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ABSOLUTELY CONTINUOUS SPECTRUM FOR THE ISOTROPIC

MAXWELL OPERATOR WITH COEFFICIENTS THAT ARE PERIODIC IN
SOME DIRECTIONS AND DECAY IN OTHERS

N. FILONOV AND F. KLOPP

Abstract. The purpose of this paper is to prove that the spectrum of an isotropic Maxwell
operator with electric permittivity and magnetic permeability that are periodic along certain
directions and tending to a constant super-exponentially fast in the remaining directions is
purely absolutely continuous. The basic technical tools is a new “operatorial” identity relating
the Maxwell operator to a vector-valued Schrödinger operator. The analysis of the spectrum
of that operator is then handled as in [4, 5].

0. The main result

In R3, we study the Maxwell operator

(0.1) M = i

(

0 ε−1∇× ·
−µ−1∇× · 0

)

acting on the space H(ε)⊕H(µ). Here, ∇ denotes the gradient of a function, div the divergence
of a vector field, × the standard cross-product in R3, and we defined

H(ε) := {u ∈ L2(R3, ε(x)dx) ⊗ C
3; div(εx) = 0}.

H(ε) is endowed with its natural scalar product

〈f, g〉ε =

∫

R3

〈f(x), g(x)〉C ε(x)dx

where 〈·, ·〉C denotes the usual scalar product in C3.
Pick d ∈ {1, 2}. Let (x, y) denote the points of the space R

3. Define Ω = R
3−d × (0, 2π)d.

We assume that the scalar functions ε and µ satisfy

(H1): ∀l ∈ Zd, ∀(x, y) ∈ R3,

ε(x, y + 2πl) = ε(x, y), µ(x, y + 2πl) = µ(x, y);

(H2): the functions ε and µ are twice continuously differentiable in Ω;
(H3): there exist ε0 > 0 and µ0 > 0 such that, for any a > 0, one has

sup
0≤|α|≤2

sup
(x,y)∈Ω

ea|x|(|∂α(ε − ε0)(x, y)| + |∂α(µ − µ0)(x, y)|) < +∞;

(H4): there exists c0 > 0 such that ∀(x, y) ∈ R3, ε(x, y) ≥ c0 and µ(x, y) ≥ c0.

Then, our main result is

Theorem 0.1. Under assumptions (H1)–(H4), the spectrum of M is purely absolutely contin-
uous.

N.F.’s research was partially supported by the FNS 2000 “Programme Jeunes Chercheurs”. F.K.’s research
was partially supported by the program RIAC 160 at Université Paris 13 and by the FNS 2000 “Programme
Jeunes Chercheurs”.
The authors are grateful to Prof. P. Kuchment for drawing their attention to the question addressed in the
present paper.
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In [9], A. Morame proved that the spectrum of the Maxwell operator (0.1) is absolutely con-
tinuous when the electric permittivity ε and the magnetic permeability µ are periodic with
respect to a non-degenerate lattice in R

3. In [11], T. Suslina proved the absolute continuity
of the spectrum of the Maxwell operator (0.1) in a strip when the electric permittivity ε and
the magnetic permeability µ are periodic along the strip (with perfect conductivity conditions
imposed on the boundary of the strip).
In both papers, the authors first apply a standard idea in the spectral theory of the Maxwell
operator to circumvent one of the first technical difficulties one encounters when dealing with
the Maxwell system: the fact that the domain of the Maxwell operator, H(ε)⊕H(µ), consists
of only the divergence free vectors (up to multiplication by ε or µ). To resolve that difficulty,
the standard idea [1] is to extend the Maxwell operator to an operator acting on L2(R3) ⊗ C8.
We introduce such an extension that slightly differs from the one considered in [1, 8, 11, 9] as
we require some additional properties.

Consider the matrix of first order linear differential expressions

(0.2) M = i









0 ε−1∇× · 0 ∇(ε−1 ·)
−µ−1∇× · 0 ∇(µ−1 ·) 0

0 (εµ)−1 div(µ ·) 0 0
(εµ)−1 div(ε ·) 0 0 0









.

It naturally defines an elliptic self-adjoint operator on

Htot := L2(R3, ε(x)dx; C3) ⊕ L2(R3, µ(x)dx; C3) ⊕ L2(R3, ε(x)dx) ⊕ L2(R3, µ(x)dx)

with domain

H1(R3; C3) ⊕ H1(R3; C3) ⊕ H1(R3) ⊕ H1(R3).

