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UNIT KILLING VECTOR FIELDS ON NEARLY KÄHLER

MANIFOLDS

ANDREI MOROIANU, PAUL–ANDI NAGY AND UWE SEMMELMANN

Abstract. We study 6-dimensional nearly Kähler manifolds admitting a Killing vec-
tor field of unit length. In the compact case it is shown that up to a finite cover there
is only one geometry possible, that of the 3–symmetric space S3 × S3.

1. Introduction

Nearly Kähler geometry (shortly NK in what follows) naturally arises as one of the
sixteen classes of almost Hermitian manifolds appearing in the celebrated Gray–Hervella
classification [8]. These manifolds were studied intensively in the seventies by A. Gray
[7]. His initial motivation was inspired by the concept of weak holonomy [7], but very
recently it turned out that this concept, as defined by Gray, does not produce any new
geometric structure (see [1]) other than those coming from a Riemannian holonomy
reduction. One of the most important properties of NK manifolds is that their canonical
Hermitian connection has totally skew–symmetric, parallel torsion [15]. From this point
of view, they naturally fit into the setup proposed in [6] towards a weakening of the
notion of Riemannian holonomy. The same property suggests that NK manifolds might
be objects of interest in string theory [10].

The structure theory of compact NK manifolds, as developed in [16] reduces their study
to positive quaternionic Kähler manifolds and nearly–Kähler manifolds of dimension 6.
The last class of manifolds falls in the area of special metrics with very rigid – though
not yet fully understood – properties.

Indeed, it is known since a long time that in 6 dimensions, a NK metric which is not
Kähler has to be Einstein of positive scalar curvature. Moreover, such a structure is
characterized by the existence of some (at least locally defined) real Killing spinor [13].
Combining these properties with the fact that the first Chern class (form) vanishes [7],
one observes that non–Kähler, nearly Kähler six–dimensional manifolds solve most of
the type II string equations [10]. Despite of all these interesting features, very little is
known about these manifolds. In particular, apart from the 3–symmetric spaces

S6, S3 × S3, CP 3, F (1, 2)

no compact example is available and moreover these is are the only compact homoge-
neous examples [5].

In a recent article [14], Hitchin shows that nearly parallel G2–structures ([11] for an
account) and NK manifolds of 6 dimensions have the same variational origins. On the
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other hand, many examples of nearly parallel G2–structures are available since any 7–
dimensional, 3–Sasakian manifold carries such a structure [11, 12] and a profusion of
compact examples of the latter were produced in [4]. Since one property of 3–Sasakian
manifolds is to admit unit Killing vector fields, one might ask whether this can happen
in the NK setting.

In the present paper we study 6–dimensional non–Kähler, nearly Kähler manifolds which
globally admit a Killing vector field ξ of constant length. After recalling some elementary
features of nearly Kähler geometry in Section 2, we show in Section 3 that any Killing
vector field of unit length induces a transversal almost hyper–Hermitian structure on
the manifold. The almost hyper–Hermitian structure is preserved by the Killing vector
field ξ but not by Jξ (here J denotes the almost complex structure of the nearly Kähler
structure). We measure this in the fourth section by computing the Lie derivatives of
the various geometrically significant tensors in the direction of Jξ. This technical part
is used in Section 5 to perform a double reduction of the 6–dimensional nearly Kähler
manifold. The resulting 4–dimensional manifold is in fact a Kähler–Einstein surface
of positive scalar curvature admitting a orthogonal almost–Kähler structure inducing
the opposite orientation. The geometry of the situation is completely understood in
terms of this data. Moreover, if the nearly Kähler manifold is compact, a Sekigawa–
type argument from [2] shows that the almost–Kähler structure is actually integrable,
allowing us to prove the main result of this paper.

Theorem 1.1. Let (M6, g, J) be a complete nearly Kähler manifold. If g admits a unit

Killing vector field, then up to a finite cover (M6, g, J) is isometric to S3 ×S3 endowed

with its canonical NK structure.

2. Nearly Kähler Manifolds

An almost Hermitian manifold (M, g, J) is called nearly Kähler if (∇XJ)X = 0 is
satisfied for all vector fields X. In other words, the covariant derivative of J (viewed as
a (3, 0)–tensor via the metric g) is skew–symmetric in all three arguments, not only in
the last two, as it is the case for general almost Hermitian structures. This is equivalent
to dΩ = 3∇Ω, where Ω is the fundamental 2–form, i.e. Ω(X, Y ) := g(JX, Y ). The
following lemma summarizes some of the known identities for nearly Kähler manifolds.

Lemma 2.1. Let (M, g, J) be a nearly Kähler manifold. Then

(1) (∇XJ)Y + (∇Y J)X = 0
(2) (∇JXJ)Y = (∇XJ)JY
(3) J((∇XJ)Y ) = −(∇XJ)JY = −(∇JXJ)Y
(4) g(∇XY, X) = g(∇XJY, JX)
(5) 2g((∇2

W,XJ)Y, Z) = −σX,Y,Zg((∇WJ)X, (∇Y J)JZ)

where σX,Y,Z denotes the cyclic sum over the vector fields X, Y, Z.

A nearly Kähler manifold is called to be of constant type α if

‖(∇XJ)(Y )‖2 = α{‖X‖2‖Y ‖2 − g(X, Y )2 − g(JX, Y )2}
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holds for any vector fields X, Y . A. Gray proved that a nearly Kähler manifold of
positive constant type is necessarily 6–dimensional (cf. [7]). Moreover he showed:

Proposition 2.2. Let (M, g, J) be a 6–dimensional nearly Kähler, non–Kähler mani-

fold, then

(1) M is of constant type α > 0.
(2) c1(M) = 0 and in particular M is a spin manifold.

(3) (M, g) is Einstein and Ric = 5αId = 5Ric∗

Here the ∗–Ricci curvature Ric∗ is defined as Ric∗(X, Y ) = tr(Z 7→ R(X, JZ)JY )).
From this it easily follows that Ric∗(X, Y ) = R(Ω)(X, JY ), where R denotes the cur-
vature operator on 2–forms.

