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Thermodynamics of MHD flows with axial symmetry

N. Leprovost∗ and B. Dubrulle
DRECAM/SPEC/CEA Saclay, and CNRS (URA2464), F-91190 Gif sur Yvette Cedex, France

P-H. Chavanis
Laboratoire de Physique Théorique (UMR 5152), Université Paul Sabatier, Toulouse, France

We present strategies based upon extremization principles, in the case of the axisymmetric equa-
tions of magnetohydrodynamics (MHD). We study the equilibrium shape by using a minimum
energy principle under the constraints of the MHD axisymmetric equations. We also propose a
numerical algorithm based on a maximum energy dissipation principle to compute in a consistent
way the equilibrium states. Then, we develop the statistical mechanics of such flows and recover
the same equilibrium states giving a justification of the minimum energy principle. We find that
fluctuations obey a Gaussian shape and we make the link between the conservation of the Casimirs
on the coarse-grained scale and the process of energy dissipation.

PACS numbers: 05.70.Ln,05.90.+m,47.10.+g,52.30.-q

I. INTRODUCTION

The recent success of two experimental fluid dynamos [1, 2] has renewed the interest in the mechanism of dynamo
saturation, and, thus, of equilibrium configurations in MHD. At the present time, there is no general theory to tackle
this problem, besides dimensional theory. For example, in a conducting fluid with typical velocity V , density ρ ,
Reynolds number Re and magnetic Prandtl number Pm, the typical level of magnetic field reached at saturation is
necessarily [3]:

B2 = µoρV
2f(Re, Pm), (1)

where f is a priori an arbitrary function of Re and Pm. Many numerical simulations [4] lead to f = 1, i.e. equipartition
between the magnetic and turbulent energy. This is therefore often taken as a working tool in astrophysical or
geophysical application. However, this result is far from applying to any saturated dynamo. Moreover, it does not
give any information about possible anisotropy of the saturated field. It would therefore be interesting to build robust
algorithms to derive the function f . By robust, we mean algorithm which depends on characteristic global quantities
of the system (like total energy) but not necessarily on small-scale dissipation, or boundary conditions.

An interesting candidate in this regards is provided by statistical mechanics. In the case of pure fluid mechanics,
statistical mechanics has mainly been developed within the frame of Euler equation for a two-dimensional perfect
fluid. Onsager [5] first used a Hamiltonian model of point vortices. Within this framework, turbulence is a state of
negative temperature leading to the coalescence of vortices of same sign [6]. Further improvement were provided by
Miller et al. [7] and Robert and Sommeria [8] who independently introduced a discretization of the vorticity in a
certain number of levels to account for the continuous nature of vorticity. Using the maximum entropy formalism of
statistical mechanics [9], it is then possible to give the shape of the (meta)-equilibrium solution of Euler’s equation as
well as the fine-grained fluctuations around it [10]. This is similar to Lynden-Bell’s theory of violent relaxation [11]
in stellar dynamics (see Chavanis [12] for a description of the analogy between 2D vortices and stellar systems). The
predictive power of the statistical theory is however limited by the existence of an infinite number of constants (the
Casimirs) which precludes the finding of an universal Gibbs state. In particular, the metaequilibrium state strongly
depends on the details of the initial condition. In certain occasions, for instance when the flow is forced at small
scales, it may be more relevant to fix a prior distribution of vorticity fluctuations instead of the Casimirs [13]. Then,
the coarse-grained flow maximizes a “generalized” entropy functional determined by the prior distribution of vorticity
[14]. The statistical mechanics of MHD flows has been recently explored by Jordan and Turkington [15] in 2D. In
contrast with non-magnetized 2D hydrodynamics they obtained a universal Gaussian shape for the fluctuations. This
comes from the fact that the conserved quantity in the MHD case is an integral quantity of the primitive velocity and
magnetic fields and thus, in the continuum limit, has vanishing fluctuations.
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The pure 2D situation however seldom applies to astrophysical or geophysical flows. In this respect, it is interesting
to develop statistical mechanics of systems closer to natural situations, albeit sufficiently simple so that the already
well tested recipes of statistical mechanics apply. These requirements are met by flows with axial symmetry. Most
natural objects are rotating, selecting this peculiar symmetry. Moreover, upon shifting from 2D to axi-symmetric
flows, one mainly shifts from a translation invariance along one axis, towards a rotation invariance along one axis.
Apart from important physical consequences which need to be taken into account (for example conservation of angular
momentum instead of vorticity or momentum, curvature terms), this induces a similarity between the two systems
which enables a natural adaptation of the 2D case to the axisymmetric case. This is shown in the present paper,
where we recover the Gaussian shape of the fluctuations and make the link between the conservation of the Casimirs
on the coarse-grained scale and the process of energy dissipation.

