
HAL Id: hal-00002141
https://hal.science/hal-00002141v3

Preprint submitted on 28 Aug 2004 (v3), last revised 1 Dec 2004 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategic updating of threshold response in an
agent-based market model.

Francois Ghoulmie

To cite this version:
Francois Ghoulmie. Strategic updating of threshold response in an agent-based market model.. 2004.
�hal-00002141v3�

https://hal.science/hal-00002141v3
https://hal.archives-ouvertes.fr


cc
sd

-0
00

02
14

1,
 v

er
si

on
 3

 -
 2

9 
A

ug
 2

00
4

Strategic updating of threshold response in an

agent-based market model.

François GHOULMIEa,b,1

(a)Centre de Mathématiques Appliquées
Ecole Polytechnique, F-91128 Palaiseau, France.

(b)Laboratoire de Physique Statistique
Ecole Normale Supérieure, F-75321 Paris Cedex 05, France

August 29, 2004

Abstract

I propose an agent-based model of a single-asset financial market described
in terms of few parameters.
I show that the effect of agents adjusting their threshold response to new infor-
mation is to generate a market price which fluctuates endlessly and a volatility
which displays a mean-reverting behavior.
This agent-based model generically leads to an absence of autocorrelation in re-
turns, excess volatility, volatility clustering, and endogeneous bursts of activity
that is not attributable to external noise.
This study illustrates a possible link between the famous El Farol bar problem
and financial markets.
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1 El Farol bar problem and financial markets.

1.1 Agent-based approach for studying market

phenomena.

There is a growing body of research on agent-based models of financial markets
that explores the relation between market participants and the statistical prop-
erties of aggregate market variables such as prices and trading volume.
Indeed, financial time series exhibit non-trivial and intriguing statistical features
[4] that is not easy to model and even less to explain : volatility clustering and
heavy tailed increments for example.
In a previous paper [8], I considered some methodological issues related to this
approach. I argued that two main ingredients in agent-based models (and in
real speculative markets) that lead to realistic behavior of prices and trading
volume are heterogeneity in behavioral rules, resources or beliefs among market
participants and feedback effects, the agents behavior determining the state of
market variables which in turn influences these behaviors.
Let us recall the crucial ingredients of this model:

•Threshold behavior of agents that leads to investor inertia.

•There is no exogeneous “fundamental price” process: prices move through
market fluctuations of supply and demand. In particular, we do not distinguish
between “fundamentalist” and “chartist” traders.

•No information asymetry: the same information is available to all agents.
Agents differ in the way they process the information.

•Absence of “social interaction”: agents interacts indirectly via the price, as
in standard Walrasian markets. We do not introduce any “social interaction”
among agents. In particular, no notion of locality, lattice or graph structure.

•Endogeneous heterogeneity: heterogeneity of agents behavioral rules appears
endogeneously due to the asynchronous updating scheme.

The structure of the model is similar to the previous one. I refer to the previous
study for a theoretical analysis in order to understand the origin of the prop-
erties of the model. The previous model is more general: the random nature
of updating can be seen as a parsimonious way to differentiate agents through
their updating “frequencies”. In the present work, I introduce a strategic updat-
ing scheme making a link between El Farol bar problem and financial markets.
Indeed, it uses inductive reasoning inspired from the famous Brian Arthur’s
problem and the related works on the minority game in the physics community
that I am going to briefly review in the next subsection.
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1.2 Minority game and financial markets.

The El Farol Bar problem was posed as an example of inductive reasoning in
scenarios of bounded rationality [1]. In situations where ignorance about other
agents ability and willingness to apply perfect rationality, agents adjust their
behavior based on what they think other agents are going to do, and these ex-
pectations are generated endogeneously by information about what other agents
have done in the past. In this problem, N agents decide independently each week
whether to go to a bar or not. They go if they expect the attendance to be less
than a certain threshold and stay at home if they expect it will be overcrowded.
There is no communication among the agents; the only information available
is the numbers who came in the past weeks. Agents are given strategies that
translate the idea that when agents face complex situations like this they tend
to look for patterns that occured in the past and predict next move from past
experience. In the original Minority Game, the mathematical formulation of
this problem considered by physicists [3], each player has a small number of
randomly picked decision tables that prescribe an action for each possible his-
tory. Those tables receive points according to how well they have predicted the
best action in the course of the game, and the best table is used to actually make
the decisions. Computer simulations of this model shows that the attendance,
or the aggregate variable, fluctuates around the threshold value illsutrating how
the strategies self-organize, and how coordination emerge due to adaptation.
This problem deals with many agents interacting through an aggregate vari-
able, the bar attendance. In the language of statistical physics, it is a mean
field type problem. The system is frustrated since there is not a unique winning
strategy in the problem and have quenched disorder since agents have a set of
fixed strategies. These properties are very appealing for statistical physicists,
and earlier studies offered elegant solutions [11] using techniques borrowed from
disordered systems [14] detecting for example a phase transition between an
efficient regime towards information and an inefficient one.
Several attempts to use this model as a market model have been made [2, 10].
Markets are then considered as adaptive complex systems driven by a minor-
ity rule. The analogy was understood as agents having the choice of buying
or selling an asset, and the minority group always win. This behavioral as-
sumption may be questionable when applied to financial markets as opposed
to cases in ecology or vehicular traffic. Giardina & Bouchaud [9] proposed an
agent-based inspired from the Minority Game and reviewed key elements that
leads to long-range dependence in the volatility such as switching between an
active strategy to an inactive one in the minority game. In this paper, we also
consider a market as an adaptive complex system driven by a minority rule and
the mechanism leading to the interesting dynamics can also be understood as
a switching between an active strategy and an inactive one, but I propose a
different framework.
This approach is inspired from a variant of the original minority game [12] where
agents do not change their decisions when they are successful, otherwise they
change their decision with a probability p, being reluctant to give up their po-
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sitions. In this variant, agents do not have a memory. Another difference with
the original minority game is that disorder is not quenched anymore.
In the next section, I describe the agent-based market model. I discuss the
results of the numerical simulations in Section 3.