Lemma 2.3. Let (M6, gJ) be a nearly Kähler manifold of constant type α, then

g((∇UJ)X, (∇Y J)Z) = α{g(U, Y )g(X, Z) − g(U, Z)g(X, Y )

− g(U, JY )g(X, JZ) + g(U, JZ)g(X, JY )}
Corollary 2.4. Let (M6, g, J) be a nearly Kähler manifold of constant type α = 1, then

(∇XJ) ◦ (∇XJ)Y = −|X|2Y for Y ⊥ X, JX

∇∗∇Ω = 4Ω

Lemma 2.5. Let X and Y be any vector fields on M , then the vector field (∇XJ)Y is

orthogonal to X, JX, Y, and JY .

This lemma allows us to use adapted frames {ei} which are especially convenient for
local calculations. Let e1 and e3 be any two orthogonal vectors and define:

e2 := Je1, e4 := Je3, e5 := (∇e1
J)e3, e6 := Je5

Lemma 2.6. With respect to an adapted frame {ei} one has

∇J = e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6 − e2 ∧ e3 ∧ e6 − e2 ∧ e4 ∧ e5

∗(∇J) = −e2 ∧ e4 ∧ e6 + e2 ∧ e3 ∧ e5 + e1 ∧ e4 ∧ e5 + e1 ∧ e3 ∧ e6

Ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6

Corollary 2.7. Let Ω be the fundamental 2–form and X an arbitrary vector field, then

(1) Xy Ω = JX♭, Xy ∗ Ω = JX♭ ∧ Ω, Xy dΩ = JXy ∗ dΩ
(2) |Ω|2 = 3, ∗Ω = 1

2
Ω ∧ Ω, vol = e1 ∧ . . . ∧ e6 = 1

6
Ω3, Ω ∧ dΩ = 0

(3) ∗X♭ = 1
2
JX♭ ∧ Ω ∧ Ω,

where X♭ denotes the 1–form which is metric dual to X.

Proposition 2.8. Let (M6, g, J) be a nearly Kähler, non–Kähler manifold with funda-

mental 2–form Ω which is of constant type α = 1, then

∆Ω = 12Ω
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Proof. To show that Ω is an eigenform of the Laplace operator we will use the
Weitzenböck formula on 2–forms, i.e. ∆ = ∇∗∇ + s

3
Id − 2R. From Corollary 2.4

we know that ∇∗∇Ω = 4Ω. Since we assume M to be of constant type 1 the scalar
curvature is s = 30 and the ∗–Ricci curvature Ric∗ coincides with the Riemannian
metric g. Hence, R(Ω)(X, Y ) = −Ric∗(X, JY ) = Ω(X, Y ). Substituting this into the
Weitzenböck formula yields ∆Ω = 12Ω.

2

Corollary 2.9. If ξ is any vector field satisfying Lξ(∗dΩ) = 0 then

d(Jξy dΩ) = −12Jξ♭ ∧ Ω (1)

Proof. We use Corollary 2.7 and the relation Lξ = d ◦ ξy + ξy ◦ d to obtain

d(Jξy dΩ) = −d(ξy ∗ dΩ) = ξy (d ∗ dΩ) = −ξy (∗d∗dΩ) = −ξy (∗∆Ω)

Note that d∗Ω = 0. Again applying Corollary 2.7 together with (1) we get

d(Jξy dΩ) = −12ξy (∗Ω) = −6ξy (Ω ∧ Ω) = −12(ξy Ω) ∧ Ω = −12Jξ♭ ∧ Ω

2

The structure group of a nearly Kähler manifold (M6, g, J) reduces to SU(3) which
implies the decomposition Λ2(TM) = Λinv ⊕ Λanti with

α ∈ Λinv ⇔ α(X, Y ) = α(JX, JY )

α ∈ Λanti ⇔ α(X, Y ) = −α(JX, JY )

We will denote the projection of a 2–form α onto Λinv by α(1,1) and the projection onto
Λanti by α(2,0). This is motivated by the isomorphisms

Λinv ⊗ C ∼= Λ(1,1)(TM) ∼= u(3), Λanti ⊗ C ∼= Λ(2,0)(TM) ⊕ Λ(0,2)(TM)

Lemma 2.10. The decomposition Λ2(TM) = Λinv ⊕Λanti is orthogonal and the projec-

tions of a 2–form α onto the two components are given by

α(1,1)(X, Y ) =
1

2
(α(X, Y ) + α(JX, JY )) =

1

2
Re(α([X + iJX], [Y − iJY ]))

α(2,0)(X, Y ) =
1

2
(α(X, Y ) − α(JX, JY )) =

1

2
Re(α([X + iJX], [Y + iJY ]))

Under the isomorphism Λ2(TM)
∼→ End0(TM) every 2–form α corresponds to a skew–

symmetric endomorphism A which is defined by the equation α(X, Y ) = g(AX, Y ).
Note that |A|2 = 2|α|2, where | · | is the norm induced from the Riemannian metric on
the endomorphisms and on the 2–forms.

Lemma 2.11. Let A(2,0) resp. A(1,1) be the endomorphisms corresponding to the com-

ponents α(2,0) resp. α(1,1), then

(1) A(2,0) = 1
2
(A + JAJ), A(1,1) = 1

2
(A − JAJ)

(2) J ◦ A(1,1) = A(1,1) ◦ J, J ◦ A(2,0) = −A(2,0) ◦ J
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3. The Transversal Complex Structures

In this section we consider 6–dimensional compact non–Kähler nearly Kähler manifolds
(M, g, J) of constant type α ≡ 1, i.e. with scalar curvature normalized by s ≡ 30. We
will assume from now on that (M, g) is not isometric to the sphere with its standard
metric.

Proposition 3.1. Let ξ be a Killing vector field then the Lie derivative of the almost

complex structure J with respect to ξ vanishes

LξJ = 0.

Proof. Nearly Kähler structures J on (M, g) are in one–to–one correspondence with
Killing spinors of unit norm on M (cf. [13]). However, if (M, g) is not isometric to
the standard sphere, the (real) space of Killing spinors is 1–dimensional, so there exist
exactly 2 nearly Kähler structures compatible with g: J and −J . This shows that the
identity component of the isometry group of M preserves J , so in particular LξJ = 0
for every Killing vector field ξ.

