q, δ2 contains
at least one of the endpoints p2(Q), call it a2. The segment p1(R)×{a2} is contained in Q,
and contains one of the endpoints of the main diagonal, which lies in C. This contradicts
the fact that Q is light.

4.5 Characterization of the connectedness of the core

We now can prove that the core is disconnected if and only if T1 and T2 both refine a
common splitting:

Proposition 4.14 (Characterization of the connectedness of the core.). Let T1,
T2 be two actions of G on R-trees, whose minimal subtrees are dense, and such that
C(T1 × T2) 6= ∅.

Then C(T1 × T2) is disconnected if and only if T1 and T2 are refinements of a common
non-trivial action on a simplicial tree T ′

T1 T2

T ′

.

Remark 4.15. The connectedness of C is also equivalent to the absence of twice light
squares (Proposition 4.4), which is equivalent to the equality C = Ĉ.

We first prove the following lemma.

Lemma 4.16. Given any x1 ∈ T1, there is at most one maximal twice light rectangle R
such that x1 ∈ p1(R).

In particular, p1|Ĉ\C is one-to-one.
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Proof. Let R =]a1, b1[×]a2, b2[ and R′ =]a′1, b
′
1[×]a′2, b

′
2[ be two maximal twice light rect-

angles as in the lemma. We know that a1, b1, a
′
1, b

′
1 are branch points, and that ]a1, b1[ and

]a′1, b
′
1[ don’t contain any branch point. Since ]a1, b1[ and ]a′1, b

′
1[ have nonempty intersec-

tion, it follows that ]a1, b1[=]a′1, b
′
1[. By a similar argument, if ]a2, b2[ intersects ]a′2, b

′
2[ ,

then R = R′ and we are done. Otherwise, ]a′2, b
′
2[ is contained in p2(P ) or in p2(Q), so R′

is contained in P or Q. By lemma 4.13, R = R′.

Proof of Proposition 4.14. If T1 and T2 both refine an action of G on a simplicial tree
T ′, an argument similar to example 1 in section 2.2 shows to the existence of twice light
rectangles as follows. First, one can first assume without loss of generality that T1 and
T2 are minimal. Let e =]a, a′[ be an open edge of T ′, and let Ii = f−1

i (e). We prove
that Ii contains no branch point so Ii is an open interval. Otherwise, let bi ∈ Ii be a
branch point, and let δi be a direction based at bi which does not intersect f−1

i (a) and
f−1
i (a′); first, fi(δi) = {fi(bi)} since otherwise, the preimage of some point of e would be

disconnected. Now, by minimality, there is an element h ∈ G which is hyperbolic in Ti and
ωTi

(h) ∈ ∂∞(δ). Now the image of every point under sufficiently high powers of h ends in
δ. This implies that the whole tree Ti is mapped to {fi(bi)} under fi, contradicting the
non-triviality of the action of G on T ′.

Denote by ai and a′i the enpoints of Ii which are mapped to a and a′ respectively under
fi, and let δi and δ′i be the directions in Ti based at ai and a′i, and containing Ii. Let
Q = δ1×δ′2 andQ′ = δ′1×δ2. Choose a base point ∗ = (∗1, ∗2) such that f1(∗1) = f2(∗2) ∈ e.
The quadrant Q is light because if g.∗ ∈ Q, then g.f1(∗1) = g.f2(∗2) ∈ f1(δ1) ∩ f2(δ

′
2) = e

so g.∗ ∈ I1 × I2 and cannot go to infinity. Since the same argument applies to Q′, this
concludes to the existence of a twice light rectangle in T1 × T2.

To prove the converse, the idea is to obtain T ′ by collapsing everything but the main
diagonals of twice light rectangles. More precisely, let T ′ be the simplicial tree defined as
follows: its vertices are the connected components of C, its edges are the main diagonals
of the twice light rectangles. The endpoints of edges are the natural ones.

Lemma 4.16 implies that each edge disconnects T ′, so T ′ is a tree. Now let x ∈ Ti, and
let’s define fi(x). If x ∈ pi(C), then p−1

i (x) is connected, so it defines a point of T ′ which
we assign to fi(x). If x ∈ pi(R) for a maximal twice light rectangle R, we send x to the
corresponding point of ∆R. The map fi is now defined on pi(C) which is a dense subtree of
Ti. For the combinatorial metric on T ′, fi is Lipschitz and has therefore a unique Lipschitz
extension to Ti. It is clear that fi preserves alignment: if x separates y from z in Ti and
fi(x) is distinct from fi(y), fi(z), then fi(x) separates fi(y) from fi(z) in T ′.

4.6 Flow and contractibility of the augmented core

Proposition 4.17. Let T1, T2 be a pair of minimal actions of G on R-trees whose core is
non-empty. Let Ĉ be the augmented core.

Then there is an equivariant retraction of T1×T2 onto Ĉ. In particular, Ĉ is contractible.
Moreover, for any rectangle R ⊂ T1 × T2, R ∩ Ĉ is empty or contractible.

Remark. Minimality can be replaced here by the weaker assumption that Ti = pi(Ĉ). In
particular, the contractibility of Ĉ remains true without minimality hypothesis: Ĉ is a
deformation retract of p1(Ĉ) × p2(Ĉ).

We will need a slightly more general statement.

Lemma 4.18. Let Q be a family of quadrants whose core CQ is connected and such that
for both i ∈ {1, 2}, pi(CQ) = Ti.

Then there is a G-equivariant semi-flow ϕt on T1 × T2 which restricts to the identity
on CQ, and such that for all x ∈ T1 × T2, there exists t ∈ [0,+∞[ such that ϕt(x) ∈ CQ.

Moreover, for any rectangle R such that for both i ∈ {1, 2}, pi(R ∩ CQ) = pi(R), R is
invariant under ϕt.
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Figure 4: The equivariant flow ϕt

Proof of the proposition from the lemma. Minimality and the connectedness of Ĉ ensures
that pi(Ĉ) = Ti. Thus the hypotheses of the lemma are satisfied, so ϕt provides the
required equivariant retraction by deformation of T1 × T2 onto Ĉ.

The only thing remaining to check is that the trace of Ĉ on a rectangle R is either
empty or contractible. But if R ∩ Ĉ is nonempty, let R0 = p1(R ∩ Ĉ) × p2(R ∩ Ĉ) be the
smallest rectangle containing R ∩ Ĉ. The lemma claims that R0 is invariant under the
semi-flow so R ∩ Ĉ is a retract by deformation of R0.

Proof of the lemma. For all t ∈ [0,∞] and x ∈ T1 ×T2, we want to define ϕt(x) (see figure
4). If x ∈ CQ, we let ϕt(x) = x for all t ≥ 0.

Otherwise, using the fact that pi(CQ) = Ti, choose a, b ∈ C such that p1(a) = p1(x)
and p2(b) = p2(x) and let R = [x1, b1]× [x2, a2] be the smallest rectangle containing a and
b (we use the notation ai = pi(a) and bi = pi(b)). By proposition 4.6, CQ∩R is connected.
Moreover, R \ CQ has at most two connected components: the component Rx containing
x, and the component containing the opposite corner (b1, a2) if (b1, a2) /∈ CQ (indeed, the
two components are the union of the traces of quadrants containing the corners x and
(b1, a2) respectively). We say that a rectangle R is a chart for x if x is a corner of R, and
if there are two points a, b ∈ R∩ CQ having the same horizontal and vertical projection as
x respectively.

Given a chart R for x, we identify it with [0, l1]× [0, l2] ⊂ R2 by sending x, a and b to
(0, 0), (l1, 0), (0, l2) where l1 = d(x1, b1) and l2 = d(x2, a2). Flow lines will be parallel to
the vector ~v = (1, 1). Using this identification, given y ∈ R and t ∈ [0,min(l1, l2)] not too
large, it makes sense to write y + t~v.

Since R ∩ CQ is connected, there exists t ≤ min(l1, l2) such that x + t~v ∈ CQ since
otherwise, this segment would separate a from b, contradicting the connectedness of CQ∩R.
Similarly, for all y ∈ Rx, there exists t ∈ [0,min(l1, l2)] such that y+ t~v ∈ CQ. Thus, given
the choice of R, we can define τR(y) to be the smallest positive s such that y + s~v ∈ CQ.
We now define the flow on R by ϕRt (y) = y + min(t, τR(y))~v.

The definition of the semi-flow does not change if we change a chart R to a smaller
one R′. Indeed, the point y+ τR(y)~v also lies R′ since otherwise, there would be no s such
that y + s~v ∈ CQ ∩R′. This means that the definition of τR and τR′ agree. Therefore, the
definitions of ϕRt and ϕR

′

t agree. Since there is a smallest chart for defining the flow at a
given point x, the definition of the semi-flow does not depend on any choice.

Note that by definition, ϕt(x) stays in any chart for x. Now if R is a rectangle such
that for both i ∈ {1, 2}, pi(R ∩ CQ) = pi(R), then R contains a chart for each point of R.
In particular, R is invariant under ϕt.

Finally, we prove the continuity of ϕ : R+ × T1 × T2 → T1 × T2 by proving that the
semi-flow is Lipschitz with respect to each variable separately. On T1×T2, we consider the
distance d(x, y) = maxi∈{1,2}dTi

(xi, yi). Clearly, t 7→ ϕt(x) is 1-Lipschitz. Now consider
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x1 7→ ϕt(x1, x2) where t and x2 are fixed. We choose b1 ∈ T1 such that b = (b1, x2) ∈ CQ.
Let x1, x

′
1 ∈ T1, and denote x = (x1, x2) and x′ = (x′1, x2). Let l = d(x1, x

′
1).

b b

CQ

x x′

b

b

a

b
b

b

ϕt(x)

CQ

x

a

b
b

b

ϕt(x)

x′

b

b

ϕt(x
′)

Case 1 Case 2

b

b

Figure 5: The flow is Lipschitz

Case 1: x /∈ CQ and x′ ∈ CQ. In this case, choose R = [x1, x
′
1]× [x2, a2] as a chart, where

(x1, a2) ∈ CQ. Then, d(ϕt(x), ϕt(x
′)) = d(ϕt(x), x

′) ≤ l. Indeed let λ = min(t, τ(x)), and
note that λ ≤ l because ϕt(x) ∈ R. Then d(ϕt(x), x

′) = ||λ~v − x′|| = max(|λ|, |λ − l|) ≤ l.