In the first part of the paper, we study the equilibrium shape by using a minimum energy principle under the
constraints of the MHD axisymmetric equations. We also propose a numerical algorithm based on a maximum energy
dissipation principle to compute in a consistent way the equilibrium states. This is similar to the relaxation equation
proposed by Chavanis [14] in 2D hydrodynamics to construct stable stationary solutions of the Euler equation by
maximizing the production of a H-function. Then, we develop the statistical mechanics of such flows and recover
these equilibrium states, thereby providing a physical justification for the minimum energy principle.

II. MHD FLOWS WITH AXIAL SYMMETRY

A. Equations and notations

Consider the ideal incompressible MHD equations:

∂tU + (U · ∇)U = −1

ρ
∇P + (∇× B) × B ,

∂tB + (U · ∇)B = (B · ∇)U , (2)

where U is the fluid velocity, P is the pressure,
√
ρµ0 B is the magnetic field and ρ is the (constant) fluid density. In

the axisymmetric case we consider, it is convenient to introduce the poloidal/toroidal decomposition for the fields U

and B:

U = Up + Ut = Up + U eθ , (3)

B = Bp + Bt = ∇× (Aeθ) +B eθ ,

where A = Ap +A eθ is the potential vector. This decomposition will be used in our statistical mechanics approach.
When considering energy methods, we shall introduce alternate fields, built upon the poloidal and toroidal decom-

position. They are : σu = rU , σb = rA, ξu = ω/r and ξb = B/r, where ω is the toroidal part of the vorticity field.
In these variables, the ideal incompressible MHD equations (2) become, in the axisymmetric approximation, a set of
four scalar equations:

∂tσb + {ψ, σb} = 0 , (4)

∂tξb + {ψ, ξb} = {σb,
σu

2y
} ,

∂tσu + {ψ, σu} = {σb, 2yξb} ,

∂tξu + {ψ, ξu} = ∂z(
σ2

u

4y2
− ξ2b ) − {σb,∆∗σb} ,

where the fields are function of the axial coordinate z and the modified radial coordinate y = r2/2 and ψ is a stream
function: Up = ∇× (ψ/r eθ). We have introduced a Poisson Bracket: {f, g} = ∂yf∂zg − ∂zf∂yg. We also defined
a pseudo Laplacian in the new coordinates:

∆∗ =
∂2

∂y2
+

1

2y

∂2

∂z2
. (5)

Following [15], we will make an intensive use of the operators (for more details, see appendix ): curl which gives the
toroidal part of the curl of any vector and Curl which takes a toroidal field as argument and returns the poloidal
part of the curl. If j = curlB is the toroidal part of the current and ψ = r Curl−1(Up), the following relations hold:

ξu = −∆∗ψ , (6)

j/r = −∆∗σb . (7)
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Under the shape (4), the ideal axisymmetric MHD equation of motion lead to the immediate identification of σb = rA
as a conserved quantity associated to axial symmetry. This quantity is only advected by the velocity field and thus
should play a special role regarding the global conserved quantities, as we now show.

B. Conservation laws

1. General case

The whole set of conservation laws of the axisymmetric ideal MHD equations have been derived by Woltjer [16]:

I =

∫

C(σb) dydz , (8)

Hm = 2

∫

ξbN(σb) dydz ,

Hc =

∫

{F (σb)ξu + σuξbF
′(σb)} dydz ,

L =

∫

σuG(σb) dydz ,

E =
1

2

∫
{

ξuψ − σb∆∗σb +
σ2

u

2y
+ 2yξ2b

}

dydz .

where C, N , F and G are arbitrary functions. One can check that these integrals are indeed constants of motion by
using (4) and the following boundary conditions: σb = σu = ξu = ξb = 0 on the frontier of the domain. To prove the
constancy of the third integral, one has to suppose that F (0) = 0. The interpretation of these integrals of motion is
easier when considering a special case, introduced by Chandrasekhar [17].