2

Since a Killing vector field ξ satisfies by definition Lξg = 0 we obtain that the Lie
derivative Lξ of all natural tensors constructed out of g and J vanishes. In particular,
we have

Corollary 3.2. If ξ is a Killing vector field on the nearly Kähler manifold (M, g, J)
with fundamental 2–form Ω, then

Lξ(Ω) = 0, Lξ(dΩ) = 0, Lξ(∗dΩ) = 0.

In order to simplify the notations we denote by ζ := ξ♭ the dual 1–form to ξ.

Corollary 3.3. d(Jζ) = −ξy dΩ

Proof. From LξΩ = 0 follows: −ξy dΩ = d(ξy Ω) = d(Jζ).
2

Lemma 3.4. Let ξ be a Killing vector field with metric dual ζ and let dζ = dζ (1,1)+dζ (2,0)

be the type decomposition of dζ. Then the endomorphisms corresponding to dζ (2,0) and

dζ (1,1) are −∇JξJ and 2∇·ξ + ∇JξJ respectively.

Proof. The equation LξJ = 0 applied to a vector field X yields [ξ, JY ] = J [ξ, Y ],
which can be written as

∇ξJY −∇JY ξ = J∇ξY − J∇Y ξ.

From this equation we obtain

(∇ξJ)Y = ∇JY ξ − J∇Y ξ. (2)
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Let A (= 2∇·ξ) denote the skew–symmetric endomorphism corresponding to the 2–form
dζ . Then (2) can be written

∇ξJ =
1

2
(A ◦ J − J ◦ A)

From Lemma 2.1 we get ∇JξJ = (∇ξJ) ◦ J , whence

∇JξJ =
1

2
(A ◦ J − J ◦ A) ◦ J = −1

2
(A + J ◦ A ◦ J) = −A(2,0)

For the corresponding 2–form we obtain: dζ (2,0) = −∇JξΩ. Finally we compute A(1,1)

as
A(1,1) = A − A(2,0) = 2∇·ξ + ∇JξJ .

2

From now on we will mainly be interested in compact nearly Kähler manifolds admitting
a Killing vector field ξ of constant length (normalized to 1). We start by collecting
several elementary properties

Lemma 3.5. The following relations hold:

(1) ∇ξξ = ∇Jξξ = ∇ξJξ = ∇JξJξ = 0, [ξ, Jξ] = 0
(2) ξy dζ = Jξy dζ = 0 .

In particular, the distribution V := span{ξ, Jξ} is integrable.

We now define two endomorphisms which turn out to be complex structures on the
orthogonal complement H := {ξ, Jξ}⊥:

I := ∇ξJ, and K := ∇JξJ . (3)

Note that −K is the endomorphism corresponding to dζ (2,0). Later on, we will see

that the endomorphism Ĵ := ∇·ξ + 1
2
∇JξJ , corresponding to 1

2
dζ (1,1), defines a complex

structure on H , too.

Lemma 3.6. The endomorphisms I and K vanish on span{ξ, Jξ} and define complex

structures on H = {ξ, Jξ}⊥ compatible with the metric g. Moreover they satisfy K =
I ◦ J, 0 = I ◦ J + J ◦ I and for any X, Y ∈ H the equation

(∇XJ)Y = 〈Y, IX〉ξ + 〈Y, KX〉Jξ.

We will call endomorphisms of TM , which are complex structures on H = {ξ, Jξ}⊥
transversal complex structures. The last equation shows that ∇J vanishes in the direc-
tion of H . It turns out that the same is true for transversal complex structures I and
J .

Lemma 3.7. The transversal complex structures I and K are parallel in the direction

of the distribution H, i.e.

〈(∇XI)Y, Z〉 = 〈(∇XK)Y, Z〉 = 0

holds for all vector fields X, Y, Z in H.



UNIT KILLING VECTOR FIELDS ON NEARLY KÄHLER MANIFOLDS 7

Proof. First of all we compute for any vector fields X, Y, Z the covariant derivative of
I.

〈(∇XI)Y, Z〉 = 〈(∇X(∇ξI))Y, Z〉 = 〈(∇2
X,ξI)Y, Z〉 + 〈(∇∇XξI)Y, Z〉.

If X is a vector field in H , then Lemma 2.5 implies that ∇XJ maps H to V and vice
versa.

Let now X, Y, Z be any vector fields in H . Then both summands in the above formula
for ∇XI vanish, which is clear after rewriting the first summand using formula (5) of
Lemma 2.1 and the second by using formula (1) of Lemma 2.1.

The proof for the transversal complex structure K is similar.
2

Our next goal is to show that 1
2
dζ (1,1) defines an complex structure on the orthogonal

complement of span{ξ, Jξ}.

Lemma 3.8. Let ξ be a Killing vector field of length 1 then

‖dζ (1,1)‖2 = 8 ‖dζ (2,0)‖2 = 2

Proof. We already know that the skew–symmetric endomorphism K corresponding
to −dζ (2,0) is an complex structure on {ξ, Jξ}⊥ with K(ξ) = K(Jξ) = 0. Hence it has
norm 4 and ‖dζ (2,0)‖2 = 1

2
‖K‖2 = 2. Next, we have to compute the norm of dζ (1,1).

Since ξ is a Killing vector field we have ∆ζ = 10ζ , hence

‖dζ (1,1)‖2 = ‖dζ‖2 − ‖dζ (2,0)‖2 = (∆ζ, ζ)− 2 = 8

2

Corollary 3.9. The square norm of the endomorphism Ĵ corresponding to 1
2
dζ (1,1) is

equal to 4.

Proposition 3.10. Let (M6, g, J) be a compact nearly Kähler, non–Kähler manifold of

constant type 1 and let ξ be a Killing vector field of constant length 1 with dual 1–form
ζ. Then

d∗(Jζ) = 0 and ∆(Jζ) = 18Jζ.

In particular, the vector field Jξ is never a Killing vector field.