Case 2: x and x′ don’t lie in CQ, and x′1 ∈ [x1, b1] (remember that b1 is such that
(b1, x2) ∈ CQ). In this case, we choose R = [x1, b1] × [x2, a2] as a chart where a =
(x1, a2) ∈ CQ. The arc [x1, x

′
1] × {x2} cannot intersect CQ because fibers are convex and

(b1, x2) ∈ CQ. Thus x and x′ are in the same component Rx of R\CQ. Let λ = min(t, τ(x))
and λ′ = min(t, τ(x′)). Then d(ϕt(x), ϕt(x

′)) = ||(λ, λ)− (λ′ + l, λ′)|| ≤ l+ |λ− λ′|. There
remains to prove that z1 7→ τ(z1, x2) is a Lipschitz function in restriction to Rx. Write
Rx as an increasing union of sets Rk where each Rk is a finite union of traces of light
quadrants on R. It is easy to check that the piecewise linear map τk obtained by replacing
Rx by Rk is

√
2-Lipschitz. The function τ being the supremum of the fuctions τk, it is

therefore
√

2-Lipstchitz

We now show how to deduce the other cases from case 1 and 2: we just have to
consider the case where x, x′ /∈ CQ. Consider the fiber F1 = {b1 ∈ T1 | (b1, x2) ∈ CQ}. If
F1 meets [x1, x

′
1] in a point b′1, we apply case 1 to the pair x, b′ and to the pair b′, x′ and

apply triangle inequality. If F1 does not meet [x1, x
′
1], let x′′1 be the center of the tripod

(x1, x
′
1, b1). Now apply case 2 to the pair x, x′′ and to the pair x′′, x′.

4.7 The augmented core is CAT(0).

Let d be the usual CAT(0) metric d on T1 × T2 defined by

d((a1, a2), (b1, b2)) =
√

dT1
(a1, b1)2 + dT2

(a2, b2)2.

Let dĈ be the path metric induced by d on Ĉ

dĈ(x, y) = inf{length(c)| c path joining x to y in Ĉ}

where the length is measured with d.

Proposition 4.19. When endowed with the metric dĈ above, the augmented core Ĉ is
CAT(0).

Proof. First, the result is clear when T1 and T2 are simplicial trees since Ĉ is a simply
connected square complex, and the link at each vertex has no has no non-trivial loop of
length less than 2π because this is already true in T1 × T2.
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For R-trees, first note that the metric dĈ is well defined and finite since any two points
are joined by a Lipschitz path (4.17) (note however that it might not be complete as Ti is
itself usually not complete). Then, if K1,K2 are convex subsets of T1 and T2 respectively,
for any Lipschitz path c : [0, 1] → Ĉ joining two points of K1×K2∩Ĉ there is a shorter path
in K1×K2∩Ĉ joining them: for each component ]a, b[ of [0, 1]\(p1 ◦c)−1(K1), one has that
p1(c(a)) = p1(c(b)) ∈ K1, and one can replace c on [a, b] by the geodesic in the vertical
fiber of p1(c(a)) and get a shorter path in Ĉ with the same Lipschitz constant. Doing
this for every such component, we get a shorter path c′ such that p1 ◦ c′([0, 1]) ⊂ K1.
Doing the symmetrical operation on c′, we get a shorter path in K1 × K2 ∩ Ĉ. Given
a = (a1, a2), b = (b1, b2) ∈ Ĉ, one can take Ki to be the compact interval Ki = [ai, bi],
and the compactness of K1 ×K2 ∩ Ĉ implies that the infimum in d(a, b) Ĉ is achieved. In
particular Ĉ is geodesic, and sets of the form K1 ×K2 ∩ Ĉ are convex.

Moreover, there is a unique geodesic between two given points. Otherwise, one can
find two points a, b with two geodesics c1, c2 joining them with c1 ∩ c2 = {a, b}. The
fact that the trace of a rectangle is convex in Ĉ implies that c1 and c2 are graphs of
monotonous functions in the smallest rectangle containing {a, b}. We now see c1, c2 as
maps of monotonous functions I1 → I2, and assume for instance that c1 ≤ c2. Since the
set lying between c1 and c2 is contained in Ĉ, if c1 is not concave, then one could shorten
it. Similarly, c2 is necessarily convex. This implies c1 = c2.

Now to prove that Ĉ is CAT(0), since any geodesic triangle is contained in the product
of two tripods, we need only to prove that K1×K2∩Ĉ is CAT(0) where Ki is a (compact)
tripod in Ti. Let X = Ĉ ∩K1 ×K2. Since X can be obtained by removing from K1 ×K2

a countable set of quadrants, write X as a decreasing intersection of a sequence of sets
Xk obtained by removing finitely many quadrants from K1 × X2. The argument in the
simplicial setting implies that Xk is CAT(0). Consider a sequence of linearly parametrized
geodesics ck : [0, 1] → Xk joining two points a, b ∈ X. Up to extracting a subsequence,
ck converges to a curve c joining a to b in X. General nonsense shows that length(c) ≤
lim length(ck) and since X ⊂ Xk, length(c) ≥ length(ck), so the path metrics on Xk

converge to the path metric on X. It follows that X is CAT(0).

5 Characterization of the core

Proposition 5.1 (Characterization of the core). Let T1, T2 be two actions of a group
G on R-trees such that C 6= ∅. Let F ⊂ T1×T2 be a non-empty closed connected G-invariant
subset with convex fibers. Then F contains C(T1 × T2).

Moreover, C is the intersection of all such sets F .

If T1 and T2 are not the refinements of a common splitting, then C is itself a closed
connected subset with convex fibers. We thus get:

Corollary 5.2. Let T1, T2 be two actions of G on R-trees whose minimal subtrees are
dense. Assume that C is non-empty and that T1 and T2 are not the refinement of a
common simplicial non-trivial action.

Then C is the smallest non-empty closed invariant connected subset of T1 × T2 having
convex fibers.

We will often use this characterization of the core under the following form:

Corollary 5.3. Let T1, T2 be two actions of a group G on R-trees. Let X be a nonempty
connected space with an action of G such that there are two equivariant maps f1, f2 from
X to T1 and T2 such that the preimage of each point of Ti is connected. Let F = (f1, f2) :
X → T1 × T2.

Then F (X) contains C.
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Proof of corollary 5.3. Since F (X) is an nonempty invariant closed connected subset of
G, we just have to prove that it has connected fibers. By Corollary 5.5 below, we need
only to check that F (X) has connected fibers. So let x ∈ T1, and consider a fiber F (X) ∩
p−1
1 (x1). But this fiber can be written as F (f−1

1 (x1)), which is connected since f−1
1 (x1) is

connected.

The main result to prove the proposition is the following lemma.

Lemma 5.4. Let T1, T2 be two R-trees and let F be a nonempty connected subset of
T1 × T2 with convex fibers. Then the complement of F is a union of quadrants.

This corollary follows immediately:

Corollary 5.5. If F is nonempty, connected and has convex fibers, then so is F .

Remark. Note that this is of course false if one removes any connectedness assumption:
just take E = {(x, x)|x ∈ Q} ∪ {(x,−x)|x ∈ R \ Q} in R2.

Proof of the proposition from the lemma. Let Q be the family of quadrants which don’t
intersect F so that, by lemma 5.4, F = T1 ×T2 \

⋃

Q∈QQ. To prove that F contains C, we
only need to prove that any quadrant Q ∈ Q is light. By choosing the base point in F , the
orbit of the base point does not meet any quadrant Q ∈ Q so the proposition follows.

We will use the following terminology: ifQ = δ1×δ2 is a quadrant based at x = (x1, x2),
we call ∂1Q = {x1} × δ2 (resp. ∂2Q = δ1 × {x2}) the vertical (resp. the horizontal)
boundary of Q. Note that ∂Q = ∂1Q ∐ ∂2Q ∐ {x}. Say that two quadrants δ1 × δ2 and
δ′1 × δ′2 based at the same point are opposite if δ1 6= δ′1 and δ2 6= δ′2.

Let’s start with the following fact:

Fact 5.6. Let T1 ×T2 be two R-trees and let F be a nonempty connected subset of T1 ×T2

with convex fibers. Fix a point x /∈ F .

1. If F meets two opposite quadrants based at x, then there exists a quadrant P , based
at x, such that F intersects the horizontal and the vertical boundary of P .

2. Let P be a quadrant based at x such that F intersects the horizontal and the vertical
boundary of P . Then the closure of any quadrant opposite to P doesn’t intersect F .
In other words, any quadrant whose closure intersects F has a common (vertical or
horizontal) boundary with P . Moreover, F meets P .

Proof of the fact. 1. Let Q = δ1 × δ2, Q
′ = δ′1 × δ′2 be two opposite quadrants based at

x which intersect F . Since F is connected and does not contain x, F meets ∂1Q or ∂2Q.
Assume for instance that F meets ∂1Q = {x1} × δ2. For the same reasons, F meets ∂1Q

′

or ∂2Q
′. Since fibers of F are convex, and since x /∈ F , F cannot intersect ∂1Q

′. Therefore
F meets both boundaries of the quadrant P = δ′1 × δ2.

2. Now let P = ρ1×ρ2 be a quadrant based at (x1, x2) such that F intersects ∂1P and
∂2P . Convexity of fibers implies that F cannot intersect the set A = ρ∗1×{x2}∪{x1}×ρ∗2.
Now let Q be a quadrant opposite to P . Since ∂Q ⊂ A ∪ {x}, the connectedness of F
prevents F from intersecting Q. To prove that F meets P , just note that A ∪ P ∪ {x}
separates ∂1P from ∂2P .

Proof of Lemma 5.4. Let x = (x1, x2) /∈ F . We have to find a quadrant Q containing x
and disjoint from F . Let V = V1 × V2 be an open neighbourhood of x which does not
intersect F . If F does not intersect any quadrant based at x, then for instance, one can
assume that F is contained in {x1}× δ2 for some direction δ2 at x2, and the result is clear.