2. Chandrasekhar model

The conservation laws take a simpler shape when one considers only linear and quadratic conservation laws, such
that [17] N(σb) = F (σb) = G(σb) = σb and N(σb) = G(σb) = 1 . The case F (σb) = 1 is forbidden by the condition
that F should vanish at the origin. In that case, the set of conserved quantities can be split in two families. The first
one is made-up with conserved quantities of the ideal MHD system, irrespectively of the geometry:

Hm = 2

∫

ξbσb dydz =

∫

A · B dx = 2

∫

AB dx , (9)

Hc =

∫

{σbξu + σuξb} dydz =

∫

U ·B dx ,

E =
1

2

∫
{

ξuψ − σb∆∗σb +
σ2

u

2y
+ 2yξ2b

}

dydz =
1

2

∫

(U2 + B2) dx ,

where Hm is the magnetic helicity, Hc is the cross-helicity and E is the total energy. Note that due to the Lorentz
force, the kinetic helicity is not conserved, unlike in the pure hydrodynamical case. The other family of conserved
quantities is made of the particular integrals of motion which appear due to axisymmetry:

I =

∫

C(σb)dydz =

∫

C(rA) dx , (10)

H ′

m = 2

∫

ξb dydz =

∫

B

r
dx ,

L =

∫

σuG(σb) dydz =

∫

r2UB dx ,

L′ =

∫

σu dydz =

∫

rU dx .

Apart from L′ the angular momentum, it is difficult to give the other quantities any physical interpretation. The
class of invariant I are called the Casimirs of the system (if one defines a non canonical bracket for the Hamiltonian
system, they commute, in the bracket sense, will all other functionals). The conservation laws found by Woltjer are
then generalization of these quantities.
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C. Dynamical stability

1. General case

Following [16], we show that the extremization of energy at fixed I, Hm, Hc and L determines the general form
of stationary solutions of the MHD equations. We argue that the solutions that minimize the energy are nonlinearly
dynamically stable for the inviscid equations.

To make the minimization, we first note that each integral is equivalent to an infinite set of constraints. Following
Woltjer, we shall introduce a complete set of functions and label these functions and the corresponding integrals with
an index n. Then, introducing Lagrange multipliers for each constraint, to first order, the variational problem takes
the form:

δE +

+∞
∑

n=1

{

α(n)δI(n) + µ(n)
m δH(n)

m + µ(n)
c δH(n)

c + γ(n)δL(n)

}

= 0 . (11)

Taking the variations on σb, ξb, σu and ξu, we find:

∆∗σb = −F ′(σb)∆∗ψ + F ′′(σb)σuξb +G′(σb)σu + 2N ′(σb)ξb + C′(σb) , (12)

2yξb = −2N(σb) − F ′(σb)σu ,
σu

2y
= −F ′(σb)ξb −G(σb) ,

ψ = −F (σb) ,

where we have set F (σb) =
∑+∞

n=0 µ
(n)
c Fn(σb) and similar notations for the other functions. This is the general

solution of the incompressible axisymmetric ideal MHD problem [16]. In the general case, it is possible to express
the three field σu, ξu and ξb in terms of σb. Then the first equation of the above system leads a partial differential
equation for σb to be solved to find the equilibrium distribution. Note that the extremization of the “free energy”
J = E + αI + µmHm + µcHc + γL yields the same equations as (12). Differences will appear on the second order
variations (see below).

2. Chandrasekhar model

In the Chandrasekhar model, the arbitrary functions are at most linear functions of σb: N(σb) = µmσb + µ′

m,
F (σb) = µcσb and G(σb) = γσb + γ′. Thus the stationary profile in the Chandrasekhar model is given by:

∆∗σb = −µc∆∗ψ + γσu + 2µmξb + C′(σb) , (13)

2yξb = −2µmσb − 2µ′

m − µcσu ,
σu

2y
= −µcξb − γσb − γ′ ,

ψ = −µcσb .

From the previous equations, we obtain

2y(1 − µ2
c)ξb = 2(γµcy − µm)σb + 2µcγ

′y − 2µ′

m , (14)

(1 − µ2
c)σu = 2(µcµm − γy)σb + 2µcµ

′

m − 2γ′y ,

ψ = −µcσb ,

where σb is given by the differential equation:

(1 − µ2
c)

2∆∗σb = Φ(σb) − [2µ2
m

σb

y
+ 2γ2y]σb − 2γγ′y − 2µmµ

′

m

y
. (15)

These expressions can be used to prove that these fields are stationary solutions of the axisymmetric MHD equations.
We now turn to the stability problem. Since the free energy J = E + αI + µmHm + µcHc + γL is conserved by the
ideal dynamics, a minimum of J will be nonlinearly dynamically stable (at least in the formal sense of Holm et al.
[18]). Note that this implication is not trivial because the system under study is dimensionally infinite. We will admit
that their analysis can be generalized to the axisymmetric case. Since the integrals which appear in the free energy
are conserved individually, a minimum of energy at fixed other constraints also determines a nonlinearly dynamically
stable stationary solution of the MHD equations. This second stability criterion is stronger than the first (it includes
it). We shall not prove these results, nor write the second order variations, here.
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D. Numerical algorithm

1. General case

It is usually difficult to solve directly the system of equations (14)-(15) and make sure that they yield a stable
stationary solution of the MHD equations. Instead, we shall propose a set of relaxation equations which minimize
the energy while conserving any other integral of motion. This permits to construct solutions of the system (14)-(15)
which are energy minima and respect the other constraints. A physical justification of this precedure linked to the
dissipation of energy will be given in Sec. III C 1.