Proof. We start to compute the L2–norm of the function d∗(Jζ):

‖d∗(Jζ)‖2 = (d∗Jζ, d∗Jζ) = (∆(Jζ), Jζ)− (d∗d(Jζ), Jζ)

Since ∆ = ∇∗∇ + Ric on 1–forms and Ric = 5Id we obtain

‖d∗(Jζ)‖2 = ‖∇(Jζ)‖2 + 5‖Jζ‖2 − ‖dJζ‖2

To compute the norm of ∇(Jζ) we use the formula 2(∇X♭) = dX♭ + LXg which holds
for any vector field X.
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Note that the decomposition T ∗M ⊗ T ∗M ∼= Λ2(TM) ⊕ Sym2(TM) is orthogonal.
Together with Lemma 4.1 this yields

‖∇(Jζ)‖2 =
1

4

(
‖dJζ‖2 + ‖LJξg‖2

)
=

1

4

(
‖dJζ‖2 + 4‖Ĵ‖2

)

From Lemma 3.8 follows: ‖Ĵ‖2 = 1
2
‖dζ (1,1)‖2 = 4. Using Corollary 3.3, the formula

dΩ = 3∇Ω and the fact that I = ∇ξJ is again a transversal complex structure, we find

‖dJζ‖2 = 9‖ξy∇Ω‖2 = 36.

Combining all these computations yields ‖d∗(Jζ)‖2 = 0.

Next we want to compute ∆Jζ . We start by using the Weitzenböck formula on 1–forms
and the equation ∇∗∇(Jτ) = (∇∗∇J)τ + J(∇∗∇τ)− 2

∑
(∇ei

J)(∇ei
τ) for any 1–from

τ . This gives

∆Jζ = ∇∗∇Jζ + Ric(Jζ) = (∇∗∇J)ζ + J(∇∗∇ζ) + 5(Jζ) − 2
∑

(∇ei
J)(∇ei

ζ)

= 14Jζ − 2
∑

(∇ei
J)(∇ei

ζ)

For the last equation we used Corollary 2.4 and the assumption that ξ is a Killing vector
field, hence ∇∗∇ζ = ∆ζ − Ric(ζ) = 5ζ . Since d∗(Jζ) = 0 we can compute ∆Jζ by

∆Jζ = d∗d(Jζ) =
∑

eiy∇ei
(ξy dΩ) =

∑
eiy (∇ei

ξ)y dΩ + eiy ξy (∇ei
dΩ)

= −3
∑

(∇ei
Ω)(∇ei

ξ) + 12Jζ

Comparing these two equations for ∆Jζ we get
∑

(∇ei
Ω)(∇ei

ξ) = −2Jζ , so finally
∆Jζ = 18Jζ .

Since ∆X = 2Ric(X) = 10X for every Killing vector field X, Jζ cannot be Killing.
2

Notice that if the manifold M is not assumed to be compact a local calculation still
shows that d∗(Jζ) is a constant.

Corollary 3.11. If ξ is a Killing vector field of unit length, then

〈dζ, Ω〉 = 〈dζ (1,1), Ω〉 = 0.

Proof. Using Corollary 2.7 we calculate

〈dζ, Ω〉vol = dζ ∧ ∗Ω =
1

2
dζ ∧ Ω ∧ Ω =

1

2
d(ζ ∧ Ω ∧ Ω) = −d(∗Jζ) = ∗(d∗Jζ) = 0

This proves the corollary since the decomposition Λ2(TM) = Λinv ⊕Λanti is orthogonal
and Ω ∈ Λinv.

2

We are now ready to prove that the (1, 1)–part of dζ defines a fourth complex structure
on H = {ξ, Jξ}⊥. Indeed we have
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Proposition 3.12. Let ξ be a Killing vector field of constant length 1. Then

Ĵ := ∇·ξ +
1

2
K

defines a transversal complex structure on H which is compatible with the metric g.
Moreover, Ĵ is the skew–symmetric endomorphism corresponding to 1

2
dζ (1,1) and it com-

mutes with I, J and K:

[Ĵ , J ] = [Ĵ , K] = [Ĵ , I] = 0.

Proof. Lemma 3.4 shows that Ĵ corresponds to 1
2
dζ (1,1). Since 〈dζ (1,1), Ω〉 = 0 and

since Ĵ vanishes on span{ξ, Jξ}, it follows that dζ (1,1) ∈ Λ
(1,1)
0 (H) = Λ2

−(H). Hence

Ĵ2 = −1

4
‖Ĵ‖2IdH = −IdH .

Finally, Ĵ , commutes with I, J and K since endomorphisms corresponding to self–dual
and anti–self–dual 2–forms in 4 dimensions commute.

2

4. Projectable Tensors

In this section we want to study which of the above defined tensors descend to the
space of leaves of the integrable distribution V = span{ξ, Jξ}. For doing this we have
to compute Lie derivatives in the direction of ξ and Jξ. We first remark that the flow of
ξ preserves both the metric g and the almost complex structure J , thus it also preserves

I, K, dζ, Ĵ etc.

The situation is more complicated for Jξ. Since Jξ is not Killing for g, we have to
specify, when computing the Lie derivative of a tensor with respect to Jξ, whether the
given tensor is regarded as endomorphism or as bilinear form. Here we need the following
lemma, a direct consequence of the definition of the Lie derivative and Proposition 3.12.

Lemma 4.1. Let α ∈ Γ(T ∗M ⊗ T ∗M) be a (2, 0)–tensor and A be the corresponding

endomorphism. Then the Lie derivatives of A and α with respect to Jξ are related by

(LJξα)(X, Y ) = g((LJξA)X, Y ) + 2g(JĴA(X), Y ). (4)

In particular, the Lie derivative of the Riemannian metric g with respect to Jξ is:

LJξg = 2g(JĴ·, ·). (5)

Proof. Taking the Lie derivative in α(X, Y ) = g(AX, Y ) yields

(LJξα)(X, Y ) = (LJξg)(AX, Y ) + g((LJξA)X, Y ).