Let a ∈ F lying in a quadrant based at x. Let y ∈ V ∩ ]x1, a1[×]x2, a2[, and let Qy
be the quadrant based at y containing x (see figure 6 and 7). If Qy ∩ F = ∅, then we
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are done. Otherwise, F meets two opposite quadrants based at y (namely Qy and the
quadrant containing a). The fact above says that there is a quadrant Py = ρ1 × ρ2 based
at y such that F meets both the horizontal and the vertical boundary of Py. Since Py
has a common boundary with every quadrant at y meeting F , we can assume for instance
that Py and Qy share their vertical boundary. Consider a point v = (y1, v2) ∈ F ∩ ∂1Py,
and a point u = (u1, y2) ∈ F ∩ ∂2Py. We distinguish two cases:

1. either x2 /∈ [v2, y2]
2. or x2 ∈ [v2, y2]

First assume that case 1 occurs (figure 6). Since x ∈ Qy, one has that x2 and v2 are in
a common direction based at y2 (namely, the vertical direction of Qy). Therefore, [y2, v2]
and [y2, x2] have a common nondegenerate initial segment [y2, z2]. One has z2 6= x2 since
otherwise case 2 would occur, and z2 6= v2 because F does not intersect V . This means
that the three directions δ(y2), δ(x2) and δ(v2) based at z2 and containing respectively y2,
x2, and v2 are distinct. Since x2, z2, y2, a2 are aligned in this order, a2 ∈ δ(y2).

bb

bb

bb

bb

x

y

a

bb

bb
u

v

F

Qy

Q′
z

V

bb

bb

bb bb bb
z

bb
y2

bb
v2

bb

z2

x2

bb

bb
a2

Py
p2

δ(x2)
δ(v2)

δ(y2)

Figure 6: Proof of lemma 5.4, case 1

Now consider the point z = (y1, z2) ∈ V . In particular z /∈ F . Let Q′
z = δ1 × δ(x2)

be the quadrant at z containing x. If Q′
z does not intersect F , we are done. Otherwise,

there are two opposite quadrants at z meeting F (namely Q′
z and the quadrant η1 × δ(y2)

containing a). The quadrant P ′
z given by point 1 of the fact is one of the two quadrants

δ1× δ(y2) or η1× δ(x2). Since F intersects the vertical boundary of P ′
z, F contains a point

in {y1}× δ(y2) or in {y1}× δ(x2). Since v ∈ {y1}× δ(v2) also lies in F , convexity of fibers
contradicts the fact that z /∈ F . This concludes case 1.

Now we assume that x2 ∈ [v2, y2] (see figure 2). Let z = (y1, z2) where z2 ∈ V2∩ ]x2, v2[.
We are going to prove that the quadrant Q′

z, based at z and containing x does not meet
F by finding a quadrant P ′

z opposite to Q′
z, and meeting F at its two boundaries. The

fact will then conclude.
Let ρ′2 be the direction at z2 containing v2, and let ρ′1 = ρ1. Since we are in case 2,

P ′
z = ρ′1×ρ′2 is opposite to Q′

z. Moreover, the choice of ρ′2 implies that F meets the vertical
boundary of P ′. Now notice that ρ∗1 ×{y2} ∪ V ∪ ρ1 ×{z2} separates u from v. Moreover,
ρ∗1×{y2} does not intersect F since it is contained in the closure of the union of quadrants
opposite to Py. Nor does V intersect F . Thus, since F contains u and v, F must intersect
ρ1 × {z2}, which is the horizontal boundary of P ′

z. Thus F meets both boundaries of P ′
z,

which implies that F does not meet Q′
z, so Q′

z is the desired quadrant.
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Figure 7: Proof of lemma 5.4, case 2

6 Compatibility of tree actions

We say that C is 1-dimensional if it does not contain any rectangle I1 × I2 where I1 and
I2 are nondegenerate arcs. The proof will show that when C is 1-dimensional, Ĉ has a
natural structure of R-tree, and is a common refinement of T1 and T2.

Theorem 6.1 (compare [SS00]). Let T1, T2 be two minimal actions of G on R-trees,
such that C(T1 × T2) 6= ∅.

Then T1 and T2 have a common refinement if and only if C is 1-dimensional.

Remark. The result does not hold if we don’t assume that C 6= ∅: an abelian action having
no invariant line, and the corresponding action by translation on R have no common
refinement.

Proof. First assume that T1 and T2 have a common refinement T0, and denote by fi :
T0 → Ti an equivariant map preserving alignement. Consider the map F = (f1, f2) : T0 →
T1 × T2. By corollary 5.3, F (T0) contains C.

Now, F (T0) is 1-dimensional: this is clear in the simplicial context; in general, this can
be proved as follows. Take a = (a1, a2), b = (a1, c2), c = (c1, c2), d = (c1, a2) be the cor-
ners of a rectangle contained in F (T0), and let a0, b0, c0, d0 be some preimages in T0. Let
K0 ⊂ T0 be the convex hull of {a0, b0, c0, d0}. Then one has either [a0, b0] ∪ [c0, d0] = K0

or [b0, c0]∪ [d0, a0] = K0. Let ’s assume for instance that [a0, b0]∪ [c0, d0] = K0. Now since
f1(a0) = f1(b0), f1 is constant on [a0, b0]. For similar reasons, f1 is constant on [c0, d0].
Thus f1 is constant on K0, a contradiction. One deduces that F (T0) is also 1-dimensional:
consider a non-degenerate rectangle R ⊂ F (T0) and let x ∈ R which does not lie on its
boundary. Then the four quadrants based at x and containing the four corners of R in-
tersect F (T0). By fact 5.6, x ∈ F (t0).

Conversely, assume that C and thus Ĉ is one dimensional. If T1 and T2 are simplicial
trees, then Ĉ is a contractible one-complex, i. e. a simplicial tree. In general, we will prove
that Ĉ is an R-tree when endowed with the metric d((x1, x2), (y1, y2)) = dT1

(x1, y1) +
dT2

(x2, y2). One can deduce that Ĉ itself is a common refinement for T1 and T2: the map
pi : Ĉ → Ti preserves alignement because Ĉ has convex fibers.
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Let’s prove that Ĉ is an R-tree. We have already proved that Ĉ is CAT(0) and therefore
geodesic. Assume that Ĉ contain an embedded circle c = (c1, c2) : S1 → Ĉ. Then c1
is necessarily non constant, so there exists a non-degenerate interval [a, b] ⊂ S1 with
c1(a) = c1(b) /∈ c1(]a, b[). Note that the segment {c1(a)} × [c2(a), c2(b)] is contained in Ĉ
by convexity of fibers. Now c1(]a, b[) is contained in a direction based at c1(a), so for all
ε > 0, there exists a′ ∈ (]a, b[) close to a and b′ ∈]a, b[ close to b such that c1(a

′) = c1(b
′),

d(c2(a), c2(a
′)) < ε and d(c2(b), c2(b

′)) < ε. If ε was chosen very small compared to
d(c2(a), c2(b)), then the segments [c2(a), c2(b)] and [c2(a

′), c2(b
′)] in T2 must intersect in

a nondegenerate interval, say I2. Now the segments {c1(a)} × I2 and {c1(a′)} × I2 are
contained in Ĉ by convexity of fibers, which implies that the rectangle [c1(a), c1(a

′)] × I2
is contained in Ĉ, a contradiction.

7 Topological interpretation of the intersection number

We now give a topological interpretation of the intersection number of two splittings.
We need a few definitions. Given a connected cell complex X and a (maybe dis-

connected) subcomplex Y ⊂ X, say that Y is 2-sided if Y has a neighbourhood in X
homeomorphic to Y × [−ε, ε]. Let X̃ be its universal covering, and Ỹ be the preimage of Y
in X̃. The tree dual to Y ⊂ X is the graph TY whose vertices are connected components
of X̃ \ Ỹ and whose edges are connected components of Ỹ , and an edge e is adjacent to
a vertex v if e ⊂ v. The simple connectedness of X̃ implies that TY is a tree, and it is
clearly endowed with an action of π1(Σ). Given Y1, Y2 two 2-sided subcomplexes of X, say
that Y1 and Y2 intersect transversely if Y1 ∩ Y2 has a neighbourhood N homeomorphic to
Y1 ∩ Y2 × [−ε, ε]2 where Yi ∩N is mapped to Y1 ∩ Y2 × p−1

i (0) where pi : [−ε, ε]2 → [−ε, ε]
is the canonical projection.

In the following proposition, #π0(Y1∩Y2) denotes the number of connected components
of Y1 ∩ Y2.

Theorem 7.1. Assume that Y1, Y2 ⊂ X are two 2-sided subcomplexes, which intersect
transversely, and let T1, T2 be the two dual trees, endowed with the action of π1(X). Then
i(T1, T2) ≤ #π0(Y1 ∩ Y2).

Moreover, given two non-trivial actions of a group on simplicial trees T1, T2, there
exists a complex X and Y1, Y2 ⊂ X two 2-sided subcomplexes intersecting transversely
such that i(T1, T2) = #π0(Y1 ∩ Y2).

Proof. Assume that TY is dual to Y ⊂ X. Then there is a continuous equivariant map
f : X̃ → TY defined by sending each connected component of Ỹ×] − ε, ε[ to an edge, and
by sending each connected component of X̃ \ Ỹ×]−ε, ε[ to a vertex. The main observation
here is that the preimage of each point of TY under f is connected.

In our setting, denote by fi : X̃ → Ti the maps defined above, and let F = (f1, f2).
By corollary 5.3, F (X̃) contains C since F (X̃) is closed as a subcomplex of T1 × T2.
Since Y1 and Y2 intersect transversely, Y1 ∩ Y2 has a neighbourhood homeomorphic to
Y1 ∩ Y2 × [−ε, ε]2, so F maps each connected component of Ỹ1 ∩ Ỹ2 × [−ε, ε] to a 2-cell
of T1 × T2. Moreover, the preimage of the center of a 2-cell of T1 × T2 is a connected
component of Ỹ1 ∩ Ỹ2. Therefore, the number of orbits of 2-cells in F (X̃) is bounded by
the number of orbits of connected components of Ỹ1 ∩ Ỹ2 so

i(T1, T2) = #{2-cells of C/G} ≤ #{2-cells of F (X̃)/G}
≤ # π0(Ỹ1 ∩ Ỹ2)/G = #π0(Y1 ∩ Y2).