Our relaxation equations can be written under the generic form

∂σ

∂t
= −∇ · Jσ, (16)

where σ stands for σb, ξb, σu or ξu. Using straightforward integration by parts, we then get:

İ =

∫

Jσb
· [∇C′(σb)]dydz , (17)

Ḣm = 2

∫
{

Jξb
· ∇[N(σb)] + Jσb

· ∇[N ′(σb)ξb]

}

dydz ,

Ḣc =

∫
{

Jξu
· ∇[F (σb)] + Jσb

· ∇[F ′(σb)ξu + F ′′(σb)σuξb]

+ Jσu
· ∇[F ′(σb)ξb] + Jξb

· ∇[F ′(σb)σu]

}

dydz ,

L̇ =

∫
{

Jσu
· ∇[G(σb)] + Jσb

· ∇[G′(σb)σu]

}

dydz ,

Ė =

∫
{

Jξu
· ∇ψ − Jσb

· ∇(∆∗σb) + Jσu
· ∇

(

σu

2y

)

+ Jξb
· ∇(2yξb)

}

dydz .

To construct the optimal currents, we rely on a procedure of maximization of the rate of dissipation of energy Ė very
similar to the procedure of maximum entropy production principle (MEPP) of Robert and Sommeria [21] in the 2D
turbulence case. This is equivalent to say that the evolution towards the equilibrium state (14)-(15) is very rapid.

We thus try to maximize Ė given the conservation of İ, Ḣm, Ḣc and L̇. Such maximization can only have solution
for bounded currents (if not, the fastest evolution is for infinite currents). Therefore, we also impose a bound on J2

σ

where, as before, σ stands for σb, ξb, σu, ξu.
Writing the variational problem under the form

δĖ +
+∞
∑

n=1

{

α(n)(t)δİ(n) + µ(n)
m (t)δḢ(n)

m + µ(n)
c (t)δḢ(n)

c + γ(n)(t)δL̇(n)

}

−
∑

σ

1

Dσ
δ

(

J2
σ

2

)

= 0 (18)

and taking variations on Jσb
, Jξb

, Jσu
, Jξu

, we obtain the optimal currents. Inserting their expressions in the relaxation
equations (16), we get:

∂σb

∂t
= ∇ ·

{

Dσb
∇ ·

[

−∆∗σb + C′(σb, t) + 2ξbN
′(σb, t) (19)

+ ξuF
′(σb, t) + σuξbF

′′(σb, t) +G′(σb, t)σu

]}

,

∂ξb
∂t

= ∇ ·
{

Dξb
∇ ·

[

2yξb + 2N(σb, t) + F ′(σb, t)σu

]}

,

∂σu

∂t
= ∇ ·

{

Dσu
∇ ·

[

σu

2y
+ ξbF

′(σb, t) +G(σb, t)

]}

,

∂ξu
∂t

= ∇ ·
{

Dξu
∇ · [ψ + F (σb, t)]

}

.

where we have set F (σb, t) =
∑+∞

n=0 µ
(n)
c (t)Fn(σb) and similar notations for the other functions. The time evolution of

the Lagrange multipliers µ
(n)
c (t) etc. are obtained by substituting the optimal currents in the constraints Ḣ

(n)
c = 0 etc.
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and solving the resulting set of algebraic equations. Using the expression of the optimal currents and the condition
that İ = Ḣm = Ḣc = L̇ = 0, we can show that:

Ė = −
∫

{

J2
ξu

Dξu

+
J2

σb

Dσb

+
J2

σu

Dσu

+
J2

ξb

Dξb

}

dydz ≤ 0, (20)

provided that the diffusion currents Dξu
, Dσb

,Dσu
and Dξb

are positive. Thus, the energy decreases until all the
currents vanish. In that case, we obtain the static equations (12). In addition, this numerical algorithm guarantees
that only energy minima (not maxima or saddle points) are reached. Note that if we fix the Lagrange multipliers
instead of the constraints, the foregoing relaxation equations lead to a stationary state which minimizes the free energy
J . Then, as stated above, the constructed solutions will be nonlinearly dynamical stable solution of the MHD set of
equations. However, not allowing the Lagrange multiplier to depend on time, we may ”miss” some stable solutions of
the problem. Indeed, we know that minima of the free energy are nonlinearly stable solutions of the problem but we
do not know if they are the only ones: some solutions can be minima of E at fixed I, Hm, Hc and L while they are
not minima of J = E + αI + µmHm + µcHc + γL.

