

Stable tangential families and singularities of their envelopes

Gianmarco Capitanio

▶ To cite this version:

Gianmarco Capitanio. Stable tangential families and singularities of their envelopes. Comptes rendus de l'Académie des sciences. Série I, Mathématique, 2005, 341 (8), pp.503–508. hal-00002154v2

HAL Id: hal-00002154 https://hal.science/hal-00002154v2

Submitted on 21 Nov 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stable tangential family germs and singularities of their envelopes

Gianmarco Capitanio *

September 2005

Abstract

A tangential family is a system of regular curves emanating tangentially from another regular curve. We classify tangential family germs which are stable under deformations among tangential families and we study singularities of their envelopes. We also discuss some applications of our results to Differential Geometry.

1 Introduction

A tangential family is a system of regular curves emanating tangentially from another regular curve, called support. Tangential families naturally arise in Geometry of Caustics, Singularity Theory, Optics, Image Treatment and Differential Geometry. For example, the tangent geodesics of a curve in a Riemannian surface define a tangential family, as well as the integral curves of Clairaut-type differential equations.

The roots of the theme go back to Huygens' investigation of caustics of rays of light. Thom showed in [9] that the singularities of envelopes of generic 1-parameter families of smooth plane curves are semicubic cusps and transversal self-intersections. Normal forms of generic families of plane curves near regular points of their envelopes have been found by V.I. Arnold (see [1] and [2]; see also Dufour [6]). However, our study differs from the approaches

^{*}CEREMADE, University Paris-Dauphine, pl. du M. De Lattre De Tassigny 75775 Paris cedex
 16 - France.

of Thom and Arnold. For example, for the first time the situation when the support curve is not the only local component of the envelope is studied.

The aim of this Note is to classify the singularities of tangential family germs which are stable under small deformations among tangential families, and to study their envelopes. We prove that there exists only one local stable singularity of envelopes of tangential family germs, the second order self-tangency. Applications to families of tangent geodesics of a regular curve on a Riemannian surface are given.

Simple singularities of tangential family germs (together with their tangential deformations and corresponding envelope perestroikas) are classified in [4]. Tangential families are discussed from the Contact Geometry viewpoint in [5]. Envelopes of tangential families with cusped support are studied in [3].

2 Stable tangential family germs

Unless otherwise specified, all the objects considered below are supposed to be of class C^{∞} ; by plane curve we mean a smooth map $\mathbb{R} \to \mathbb{R}^2$. Let us consider a smooth map $f : \mathbb{R}^2 \to \mathbb{R}^2$ of the fibered plane $\mathbb{R}^2 = \mathbb{R}_1 \times \mathbb{R}_2 \to \mathbb{R}_1$, equipped with coordinates $\xi \in \mathbb{R}_1$ and $t \in \mathbb{R}_2$. We set $f_{\xi}(t) = f(\xi, t)$.

Definition. A family of regular curves $\{f_{\xi} : \xi \in \mathbb{R}\}$ is a *tangential family* if the curve $f_{|t=0}$, called *support*, is regular and for every $\xi \in \mathbb{R}$, the curve f_{ξ} is tangent to the support at $f(\xi, 0)$.

The graph of the tangential family is the immersed surface

$$\Phi := \{ (\xi, f(\xi, t)) : \xi, t \in \mathbb{R} \} \subset \mathbb{R} \times \mathbb{R}^2$$

Let us consider the two natural projections of Φ on \mathbb{R} and \mathbb{R}^2 , $\pi_1 : (q, p) \mapsto q$ and $\pi_2 : (q, p) \mapsto p$. The first projection π_1 is a fibration; the images by π_2 of its fibers are the curves of the family. The *envelope* of the family is the apparent contour of its graph in the plane (i.e., the critical value set of the restriction of π_2 to the graph). By the very definition, the support of a tangential family belongs to its envelope.

Our study of tangential families being local, we identify them to smooth map germs $(\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$. Note that the graphs of tangential family germs are germs of embedded surfaces.

Let $\mathfrak{m}_{s,t}$ be the space of function germs $(\mathbb{R}^2, 0) \to (\mathbb{R}, 0)$ (when the structure of fiber bundle on the source plane is not taken into account we shall use s and t as coordinates, leaving ξ for the fibered case). The group $\mathscr{A} := \operatorname{Diff}(\mathbb{R}^2, 0)^2$ acts on $(\mathfrak{m}_{s,t})^2$ by the rule

$$(\varphi, \psi) \cdot f := \psi \circ f \circ \varphi^{-1}$$
.