Let Π be the orthogonal projector on H(ε) ⊕H(µ) ⊕ {0} ⊕ {0} in Htot. One checks that

(0.3) [Π,M] = 0.

This is a consequence of the well known facts that gradient fields are orthogonal (for the
standard scalar product) to divergence free fields, and that curl fields are divergence free.
Moreover, one computes

(0.4) ΠMΠ = Π

(

M 0
0 0

)

Π.

This and equation (0.3) imply that Theorem 0.1 is an immediate consequence of

Theorem 0.2. Under assumptions(H1)–(H4), the spectrum of M is purely absolutely contin-
uous.

In the cases dealt with in [9, 11], to prove the absolute continuity of the spectrum of M (or
rather said their analogue of M), the authors perform the Bloch-Floquet-Gelfand reduction
that brings them back to studying an operator with compact resolvent. Because of this, they
only need to show that M has no eigenvalue. To prove this, they show that the fact that M
has an eigenvalue implies that some Schrödinger operator with a potential having the same
symmetry properties as ε and µ has an eigenvalue. The well known argument showing that
this is impossible relies on the fact that the reduced operator has compact resolvent.

In our case, by assumption (H1), the Bloch-Floquet-Gelfand reduction can only be done in
the y-variable; hence, the resolvent of the reduced operator is not compact. So, the standard
argument does not apply. To analyze the reduced M, we first show an “operatorial” identity
that brings us back to analyzing a Schrödinger operator; then, to analyze this Schrödinger
operator, we apply the method developed in [4].
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Consider the following differential matrices acting on twice differentiable functions valued in
C3 ⊕ C3 ⊕ C ⊕ C

∆8 :=









∆3 0 0 0
0 ∆3 0 0
0 0 ∆ 0
0 0 0 ∆









where ∆3 :=





∆ 0 0
0 ∆ 0
0 0 ∆



 ,(0.5)

A = i









0 −µz × · 0 −µz ·
εz × · 0 −εz · 0

0 0 0 0
0 0 0 0









,(0.6)

J =









ε−1/2 · 0 0 0
0 µ−1/2 · 0 0
0 0 µ1/2 · 0
0 0 0 ε1/2 ·









(0.7)

where ∆ is the standard Laplace operator in R
3 and

(0.8) z = ∇((εµ)−1).

We prove

Theorem 0.3. One computes

(0.9) εµJ −1(M + A)MJ = −∆8 + V + F
where

• ∆8 is the diagonal Laplace operator defined in (0.5),
• V is the zeroth-order matrix and F the first-order matrix defined by

(0.10) V =









V (ε)· 0 0 0
0 V (µ)· 0 0
0 0 v(µ)· 0
0 0 0 v(ε)·









, F =









0 0 −F (ε, µ, ·) 0
0 0 0 F (µ, ε, ·)
0 0 0 0
0 0 0 0









,

and, for {f, g} = {µ, ε}, we have defined

V (f) = v(f)Id− 2Jac(s(f)), v(f) = s2(f) + div s(f) and s(f) = f−1/2∇(f 1/2),(0.11)

F (f, g, ·) = f−1/2∇(εµ) ×∇(g−1/2 ·),(0.12)

and Jac(g) denotes the Jacobian of a differentiable function g : R3 → R3.

Remark 0.1. If the functions ε, µ are such that the product εµ is constant then A = 0 and
F = 0. This idea was used in [2].

Remark 0.2. Though computations analogous to those leading to Theorem 0.3 have been
done in [9, 11], to our knowledge, the “operatorial” identity (0.9) is new. We hope it will also
prove useful beyond the present study [3].

Remark 0.3. As a consequence of (0.9), for λ ∈ C, we obviously obtain

(0.13) εµJ −1(M + A + λ)(M− λ)J = −∆8 + V − εµJ −1(λA + λ2)J + F .

