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Twistor Forms on Riemannian Manifolds

A twistor p-form on a Riemannian manifold (M n , g) is a smooth section ψ of Λ p T * M whose covariant derivative only depends on its differential dψ and codifferential δψ. More precisely, ψ satisfies the equation

∇ X ψ = 1 p+1 X dψ -1 n-p+1 X ♭ ∧ δψ, (1) 
for all vector fields X, where X ♭ denotes the metric dual of X.

If the p-form ψ is in addition coclosed (i.e. δψ = 0), then it is called a Killing p-form. We denote by T(M), K(M) and P(M) the spaces of twistor, Killing and parallel forms on M respectively. Notice that T(M) is preserved by Hodge duality, and that the Hodge dual of a Killing form is a closed twistor form. For a comprehensive introduction to twistor forms, see [START_REF] Semmelmann | Conformal Killing forms on Riemannian manifolds[END_REF].

A few years ago, a program of classification of twistor forms on compact manifolds was started. By the de Rham decomposition theorem, every simply connected Riemannian manifold is a Riemannian product of irreducible manifolds. Moreover, the Berger-Simons holonomy theorem (see [START_REF] Besse | Einstein manifolds, Ergeb. Math. Grenzgeb[END_REF], p. 300) implies that any simply connected irreducible Riemannian manifold is either symmetric or has holonomy SO n , U m , SU m , Sp k , Sp k • Sp 1 , G 2 or Spin 7 . Killing forms on symmetric spaces were studied in [START_REF] Belgun | Killing Forms on Symmetric Spaces[END_REF]. Twistor forms on Kähler manifolds (covering the holonomies U m , SU m , and Sp k ) were described in [START_REF] Moroianu | Twistor Forms on Kähler Manifolds[END_REF], and Killing forms on quaternion-Kähler manifolds (holonomy Sp k • Sp 1 ) or Joyce manifolds (holonomies G 2 or Spin 7 ) were studied in [START_REF] Moroianu | Killing Forms on Quaternion-Kähler Manifolds[END_REF] and [START_REF] Semmelmann | Killing forms on G 2 -and Spin 7 -manifolds[END_REF] respectively. In Theorem 2.1 below, we prove that the general case (twistor forms on a Riemannian product of compact manifolds) reduces to the study of Killing forms on the factors. By the discussion above, besides the case of generic holonomy (SO n ), all other cases are fully understood.

The Main Result

Let M = M 1 ×M 2 be the Riemannian product of two compact Riemannian manifolds (M 1 , g 1 ) and (M 2 , g 2 ) of dimensions m and n respectively. We denote by π i the projection

π i : M → M i . From (1) it is clear that π * i (K(M i )) ⊂ K(M), so the space K 0 (M) := π * 1 (K(M 1 )) + π * 2 (K(M 2 )) + P(M) is a subspace of K(M).
For later use, we give the following description of

π * i (K(M i )): π * 1 (K(M 1 )) = {u ∈ K(M) | ∇ X u = 0, ∀X ∈ T M 2 } (2) 
and

π * 2 (K(M 2 )) = {u ∈ K(M) | ∇ X u = 0, ∀X ∈ T M 1 }. (3) 
The aim of this note is to prove the following result:

Theorem 2.1. Every twistor form on M is a sum of forms of the following types: parallel forms, pull-backs of Killing forms on M 1 or M 2 , and Hodge duals of them. In other words,

T(M) = K 0 (M) + * K 0 (M). Proof. Since K 0 (M) ⊂ K(M) ⊂ T(M) and * T(M) = T(M), we clearly have K 0 (M) + * K 0 (M) ⊂ T(M).
It remains to prove the reverse inclusion. Let us define the differential operators

d 1 = m i=1 e ♭ i ∧ ∇ e i , d 2 = n j=1 f ♭ j ∧ ∇ f j ,
where {e i } and {f j } denote local orthonormal basis of the tangent distributions to M 1 and M 2 . Using the Fubini theorem, we easily see that the adjoint operators to d 1 and d 2 are

δ 1 = - m i=1 e i ∇ e i , δ 2 = - n j=1 f j ∇ f j .
The following relations are straightforward:

d M = d 1 + d 2 , δ M = δ 1 + δ 2 , (d 1 ) 2 = (d 2 ) 2 = (δ 1 ) 2 = (δ 2 ) 2 = 0, 0 = d 1 d 2 + d 2 d 1 = δ 1 δ 2 + δ 2 δ 1 , 0 = d 1 δ 2 + δ 2 d 1 = δ 1 d 2 + d 2 δ 1 .
The vector bundle Λ p M decomposes naturally as

Λ p M ∼ = ⊕ p i=0 Λ i,p-i M, where Λ i,p-i M ∼ = Λ i M 1 ⊗ Λ p-i M 2 .
Obviously, d 1 and δ 1 map Λ i,p-i M to Λ i+1,p-i M and Λ i-1,p-i M respectively, and d 2 and δ 2 map Λ i,p-i M to Λ i,p-i+1 M and Λ i,p-i-1 M respectively.