We now prove that equality can achieved by constructing X,Y1, Y2 from Ĉ. Let X̃ = Ĉ,
let Ei be the set of midpoints of edges in Ti, and let Ỹi = Ĉ ∩ p−1

i (Ei). In the category

25



of complexes of groups, one could take Yi = Ỹi/G and X = X̃/G. However, we need
to modify this construction to get free actions. Take A a simply connected complex on
which G acts freely (for instance, a Cayley 2-complex). Let X̃ ′ = Ĉ ×A endowed with the
diagonal action of G, and let Ỹ ′

i = Ỹi×A. Connected components of Ỹ ′
1∩Ỹ ′

2 are of the form
x×A where x is either the center of a 2-cell of C, or the midpoint of the main diagonal of
a maximal twice light rectangle in Ĉ. Thus, in the presence of twice light rectangles, we
need to change Ei so that Ỹ ′

1 ∩ Ỹ ′
2 contains no point in the main diagonal of a twice light

rectangle. To this means, one can keep E1 unchanged, and take for E2 an equivariant set
of points meeting each edge of T2 exactly once, but not containing the midpoint of any
edge. With this modification, there is a one-to-one correspondance between connected
components of Ỹ ′

1 ∩ Ỹ ′
2 and the 2-cells of C. In particular, #π0(Ỹ

′
1 ∩ Ỹ ′

2)/G = i(T1, T2).
Let X ′ = X̃ ′/G and Y ′

i = Ỹ ′
i /G. Since X̃ ′ is simply connected and since the action

of G on X̃ ′ is free, X̃ ′ is the universal cover of X ′ and G ≃ π1(Σ). Thus, Ti is dual to
Y ′
i ⊂ X ′, and i(T1, T2) = #π0(Y

′
1 ∩ Y ′

2).

8 Core of geometric actions

The goal of this section is to produce a finite fundamental domain for the core of geometric
actions in the following weak sense:

Theorem 8.1. Let T1, T2 be geometric actions of a finitely generated group G on R-trees.
Then there is a set D ⊂ T1 × T2, which is a finite union of compact rectangles, and

such that C(T1 × T2) ⊂ G.D.

Remember that a minimal action of a finitely generated group on a simplicial tree is
geometric if and only if its edge stabilizers are finitely generated. Therefore, we get:

Corollary 8.2 ([Sco98]). Let T1, T2 be two splittings of a finitely generated group G over
finitely generated groups.

Then C(T1 × T2)/G is compact. In particular, i(T1, T2) is finite.

In general, we will need a stronger assumption to deduce the finiteness of the intersec-
tion number:

Proposition 8.3. Let T1, T2 be geometric actions of a finitely presented group G on
R-trees.

Then i(T1, T2) is finite.

The philosophy here is the following: we construct 2-complex X, with a cocompact
action of G, with two measured foliations F1,F2 so that T1 and T2 are the leaf spaces
made Hausdorff of those foliations. Now let fi : X → Ti be the canonical projections
and let F = (f1, f2) : X → T1 × T2. First, F (X) in contained in the orbit of a finitely
many rectangles. Now if points of Ti exactly coincide with leaves of Fi, the fibers of fi
are connected and Corollary 5.3 implies that F (X) contains C. In general, the connexity
of fibers might fail, but we will get around this difficulty.

8.1 An example of infinite intersection number

To motivate this section, we first give an example of actions of a free group on simplicial
trees T1, T2 such that i(T1, T2) is infinite. This answers a question asked by Scott and
Swarup in [SS00].

Lemma 8.4. Let T1 be a free minimal action of the free group G = 〈a, b, c〉 on a simplicial
tree, for instance on its Cayley graph. Let H be a non-finitely generated subgroup of 〈a, b〉,
and let T2 be the Bass-Serre tree of the amalgam G = 〈a, b〉 ∗H (H ∗ 〈c〉).

Then i(T1, T2) = ∞.
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Proof. First C is nonempty and has no twice light rectangle; and by minimality pi(C) = Ti;
now let e2 be an edge of T2 stabilized by H, and let A = C ∩ p−1

2 (e2). Since fibers are
convex, A has the form A1 × e2 where A1 is a nonempty subtree of T1. Note that the
invariance of C implies that A1 is H-invariant, and that two edges in A1 are in the same
H-orbit if and only if the corresponding rectangles of A are in the same G-orbit. Thus
proving i(T1, T2) = ∞ consists in proving that A1 has infinitely many H-orbits of edges.
But the action of H on A1 is free so H occurs as the fundamental group of the graph
A1/H, which cannot be finite since H is not finitely generated.

8.2 Preliminaries about geometric actions

All the material in this section is borrowed from [LP97] where more details can be found.
A measured foliation F on a 2-complex X consists of the choice, for each closed simplex σ
of X of a (maybe constant) affine map fσ : σ → R defined up to post-composition by an
isometry of R, and such that is consistent under restriction to a face: if τ is a face of σ,
then fτ = ϕ ◦ (fσ)|τ for some isometry of ϕ of R. Level sets of fσ give a foliation on each
closed simplex. We say simply a foliated 2-complex to mean a 2-complex endowed with a
measured foliation. Leaves of the foliations on X are defined as the equivalence classes of
the equivalence relation generated by the relation x, y belong to a same closed simplex σ
and fσ(x) = fσ(y). The transverse measure µ(c) of a path c : [0, 1] → σ transverse (resp.
parallel) to the foliation is the length of the interval fσ(c([0, 1])). The transverse measure
is invariant under the holonomy along the leaves. The transverse measure thus defines a
metric on each transverse edge.

We say that map f from a simplex to an R-tree T is affine if f = i◦fa where a : σ → R
is an affine map, and i : I → T is an isometry defined on a convex subset I ⊂ R containing
a(σ). Given a 2-complex X and a map f : X → T which is affine in restriction to each
simplex, there is a natural measured foliation F on X defined by the restrictions of f to
the simplices of X. We call F the measured foliation induced by f .

If c : [0, 1] → X is a path wich is piecewise transverse or parallel to the foliation, we
define µ(c) is the sum of the transverse measures of the pieces. The pseudo-metric

δ(x, y) = inf{µ(c) for c joining x to y}

is zero on each leaf of X. By definition, the leaf space made Hausdorff X/F of X is
the metric space obtained from X by making δ Hausdorff, i. e. by identifying points at
pseudo-distance 0.

Theorem 8.5 ([LP97]). Let (X,F) be a foliated 2-complex. Assume that π1(X) is nor-
mally generated by free homotopy classes of curves contained in leaves.

Then X/F is an R-tree.

Remark. If fσ is constant on σ, then σ is contained in a leaf. This means that contrary to
[LP97], we allow 2-simplices to be contained in a leaf. By removing the interior of those
2-simplices (which does not change the leaf space made Hausdorff), one can reduce to the
case considered by [LP97] (for one measured foliation). For two measured foliations, not
allowing them would introduce unnecessary technical complications.

Definition 8.6 (Tree dual to a 2-complex, geometric action). Consider a finitely
generated group G acting on a tree T . We say that T is dual to a foliated 2-complex X
endowed with an action of G if there is an equivariant isometry between T and X/F and
if each transverse edge of X isometrically embeds into X/F .

Then T is geometric if it is dual to a foliated 2-complex X such that the action of G
on X is free, properly discontinuous, and cocompact.
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We call a direct system of actions on R-trees a sequence of actions of finitely generated
pairs Gk

�

Tk and an action G

�

T , with epimorphisms ϕk : Gk → Gk+1 and ψk : Gk → G,
and surjective ϕk-equivariant (resp. ψk-equivariant) morphisms of R-trees fk : Tk ։ Tk+1

(resp. gk : Tk ։ T ) such that the following diagram commutes:

Tk
fk

gk

Tk+1

gk+1

· · · T

Gk
ϕk

ψk

Gk+1
ψk+1

· · · G

For convenience, we will use the notation fkk′ = fk′−1 ◦ · · · ◦ fk : Tk → Tk′ .

Definition 8.7 (Strong convergence). We say that a direct system of minimal actions
of finitely generated groups on R-trees Gk

�

Tk converges strongly to G

�

T if

• G is the direct limit of the groups Gk
• for all finite tree K ⊂ Tk, there exists k′ ≥ k such that gk′ restricts to an isometry

on fkk′(K),

We now recall the definition of a trivial strong limit. If H is a countable group acting

by isometries on a metric space T , denote by T̂/H the metric space obtained by making
Hausdorff the natural pseudo-metric hold by the quotient space T/H. A strong limit is

trivial if for k large enough, the space ̂Tk/ kerψk (which is naturally endowed with an
action of G) is equivariantly isometric to T .

Theorem 8.8 ([LP97, Corollary 0.3]). An action of a finitely generated group G on an
R-tree T is geometric if and only if every direct system converging strongly to T converges
trivially.

8.3 A technical preliminary result

The following lemma is a slight extension of the result of [LP97] saying that a geometric
action is dual to a foliated 2-complex.

Lemma 8.9. Consider a geometric action of a finitely generated group G on an R-tree
T , and let X be a 2-complex endowed with a free properly discontinuous cocompact action
of G. Let F be a G-invariant measured foliation on X. Consider a map f : X → T which
in constant on leaves of F , and isometric in restriction to transverse edges of X.

Then, there exists a 2-complex X̂ containing X, endowed with a free properly discontin-
uous cocompact action of G, a measured foliation F̂ extending F , and a map f̂ : X̂ → T
extending f , which is constant on leaves of F̂ , and which induces an isometry between
X̂/F̂ and T . Moreover, the inclusion X ⊂ X̂ induces an epimorphism of fundamental
groups.

Proof. The proof is essentially a rewording of [LP97]. We choose a large connected finite
subgraph K in the 1-skeleton of X, and we describe a construction of a G-foliated space
(XK ,FK) containing X, and such that the map XK/FK → T is an isometric embedding
in restriction to the image of K.

First, note that the set K0 = f(K) is a finite tree (i. e. the convex hull of finitely many
points), and has therefore a natural simplicial structure. We can subdivide this simplicial
structure so that for every vertex v of K, f(v) is a vertex of K0. Let CK be the set obtained
by coning off K as follows: glue K× [0, 1] on K0 via the map K×{1} → K0 sending (x, 1)
to f(x). There is a natural measured foliation on CK induced by the foliation {∗}×[0, 1] of
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K× [0, 1]. The set CK can easily be turned into a simplicial complex whithout subdividing
K × {0}. Furthermore, the map f : X → T extends uniquely to fK : XK → TK as a map
constant on leaves and isometric in restriction to transverse edges.

Let (XK ,FK) be the foliated 2-complex obtained by gluing on X the set G× CK via
the map G × K × {0} → X sending (g, (x, 0)) to g.x. The set XK has a natural free
properly discontinous cocompact action of G, so XK is a covering of XK = XK/G. Let
NK be the image of π1(XK) in π1(XK) so that G ≃ π1(Xk)/NK . Note that if G is finitely
presented, then one can choose K large enough so that π1(K) normally generates π1(X),
which means in other words that X̃K is simply connected, and that NK = {1}. Moreover,
by construction, the image of K in XK/FK isometrically embeds into T .