2. Chandrasekhar model

In the Chandrasekhar model (with µ′

m = γ′ = 0), the previous equations can be simplified. The equilibrium
solution does not depend on the particular value of the diffusion coefficients (these are only multiplicative factors of
the optimal currents) and for simplicity, we set Dξu

= Dσb
= Dσu

= Dξb
= 1. The relaxation equations then reduce

to:

∂σb

∂t
= ∆

{

−∆∗σb + C′(σb, t) + 2µm(t)ξb + µc(t)ξu + γ(t)σu

}

, (21)

∂ξb
∂t

= ∆

{

2yξb + 2µm(t)σb + µc(t)σu

}

,

∂σu

∂t
= ∆

{

σu

2y
+ µc(t)ξb + γ(t)σb

}

,

∂ξu
∂t

= ∆{ψ + µc(t)σb}.

where the Lagrange multipliers evolve in time so as to conserve the constraints (17).
These equations are the MHD counterpart of the relaxation equations proposed by Chavanis [14] for 2D hydrody-

namical flows described by the Euler equation. In this context, a stable stationary solution of the Euler equation
maximizes a H-function (playing the role of a generalized entropy) at fixed energy and circulation. A justification of
this procedure, linked to the increase of H-functions on the coarse-grained scale, will be further discussed in Sec. IV
and compared with the MHD case.

If we set the velocity field to zero (σu = ξu = 0), we get a system of equations linking the poloidal part (σb) and
the toroidal part (ξb) of the magnetic field. It is fairly easy to see that the coupling between the two quantities is
proportional to µm the Lagrange multiplier associated to the conservation of magnetic helicity. This is reminiscent
of the α effect of dynamo theory (see Steenbeck et al. [19]): in the “kinematic approximation” where the effect of
the Lorentz force is removed, the coupling between the toroidal and poloidal part of the magnetic field is given by a
coefficient proportional to the kinetic helicity of the fluctuating velocity field. Our model is not able to recover this
fact because, as noticed above, this quantity is not conserved in the full MHD case. However, taking into account the
retroaction of the magnetic field on the velocity field, Pouquet et al. [20] were able to write the non-linear α-effect as
a difference between the kinetic and the magnetic helicity of the fluctuations: α = Hk−Hm. Our relaxation equations
therefore recover the fact that the approach to saturation of the magnetic field is mainly monitored by the magnetic
helicity.

III. STATISTICAL MECHANICS OF AXISYMMETRIC FLOWS

In the previous section, we obtained general equilibrium velocity and magnetic field profiles through minimization
of the energy under constraints. In the present section, we derive velocity and magnetic field distribution using a
thermodynamical approach, based upon a statistical mechanics of axisymmetric MHD flows. As we later check, the
distribution we find are such that their mean fields obey the equilibrium profiles found by energy minimization. For
simplicity, we focus here on the Chandrasekhar model.
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A. Definitions and formalism

Following [7], [8] and [15], we introduce a coarse-graining procedure through the consideration of a length-scale
under which the details of the fields are irrelevant. The microstates are defined in terms of all the microscopic possible
fields u(x) and b(x). On this phase space, we define the probability density ρ(r,u,b) of a given microstate. The
macrostates are then defined in terms of fields observed on the coarse-grained scale. The mean field (denoted by a
bar) is determined by the following relations:

Ū(x) =

∫

u ρ(r,u,b) dudb , (22)

B̄(x) =

∫

b ρ(r,u,b) dudb .

We introduce the mixing entropy

S[ρ] = −
∫

ρ(r,u,b) ln[ρ(r,u,b)] drdudb , (23)

which has the form of Shanon’s entropy in information theory [22] [9]. The most probable states are the field U and
B which maximize the entropy subject to the constraints. The mathematical ground for such a procedure is that an
overwhelming majority of all the possible microstates with the correct values for the constants of motion will be close
to this state (see [8] for a precise definition of the neighborhood of a macrostate and the proof of this concentration
property). Note that this approach gives not only the coarse-grained field (U, B) but also the fluctuations around it
through the distribution ρ(r,u,b).

Each conserved quantity has a numerical value which can be calculated given the initial condition, or from the
detailed knowledge of the fine-grained fields. The integrals calculated with the coarse-grained quantities are not
necessarily conserved because part of the integral of motion can go into fine-grained fluctuations (as we shall see,
this is the case for the energy in MHD flows). This induces a distinction between two classes of conserved quantities,
according to their behavior through coarse-graining. Those which are not affected are called robust, whereas the other
one are called fragiles.