Thus (5) implies (4). Taking α = g in (4) yields (5), so the two assertions are equivalent.
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Using Proposition 3.12 we can write:

LJξg(X, Y ) = g(∇XJξ, Y ) + g(X,∇Y Jξ)

= ∇J(X, ξ, Y ) + ∇J(Y, ξ, X) + g(J∇Xξ, Y ) + g(J∇Y ξ, X)

= g(J(Ĵ − 1

2
K)X, Y ) + g(J(Ĵ − 1

2
K)Y, X) = 2g(JĴX, Y ).

2

From Lemma 3.5 we see that LJξξ = LJξJξ = 0. Thus, if ζ and Jζ denote the metric
duals of ξ and Jξ, (5) shows that LJξζ = LJξJζ = 0. We thus get

LJξ(dζ) = LJξ(dJζ) = 0. (6)

Lemma 4.2. If ξ is a Killing vector field of constant length 1, then

LJξ(Ω) = Jξy dΩ− dζ = 4ωK − 2ωĴ , LJξ(J) = 4K, (7)

LJξ(ωK) = −4Ω + 4ζ ∧ Jζ = −4ωJ , LJξ(K) = −4J |H − 2IĴ (8)

LJξ(ωĴ) = −2Ω + 2ζ ∧ Jζ, LJξ(Ĵ) = 0 (9)

LJξ(ωI) = 0, LJξ(I) = 2ĴK (10)

where ωI , ωK, ωĴ are the 2–forms corresponding to I, K, Ĵ and ωJ denotes the projection

of Ω onto Λ2H, i.e. ωJ = Ω − ξ ∧ Jξ.

Proof. We will repeatedly use the formula LXα = Xy dα + dXy α, which holds for
any vector field X and any differential form α.

Proposition 3.12 shows that

2ωĴ = dζ + ωK (11)

hence

LJξΩ = Jξy dΩ + d(Jξy Ω) = Jξy dΩ− dζ = 3ωK − dζ = 4ωK − 2ωĴ .

The second equation in (7) follows by taking A = J in Lemma 4.1.

Using Corollary 2.9 we get

LJξ(ωK) =
1

3
LJξ(Jξy dΩ) =

1

3
Jξy d(Jξy dΩ) = −4Jξy (Jζ ∧ Ω) = −4Ω + 4ζ ∧ Jζ.

The second equation in (8) follows directly from the first one, by taking A = K in
Lemma 4.1.

Using (6), (8) and (11) we obtain

2LJξωĴ = LJξ(dζ + ωK) = LJξωK = −4Ω + 4ζ ∧ Jζ.

The second part of (9) follows from Lemma 4.1.
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Finally, in order to prove (10) we use (6) twice:

LJξωI =
1

3
LJξ(ξy dΩ) =

1

3
ξy LJξ(dΩ) = −4ξy (Jζ ∧ Ω) = 0,

and the second part follows from Lemma 4.1 again.
2

5. The Transversal Involution

We define a transversal orthogonal involution σ ∈ End(TM) by

σ = K ◦ Ĵ ,

i.e. we have σ2 = Id on H and σ = 0 on V = span{ξ, Jξ}. Hence, the distribution H
splits into the (±1)–eigenspaces of σ and we can define a new metric g0 on M as

g0 = g +
1

2
g(σ·, ·), (12)

i.e. we have g0 = g on V , g0 = 1
2
g on the (−1)–eigenspace of σ and g0 = 3

2
g on the

(+1)–eigenspace of σ. The reason for introducing g0 is the fact that, in contrast to g,
this new metric is preserved by the flow of Jξ (cf. Corollary 5.2 below).

Lemma 5.1. If A♭ denotes the (2, 0)–tensor corresponding to an endomorphism A, and

α♯ denotes the endomorphism corresponding to a (2, 0)–tensor α with respect to the

metric g, then

LJξσ
♭ = −4(JĴ)♭

Proof. The right parts of (8) and (9) read

LJξ(K) = −4J + 4(ζ ∧ Ĵζ)♯ − 2IĴ, LJξ(Ĵ) = 2(ζ ∧ Ĵζ)♯.

We clearly have (ζ ∧ Ĵζ)♯ ◦ K = K ◦ (ζ ∧ Ĵζ)♯ = (ζ ∧ Ĵζ)♯ ◦ Ĵ = Ĵ ◦ (ζ ∧ Ĵζ)♯ = 0,
therefore

LJξσ = (LJξK)Ĵ + K(LJξĴ) = (−4J + 4(ζ ∧ Ĵζ)♯ − 2JĴK)Ĵ = −4JĴ − 2I.

Thus Lemma 4.1 gives

LJξσ
♭ = (−4JĴ − 2I)♭ + 2(JĴ(KĴ))♭ = −4(JĴ)♭.

2

Corollary 5.2. The metric g0 is preserved by the flow of Jξ:

LJξg0 = 0.

Proof. Direct consequence of (5):

LJξg0 = LJξ(g +
1

2
σ♭) = 2(JĴ)♭ +

1

2
(−4(JĴ)♭) = 0.

2
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Proposition 5.3. For every horizontal vector fields X, Y, Z ∈ H, the Levi–Civita

connection ∇g0 of g0 is related to the Levi–Civita connection ∇ of g by the formula

g0(∇g0

X Y, Z) = g0(∇XY, Z) +
1

3
g0((1 − 1

2
σ)[(∇Xσ)Y + (∇KXĴ)Y ], Z). (13)

Proof. Since the expression g0(∇g0

X Y, Z) − g0(∇XY, Z) is tensorial, we may suppose
that X, Y, Z are ∇–parallel at some point where the computation is performed. The
Koszul formula for g0(∇g0

X Y, Z) yields directly

2g0(∇g0

X Y, Z) = 2g0(∇XY, Z)+
1

2
[〈(∇Xσ)Y, Z〉 + 〈(∇Y σ)X, Z〉 − 〈(∇Zσ)X, Y 〉] , (14)

where 〈·, ·〉 denotes the metric g. Since σ = K ◦ Ĵ = Ĵ ◦ K and since – accord-
ing to Lemma 3.7 – K is ∇–parallel in direction of H , we obtain 〈(∇Xσ)Y, Z〉 =