The problem now is that XK/FK may not be an R-tree. In view of Theorem 8.5, we
would need that π1(XK) is generated by free homotopy classes of curves contained in loops
(note that this is automatically the case for K large enough if G is finitely presented since
one can take XK to be simply connected). This is why we are going to consider a Galois
covering X̃K of XK above XK so that this condition is satisfied.

G̃K = π1(XK)/Ñk

�

X̃k

G = π1(XK)/Nk

�

Xk

Xk

Let ÑK ⊂ NK be the normal subgroup of π1(XK) generated by free homotopy classes
of curves contained in leaves and representing an element of NK . Let X̃K be the Galois
covering of XK with deck group GK = π1(XK)/ÑK . Let F̃K be the lift of the measured
foliation to X̃, and let TK = X̃K/F̃K which is an R-tree by Theorem 8.5. Denote by
ϕK : G̃K ։ G the natural epimorphism, and let gK : TK → T be the natural ϕk-
equivariant map. The construction is natural with respect to inclusions K ⊂ K ′: if
K ⊂ K ′, there is also a natural morphism ϕKK ′ : GK ։ GK ′ , and a ϕKK ′-equivariant
morphism of R-trees gKK ′ : TK → TK ′ .

First, it is clear that G is the direct limit of GK (with respect to ϕKK ′ and ϕK) since
any relation of G is coned-off in XK for K large enough. Moreover, by construction, TK
converges strongly to T . By the defining property of geometric actions, this convergence

is trivial. In other words, then for K large enough, the natural map from ̂TK/ kerϕK to

T is an isometry. But since X̃K/ kerϕK = XK , one has ̂TK/HK = XK/FK so this means
that for K large enough, the map gK : XK/FK → T is an isometry.

8.4 Two foliations on one complex

Consider a pair of geometric actions T1, T2. To exhibit a weak fundamental domain of
C(T1 × T2), our first step is to write T1 and T2 as the leaf space made Hausdorff of two
measured foliations on a common space.

Proposition 8.10. Let G be a finitely generated group with two geometric actions on
R-trees T1, T2.

Then there is a connected 2-complex X with a free properly discontinuous cocompact
action of G, and two invariant measured foliations F1,F2 on X such that for both i ∈
{1, 2}, Ti is dual to Fi in the sense of definition 8.6.

Moreover, if G is finitely presented, we may assume that X is simply connected.

Remeber that a map f from a simplex to an R-tree T is affine if it is the composition
of an affine map to R and of an isometry to T .

We will make use of the following standard fact for extending maps to R-trees.
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Fact 8.11. Let X be a simplicial 2-complex, T an R-tree, and let f : X0 → T be a map
defined on a sub-complex X0 ⊂ X containing the 1-skeletton of X, and such that f is
affine in restriction to each edge.

Then there exists a natural extension f̂ : X → T of f , and a natural subdivision of
X which does not change the simplicial structure on X0, and such that for each simplex
σ ⊂ X0 \X (in this new subdivision), f|σ is affine.

If a group G acts on both X and T so that f is equivariant, then the subdivision is
equivariant, and f̂ is equivariant.

b b

b

bb

f̂b1

v1

v2

v3 b2

b3

c

Figure 8: Extension of f

Proof of the fact. Let τ be a simplex of X0 \ X. We denote by e1, e2, e3 the sides of τ ,
and by v1, v2, v3 its vertices so that vi /∈ ei. If f(∂τ) contains no tripod (i. e. f(∂τ)
is contained in an arc of T ), then f can be uniquely extended affinely on τ (without
subdivision). Otherwise, let c be the center of the tripod f(∂τ), and for i ∈ {1, 2, 3}, let
bi its (unique) preimage in ei. We now subdivide τ as follows: let b be the barycenter
of {b1, b2, b3}, and cut τ along the three segments [vi, b]. We thus replace the triangle τ
by one new vertex b, 3 new edges [vi, b], and three new triangles {vi, vj , b}. We define

f̂(b) = c and extend f̂ affinely on the new edges. But now, f̂ maps the boundary of the
new triangles to intervals, so f̂ can be uniquely extended affinely on the new triangles.

Proof of Proposition 8.10. Since T1 is geometric, consider a foliated 2-complex X to which
T1 is dual; more precisely, let X having a free properly discontinuous cocompact action of
G, endowed with an invariant measured foliation F1, such that T1 is the leaf space made
Hausdorff of F1, and such that transverse edges isometrically embed into T1. Denote by
f1 : X → T1 the canonical map.

Note that if G is finitely presented, we can assume that π1(X) is generated by free
homotopy classes of curves contained in leaves ([LP97, Remark 2.3]). In this case, by
gluing finitely many orbits of triangles, and by extending f1 according to Fact 8.11, one
can assume that X is simply connected. One has that T1 is dual to the new foliation on
X because one has two 1-Lipschitz maps

(X/F1)old → (X/F1)new → T1

such that the composed map (X/F1)old → T1 is an isometry, which forces the two maps
to be isometries.

We now define an equivariant map f : X → T2. First, choose an arbitrary equivariant
map on the 0-skeletton (this is possible because the action is free on X). Now extend f
affinely on the 1-skeletton, and use the fact above to extend f on the 2 skeletton (after a
subdivision of X). Let F2 be the measured foliation on X induced by f .

Lemma 8.9 shows how to equivariantly enlarge the foliated 2-complex (X,F2) to a
larger 2-complex (X̂, F̂2) containing X, such that the restriction of F̂2 on X coincides
with F2, and such that T2 is dual to (X̂, F̂2). If G is finitely presented, since the inclusion
X ⊂ X̂ induces a epimorphism of fundamental groups, we have that X̂ is simply connected.

We now extend f1 and F1 to X̂ : first, define f̂1 on the set of vertices of X̂ \X in any
equivariant way, and extend f̂1 to the edges of X̂ \X affinely; using fact 8.11, extend f1
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and F̂1 and to the 2-cells of X̂ \ X using fact 8.11. Since we have natural equivariant
1-Lipschitz maps X/F1 → X̂/F̂1 → T1, and since X/F1 → T1 is an isometry onto T1, one
gets that X̂/F̂1 is equivariantly isometric to T1.

8.5 A weak fundamental domain

We now prove the existence of a weak fundamental domain.

Proof of Theorem 8.1. Let X,F1,F2 be a 2-complex with two measured foliations as de-
scribed in Proposition 8.10 above. Let fi : X → Ti given by the composition of the quotient
map X → X/Fi and the equivariant isometry X/Fi → Ti. Let F = (f1, f2) : X → T1×T2.
Clearly, F (X) is connected and G-invariant. Moreover, the image of each simplex of X is
contained in a rectangle. Since X has finitely many orbits of simplices, F (X) is contained
in G.D where D is a finite union of rectangles in T1 × T2.

Now, the idea is essentially that F (X) should have connected fibers because a fiber
should coincide with the image of a leaf. However, this is not completely true because
points of X/Fi do not always coincide with leaves of X (we have to make the space of leaves
Hausdorff ). However, by definition of the metric on X/Fi, the following weak connexity
of fibers holds:

Definition 8.12 (Weak connexity of fibers). Say that a subset F ⊂ T1 × T2 has the
weakly connected fibers if for all a, b ∈ F such that pi(a) = pi(b), and for each ε > 0,
there exists a path c : [0, 1] → F joining a to b in F and such that pi ◦ c([0, 1]) is contained
in the ε-neighbourhood of pi(a).

In view of the characterization of C (Proposition 5.1, the Theorem follows from the
following fact.

Fact 8.13. Let F ⊂ T1×T2 be a connected set enjoying the weak connexity of fibers. Then
its closure F has convex fibers.

Proof. Let FV be the union of the convex hulls of the vertical fibers of F . Of course,
vertical fibers of FV are convex. We have FV ⊂ F . Indeed, let x ∈ FV \F so that x lies in
a vertical segment {x1}× [a2, b2] whose enpoints are in F . Let ε > 0 and c be a path in F
joining (x1, a2) to (x1, b2), and such that p1◦c is contained in the ε-neighbourhood of {x1}.
Then p2 ◦ c([0, 1]) must contain x2. This implies that x lies in the closure of its horizontal
fiber F ∩ T1 × {x2}, and in particular that FV ⊂ F . This also implies that connected
horizontal fibers of F stay connected in FV , that FV is connected and still satisfies the
weak connexity of (horizontal) fibers.

Now let FV,H be the union of the convex hulls of the horizontal fibers of FV . The
symmetric argument shows that horizontal and vertical fibers of FV,H are convex, and
that FV,H ⊂ F . Corollary 5.5 concludes that F has convex fibers.

8.6 Finiteness of intersection number

We now prove the finiteness of the intersection number of two geometric actions of a
finitely presented group.

Proof of Proposition 8.3. Let X,F1,F2 be a 2-complex with two measured foliations such
that X/Fi is equivariantly isometric to X/Fi → Ti as described in Proposition 8.10. Let
fi : X → Ti given by the composition of the quotient map X → X/Fi and the equivariant
isometry X/Fi → Ti. Let F = (f1, f2) : X → T1 × T2.

Since G is finitely presented, we can assume that X is simply connected. Therefore, we
can apply Lemma 3.4 of [LP97] which claims that the natural maps from the set of leaves
of Fi to X/Fi is one-to-one outside a countable set. In particular, all but countably many
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fibers of F (X) are connected. Finally, F (X) is connected, G-invariant and contained G.D
where D is a finite union of rectangles in T1 × T2. The proposition then follows from
Lemma 8.14.

Lemma 8.14. Let F ⊂ T1 × T2 be a connected set, enjoying the weak connexity of fibers.
Assume that all but countably many horizontal and vertical fibers of F are convex.

Then F have convex fibers and F \ F has measure 0.

Proof. The first assertion follows from Fact 8.13. Let FV be the union of the convex hulls
of the vertical fibers of F . Since FV \ F is contained in countably many fibers, it has null
measure. Moreover, the proof of Fact 8.13 shows that connected horizontal fibers of F stay
connected in FV , so all but countably many FV horizontal fibers of FV are connected. Now
let FV,H be the union of the convex hulls of the horizontal fibers of FV . The symmetric
argument shows that horizontal and vertical fibers of FV,H are convex. Since FV,H \F has
null measure, the lemma is a consequence of the following lemma.