These equalities being written between differential matrices can be complemented with bound-
ary conditions to yield equalities between operators. Among the boundary conditions we will
need are the quasi-periodic Floquet boundary conditions described in section 2.
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Remark 0.4. One can consider another extension of the initial operator (0.1),

M = i









0 ε−1∇× · 0 ∇(α2β2 ·)
−µ−1∇× · 0 ∇(α1β1 ·) 0

0 β1 div(µ ·) 0 0
β2 div(ε ·) 0 0 0









with positive functions α1, α2, β1, β2. This operator is self-adjoint in the space

L2(R3, ε(x)dx; C3) ⊕ L2(R3, µ(x)dx; C3) ⊕ L2(R3, α1(x)dx) ⊕ L2(R3, α2(x)dx)

and (0.4) holds. If α1β
2
1 = ε−1µ−2 and α2β

2
2 = ε−2µ−1 and we take

A = i









0 −µz × · 0 −β−1
2 ε−1z ·

εz × · 0 −β−1
1 µ−1z · 0

0 0 0 0
0 0 0 0









,

and J = diag(ε−1/2, µ−1/2, α−1
1 β−1

1 µ−1/2, α−1
2 β−1

2 ε−1/2) then formulae (0.9), (0.13) still hold (our
choice in this paper is α1 = ε, α2 = µ, β1 = β2 = ε−1µ−1).

1. A useful formula: the proof of Theorem 0.3

The computations leading to Theorem 0.3 are quite similar to those done in [11].
We first compute

MJ = i









0 ε−1∇× (µ−1/2 ·) 0 ∇(ε−1/2 ·)
−µ−1∇× (ε−1/2 ·) 0 ∇(µ−1/2 ·) 0

0 (εµ)−1 div(µ1/2·) 0 0
(εµ)−1 div(ε1/2 ·) 0 0 0









.

Hence, as div(∇× ·) = 0 and ∇×∇· = 0, we obtain

(1.1) εµJ −1M2J = −









a(ε, µ) 0 0 0
0 a(µ, ε) 0 0
0 0 b(µ) 0
0 0 0 b(ε)









where, for {f, g} = {ε, µ}, we have defined

a(f, g) = −f 1/2g∇× (g−1∇× (f−1/2 ·)) + (fg)f 1/2∇(f−1(fg)−1 div(f 1/2·)),(1.2)

b(f) = f−1/2 div(f∇(f−1/2 ·)).(1.3)

On the other hand,

(1.4) εµJ −1AMJ = −









c(ε) 0 −d(µ) 0
0 c(µ) 0 d(ε)
0 0 0 0
0 0 0 0









.

where, for f ∈ {ε, µ}, we have defined

c(f) = εµ(f 1/2z ×∇× (f−1/2 ·) − zf−1/2 div(f 1/2·)),(1.5)

d(f) = (εµ)3/2f 1/2z ×∇(f−1/2 ·).(1.6)

For {f, g} = {ε, µ}, using (1.6) and

(1.7) f∇(f−1) = −f−1∇f,

we compute

(1.8) d(f) = −(εµ)−1/2f 1/2∇(εµ) ×∇(f−1/2 ·) = −g−1/2∇(εµ) ×∇(f−1/2 ·) = −F (g, f, ·)
4



which gives formula (0.12) for the coefficient of the matrix F in Theorem 0.3.
Recall that, for u : R3 → R and v : R3 → R3 both once differentiable, one has

(1.9) ∇× (uv) = u (∇× v) + (∇u) × v.

Using this, (1.2), (1.5) and (0.8), we compute

−ε1/2µ∇× ((εµ)−1ε∇× (ε−1/2 ·)) + ε3/2µ∇((εµ)−1) ×∇× (ε−1/2 ·)
= −ε−1/2∇× (ε∇× (ε−1/2 ·)),

and

ε3/2µ∇((εµ)−1ε−1 div(ε1/2 ·)) − ε1/2µ∇((εµ)−1) div(ε1/2 ·) = ε1/2∇(ε−1 div(ε1/2 ·)),
so

(1.10) c(ε) + a(ε, µ) = −ε−1/2(∇× (ε∇× (ε−1/2 ·))) + ε1/2∇(ε−1 div(ε1/2 ·)).
To complete the proof of Theorem 0.3, taking (1.1), (1.3), (1.4) and (1.10) into account, we are
only left with proving the following

Lemma 1.1. One has

−ε−1/2(∇× (ε∇× (ε−1/2 ·))) + ε1/2∇(ε−1 div(ε1/2 ·)) = ∆3 − V (ε)(1.11)

and

ε−1/2 div(ε∇(ε−1/2 ·)) = ∆ − v(ε)(1.12)

where V and v are defined in Theorem 0.3.