〈(∇X Ĵ)KY, Z〉. Now, (11) shows that 2ωĴ − ωK = dξ is a closed 2–form. Hence,

〈(∇X1
Ĵ)X2, X3〉 + 〈(∇X2

Ĵ)X3, X1〉 + 〈(∇X3
Ĵ)X1, X2〉 = 0

for all vectors Xi. Using this equation for X1 = Y, X2 = KX and X3 = Z we obtain

〈(∇Xσ)Y, Z〉 + 〈(∇Y σ)X, Z〉 − 〈(∇Zσ)X, Y 〉 =

= 〈(∇X Ĵ)KY, Z〉 + 〈(∇Y Ĵ)KX, Z〉 − 〈(∇Z Ĵ)KX, Y 〉

= 〈(∇X Ĵ)KY + (∇KXĴ)Y, Z〉 = 〈(∇Xσ)Y + (∇KXĴ)Y, Z〉
The desired formula then follows from (12) and (14) using

(idH +
1

2
σ)(idH − 1

2
σ) =

3

4
idH . (15)

2

We consider the space of leaves, denoted by N , of the integrable distribution V =
span{ξ, Jξ}. The 4–dimensional manifold N is a priori only locally defined. It can be
thought of as the base space of a locally defined principal torus bundle T2 →֒ M → N .
The local action of the torus is obtained by integrating the vector fields ξ and ξ′ = 1

2
√

3
Jξ.

Moreover, if one considers the 1–forms ζ and ζ ′ on M associated via the metric g to
the vector fields ξ and 2

√
3Jξ it follows that ζ(ξ) = ζ ′(ξ′) = 1 and the Lie derivatives

of ζ and ζ ′ in the directions of ξ and ξ′ vanish by (6). Therefore ζ and ζ ′ are principal
connection 1–forms in the torus bundle T2 →֒ M → N .

A tensor field on M projects to N if and only if it is horizontal and its Lie derivatives with
respect to ξ and Jξ both vanish. All horizontal tensors defined above have vanishing
Lie derivative with respect to ξ. Using (10) together with Corollary 5.2 we see that ωI

and g0 project down to N . Moreover, ωI is compatible with g0 in the sense that

ωI(X, Y ) =
2√
3
g0(I0X, Y ), ∀ X, Y ∈ H,
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where I0 is the g0–compatible complex structure on H given by

I0 =
2√
3
(I − 1

2
σI).

This follows directly from (12) and (15). Keeping the same notations for the projections
on N of projectable tensors (like g0 or I0) we now prove

Theorem 5.4. (N4, g0, I0) is a Kähler manifold.

Proof. In order to simplify notations we will denote by ∇̃ and ∇̃g0 the partial connec-
tions on the distribution H given by the H–projections of the Levi–Civita connections
∇ and ∇g0.

Then Proposition 5.3 reads

∇̃g0

X = ∇̃X +
1

3
(idH − 1

2
σ)(∇̃Xσ + ∇̃KXĴ). (16)

We have to check that ∇̃g0

X I0 = 0 for all X in H . We first notice the tautological

relation ∇̃X idH = 0. From Lemmas 3.6 and 3.7 we have ∇̃XI = ∇̃XJ = ∇̃XK = 0
for all X in H . Moreover, the fact that I, J and K commute with Ĵ and the relation

Ĵ2 = idH easily show that ∇̃X Ĵ commutes with I, J, K and anti–commutes with Ĵ and

σ. Consequently, ∇̃Xσ (= K∇̃X Ĵ) commutes with K and anti–commutes with I, J, Ĵ
and σ for all X ∈ H .

We thus get

∇̃XI0 = ∇̃X

2√
3
(I − 1

2
σI) = − 1√

3
(∇̃Xσ)I. (17)

On the other hand, the commutation relations above show immediately that the endo-

morphism I0 commutes with (idH − 1
2
σ)∇̃KX Ĵ and anti–commutes with (idH − 1

2
σ)∇̃Xσ.

Thus the endomorphism 1
3
(idH − 1

2
σ)(∇̃Xσ + ∇̃KX Ĵ) acts on I0 by

1

3
(idH − 1

2
σ)(∇̃Xσ + ∇̃KX Ĵ)(I0) = 2

1

3
(idH − 1

2
σ)(∇̃Xσ)I0

=
4

3
√

3
(idH − 1

2
σ)∇̃Xσ(idH − 1

2
σ)I

=
4

3
√

3
(idH − 1

2
σ)(idH +

1

2
σ)(∇̃Xσ)I

=
1√
3
(∇̃Xσ)I.

This, together with (16) and (17), shows that ∇̃g0

X I0 = 0.
2

We will now look closer at the structure of the metric g. Since

g = g0 +
1

2
ωK(Ĵ ·, ·),
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the geometry of N , together with the form ωK and the almost complex structure Ĵ de-
termine completely the nearly Kähler metric g. But the discussion below will show that
ωK depends also in an explicit way on the geometry of the Kähler surface (N4, g0, I0).

If α is a 2–form on H we shall denote by α′, resp. α′′ the invariant, resp. anti–
invariant parts of α with respect to the almost complex structure I0. An easy algebraic
computation shows that ωJ is I0–anti–invariant whilst

ω′
K = −1

3
(ωK − 2ωĴ), and ω′′

K =
2

3
(2ωK − ωĴ). (18)

Consider now the complex valued 2-form of H given by

Ψ =
√

3ω′′
K + 2iωJ . (19)

It appears then from Lemma 4.2 and (18) that

Lξ′Ψ = iΨ. (20)

Thus Ψ is not projectable on N , but it can be interpreted as a L–valued 2–form on N ,
where L is the complex line bundle over N associated to the (locally defined) principal
S1–bundle

M/{ξ} → N := M/{ξ, ξ′}
with connection form ζ ′.

Corollary 3.3, together with (3) implies that the curvature form of L equals

dζ ′ = −6
√

3ωI = −12g0(I0·, ·). (21)

Notice that, since the curvature form of L is of type (1, 1), the Koszul–Malgrange
theorem implies that L is holomorphic.

The following proposition computes the Ricci curvature of the Kähler surface (N4, g, I0)
by identifying the line bundle L with the anti–canonical bundle of (N, I0).

Proposition 5.5. (N4, g, I0) is a Kähler-Einstein surface with Einstein constant equal

to 12. Moreover, L is isomorphic to the anti–canonical line bundle K of (N4, g, I0).