Lemma 8.15. Let F ⊂ T1 × T2 be a connected set with convex fibers. Then F \ F has
measure 0.

Proof. We have to prove that the trace of F \ F on each compact rectangle has measure
zero. Let R0 be a compact rectangle, and let Ji = pi(F ∩ R0). Let R = J1 × J2. Since
F ∩ R0 ⊂ R, we have to prove that (F \ F ) ∩R has measure 0. By Lemma 5.4, F is the
complement of a union of quadrants. By changing T1 and T2 to p1(F ) and p2(F ), we may
also assume that pi(F ) = Ti. Thus, one can apply lemma 4.18 saying that the semi-flow
ϕt contracting T1 × T2 onto F is well defined and that R is ϕt-invariant.

We now prove that F \ F is contained in ϕ∞(∂R). Since ϕ∞ is a Lipschitz map, this
will conclude the proof of the fact. Let x = (x1, x2) ∈ (F \ F ) ∩ R. We can assume that
x /∈ ∂R. Consider the four open rectangles obtained from R by subdividing R vertically
and horizontally at x. At least one of those open rectangles, call it S, does not intersect F ,
since otherwise, F would intersect the corresponding four quadrants, which would imply
x ∈ F by Fact 5.6. Starting from x, one can follow in S the semi-flow ϕt backwards until
we reach the boundary of R at a point x0, so that ϕt0(x0) = x for some t0 ∈ R+. Now
ϕ∞(x0) = ϕ∞(x) = x since x ∈ F .

9 Application to automorphisms of free groups

In this section, we study in more detail the case of attracting and repulsive trees of an
outer automorphism of a free group G.

Our starting point is the following theorem due to Levitt and Lustig:

Theorem 9.1 (Levitt-Lustig). Let α be an automorphism of a finitely generated free
group G. Then there exists two actions of G on R-trees T1, T2 and two homotheties h1 :
T1 → T1, and h2 : T2 → T2 with stretching fators λ1, λ2 such that

• hi is α-equivariant (i. e. hi(g.x) = α(g).hi(x))
• λ1 ≥ 1, λ2 ≤ 1
• the action of G on Ti has trivial arc fixators
• g ∈ G is elliptic in T1 if and only if it is elliptic in T2

• There exists η > 0 such that if lT1
(g)+ lT2

(g) ≤ η, then g is elliptic in T1 and T2 (so
lT1

(g) + lT2
(g) = 0).

Note that this implies that the action of G on T1 × T2 is discrete. Say that an auto-
morphism α is irreducible with irreducible powers (iwip) no free factor of G is periodic
under α up to conjugacy. The theorem above was proved for iwip automorphisms in [Lus]

32



and [BFH97b, BFH97a]. Moreover, in this case, either the action of G on T1 and T2 is
free, or α is induced by a pseudo-ansov homeomorphism of a surface with boundary.

The goal of this section is the following theorem.

Theorem 9.2. Let α be an automorphism of a finitely generated free group G, and let
T1, T2 be as above. Assume that the actions of G on T1 and T2 are geometric, and that
λ1 > 1. Then there is a G-invariant, cofinite (discrete) set S ⊂ C such that

• C has a structure of simplicial complex, and C \ S is a surface
• the link in C of each point of S is a disjoint union of lines and circles
• the action of G on C is discrete and cocompact, and it is properly discontinuous on

C \ S
• Σ = C/G is a pinched compact surface, and Σ\(S/G) is a surface with finitely many

puntures
• Σ has two transverse measured foliations F1,F2, and the map H = (h1, h2) induces

a homeomorphism of Σ preserving S/G, preserving both foliations, and which mul-
tiplies the transverse measure of Fi by λi, and λ2 = 1/λ1.

In this theorem, a pinched surface is a space obtained from a compact surface by
collapsing to a point finitely many finite sets. Equivalently, this is a finite 2-complex in
which the link of every vertex is a finite disjoint union of circles.

Corollary 9.3. Assume that α is irreducible with irreducible powers. If T1 and T2 are
both geometric, then α is induced by a pseudo-anosov homeomorphism of a surface with
boundary.

9.1 A structure of 2-complex

By Theorem 8.1, there is a weak fundamental domain for C: there is a finite set of rectangles
D such that, the closure of the set X =

⋃

R∈D,g∈G g.R is connected and has convex fibers,

which implies that C ⊂ X.
Our first goal is to prove that X has a G-invariant structure of 2-complex, and that

the action of G on X is properly discontinuous outside S0 (Corollary 9.11).
First, C is non-empty since T1 and T2 are necessarily irreducible. Moreover, there is

no twice light rectangle: indeed, since there is no arc in T1 containing no branch point
since the image of such an arc under h1 would give arbitrarily large such arcs, which is
not possible since by minimality, there is a finite tree whose translates under G cover T1.

On T1×T2, we use the distance d((x1, x2), (y1, y2)) = dT1
(x1, y1)+dT2

(x2, y2). We also
denote l(g) = lT1

(g)+ lT2
(g). Let η such that l(g) < η ⇒ l(g) = 0. Denote by S0 ⊂ T1×T2

the set of points having a non-trivial stabilizer under the action of G.

Lemma 9.4. Any two distinct points x, x′ ∈ S0 are at distance at least η/2.

Proof. let g, g′ ∈ G \ {1} fixing x and x′ respectively. Since arc fixators are trivial, Fix g
and Fix g′ are reduced to a point in both T1 and T2. But the translation length of gg′ in Ti
is 2dTi

(Fix g,Fix g′). Therefore, l(gg′) = 2d(x, x′), and by hypothesis, we get d(x, x′) = 0
or d(x, x′) > η/2.

Lemma 9.5. If d(x, g.x) < η then g has a fix point y such that d(x, y) = d(x, g.x)/2.

Proof. Since d(x, g.x) < η, l(g) < η so g is elliptic in T1 and T2. This implies that g fixes
the midpoint of [xi, g.xi] in Ti.

Lemma 9.6. The set X is closed in T1 × T2.
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Proof. Let x = (x1, x2) ∈ X, and consider a sequence xi in
⋃

R∈D R and a sequence gi ∈ G
such that gi.xi converges to x. Up to extracting a subsequence, we can also assume that xi
converges to a = (a1, a2). This implies that gi.a converges to x. If for some i and infinitely
many j > i, gjg

−1
i = 1, then x ∈ X, and we are done. Otherwise, given ε > 0, for i large

enough and all j > i, gjg
−1
i moves the point gi.a, and thus x by less that ε. Therefore, all

the elements gjg
−1
i have a common fix point b = (b1, b2) ∈ S0 with d(b, x) ≤ ε. Since this

is valid for all ε > 0, one gets b = x. Therefore, d(gj .a, x) is constant so it must be 0, and
x ∈ X.

From now on, we subdivide D so that each rectangle R ∈ D has diameter at most
η/10, and so that R ∩ S0 is either empty or consists of a single corner of R.

Lemma 9.7. X \ S0 is locally compact, and G acts properly discontinuously on X \ S0.
More precisely, every point of X \S0 has a neighbourhood V such that for each R ∈ D,

there is at most one g ∈ G such that g.R intersects V .

Proof. Clearly, the second part of the statement implies the fact that X \ S0 is locally
compact and that the action of G on X \ S0 is properly discontinuous.

Let x /∈ S0 and let V = V1 × V2 be a product of balls around x of radius at most η/10
and such that V does not intersect S0. Fix a rectangle R ∈ D and assume that g1.R, g2.R
intersect V for some g1 6= g2 ∈ G. Then h = g2g

−1
1 moves a point of g2.R ∩ V by at most

η/2, so h has a fix point y = (y1, y2) at distance at most η/2 of x. Since R meets S0 only
at corners of R, g1.R is contained in a quadrant δ1 × δ2 based at y. Now since y /∈ V , one
may assume that y1 /∈ V1, so V1 is contained in δ1. Since the action of Stab{y1} on the set
of directions based at y1 is free, p1(h.R) ⊂ h.δ1 implies that h.R does not intersect V .

Lemma 9.8. There is a subdivision of D and a G-invariant cofinite set S such that

• two rectangles of G.D either coincide or intersect in a (maybe degenerate or empty)
interval, contained in a horizontal or vertical side of R, and whose endpoints are in
S;

• for each rectangle R ∈ D,
◦

R is open in X

Moreover, X has a G-equivariant structure of a simplicial complex with finitely many
orbits of cells, and whose vertex set is S.

Remark. The rectangles of D don’t make X a rectangle complex. In general, there is no
decomposition of X as a rectangle complex whose sides are vertical and horizontal, as can
be seen in the torus endowed with two irrational foliations.

Proof. For each rectangle R = I1 × I2 ∈ D, let I(R) be the (finite) set of translates of
rectangles R′ ∈ D which intersect R in a non-degenerate rectangle. Let Ii(R) ⊂ Ii be the
finite set of endpoints of the projections on Ii of the rectangles R∩R′ for R′ ∈ I(R). After
subdividing each rectangle R = I1 × I2 ∈ D along I1(R) × I2 ∪ I1 × I1(R), one gets that
g.R′ ∩R is a segment or a point whenever g.R′ 6= R.

Let S be the set of points of X occuring as an endpoint (or a corner) of the intersection
of two elements of G.D. Clearly, S0 ⊂ S, and S intersects each rectangle of D in a finite
set so S/G is finite.

The fact that
◦

R is open in X follows from the fact that two rectangles intersect only in

their boundary and that a point of
◦

R has a neighbourhood intersecting only finitely many
rectangles.

Finally, we triangulate X as follows: given R ∈ D, choose a triangulation of R whose
vertex set is R∩S (this contains the corners of R). Since given R,R′ ∈ D there is at most
one element g ∈ G such that g.R = R′, this triangulation can be chosen so that it extends
G-equivariantly to X.
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9.2 The core as a subcomplex

In this section, we prove that up to subdividing our structure of 2-complex on X, C appears
as a subcomplex of X.

Roughly speaking, the following lemma says that X cannot go in a direction branching
from the interior of a rectangle.

Lemma 9.9. Let R ∈ D, let x ∈
◦

R, and let Q be a quadrant based at x, disjoint from R.
Then Q is disjoint from X.