Proof. We start with the proof of (1.12). Using (1.7) and (0.11), we compute

ε−1/2 div(ε1/2(∇ ·) − s(ε)ε1/2 ·) = ∆ + 〈s(ε),∇·〉 − div s(ε) − 〈s(ε), ε−1/2∇(ε1/2 ·)〉
= ∆ − (div s(ε) + s(ε)2),

where 〈·, ·〉 denotes the standard scalar product in R3.
Let us now prove (1.11). Using (1.9) we compute

ε−1/2(∇×(ε∇× (ε−1/2 ·)))
= ε−1/2∇× (ε1/2∇× · − ε1/2s(ε) × ·)
= (∇× ·)2 + s(ε) × (∇× ·) − s(ε) × (s(ε) × ·) −∇× (s(ε) × ·).

(1.13)

The classical formula gives

(1.14) ∇× (s(ε) × ·) = s(ε) div · − · div s(ε) − 〈s(ε),∇〉 · +〈·,∇〉s(ε).
For the second term in (1.11) we have

ε1/2∇(ε−1 div(ε1/2 ·)) = ε1/2∇(ε−1/2 div(·) + ε−1/2〈s(ε), ·〉)
= ∇(div ·) − s(ε) div(·) − s(ε)〈s(ε), ·〉+ ∇〈s(ε), ·〉.

(1.15)

Summarizing (1.13), (1.14) and (1.15) we obtain

−ε−1/2(∇× (ε∇× (ε−1/2 ·))) + ε1/2∇(ε−1 div(ε1/2 ·))
= ∆3 − (|s(ε)|2 + div s(ε)) ·

− s(ε) × (∇× ·) − 〈s(ε),∇〉 · +〈 ·,∇〉s(ε) + ∇〈s(ε), ·〉,
where the well-known formulas

∇ div−(∇×)2 = ∆3

and
s(ε)〈s(ε), ·〉 − s(ε) × (s(ε) × ·) = |s(ε)|2·

5



are used. Now the simple calculations

s(ε) × (∇× · ) + 〈s(ε),∇〉 · = Jac( · )s(ε),
〈 · ,∇〉s(ε) = Jac(s(ε))t ·, ∇〈s(ε), ·〉 = Jac( · )s(ε) + Jac(s(ε)) ·

complete the proof of Lemma 1.1. �

2. Proof of Theorem 0.2

In our previous work [4, 5], we proved the absolute continuity of the spectrum of the
Schrödinger operator where the properties of the potential were similar to those imposed on
permittivity ε and the permeability µ in Theorem 0.1 and 0.2. The scheme of the proof of
Theorem 0.2 is globally the same as that of Theorem 1.1 in [4, 5]; so, we will omit some details.

First, basing on the relation (0.13), we construct a convenient representation of the resolvent
(M− λ)−1 (see Lemma 2.3 below).

First of all we need to define some notations. Let 〈x〉 =
√

x2 + 1. For a ∈ R, introduce the
spaces

Lp,a = {f : ea〈x〉f ∈ Lp(Ω)}, H l
a = {f : ea〈x〉f ∈ H l(Ω)},

where 1 ≤ p ≤ ∞ and H l(Ω) is the standard Sobolev space. Introduce the function spaces in
Ω with quasi-periodic boundary conditions

H l
a(k) :=

{

f ∈ H l
a : (Dαf) |yj=2π= e2πikj (Dαf) |yj=0, |α| ≤ l − 1

}

and H l(k) := H l
0(k).

Finally, for X and Y Banach spaces, B(X, Y ) is the space of all bounded operators from X to
Y , and B(X) = B(X, X), both endowed with their natural norm topology.

Due to the Bloch-Floquet-Gelfand transformation, the Maxwell operator M is unitary equiv-
alent to the direct integral

∫ ⊕

[0,1)d M(k)dk, where M is the operator given by the differential

expression (0.2) on the domain DomM(k) = H1(k). The Laplace operator on the domain
H2(k) will be denoted by ∆(k).
In [4, 5], we essentially proved the following result

Lemma 2.1. Assume that the pair (k0, λ0) ∈ R
d+1 satisfies

(2.1) (k0 + n)2 6= ε0µ0λ0, ∀n ∈ Z
d.