Proof. We first compute ωJ(I0·, ·) = −
√

3
2

ω′′
K and (ω′′

K)(I0·, ·) = 2√
3
ωJ . These lead to

Ψ(I0·, ·) = −iΨ

in other words Ψ belongs to Λ0,2
I0

(H, C). We already noticed that by (20), Ψ defines a
section of the holomorphic line bundle

Λ0,2
I0

(N) ⊗ L = K−1 ⊗L. (22)

Since Ψ is non–vanishing, this section induces an isomorphism Ψ : K → L. We now
show that Ψ is in fact ∇̃g0–parallel.

Notice first that K commutes with (idH − 1
2
σ)(∇̃Xσ + ∇̃KX Ĵ) (it actually commutes

with each term of this endomorphism), and ∇̃K = 0 by Lemma 3.7. Thus (16) shows
that

∇̃g0K = 0. (23)
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Furthermore, using the relation

g(·, ·) =
4

3
g0((1 − σ

2
)·, ·),

Ψ can be expressed as

Ψ =
4√
3
g0((K − iI0K)·, ·). (24)

Since ∇̃g0g0 = 0 and ∇̃g0I0 = 0 (by Theorem 5.4), (23) and (24) show that Ψ is ∇̃g0–
parallel.

Hence the Ricci form of (N4, g0, I0) is opposite to the curvature form of L. From (21)
we obtain Ricg0

= 12g0, thus finishing the proof.
2

Proposition 5.6. The almost complex structure Ĵ on H is projectable and defines an

almost Kähler structure on (N, g0) commuting with I0.

Proof. Lemma 4.2 shows that Ĵ is projectable onto N . Let us denote the associated
2–form with respect to g0 by ω0

Ĵ
. Identifying forms and endomorphisms via the metric

g we can write

ω0
Ĵ

:= g0(Ĵ ·, ·) = (1 +
1

2
σ)Ĵ = (1 +

1

2
KĴ)Ĵ = Ĵ − 1

2
K =

1

2
dζ.

This shows that ω0
Ĵ

is closed, so the projection of (g0, Ĵ) onto N defines an almost
Kähler structure.

2

Together with Proposition 5.5, we see that the locally defined manifold N carries a

Kähler structure (g0, I0) and an almost Kähler structure (g0, Ĵ), both obtained by pro-
jection from M . Moreover g0 is Einstein with positive scalar curvature. If N were
compact, we could directly apply Sekigawa’s proof of the Goldberg conjecture in the

positive curvature case in order to conclude that (g0, Ĵ) is Kähler. As we have no
information on the global geometry of N , we use the following idea. On any almost
Kähler Einstein manifold, a Weitzenböck–type formula was obtained in [2], which in
the compact case shows by integration that the manifold is actually Kähler provided
the Einstein constant is non–negative. In the present situation, we simply interpret on
M the corresponding formula on N , and after integration over M we prove a point-
wise statement which down back on N just gives the integrability of the almost Kähler
structure.

The following result is a particular case (for Einstein metrics) of Proposition 2.1 of [2]:

Proposition 5.7. For any almost Kähler Einstein manifold (N2n, g0, J, Ω) with covari-

ant derivative denoted by ∇ and curvature tensor R, the following pointwise relation

holds:

∆Ns∗ − 8δN(〈ρ∗,∇·Ω〉) = −8|R′′|2 − |∇∗∇Ω|2 − |φ|2 − s

2n
|∇Ω|2, (25)
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where s and s∗ are respectively the scalar and ∗–scalar curvature, ρ∗ := R(Ω) is the

∗–Ricci form, φ(X, Y ) = 〈∇JXΩ,∇Y Ω〉, and R′′ denotes the projection of the curvature

tensor on the space of endomorphisms of [Λ2,0N ] anti–commuting with J .

We apply this formula to the (locally defined) almost Kähler Einstein manifold (N, g0, Ĵ)

with Levi–Civita covariant derivative denoted ∇0 and almost Kähler form Ω̂ and obtain

F + δNα = 0, (26)

where

F := 8|R′′|2 + |(∇0)∗∇0Ω̂|2 + |φ|2 +
s

4
|∇0Ω̂|2

is a non–negative function on N and

α := ds∗ − 8g0(ρ
∗,∇0

· Ω̂)

is a 1–form, both α and F depending in an explicit way on the geometric data (g0, Ĵ).
Since the Riemannian submersion π : (M, g0) → N has minimal (actually totally geo-
desic) fibers, the codifferentials on M and N are related by δM(π∗α) = π∗δNα for every
1–form α on N . Thus (26) becomes

π∗F + δM(π∗α) = 0. (27)

Notice that the function π∗F and the 1–form π∗α are well–defined global objects on M ,
even though F , α and the manifold N itself are just local. This follows from the fact
that F and α only depend on the geometry of N , so π∗F and π∗α can be explicitly
defined in terms of g0 and Ĵ on M .

When M is compact, since π∗F is non–negative, (27) yields, after integration over M ,

that π∗F = 0. Thus F = 0 on N and this shows, in particular, that φ = 0, so Ĵ is
parallel on N .

6. Proof of Theorem 1.1

By the discussion above, when M is compact, Ĵ is parallel on N with respect to the

Levi–Civita connection of the metric g0, so Ĵ is ∇̃g0–parallel on H .

Lemma 6.1. The involution σ is ∇̃–parallel.

Proof. Since σ = ĴK, (23) shows that ∇̃g0σ = 0. Using (16) and the fact that σ

anti–commutes with ∇̃Xσ and ∇̃X Ĵ for every X ∈ H , we obtain

∇̃Xσ +
2

3
(idH − 1

2
σ)(∇̃Xσ + ∇̃KX Ĵ)σ = 0

for all X in H . Since I commutes with ∇̃X Ĵ and anti–commutes with σ and ∇̃Xσ, the
I–invariant part of the above equation reads

2

3
(∇̃Xσ)σ +

1

3
∇̃KXĴ = 0. (28)
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But σ = ĴK and ∇̃K = 0, so from (28) we get

2(∇̃X Ĵ)Ĵ = ∇̃KX Ĵ .