Proof. Assume on the contrary that there is a point y = (y1, y2) ∈ X∩Q. WriteQ = δ1×δ2,
and let (b1, b2) be the base point of Q. Choose a path c = (c1, c2) : [0, 1] → X joining y to
x in X, and let t0 be the first time for which one coordinate of c(t0) equals b1 or b2. Note

that for t < t0, c(t) /∈ R. Since
◦

R is open in X, c(t0) 6= (b1, b2). So assume for instance
that c1(t0) = b1 and c2(t0) ∈ η2. By convexity of fibers of X, {b1}× [b2, c2(t0)] ⊂ X, which

contradicts the fact that
◦

R is open in X.

We now study how C may intersect rectangles of D.

Lemma 9.10. One can subdivide equivariantly each rectangle of D into smaller subrect-
angles such that for all R ∈ D, either R ⊂ C or R ∩ C ⊂ ∂R.

Proof. Let R ∈ D be a rectangle which is not contained in C. We are going to prove that
C ∩R can be obtained from R by removing a finite number of quadrants. The lemma will
follow easily after subdivision of R.

Let Q be a light quadrant. Then one of the following holds:

1. either
◦

R ⊂ Q, or R ∩Q = ∅
2. or R ∩Q is an open half rectangle
3. or R ∩Q contains exactly one corner of R

We are not interested in quadrants of type 1. We also can assume that up to subdividing
R, we can avoid quadrants of type 2. Indeed, let I be a side of R, and let LI ⊂ R be the

union of the traces on R of all light quadrants of type 2 containing I. If LI contains
◦

R,

then C does not intersect
◦

R and we are done. Otherwise, we can cut R into LI and R\LI .
Doing this for the four sides of R, we can avoid the occurence of quadrants of type 2.

Note that a quadrant of type 3 is necessarily based at a point x ∈ R. Now let c = (c1, c2)
be a corner of R, and let Lc be the unions of the traces on R of all light quadrants of type
3 containing c, and assume that Lc 6= ∅. We are going to prove that Lc is itself the trace
of a light quadrant of type 3. The lemma will follow since R ∩ C will be obtained from C
by removing at most 4 quadrants.

Denote by ]a, c] =]a1, c2] × {c2} and ]b, c] = {c1}×]b2, c2] the intersection of Lc with
the two sides of R containing c. Let P = ρ1 × ρ2 be the quadrant based at (a1, b2) and
containing c. Clearly, any light quadrant Q = δ1 × δ2 of type 3 is contained in P : for
instance, a /∈ Q and c ∈ Q implies that δ1 ⊂ ρ1. Thus Lc ⊂ P .

We now prove the other inclusion. Let x = (x1, x2) ∈ P . Since x1 ∈]a1, c1], by
definition of a, there exists a light quadrant Q = δ1 × δ2 with x1 ∈ δ1. Similarly, there
exists a light quadrant Q′ = δ′1 × δ′2 with x2 ∈ δ′2. It suffices to prove that the quadrant
Q′′ = δ1 × δ′2 is light. We choose a base point ∗ ∈ X, and consider a sequence gk.∗ ∈ Q′′

making Q′′ heavy. Then for k large enough, gk.∗ /∈ Q, gk.∗ /∈ Q′ and gk.∗ /∈ R. It follows
that gk.∗ lies in a quadrant branching from R as in the previous lemma. Since gk.∗ ∈ X,
this is a contradiction.
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Let D′ be the set of rectangles R ∈ D which are contained in D together with the
set of horizontal or vertical intervals obtained as the trace of C on the boundary of those
rectangles (we think of those segments as degenerate rectangles).

Using a triangulation as in Lemma 9.8, we immediately get the following corollary:

Corollary 9.11. The core C of T1 × T2 has a G-invariant structure of 2-complex, C \ S0

is locally compact, and the action of G on C \ S0 is properly discontinuous.

9.3 Singular points of the core

We now study the 2-complex Σ = C/G, and prove that it’s a pinched surface. This will
conclude the proof of Theorem 9.2. To this means, we are going use the map H = (h1, h2) :
T1 × T2 → T1 × T2.

Lemma 9.12. The core C is H-invariant. Moreover, H induces an homeomorphism H
of Σ, and λ1λ2 = 1.

Note that two projections pi : C → Ti induce two natural measured foliations on C and
Σ, which are preserved by H and H respectively. Moreover, H expands the corresponding
transverse measures by a factor λ2 and λ1 respectively.

Proof. The first part follows from the fact that H sends quadrant to quadrant, or from
the characterization of C. Moreover, x and y are in the same G-orbit if and only if H(x)
and H(y) are. The transverse measures of the two foliations on Σ define a finite non-zero
measure on Σ: if the measure was 0, then C would be a simplicial tree, implying that
T1 and T2 are both simplicial, which is impossible since λ1 6= 1. Since H expands this
measure by a factor λ1λ2, it follows that λ1λ2 = 1.

Let S be the set of points of C occuring as an endpoint (or a corner) of the intersection
of two elements of G.D′. Let S be its image in Σ.

Lemma 9.13. C \ S is a surface, and the link of each point of S in C is a disjoint union
of circles and lines. Moreover, Σ \ S is a closed surface with finitely many punctures, and
Σ is a pinched surface.

Proof. Each point in C \ S has a neighbourhood of the form I1 × K2 or K1 × I2 where
Ki ⊂ Ti is a finite subtree and Ii ⊂ Ti is a compact segment. Let SH (resp. SV ) be the
horizontal (resp. vertical) singular set defined as the set of points x ∈ C \ S having a
neighbourhood of the form K1 × I2 (resp. I1 × K2) but no neighbourhood of the form
I1 × I2.

We aim to prove that SH and SV are empty. The image SH of SH in Σ is a finite
union of horizontal open edges, and has therefore a finite horizontal transverse measure,
which is non-zero if SH 6= ∅. Now the homeomorphism H preserves SH and expands its
horizontal transverse measure by λ1 > 1. This only allows SH = ∅. Similarly, SV = ∅, so
C \ S is a surface.

Since the action of G on C \ S is free and properly discontinuous, this implies that
Σ \ S is a surface. Therefore, the link at any point in S is a graph having only valence
2-vertices. Since it is compact, it is a finite disjoint union of circles. It follows that Σ\C is
a closed surface with finitely many punctures, and that Σ is a pinched surface. Similarly,
the link in C of any point of S is a disjoint union of lines and circles.

Theorem 9.2 follows.
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9.4 The case of an irreducible automorphism with irreducible powers

We prove here Corollary 9.3, i. e. that if α does not preserve any free factor of G up
to conjugacy, and if T1 and T2 are geometric, then α is induced by a pseudo-Anosov
automorphism on a surface with boundary.

Proof of Corollary 9.3. We make use the fact that if α is not induced by a pseudo-Anosov
automorphism on a surface with boundary, then the actions of G on T1 and T2 are free
([BH92]). We assume that T1 and T2 are geometric and argue towards a contradiction.
Since the action on T1 and T2 is free, C is the universal cover of Σ, and G ≃ π1(Σ).

Up to removing some points from S, we can assume that the link of each point of S
is not a circle. If S = ∅ we have a contradiction as G is a not a surface group. Let Σ̂ be
the 2-complex obtained by blowing-up Σ as follows: for each vertex v ∈ S, consider the
tree Tv defined as the complete bipartite graph on {v} and C(v) where C(v) is the set of
connected components of the link of v; then glue back C(v) to σ \ S. What we get is a
(maybe not connected) surface together with a finite collection of finite trees attached to
finitely many points. Note that Σ̂ is homotopy equivalent to Σ. However, since G contains
no non-trivial surface group (G is free), all those surfaces are spheres. But this contradicts
the fact that the universal covering C of Σ is contractible.

10 Equality with Scott and Swarup’s intersection number

Let T1 and T2 be two actions of a finitely generated group G on simplicial trees with
one orbit of edges. Scott defined in [Sco98] the intersection number of T1 and T2. One
can reword the definition as follows. Choose e1, e2 two oriented edges in T1 and T2.
Let δ(ei) ⊂ Ti be the direction based at the origin of ei, and containing ei. Let Hi be
the stabilizer of ei which is also the stabilizer of δ(ei). Fix a base point ∗i ∈ Ti. Let
Xei

= {g ∈ G|g.∗i ∈ δ(ei)}. Xei
is clearly left invariant under Hi. Let C be a Cayley

graph of G. In Scott’s terminology, Xei
is a Hi-almost invariant set, which means that

Xei
/Hi has a finite coboundary in the graph C/Hi. Note that changing the basepoint

above only changes Xei
/Hi by a finite set, and such a change will be not be important in

the following definitions.
Scott says that Xe1 and Xe2 cross if the four sets Xe1 ∩ Xe2 , X

∗
e1

∩ Xe2 , Xe1 ∩ X∗
e2

,
X∗
e1
∩X∗

e2
project to infinite sets in C/H1. They prove that this occurs if and only if those

four sets also project to infinite sets in C/H2. Note that the fact that Xe1 crosses Xe2 does
not change if we replace one edge with the edge with the reverse orientation. Moreover,
Xe1 crosses Xe2 if and only if Xg.e1 crosses Xg.e2.

Finally, i(T1, T2) is defined as the number of double cosets H1gH2 such that Xe1 crosses
g.Xe2 . Now the set of double cosets is in one-to-one correspondance with the set of orbits
of pairs of non-oriented edges in T1 × T2. In other words, i(T1, T2) is the number of orbits
pairs of non-oriented edges (e1, e2) in T1 × T2 such that Xe1 crosses Xe2.

Proposition 10.1. Our definition of the intersection number coincides with Scott’s defi-
nition.

Proof. To identify our definition of intersection number with Scott’s one, we just need to
check that a rectangle e1 × e2 is contained in C if and only if Xe1 and Xe2 cross. Denote
by Q(e1, e2) the quadrant δ(e1) × δ(e2).

Assume first that Xe1 does not cross Xe2, and let’s prove that e1 × e2 is not contained
in C. Up to a good choice of orientations of e1 and e2, one gets that the image of Xe1 ∩Xe2

projects to a finite set in G/H1. This means that the set Z = {g.∗1 |g.(∗1, ∗2) ∈ Q(e1, e2)}
meets only finitely many H1-orbits. In particular, Z is bounded, so Q(e1, e2) is light. Since
the open rectangle e1 × e2 is contained in Q(e1, e2), we get that e1 × e2 is not contained
in C.
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For the converse, assume that Xe1 cross Xe2, and let’s check that the rectangle e1 × e2
lies in C. We first treat the case where C is non-empty, and we choose a base point ∗ ∈ C.
Assume by contradiction that there is a light quadrant Q containing e1 × e2. In this case,
there is a choice of orientations of e1 and e2 such that Q contains Q(e1, e2). In particular,
Q(e1, e2) is light. But since Xe1 crosses Xe2 there is an element g ∈ G sending ∗ in
Q(e1, e2). Since Q(e1, e2) is light, this contradicts the fact that g.∗ ∈ C.