Then, there exist numbers δ > 0, a > 0, an open set Ξ0 ⊂ Cd+1 such that

(Bδ(k0) ∪ {k(τ)}τ∈R) × Bδ(λ0) ⊂ Ξ0,

where Bδ(k0) is a ball in real space

Bδ(k0) = {k ∈ R
d : |k − k0| < δ},

and k(τ) = (k̃1 + iτ, k̃′) with fixed k̃ ∈ Bδ(k0), and there exists an analytic B(L2,a, H
2
−a)-valued

function R0, defined in Ξ0, having the properties

• for (k, λ) ∈ Ξ0, k ∈ Rd, Im λ > 0, U ∈ L2,a, one has

R0(k, λ)U = (−∆(k) − ε0µ0λ)−1U ;

•
(2.2) ‖R0(k(τ), λ)‖B(H2

a , H2

−a) ≤ C|τ |−1;

• R0(k, λ)L2,a ⊂ H2
−a(k).
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This lemma is proved in [4] (see Theorem 3.1) except for the fact that estimate (2.2) is replaced
with

(2.3) ‖R0(k(τ), λ)‖B(L2,a,L2,−a) ≤ C|τ |−1.

The proof of estimate (2.2) is exactly the same as that of (2.3).

Clearly, in Lemma 2.1, we can replace ∆(k) with ∆8(k) (defined in (0.5)) at the expense of
changing the constants; the resolvent of ∆8(k) (and its analytic extension) will henceforth be
denoted by R0

M(k, λ). So

R0
M(k, λ) = R0(k, λ) IdC8 .

To deal with the potential, we prove

Lemma 2.2. Let ε, µ satisfy hypothesis (H1)-(H4), A be defined by (0.6), and (k0, λ0) satisfy
(2.1). Then, there exist δ > 0, a > 0, an open set Ξ ⊂ Cd+1 with Bδ(k0) × Bδ(λ0) ⊂ Ξ, a
function h : Ξ → C analytic in Ξ with the property

(2.4) ∀λ ∈ Bδ(λ0), ∃k ∈ Bδ(k0) such that h(k, λ) 6= 0,

and there exists an analytic B(L2,a, H
2
−a)-valued function Z, defined in

Ξ1 := {(k, λ) ∈ Ξ : h(k, λ) 6= 0},
such that, for (k, λ) ∈ Ξ1, k ∈ Rd, Im λ2 > 0, U ∈ H2

a(k), one has

(2.5) Z(k, λ)
(

−∆8 + V − εµJ −1(λA + λ2)J
)

U = U

and

Z(k, λ)L2,a ⊂ H2
−a(k).

Proof. Note that

V − εµJ −1(λA + λ2)J = −ε0µ0λ
2 + W(λ),

where, by assumptions (H2)-(H3), λ 7→ W(λ) is an entire function valued in L∞,b for any b ∈ R.
Set

Z(k, λ) =
(

I + R0
M(k, λ2)W(λ)

)−1
R0

M(k, λ2).

The operator of multiplication by W is bounded as an operator from H2
−a to H2

a , and is
compact as an operator from H2

−a to L2,a. It remains to use the estimation (2.2) and the
analytic Fredholm alternative in the Hilbert space H2

−a (see e.g. [7, 10]) to complete the proof
of Lemma 2.2. �

In the following lemma, we construct an analytic extension of the resolvent of Maxwell operator
to the non-physical sheet. Set

Q(λ) = εµJ −1(M + A + λ).

Then, for any b ∈ R, Q is an entire function with values in B(H1
b , L2,b). The next result we

need is

Lemma 2.3. Under the assumptions of Lemma 2.2, on the set Ξ1, we define the operator-
function

(k, λ) 7→ RM(k, λ) := JZ(k, λ)(I − FZ(k, λ))Q(λ).

Then, one has

(1) (k, λ) 7→ RM(k, λ) is analytic in Ξ1 with values in B(H1
a , H

2
−a));

(2) for (k, λ) ∈ Ξ1, k ∈ Rd, Im λ2 > 0, there exists H(k) ⊂ H1
a(k) such that H(k) = L2(Ω)

and for U ∈ H(k),

RM(k, λ)U = (M(k) − λ)−1U

7



Proof. The first property is true because F is a bounded operator from H1
−a to L2,a.

To prove the second one, pick (k, λ) ∈ Ξ1 such that k ∈ Rd and Im λ2 > 0; define

H(k) = (M(k) − λ)H2
a(k).