2 Description of the model.

The model describes a market where a single asset, whose price is denoted by
pt, is traded by N agents. Trading takes place at discrete dates t = 0, 1, 2, ..2.
At each period, every agent receives public news about the asset’s performance
and, using a subjective criterion, judge whether this news is significant. If the
news is found to be significant, the agent places buy or sell order depending
on whether the news received is pessimistic or optimistic. Prices then move up
or down according to excess demand. I now describe these ingredients in more
precise terms.

2.1 Trading rules.

At each period, agents have the possibility to send buy or sell order to the
market for a unit of asset: denoting by φi(t) the demand of the agent, we have
φi(t) = 1 for a buy order and φi(t) = −1 for a sell order. I allow the value φi(t)
to be zero; the agent is then inactive at period t. The inflow of new information
is modeled by a sequence of IID Gaussian random variables (ǫt, t = 0, 1, 2, ..)
with ǫt ∼ N(0, D2). ǫt represents the value of a common signal received by all
agents at date t. The signal ǫt is a forecast of the future return rt and each
agent has to decide whether the information conveyed by ǫt is significant, in
which case he will place a buy or sell order according to the sign of ǫt.
The trading rule of each agent i = 1, ..., N is represented by a (time-varying)
decision threshold θi(t). By comparing the signal to her threshold, the agent
decides whether the news is significant enough to generate a trade (|ǫt| > θi(t)):

if ǫt > θ+
i , φi = 1

if ǫt < θ−i , φi = −1

otherwise φi = 0. (1)

This trading rule may be seen as a stylized example of threshold behavior: with-
out sufficient external stimulus, an agent remains inactive and if the external
signal is above a certain threshold, the agent will act. The corresponding de-
mand generated by the agent is therefore given by:

φi(t) = 1ǫt>θi
− 1ǫt<−θi

. (2)
2Provided the parameters of the model are chosen in a certain range, these periods may

be interpreted as “trading days”.
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2.2 Price response to aggregate demand.

Aggregate excess demand is:

Zt =
∑

i

φi(t). (3)

A non zero value of Zt produces a change in the price, and the resulting log
return is given by :

rt = ln
pt

pt−1
= g(

Zt

N
). (4)

where the price impact function g : ℜ → ℜ is increasing in its argument with
g(0)=0. I define the (normalized) market depth λ by

g′(0) = 1/λ. (5)

While most of the analysis below holds for a general price impact function g, in
some cases it will be useful to consider the linear: g(z) = z/λ.

2.3 Updating scheme.

The model is based on the following assumption:

•Agents believe that they do not benefit from trading if the majority of agents
act too.

Initially, we start from a population distribution F0 of thresholds: θi(0), i = 1..N
are positive IID variables drawn from F0.
When market activity is higher than a certain threshold, A(t) > αN with
0 < α < 1, active agents change with a probability p (p ∈ [0, 1]) their threshold
response. The parameter p expressed their reluctance to change. He sets it to
be proportional to the recently observed market activity:

θi(t) = µA(t) (6)

Note that when choosing µ = 1
λN

, we have the same updating rule as in the
previous work [8] (I will choose a close numerical value in order to get realistic
daily returns).
When market activity is lower than this threshold, A(t) < αN , inactive agents
update their threshold response according to (6). This updating scheme means
that only the loosers of the minority game change their threshold response.
Introducing IID random variables ui(t), i = 1..N ,t ≥ 0 uniformly distributed
on [0, 1], which indicate whether agent i updates her threshold or not, one can
write the updating rule as:

θi(t) = 1ui(t)<pµA(t) + 1ui(t)≥pθi(t − 1). (7)
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Here ǫt represents randomness due to public news arrivals whereas the random
variables ui(t) represent idiosyncratic sources of randomness. Note that, even
if we start from an initially homogeneous population θi(0) = θ0, heterogeneity
creeps into the population through the updating process. In this sense, the
heterogeneity of agents strategies is endogeneous in this model and evolves in a
random manner as opposed to quenched disorder in the initial minority game.