We now check that if C is empty, then Scott’s intersection number is zero. We want
to prove that for each pair of non-oriented edges (e1, e2), Xe1 does not cross Xe2 . This is
easy for homothetic actions on a line. Otherwise, Remark 3.7 shows that there is a good
choice of orientations for (e1, e2), and a good choice of base point ∗ such that the orbit of
∗ does not meet Q(e1, e2); this implies that Xe1 does not cross Xe2 .

11 Strong intersection number and asymmetric core

11.1 Asymmetric core

We first introduce an aymmetric core (actually two asymmetric cores A1,A2) for two
actions of G on simplicial trees. Note that there is no obvious generalisation of A1 when
T1 is an R-tree.

In what follows, given an action of G on a tree T , we denote by Gx the stabilizer of a
point or an edge x of T .

Definition 11.1 (Asymmetric core). Assume that a group G acts on two simplicial
trees T1, T2. Assume that each edge stabilizer of T1 acts non-trivially on T2.

Then the left asymmetric core A1(T1 × T2) is defined by

A1 =
⋃

x1∈T1

{x1} × MinT2
(Gx1

).

The right asymmetric core A2(T1 × T2) is defined symmetrically under symmetrical
hypotheses.

Remark 11.2. It is clear that A1 is the smallest invariant subset of T1 ×T2 which has non-
empty connected p1-fibers. The fact that each edge stabilizer of T1 acts non-trivially on T2

implies that C is non-empty and that T1 and T2 are not refinements of a common simplicial
action. In particular, A1 and A2 are contained in C by Proposition 5.2. Moreover, A1 is
contractible since it maps to a tree with contractible fibers.

More generally, if one only assume that each edge or vertex stabilizer of T1 either
acts non-trivially, or has a fix point in T2, then one can do a similar, but less canonical
construction: for each vertex or edge x1 ∈ T1 such that Gx1

acts non-trivially on T1, we still
impose that A1∩p−1

1 (x1) = {x1}×MinT2
(Gx1

); for x1 ∈ V (T1) such that Gx1
fixes a point

in T2, we choose a fix point x2 of Gx1
in T2, and define A1 so that A1∩p−1

1 (x1) = {(x1, x2)};
For each edge e1 ∈ E(T1) with endpoints a1, b1, and such that Ge1 is elliptic in T2, we
choose a segment I in p−1

1 (e1) joining a fix point of Ge1 in p−1
1 (a1) to a fix point of Ge1

in p−1
1 (b1) (since this segment might be oblique, A1 is not in general a subcomplex of

T1 × T2). In this more general situation, it remains true that A1 is contractible, but it
depends on choices. Note however that the 2-cells of A1 are independant of choices since
they come from the minimal subtrees (in T2) of edge stabilizers (in T1).

11.2 Strong intersection number.

Given two actions of a finitely generated group G on two simplicial trees T1, T2 with one
orbit of edges, Scott and Swarup give a definition of the strong intersection number, which
we can reword as follows. Recall that given an oriented edge ei ∈ Ti, δ(ei) denotes the
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direction based at the origin of ei and containing ei, and that Xei
= {g ∈ G|g.∗i ∈ δ(ei)}.

Let ∂Xei
be the boundary of Xei

in a Cayley graph C of G with respect to some finite
generating set S, i. e.

Xei
= {g ∈ Xei

|∃s ∈ S ∪ S−1 gs /∈ Xei
}.

Scott and Swarup say that Xe1 crosses strongly Xe2 if both ∂Xe1 ∩Xe2 and ∂Xe1 ∩X∗
e2

project to infinite sets in C/Ge2 . This notion does not depend on the choice of S.

Lemma 11.3. Consider T1, T2 two simplicial trees dual to one edge splittings a finitely
generated group G. Let e1, e2 be two edges in T1 and T2 respectively.

Then Xe1 crosses strongly Xe2 if and only if Ge1 acts non-trivially on T2 and e2 ⊂
MinT2

(Ge1).

Proof. Since the action of G on T1 induces a decomposition of G as an amalgam or HNN
extension, G is generated by elements sending e1 to an edge having (at least) a common
vertex with e1. Thus, we can choose a finite generating set S consisting of such elements.
For this choice of S, one gets Ge1 = ∂Xe1 : any g ∈ Ge1 lies in ∂Xe1 because one can choose
s ∈ S ∪ S−1 sending e1 into δ(e1)

∗, which implies that gs /∈ Xe1 ; for the other inclusion,
if g.e1 ∈ δ(e1) and gs.e1 ∈ δ(e1)

∗, since g.e1 and gs.e1 are adjacent, one necessarily gets
g.e1 = e1.

It follows that Xe1 crosses strongly Xe2 if and only if both Ge1 ∩Xe2 and Ge1 ∩X∗
e2

project to infinite sets in C/Ge2 . Since there is a natural bijection between C/Ge2 and
G.e2, this condition is equivalent to the fact that both Ge1 .e2 ∩ δ(e2) and Ge1 .e2 ∩ δ(e2)∗
are infinite.

This clearly cannot occur if Ge1 fixes a point x in T2: an isometry fixing x cannot send
e2 to the component of T \ {e2} which does not contain x. If Ge1 does not fix a point in
T2 but every element is elliptic, then Ge1 fixes an end ω of T2, and a similar argument
applies: an isometry fixing ω cannot send e2 to the component of T \ {e2} which does not
contain ω in its boundary. Finally, if Ge1 acts non-trivially on T2, and if e2 /∈ MinT2

(Ge1),
then similarly, no element of Ge1 can send e2 to the component of T2 \ {e2} which does
not contain MinT2

(Ge1). Therefore, we proved that if Xe1 crosses strongly Xe2 , then Ge1
acts non-trivially on T2 and e2 ∈ MinT2

(Ge1).
Conversely, assume that e2 ∈ MinT2

(Ge1). Then consider an element h ∈ Ge1 whose
axis in T2 contains e2. Then clearly, h±k.e2 meets δ(e2) and δ(e2)

∗ infinitely many times.

As a corollary, we immediately have the following interpretation of the strong inter-
section number. This generalizes Corollary 3.16 in [SS00] which requires that the strong
intersection number coincide with the usual one.

Corollary 11.4. Consider T1, T2 two simplicial trees dual to one edge splittings a finitely
generated group G.

Then Scott and Swarup’s (asymmetric) strong intersection number si(T1, T2) is the
number of two-cells of A1(T1 × T2)/G. This number can also be computed as the number
of Ge1-orbits of edges in MinT2

(Ge1) (where e1 ∈ E(T1) is any edge).

12 Fujiwara and Papasoglu’s enclosing groups

Proposition 12.1 ([FP98]). Assume that G acts minimally on two simplicial trees T1, T2,
and that for each i ∈ {1, 2},

• the stabilizer of each edge of Ti acts non-trivially on the other tree;
• G does not split over a subgroup of infinite index of the stabilizer of an edge of Ti.
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Then C = A1 = A2.
Furthermore, assume that for each edge ei of Ti, the minimal Gei

invariant subtree of
the other tree is a line. Then C \ V (C) is a surface.

Proof. Consider the asymmetric core A1 = ∪x1∈T1
{x1} × minT2

(Gx1
) defined above. We

saw that A1 ⊂ C and that A1 is contractible. The vertical fibers of A1 are connected by
definition.

We prove that the horizontal fibers over an edge of T2 is connected. Assume that for
some edge e2, F = p−1

2 (e2)∩A1 is disconnected. First, there is at most one component F
which is Ge2-invariant since such a component necessarily contains minT1

(Ge2)×{e2}. So
consider another component F0 = K0×{e2} of F . The stabilizer H of F0 has infinite index
in Ge2 because Ge2 acts non-trivially on T1. Since A1 is simply connected, and since F0

locally diconnects A1 into two components, F0 disconnects A1 into two components. This
means that there is a tree TF0

dual to G.F0 whose edges consist of connected components
of G.F0 and vertices to connected components of A1 \ G.F0. This gives a splitting of G
over H. As soon as we prove that this splitting is non-trivial, we will get a contradiction
showing that the horizontal fiber over e2 is connected.

Since G is finitely generated, we only need to prove that for every vertex v ∈ TF0
there

is an element g ∈ G which does not fix v. By equivariance, we can assume that v is an
endpoint of the edge F0 of TF0

. Consider a point x1 ∈ K0 and the corresponding an open
edge e = (x1, e2) in F0 = Ko × {e2}, and let let x2 ∈ T2 be the endpoint of e2 such that
(x1, x2) is in the component v of A1 \ G.F0. Let g ∈ Gx1

whose axis contains e2 (there
exists such an element g by definition of A1). Up to changing g to its inverse, we can
assume that e2 ⊂ [x2, g.x2]. Now the path {x1}× [x2, g.x2] in A1 defines a path from v to
g.v in TF0

which crosses exactly once the edge F0. This implies that g.v 6= v.
We now deduce that the horizontal fiber over a vertex x2 ∈ T2 is connected. Take two

vertices a, b ∈ p−1
2 (x2), and consider a piecewise linear path c : [0, 1] → A1 joining a and b.

Let c2 = p2 ◦ c. If c2 is constant, we are done. Otherwise, consider a connected component
]s, t[ of [0, 1] \ c−1

2 (v2). Then c2(]s, s+ ε]) and c2([t− ε, t[) are contained in the same edge
e2. Since p−1

2 (e2) is connected, we can connect c(s + ε) to c(t − ε) by a path in p−1
2 (e2),

and we can push it to p−1
2 (x2) to get a path from c(s) to c(t) in p−1

2 (x2). Replacing c|[s,t]
by such a path, and doing this for each connected component of [0, 1] \ c−1

2 (x2), we get a
path in p−1

2 (x2) joining a to b.
Since A1 is connected and has connected fibers, we get A1 ⊃ C, and A1 = C. The

symmetric argument shows that A2 = C.
It is now easy to prove that C \ V (C) is a surface under the additional hypothesis: the

link of each point in a horizontal edge e1 × {x2} in A1 is a circle because minT2
(Gx1

) is a
line, and the symmetric argument shows that the link of a point in a vertical edge is also
a circle.
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