Two map germs of $(\mathfrak{m}_{s,t})^2$ are \mathscr{A} -equivalent if they belong to the same \mathscr{A} -orbit.

Since \mathscr{A} -equivalence does not preserve the fibered structure of $\mathbb{R}^2 = \mathbb{R}_1 \times \mathbb{R}_2$, \mathscr{A} -equivalent map germs may parameterize non diffeomorphic families of curves. However, this equivalence preserves the envelopes of these families. Indeed, we obtain from the chain rule and Cauchy-Binet Theorem the following result.

Proposition. Critical value sets of \mathscr{A} -equivalent map germs are diffeomorphic; in particular, envelopes of \mathscr{A} -equivalent tangential families are diffeomorphic.

Remark. The more natural equivalence relation (as in [6]), preserving the fibered structure of the mappings' source plane, is too much fine: the fold is the only stable and simple singularity, all the other singularities having functional moduli.

In some situations, as for instance in the study of geodesic tangential family evolution under small perturbations of the metric, it would be natural to perturb a tangential family only among tangential families.

Definition. Let $p \in \mathbb{N} \cup \{0\}$. A *p*-parameter *tangential deformation* of a tangential family f is a deformation

$$F: \mathbb{R}^2 \times \mathbb{R}^p \to \mathbb{R}^2$$

of f (i.e. $F_{|\lambda=0} = f$) such that $F(\cdot; \lambda)$ is a tangential family for every λ .

An analoguous definition holds for germs. Note that a tangential deformation induces a smooth deformation on the family support.

A tangential family germ $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ is said to be *stable* if for every tangential deformation F of f, $F_{|\lambda=\lambda_0}$ is \mathscr{A} -equivalent to f at some λ_0 -depending point, arbitrary close to the origin for λ_0 small enough.

We state now our main result, whose proof is given in section 4.

Theorem 1. A tangential family germ is stable if and only if it is \mathscr{A} equivalent to the germ at the origin of the family of the tangent lines of
the parabola $y = x^2$ or of the cubic parabola $y = x^3$.

The first normal form is the fold singularity; the corresponding envelope is smooth.

Corollary. The second order self-tangency is the only stable singularity of envelopes of tangential family germs (under small tangential deformations of the families).

Remark. This singularity is not stable under non-tangential deformations. Under such a deformation the family's envelope experiences a beak to beak perestroika. From the global viewpoint, one has to add standard stable singularities of envelopes, namely semicubic cusps and transversal self-intersections.

3 Examples and applications

Every regular curve in a Riemannian surface (M, g) defines the geodesic tangential family formed by its tangent geodesics. We call geodesic envelope of γ the envelope of the geodesic tangential family of support γ .

For simplicity, we assume M closed. Generically, the only singularities of a regular curve $\gamma : S^1 \to M$ are transversal self-intersections. Here (and below) "generically" means that the mappings satisfying the claim form an open dense subset of $C^{\infty}(S^1, M)$ for the Whitney topology.

A deformation of the metric g induces a tangential deformation on the family (fixing the support), as well as a deformation of γ .

Theorem 2. The geodesic envelope of a regular curve $\gamma : S^1 \to M$ is generically a curve (γ being one of its components), whose singularities may be only transversal self-intersections, semicubic cusps and order 2 self-tangencies. Such an envelope is stable under small enough perturbations of γ and of the metric g.

The Theorem follows from Theorem 1 and Thom's Transversality Lemma. A similar statement holds if we replace the Riemannian structure with a projective structure.

We discuss now an example of a global geodesic tangential family whose envelope has infinitely many branches. Let us consider in the standard Euclidean space \mathbb{R}^3 the sphere S^2 , equipped with the induced metric. Let $\gamma_r \subset S^2$ be a circle of radius r in \mathbb{R}^3 and let $f: S^1 \times \mathbb{R} \to S^2$ be a parameterization of the geodesic tangential family of support γ_r in S^2 , where for every $\xi \in S^1 \simeq \gamma_r$, the map $f_{\xi}: \mathbb{R} \to S^2$ is a 2π -periodical parameterization of the S^2 great circle tangent to γ_r at ξ .