With respect to the above decomposition, every p-form can be written u = u 0 +. . .+u p , where u i ∈ Λ i M 1 ⊗ Λ p-i M 2 . From now on, u will denote a twistor p-form u ∈ T(M), with 1 ≤ p ≤ n + m -1. The twistor equation reads

∇ X u = 1 p + 1 X (d 1 u + d 2 u) - 1 m + n -p + 1 X ∧ (δ 1 u + δ 2 u), ∀X ∈ T M. (4) 
By projection onto the different irreducible components of Λ p M, (4) can be translated into the following two systems of equations:

∇ X u k = 1 p + 1 X (d 1 u k +d 2 u k+1 )- 1 m + n -p + 1 X∧(δ 1 u k +δ 2 u k-1 ), ∀X ∈ T M 1 , (5) 
and

∇ X u k = 1 p + 1 X (d 1 u k-1 +d 2 u k )- 1 m + n -p + 1 X∧(δ 1 u k+1 +δ 2 u k ), ∀X ∈ T M 2 . ( 6 
)
Recall that if u is any k-form and {e 1 , . . . , e m } is an orthonormal basis on a manifold M, then

m i=1 e ♭ i ∧ e i ω = kω. (7) 
Taking the wedge product with X ♭ in ( 5) and summing over an orthonormal basis of T M 1 yields

d 1 u k = m i=1 e i ∧ ∇ e i u k = 1 p + 1 m i=1 e i ∧ e i (d 1 u k + d 2 u k+1 ) (7) = k + 1 p + 1 (d 1 u k + d 2 u k+1 ) so (p -k)d 1 u k = (k + 1)d 2 u k+1 . (8 
) Similarly, taking the interior product with X and summing over an orthonormal basis of T M 1 yields δ 1 u k = m-k+1 m+n-p+1 (δ

1 u k + δ 2 u k-1 ), thus (n + k -p)δ 1 u k = (m -k + 1)δ 2 u k-1 . (9) 
We distinguish three cases:

Case I. Suppose that p is strictly smaller than m and n. For k < p, (8) and ( 9) imply

δ 1 d 1 u k = k + 1 p -k δ 1 d 2 u k+1 = - k + 1 p -k d 2 δ 1 u k+1 = - (k + 1)(m -k) (p -k)(n + k -p + 1) d 2 δ 2 u k . (10) Integrating over M yields 0 = d 1 u k = δ 2 u k , ∀k < p. Similarly one gets 0 = d 2 u k = δ 1 u k , ∀k > 0.
Moreover, we have 0 = δ 2 u p = δ 1 u 0 (tautologically), so in particular δ 1 u k = δ 2 u k = 0, ∀k. From ( 5) and ( 6), together with (2) and (3), we see that u 1 , . . . , u p-1 ∈ P(M), u 0 ∈ π * 2 (K(M 2 )) and u p ∈ π * 1 (K(M 1 )), so u ∈ K 0 (M). Case II. Suppose that p is strictly larger than m and n. Since the Hodge dual * u of u is a twistor (m + np)-form and m + np is strictly smaller than m and n, the first case implies that * u ∈ K 0 (M), so u ∈ * K 0 (M).

Case III. If p is a number between m and n, we may suppose without loss of generality that m ≤ p ≤ n. Obviously u m+1 = . . . = u p =0. Using (10) and integrating over M,

we obtain that 0 = d 1 u k = δ 2 u k for 0 ≤ k ≤ m -1 and similarly, 0 = d 2 u k = δ 1 u k for 1 ≤ k ≤ m.
As before, ( 5) and ( 6), together with (2) and (3), show that u 1 , . . . , u m-1 ∈ P(M), u 0 ∈ π * 2 (K(M 2 )), and * u m ∈ π * 2 (K(M 2 )). This proves the theorem.

As an application of this result, we have the following:

Proposition 2.2. Let (M n , g) be a compact simply connected Riemannian manifold. If M carries a conformal vector field which is not Killing, then Hol(M) = SO n .

Proof. Assume first that (M, g) = (M 1 , g 1 ) × (M 2 , g 2 ) is a Riemannian product with dim(M 1 ), dim(M 2 ) ≥ 1. Then, taking into account that the isomorphism between 1-forms and vector fields defined by the Riemannian metric maps twistor forms to conformal vector fields and Killing forms to Killing vector fields, Theorem 2.1 implies that every conformal vector field on M is a Killing vector field. Thus M is irreducible.

Assume next that Hol(M) = SO n . From the Berger-Simons holonomy theorem ([2], p. 300), M is either an irreducible symmetric space (in particular Einstein), or its holonomy group is U m , SU m , Sp k , Sp k • Sp 1 , G 2 or Spin 7 . In the first three cases the manifold is Kähler and in the last three cases it is Einstein. Now, two classical results state that a conformal vector field on a compact manifold M is already a Killing vector field if M is Kähler (see [START_REF] Lichnerowicz | Géométrie des groupes de transformations[END_REF], p. 148) or if M is Einstein and not isometric to the round sphere (see [START_REF] Nagano | The conformal transformation on a space with parallel Ricci tensor[END_REF], [START_REF] Nagano | Einstein spaces admitting a one-parameter group of conformal transformations[END_REF]).

The only possibility left is therefore Hol(M) = SO n .

Example. Take any compact simply connected Riemannian manifold (M n , g) carrying a Killing vector field ξ and let f be a function on M such that ξ(f ) is not identically zero. Since L ξ (e 2f g) = 2ξ(f )e 2f g, ξ is a conformal vector field on (M, e 2f g) which is not Killing. From Proposition 2.2, (M, e 2f g) has holonomy SO n .

Corollary 2.3. Let (M n , g) be a compact simply connected homogeneous Riemannian manifold. Then for every non-constant function f on M, (M, e 2f g) has holonomy SO n .

Proof. Since f is non-constant, there exists x ∈ M such that df x = 0. Killing vector fields on M span the tangent spaces at each point, so in particular there exist a Killing vector field ξ such that ξ(f ) is not identically zero. The corollary then follows from the example above.