B. Constraints

In this section, it is convenient to come back to the original velocity and magnetic fields. The constraints are the
coarse-grained values of the conserved quantities (9). The key-point, as noted by [15], is that the quantity coming
from a spatial integration of one of the field u or b, is smooth. In our case, it amounts to neglecting the fluctuations
of A which is spatially integrated from B and write A = Ā. Thus, the coarse-grained values of the conserved quantity
are given by:

Ī =

∫

C(rĀ) dx , (24)

H̄m = 2

∫

Ā B̄ dx ,

H̄c =

∫

u · b ρ(r,u,b) dxdudb ,

Ē =
1

2

∫

(u2 + b2) ρ(r,u,b) dx dudb ,

H̄ ′

m = 2

∫

B̄

r
dx , (25)

L̄ =

∫

ĀŪr2 dx ,

L̄′ =

∫

Ūr dx .

The constraint Ī is the Casimir, connected to the conservation of σb along the motions. In the present case, it is a
robust quantity as it is conserved on the coarse-grained scale. As stated previously, the quantities H̄m, H̄c and Ē are
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the mean values of the usual quadratic invariants of ideal MHD, namely the magnetic helicity, the cross-helicity and
the energy. On the contrary, the quantities H̄ ′

m, L̄ and L̄′ are specific to axisymmetric systems. Because these last
three conservation laws are usually disregarded in classical MHD theory, it is interesting in the sequel to separate the
study in two cases, according to which the conservation of H̄ ′

m, L̄ and L̄′ is physically relevant (“rotating case”) or is
not physically relevant (“classical case”).

C. Gibbs state

1. Classical case

The MHD equations develop a mixing process leading to a metaequilibrium state on the coarse-grained scale. It
is obtained by maximizing the mixing entropy S[ρ] with respect to the distribution ρ at fixed Ī, H̄m, H̄c and Ē (we
omit the bars in the following). We have:

δS = −
∫

(1 + ln ρ) δρ dxdudb , (26)

δHc =

∫

u · b δρ dxdudb ,

δE =
1

2

∫

(u2 + b2) δρ dxdudb .

The variation of the magnetic helicity and the Casimirs is more tedious because they involve the coarse-grained field
Ā. For the magnetic helicity, we have:

δHm = 2

∫

(δĀ B̄ + Ā δB̄)dx . (27)

Now, using an integration by parts, it is straightforward to show that

∫

δA B dx =

∫

δBP ·AP dx . (28)

Therefore,

δHm = 2

∫

(δB̄P · ĀP + Ā δB̄) dx = 2

∫

Ā · δB̄ dx (29)

= 2

∫

Ā · b δρ dxdudb .

Regarding the variation of the Casimirs, we find:

δI =

∫

C′(rĀ)rδĀ dx =

∫

C′(rĀ)r Curl−1B̄P dx =

∫

curl−1[rC′(rĀ)] · δB̄P dx , (30)

or

δI =

∫

curl−1[rC′(rĀ)] · bP δρ dxdudb . (31)

Writing the variational principle in the form

δS − βδE − µmδHm − µcδHc −
+∞
∑

n=1

α(n)δI(n) = 0 , (32)

we find that

1 + ln ρ = −β
2

(u2 + b2) − 2µmĀ · b− µcu · b − curl
−1[rC′(rA)] · bP . (33)
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It is appropriate to write u = Ū+u′ and b = B̄+b′ where the first term denotes the coarse-grained field. Then, the
equation (33) can be rewritten

1 + ln ρ = −β
2

(u′2 + b′2) − µcu
′ · b′ − µmĀ · B̄ − µc

2
Ū · B̄ (34)

− (
Ū

2
+ u′) · [βŪ + µcB̄]

− (
B̄

2
+ b′) · [βB̄ + 2µmĀ + µcŪ + curl−1[rC′(rA)] .

Hence the fluctuations are Gaussian:

ρ =
1

Z
exp

{

−β
2

(u′2 + b′2) − µcu
′ · b′

}

=
1

Z
exp

{

1

2

∑

i,j

xiAijxj

}

, (35)

where we defined a 6-dimensionnal vector: xi = (u′1, u
′

2, u
′

3, b
′

1, b
′

2, b
′

3). The mean-field is given by:

βU + µcB = 0 , (36)

βB + 2µmA+ µcU = 0 ,

βBP + 2µmAP + µcUP + curl−1[rC′(rA)] = 0 .