Replacing X by KX and applying this formula twice yields

∇̃X Ĵ = −2(∇̃KX Ĵ)Ĵ = 4∇̃X Ĵ ,

thus proving the lemma.
2

We now recall that the first canonical Hermitian connection of the NK structure (g, J)
is given by

∇U = ∇U +
1

2
(∇UJ)J

whenever U is a vector field on M . We will show that (M6, g) is a homogeneous
space actually by showing that ∇ is a Ambrose–Singer connection, that is ∇T̄ = 0
and ∇R̄ = 0, where T̄ and R̄ denote the torsion and curvature tensor of the canonical
connection ∇.

Let H± be the eigen–distributions of the involution σ on H , corresponding to the eigen-
values ±1. We define the new distributions

E =< ξ > ⊕H+ and F =< Jξ > ⊕H−.

Obviously, we have a g–orthogonal splitting TM = E ⊕ F , with F = JE.

Lemma 6.2. The splitting TM = E ⊕ F is parallel with respect to the first canonical

connection.

Proof. For every tangent vector U on M we can write

∇Uξ = ∇Uξ +
1

2
(∇UJ)Jξ = ĴU − 1

2
KU +

1

2
JIU = (σ + 1)ĴU,

showing that ∇Uξ belongs to E (actually to H+) for all U in TM .

Let now Y+ be a local section of H+. We have to consider three cases. First,

∇ξY+ = ∇ξY+ +
1

2
(∇ξJ)JY+ = LξY+ + ∇Y+

ξ +
1

2
IJY+ = LξY+ + ĴY+

belongs to H+ since Lξ and Ĵ both preserve H+. Next, if X belongs to H then:

∇XY+ = ∇̃XY+ + 〈∇XY+, ξ〉ξ + 〈∇̄XY+, Jξ〉Jξ

But < ∇XY+, Jξ >=< JY+, ∇̄Xξ >= 0 by the above discussion and the fact that JY+

is in H−, and ∇̃XY+ is an element of H+ by Lemma 6.1. Thus ∇XY+ belongs to E.
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The third case to consider is

∇JξY+ = ∇JξY+ +
1

2
(∇JξJ)JY+ = LJξY+ + ∇Y+

Jξ − 1

2
∇ξY+

= LJξY+ + (∇Y+
J)ξ + J∇Y+

ξ − 1

2
IY+

= LJξY+ − IY+ + J(ĴY+ − 1

2
KY+) − 1

2
IY+

= LJξY+ − 2IY+ + JĴY+.

On the other hand

LJξY+ = LJξσY+ = σLJξY+ + (LJξσ)Y+,

so the H−–projection of LJξY+ is

πH−
LJξY+ =

1 − σ

2
LJξY+ =

1

2
(LJξσ)Y+.

Using (8) and (9) and the previous calculation we get

πH−
(∇JξY+) = πH−

(LJξY+ − 2IY+ + JĴY+) = πH−
(
1

2
(LJξσ)Y+ − 2IY+ + JĴY+)

= πH−
((I − 2JĴ − 2I + JĴ)Y+) = −πH−

((1 + σ)(Y+)) = 0.

Thus E is ∇–parallel, and since F = JE and ∇J = 0 by definition, we see that F is
∇–parallel, too.

2

Therefore the canonical Hermitian connection of (M6, g, J) has reduced holonomy, more
precisely complex irreducible but real reducible. Using Corollary 3.1, page 487 of [16]
we obtain that ∇R̄ = 0. Moreover, the condition ∇T̄ = 0 is always satisfied on a
NK manifold (see [3], lemma 2.4 for instance). The Ambrose–Singer theorem shows
that if M is simply connected, then it is a homogeneous space. To conclude that
(M, g, J) is actually S3 × S3 we use the fact that the only homogeneous NK manifolds
are S6, S3×S3, CP 3, F (1, 2) (see [5]) and among these spaces only S3×S3 has vanishing
Euler characteristic. If M is not simply connected, one applies the argument above to
the universal cover of M which is compact and finite by Myers’ theorem. The proof of
Theorem 1.1 is now complete.

2

7. The Inverse Construction

The construction of the (local) torus bundle M6 → N4 described in the previous sections
gives rise to the following Ansatz for constructing local NK metrics.

Let (N4, g0, I0) be a (not necessarily complete) Kähler surface with Ric = 12g0 and

assume that g0 carries a compatible almost–Kähler structure Ĵ which commutes with
I0. Let L → N be the anti–canonical line bundle of (N4, g0, I0) and let π1 : M1 → N
be the associated principal circle bundle. Fix a principal connection form θ in M1 with
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curvature −12ω(g0,I0). Let H be the horizontal distribution of this connection and let

Φ in Λ0,2
I0

(H, C) be the ”tautological” 2–form obtained by the lift of the identity map
1L−1 : L−1 → L−1.

Give M1 the Riemannian metric

g1 = θ ⊗ θ +
2

3
π⋆

1g0 −
1

2
√

3
(ReΦ)(Ĵ ·, ·). (29)

Let now M denote the principal S1–bundle π : M → M1 with first Chern class repre-

sented by the closed 2–form Ω = 2π⋆
1g0(Ĵ ·, ·). Since we work locally we do not have to

worry about integrability matters. Let µ be a connection 1–form in M and give M the
Riemannian metric

g = µ2 + π⋆g1.

We consider on M the 2–form

ω =
1

2
√

3
µ ∧ π⋆θ +

1

2
π⋆(ImΦ). (30)

By a careful inspection of the discussion in the previous sections we obtain:

Proposition 7.1. (M6, g, ω) is a nearly Kähler manifold of constant type equal to 1.
Moreover, the vector field dual to µ is a unit Killing vector field.

Notice that the only compact Kähler–Einstein surface (N4, g0, I0) with Ric = 12g0

possessing an almost Kähler structure commuting with I0 is the product of two spheres
of radius 1

2
√

3
(see [2]), which corresponds, by the above procedure, to the nearly Kähler

structure on S3 × S3. Thus the new NK metrics provided by our Ansatz cannot be
compact, which is concordant with Theorem 1.1.
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