The family envelope has two branches, γ_r and its opposite circle, each one having infinite multiplicity. Indeed, the critical set of the parameterization, given by the equation det $Df(\xi, t) = 0$, has infinitely many disjoint components $C_n := (\xi \in S^1, t = n\pi)$ in the cylinder $S^1 \times \mathbb{R}$, where $n \in \mathbb{Z}$. The images $E_n := f(C_n)$ of these components are called the *order* n *envelopes* of γ_r . Notice that E_n is γ_r if n is even, the opposite circle if n is odd.

Let \tilde{S}^2 be a small perturbation of the sphere. Denote by $\tilde{\gamma}_r$ the support of the perturbed family and by $\tilde{f} : S^1 \times \mathbb{R} \to \tilde{S}^2$ the perturbed geodesic tangential family.

Theorem 3. Fix $n_0, m_0 \in \mathbb{N}$ arbitrary large, $n_0 < m_0$. If \tilde{S}^2 is close enough to the initial sphere S^2 , then the order n envelopes of $\tilde{\gamma}_r$ are generic spherical closed caustics with zero Maslov number for $|n| < m_0$, smooth for $|n| < n_0$.

Proof. If \tilde{S}^2 is close enough to S^2 , for every $n < m_0$ the components of the \tilde{f} -critical set, denoted by \tilde{C}_n , are pairwise disjoint small perturbations of the curves C_n . Each order n envelope is a small perturbation of the corresponding order n unperturbed envelope. Since the unperturbed tangential family is equivalent to a fold at every point of its envelope, by Theorem 1 the perturbed family is \mathscr{A} -equivalent to a fold at every point of the envelope branches \tilde{E}_n for every $|n| < n_0$, provided that \tilde{S}^2 is close enough to S^2 .

The perturbed envelope \tilde{E}_n can be viewed as a caustic, images of \tilde{E}_{n-1} under a geodesic flow. Hence, generic singularities of caustics, as semicubic cusps and transversal self-intersection, may arise in envelopes \tilde{E}_n for $n_0 < n < m_0$. The Theorem is proven.

Consider now a fixed arbitrary small perturbation \tilde{S}^2 of S^2 .

Theorem 4. The first order envelopes of $\tilde{\gamma}_r$, $E_{\pm 1}(\gamma)$, have each one at least four cusps, provided that \tilde{S}^2 is a generic surface close enough to the sphere and r is small enough.

Proof. First deform slightly the sphere to an ellipsoid, arbitrary close both to S^2 and \tilde{S}^2 . When $r \to 0$, the corresponding perturbed curve on the ellipsoid $\tilde{\gamma}_r$ shrinks about a point and the first order envelope branches approach the

first caustics of this point. Then the Last Geometrical Theorem of Jacobi states that the first caustic of a point has at least 4 cusps (see [7]).

Now deform the ellipsoid to the generic surface \tilde{S}^2 , arbitrary close to it. The Theorem follows now from the envelope stability under small enough tangential deformations.

4 Proof of Theorem 1

In order to prove Theorem 1, we start computing a standard (not unique) "prenormal form" to which is possible to bring every tangential family germ by \mathscr{A} -equivalence.

Lemma. The 3-jet of every tangential family germ is \mathscr{A} -equivalent to

$$(s,t) \mapsto (s,at^2 + bt^3 + cst^2)$$

for some $a, b, c \in \mathbb{R}$.

Proof. Consider a tangential family germ at the origin, and fix a local coordinate system $\{x, y\}$ in which the family support has equation y = 0. Denote by f_{ξ} the family curve corresponding to the support point $(\xi, 0)$. Define k_0 and k_1 by the expansion $k_0 + k_1\xi + o(\xi)$ (for $\xi \to 0$) of half of the curvature of f_{ξ} at $(\xi, 0)$; α is similarly defined by the expansion $k_0t^2 + \alpha t^3 + o(t^3)$ for $t \to 0$ of the function, whose graph is the image of f_0 . For any small enough value of ξ , f_{ξ} can be parameterized near $(\xi, 0)$ by its projection $\xi + t$ on the x-axis. This way we get a family's parameterization, whose 3-jet is $(t + \xi, k_0t^2 + k_1t^2\xi + \alpha t^3)$. Taking $\xi + t$ and t as new parameters, we obtain the required germ, with $a = k_0$, $b = \alpha - k_1$ and $c = k_1$. The Lemma is proven.