Taking the curl of these relations and using curlBP = j, curlUP = ω and curlAP = B, we recover the equilibrium
distribution (13) with γ = γ′ = µ′

m = µ′

c = 0. Therefore, in this classical case, the equilibrium profiles are such
that mean velocity and mean magnetic field are aligned. This is a well known feature of turbulent MHD, which has
been observed in the solar wind (where v ≈ ±B). It has been linked with a principle of minimum energy at constant
cross-helicity (see chapter 7.3 of [24] and references therein). This feature is also present in numericals simulation of
decaying 2D MHD turbulence, where the current and the vorticity are seen to be very much equal [25]. This can
therefore be seen as the mere outcome of conservation of quadratic integral of motions, and may provide an interesting
general rule about dynamo saturation in systems where these quadratic constraints are dominant.

Using the Gaussian shape for the fluctuations, it is quite easy to derive the mean properties of the fluctuations. To
do so, we will make use of the following standard results [23]:

Z = (2π)3
√

det[A] = (2π)3[β2 − µ2
c ]

3/2 , 〈xixj〉 = (A−1)ij . (37)

Then, it is easy to show that part of the energy is going into the fluctuations and that there is equipartition between
the fluctuating parts of the magnetic energy and of the kinetic energy:

〈u′2〉 = 〈b′2〉 =
3β

β2 − µ2
c

. (38)

One can also calculate the quantity of cross helicity going into the fluctuations:

〈~u′ · ~b′〉 = − 3µc

β2 − µ2
c

. (39)

One should notice that there is no net magnetic helicity in the fluctuations because of the fact that A is strictly
conserved. Then, the fractions of magnetic energy, cross helicity and kinetic energy going into the fluctuations are:

〈b′2〉
∫

B̄2 dx
=

〈u′ · b′〉
∫

Ū · B̄ dx
=

3β

β2 − µ2
c

M−1 , (40)

〈u′2〉
∫

Ū2 dx
=

β2

µ2
c

3β

β2 − µ2
c

M−1 ,

where M =
∫

B̄2 dx is the magnetic energy of the coarsed-grained field. The first equation shows that there is an
equal fraction of magnetic energy and cross helicity which goes in the fluctuations and the positivity of the magnetic
energy requires: β2 > µ2

c . Using this inequality and the second line, we can show that the fraction of kinetic energy

going into the fluctuations is then bigger than that of the magnetic energy and cross helicity. This may gives some
mathematical ground to the energy minimization procedure we used in section II C.
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2. Rotating case

The situation is changed when the other constant of motion are taken into account. We have:

δH ′

m = 2

∫

b

r
δρ dxdudb , (41)

δL′ =

∫

ur δρ dxdudb .

On the other hand,

δL =

∫

(δĀ Ū + Ā δŪ) r2 dx =

∫

(Ū curl−1δB̄P + Ā δŪ) r2dx (42)

=

∫

(curl−1(r2Ū) · δB̄P + Ā δŪ r2) dx

=

∫

(curl−1(r2Ū) · bP + Ā u r2) δρ dxdudb .

Adding Lagrange multipliers −µ′

m, −γ and −γ′ for H ′

m, L and L′ respectively, we find that the expression (33) is
multiplied by

exp

{

−2µ′

m

b

r
− γ′ r u− γ (curl−1(r2Ū) · bP + Ā u r2)

}

. (43)

The distribution of fluctuations is then still Gaussian and given by (35) but now the mean-field equations are

βUP + µcBP = 0 , (44)

βU + µcB + γ′r + γĀr2 = 0 ,

βB + 2µmA+ µcU +
2µ′

m

r
= 0 ,

βBP + 2µmAP + µcUP + curl−1[rC′(rA)] + γ curl−1(r2U) = 0 .

Taking the curl of the vectorial relations, we get the system (13).
Therefore, in the pesent case taking into account additional constant of motions, the relation between the velocity

and the magnetic field is not linear anymore. The linearity is only valid for the poloidal component. The toroidal
component obeys:

β(U +
γ′

β
r) = −µcB − γAr2 . (45)

We can interprete U + γ′/βr as the relative velocity around a solid rotation Ω = −γ′/β. Indeed, γ′ is the Lagrange
multiplier for the angular momentum constraint. The non-trivial term responsible for the departure from linearity is
−γAr2. Thus, the breaking of the proportionnality between the velocity and the magnetic field can be attributed to
the conservation of the angular momentum in the Chandrasekhar model. This is an interesting feature because this
conservation rule is likely to be more relevent in rapidly rotating objects. This may explain the dynamo saturation in
rotating stars, where linearity between magnetic and velocity field is observed for slowly rotating stars and is broken
for rotator faster than a certain limit (cf figure 1). However, the non-proportionnality between velocity and magnetic
field can also be due to additional conserved quantities such as those considered by Woltjer [16].