That H(k) is dense in L2(Ω) is a consequence of the self-adjointness of M and the fact that
λ 6∈ R.
Let W ∈ H2

a(k) and U = (M− λ)JW . Then, one computes

RM(k, λ)U = JZ(k, λ)(I − FZ(k, λ))Q(λ)(M− λ)JW

= J (Z(k, λ) − Z(k, λ)FZ(k, λ))
(

−∆8 + V − εµJ −1(λA + λ2)J + F
)

W

= J [W + Z(k, λ)FW

−Z(k, λ)FZ(k, λ)
(

−∆8 + V − εµJ −1(λA + λ2)J + F
)

W
]

= J (W − Z(k, λ)FZ(k, λ)FW )

(2.6)

where we used (0.13) and (2.5). Furthermore, one can check that

FZ(k, λ)F = 0.

Plugging this into (2.6), we obtain

RM(k, λ)U = JW = (M(k) − λ)−1U.

This completes the proof of Lemma 2.3. �

Remark 2.1. One presumably has H(k) = H1
a(k).

Lemma 2.4. Let G0 and G be two Hilbert spaces, G0 ⊂ G, and G∗
0 be a dual space to G0 with

respect to the scalar product in G. Let B be a self-adjoint operator in G. Suppose that RB is
an analytic function defined in a complex neighborhood of an interval [α, β] except at a finite
number of points {µ1, . . . , µN}, that the values of RB are in B(G0, G

∗
0) and that

RB(λ)ϕ = (B − λ)−1ϕ if Im λ > 0, ϕ ∈ H
where H ⊂ G0 is dense in G. Then, the spectrum of B in the set [α, β] \ {µ1, . . . , µN} is
absolutely continuous. If Λ ⊂ [α, β], mes Λ = 0 and µj 6∈ Λ, j = 1, . . . , N , then EB(Λ) = 0,
where EB is the spectral projector of B.

This lemma is an immediate consequence of Proposition 2 and equation (18) in section 1.4.5
of [12].
Now, let G be a Hilbert space, and let (H(k))k∈Cd be an analytic family of self-adjoint operators
on G. On G = L2([0, 1)d, G), following [10], one defines the self-adjoint operator

H =

∫ ⊕

[0,1)d

H(k)dk.

The following abstract theorem on the spectrum of the fibered operator H is based on the
Lemma 2.4. Its proof repeats the proof of Theorem 1.1 in [4] although this explicit formulation
is not given there.

Theorem 2.1. Suppose that there exists a sequence of analytic functions fm : Cd+1 → C such
that

∀λ ∃k such that fm(k, λ) 6= 0,

and the set of real points (k, λ) where fm(k, λ) 6= 0 for all m can be represented as

R
d+1 \

∞
⋃

m=1

{(k, λ) : fm(k, λ) = 0} =

∞
⋃

j=1

Bεj
(kj) × Bεj

(λj).

Suppose moreover that, for every j, there exist
8



• an analytic scalar function hj defined in a complex neighborhood of Bεj
(kj) × Bεj

(λj)
satisfying property (2.4);

• a Hilbert space Gj(k) ⊂ G, its dual G∗
j(k) with respect to the scalar product in G, and

a set Hj(k) such that

Hj(k) ⊂ Gj(k) ⊂ G, Hj(k) = G;

• an analytic B(Gj , G
∗
j)-valued function Rj defined on the set {(k, λ); hj(k, λ) 6= 0} such

that for k ∈ Rd, Im λ > 0, f ∈ Hj(k),

Rj(k, λ)f = (H(k) − λ)−1f.

Then, the spectrum of H is purely absolutely continuous.

The spectral theory of a class of analytically fibered operators has been studied in [6]; their
definition of an analytically fibered operator cannot be used in the present case as they require
the resolvent of the fiber operators to be compact.

Theorem 2.1 completes the proof of Theorem 0.2 if we take

G = L2(Ω), H(k) = M(k), H = M, fn(k, λ) = (k + n)2 − ε0µ0λ
2,

use Lemma 2.3 in a neighborhood of each pair (k, λ) for which fn does not vanish, and set

Hj(k) = (M− λ)H2
aj

(k), Gj(k) = H1
aj

(k), H2
−aj

(k) ⊂ G∗
j(k) = H−1

−aj
(k), Rj = RM.
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(Nikoläı Filonov) Department of Mathematical Physics, St Petersburg State University, 1

Ulyanovskaya, 198504 St Petersburg-Petrodvorets, Russia

E-mail address : filonov@mph.phys.spbu.ru

(Frédéric Klopp) LAGA, U.M.R. 7539 C.N.R.S, Institut Galilée, Université de Paris-Nord,
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