We can start now the proof of Theorems 1. Consider a tangential family germ, whose 3-jet is \mathscr{A} -equivalent to $(s, at^2 + bt^3 + cst^2)$. If $a \neq 0$, its 2-jet is \mathscr{A} -equivalent to a fold (s, t^2) , which is 2- \mathscr{A} -determined and \mathscr{A} -stable ([8]). Notice that the fold map germ is \mathscr{A} -equivalent to the germ at the origin of the family of the tangent lines of the parabola $y = x^2$, which is parameterized by $(\xi, t) \mapsto (\xi + t, \xi^2 + 2\xi t)$.

We suppose from now on a = 0 and $bc \neq 0$. By rescaling we may assume b = c = 1. In this case, it is well known that this 3-jet is \mathscr{A} -sufficient (see

e.g. [8]). Its \mathscr{A} -orbit contains the Theorem 1 normal form

$$h(\xi, t) := (\xi + t, \xi^3 + 3\xi t^2)$$

parameterizing the family of the tangent lines to $y = x^3$. On the other hand, a miniversal tangential deformation of h is provided by

$$F(\xi, t; \lambda) = h(\xi, t) + \lambda(0, t) .$$

Let us consider now a tangential family germ f, \mathscr{A} -equivalent to h. By the very definition of versality, any p-parameter tangential deformation of fcan be represented as

$$(\mathbb{R}^2 \times \mathbb{R}^p, 0) \ni (\xi, t; \mu) \mapsto \Psi(F(\Phi(\xi, t; \mu), \lambda(\mu)), \mu) \in (\mathbb{R}^2, 0)$$

where $\Phi(\cdot; \mu)$ and $\Psi(\cdot; \mu)$ are deformations of the identity diffeomorphisms of the source and the target planes \mathbb{R}^2 and $\tilde{\lambda}$ is a function germ $(\mathbb{R}^p, 0) \to (\mathbb{R}, 0)$.

Assume $\lambda \neq 0$; then there exists an arbitrary small μ_0 for which $\lambda(\mu_0) \neq 0$. Hence, when μ goes from 0 to μ_0 , the envelope of the deformed family experiences a beaks perestroika. The considered deformation being tangential, this is impossible. Thus, $\tilde{\lambda} \equiv 0$ and the deformation is trivial. This proves that every tangential family germ \mathscr{A} -equivalent to h is stable.

Finally, by the above Lemma, the 3-jet of every tangential family germ, \mathscr{A} -equivalent neither to a fold nor to h, is \mathscr{A} -equivalent to

$$(\xi + t, b(\xi + t)t^2 + ct^3)$$

with bc = 0. The deformation

$$f(\xi, t) + \lambda(0, \xi t^2)$$

is clearly tangential and non-trivial. Indeed, the perturbed prenormal form's coefficients are $b(\lambda) = \alpha - k_1 - \lambda$ and $c(\lambda) = k_1 + \lambda$. Their product is nonvanishing for every $\lambda \neq 0$ small enough. This shows that such a germ is not stable and completes the proof.

Acknowledgements. I wish to express my deep gratitude to V.I. Arnold for suggesting me to study this problem and for his careful reading of this paper. I also like to thank M. Garay for very useful discussions and comments, M. Kraïem and F. Aicardi for their encouragement. Research partially supported by INdAM "F. Severi".

References

- ARNOLD, V. I.: On the envelope theory, Usp. Math. Nauk. 3, 31 (1976), 248–249 (in Russian).
- [2] ARNOLD, V. I.: Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 6, 29 (1976), 557–582.
- [3] CAPITANIO, G: On the envelope of 1-parameter families of curves tangent to a semicubic cusp, C. R. Math. Acad. Sci. Paris 3, **335** (2002), 249–254.
- [4] CAPITANIO, G.: Simple tangential family germs and perestroikas of their envelopes. *Bull. Sci. Math.*, in press.
- [5] CAPITANIO, G.: Legendrian graphs generated by tangential families. *Proc. Edinburgh Math. Soc.*, in press.
- [6] DUFOUR, J.-P.: Familles de courbes planes différentiables. *Topology* 4, 22 (1983), 449–474.
- [7] ITOH, J., KIYOHARA, K.: The cut loci and the conjugate loci on ellipsoids, *Manuscr. Math.* 2, 114 (2004), 247–264.
- [8] RIEGER, J. H.: Families of maps from the plane to the plane, J. London Math. Soc. (2) 36 (1987), no. 2, 351–369.
- [9] THOM, R.: Sur la théorie des enveloppes, J. Math. Pures Appl. 9, 41 (1962), 177–192.