IV. SUMMARY

We have developped a statistical theory of axisymetric MHD equations generalizing the 2D approach by [15]. We
derived the velocity and magnetic field distribution, and computed the corresponding equilibrium profiles for the
mean flow. Like in the 2D case, the fluctuations around the mean field are found Gaussian, an universal feature
connected to the conservation of the Casimirs under the coarse-graining. The equilibrium profiles are characterized
by an alignment of the velocity and magnetic field, which is broken when the angular momentum conservation is taken
into account. The statistical equilibrium profiles are found to correspond to profiles obtained under minimization of
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FIG. 1: Magnetic field of stars (of late-type dwarfs) calculated from their X-ray emission, versus their rotation velocity.

energy subject to the constraints. Thus, in the MHD case, in the presence of a coarse-graining (or a small viscosity),
the energy is dissipated while the Helicity, the angular momentum and the Casimirs are approximately conserved
(hydromagnetic selective decay). In particular, E = 1

2

∫

U2 +B2dx 6= 1
2

∫

(Ū2 + B̄2)dx because part of energy goes

into fine grained fluctuations Efluct = E − Em.f.. Therefore, the metaequilibrium state minimizes E at fixed I, Hm,
Hc and L. This can be justified in the “classical case” (section III C 1) where we showed that the fraction of kinetic
energy going into the fluctuating part of the fields was higher than that of the other quantities, namely the magnetic
energy and the cross-helicity. The “rotating case” (section III C 2) requires more algebra and is left for further study.

In contrast, in the 2D hydrodynamical case, the Casimirs are fragile quantities (because they are expressed as
function of the vorticity which is not an integral quantity as the magnetic potential is) and thus are altered by
the coarse-graining procedure. This is true in particular for a special class of Casimirs H = −

∫

C(ω)dx, called
H-functions, constructed with a convex function C such that C′′ > 0. This leads to two very different behaviors of
hydrodynamical turbulence compared to the hydromagnetic one. First, the H-functions calculated with the coarse-
grained vorticity ω increase with time while the circulation and energy are approximately conserved (hydrodynamic
selective decay). Thus, the metaequilibrium state maximizes one of the H-functions at fixed E and Γ. For example,
Chavanis and Sommeria [10] showed that in the limit of strong mixing (or for gaussian fluctuations), the quantity to
maximize is minus the enstrophy, giving some mathematical basis to an (inviscid) “minimum enstrophy principle”. In

this context, Γ2 =
∫

ω2dx 6=
∫

ω̄2dx because part of enstrophy goes into fine-grained fluctuations Γfluct = Γ̄2 −Γm.f.
2 .

However, for more general situations, the H-function that is maximized at metaequilibrium is non-universal and can
take a wide diversity of forms as discussed by Chavanis [14]. Due to their resemblance with entropy functionals (they
increase with time, one is maximum at metaequilibrium,...), and because they generally differ from the Boltzmann
entropy SB = −

∫

ω lnωdx, the H-functions are sometimes called “generalized entropies” [14]. From the statistical
mechanics point of view, there is an infinite number of constraints (depending on the micro scale fields) to take into
acccount when deriving the Gibbs state. Consequently, the shape of the fluctuations is not universal. This is why the
H-function that is maximized at metaequilibrium is also non-universal. However, if the distribution of fluctuations is
imposed by some external mechanism (e.g., a small-scale forcing) as suggested by Ellis et al. [13], the functional S[ω]
is now a well-determined functional determined by the Gibbs state and the prior vorticity distribution [13, 14].

Our computation can provide interesting insight regarding dynamo saturation. It is however limited by its neglect
of dissipation and forcing mechanism. It would therefore be interesting to generalize this kind of approach to more
realistic systems. In that case, the entropy might not be the relevent quantity anymore, but rather the turbulent
transport, or the entropy production [26].
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APPENDIX: CURL OPERATORS

Following Jordan and Turkington, we define

curlB = (∇× B) · eθ (A.1)

CurlA = ∇× (A eθ)

for any vector B and scalar A. It is straightforward to show that we have the following relations:

curlCurl(
A

r
) = −r∆∗A (A.2)

∫

A curlB dx =

∫

CurlA ·B dx (A.3)

Setting A = Curl−1B′ and curlB = A′ in the last identity, we get

∫

Curl−1B′ A′ dx =

∫

B′ · curl−1A′ dx (A.4)
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