3 Numerical simulations

3.1 Simulation procedure.

After simulating a sample path of the price pt for T = 104 periods, I compute
the following quantities:

•the time series of returns rt = ln(pt/pt−1), t = 1..T .

•the histogram of returns, which is an estimator of its unconditional distri-
bution.

•a moving average estimator of the standard deviation of returns:

σ̂2(t) = 250[
1

T ′

t∑

t′=t−T ′+1

|rt|
2 − (

1

T ′

T ′∑

t′=t−T ′+1

rt)
2]. (8)

This quantity is a frequently used indicator for “volatility”. I “annualize” it by
multiplying the “daily” estimate by 250.

•the sample autocorrelation function of returns:

Cr(τ) =
T

∑T

t=1 |rt|2
[

1

T − τ

T−τ∑

t=1

rtrt+τ − (
1

T − τ

T−τ∑

t=1

rt)(
1

T − τ

T∑

t=τ+1

rt)] (9)

•the sample autocorrelation function of absolute returns:

C|r|(τ) =
T

∑T

t=1 |rt|2
[

1

T − τ

T−τ∑

t=1

|rt||rt+τ | − (
1

T − τ

T−τ∑

t=1

|rt|)(
1

T − τ

T∑

t=τ+1

|rt|)]

(10)
These quantities can then compared with the empirical stylized facts outlined
by Cont [4]. Finally, in order to decrease the sensitivity of results to initial con-
ditions, I allow for an initial transitory regime and discard the first 103 periods
before averaging.
The rationale behind the choice of the parameters is similar to that of the pre-
vious study [8]. The results dicussed in the next section are generic within a
wide range of parameters.
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3.2 Simulation results.

Figure 1 illustrate a typical sample path of price behavior obtained with the
following parameters: λ = 10, N = 1500, D = 0.001, p = 0.015, α = 2.10−2,
µ = 1

λN
.

The figure represents also the histogram of returns both in linear and log scales,
the ACF of returns Cr, the ACF of absolute returns C|r|.
We get series of returns with realistic ranges and realistic values of annualized
volatility and with some regularities which match some empirical properties:

•Excess volatility[13, 5]: the sample standard deviation of returns can be
much larger than the standard deviation of the input noise representing news
arrivals σ̂(t) ≫ D.

•Mean-reverting volatility: the market price fluctuates endlessly and dis-
plays “stochastic volatility”: the volatility, as measured by the moving average
estimator σ̂(t), does neither go to zero nor to infinity and displays a mean-
reverting behavior. This behavior is attested by many empirical studies and
GARCH models [6] on one hand and stochastic volatility models on the other
hand aim at reproducing this mean-reverting stochastic behavior of volatility.

•The simulated process generates a leptokurtic distribution of returns
with (semi-)heavy tails, with an excess kurtosis around κ ≃ 5.5. As shown
in the logarithmic histogram plot in figures 1, the tail exhibit an approximately
exponential decay, as observed in various studies of daily returns [7]. Note that
κ = 6 for a (two-sided) exponential distribution.

•The returns are uncorrelated: the sample autocorrelation function of the
return exhibits an insignificant value (very similar to that of asset returns) at
all lags, indicate absence of linear serial dependence in the returns.

•Volatility clustering: the autocorrelation function of absolute returns re-
mains positive, and significantly above the autocorrelation of the returns, over
many time lags, corresponding to persistence of the amplitude of returns a time
scale ranging from a few weeks to several months. This is an indication of non-
linear dependence in the returns.

3.3 Emergence of coordination due to adaptation.

At each time step, in the case where A(t) > αN , there are A(t) loosers and
N − A(t) winners, so the total gain (or loss) is then G = N − 2A(t). The total
gain is G = 2A(t) − N in the other case.
It is still not clear if the system reaches a steady state and fluctuates around it,
however we can say that coordination due to adaptation occurs when looking
at the numerical simulations because we have αN < A(t) < N/2 most of the
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Figure 1: Numerical simulation of the model with updating frequency p = 0.015
(updating period: 67 “days”) and N = 1500 agents.
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time and G > 0.
The updating scheme is responsible for investor inertia.
Now, let us understand qualitatively how the learning process is responsible
for the dynamics of heterogeneity and to the emergence of the stylized facts.
When a majority of agents have a low value for their threshold, they will very
probably act. Because only a small fraction of agents, due to their reluctance
to change their belief (expressed by the parameter p), do higher their threshold
response, when the market activity is high, it is very probable to have a high
activity at next time step. This slow feedback mechanism causes persistence in
the amplitudes of the fluctuations of the returns.

4 Conclusion

I presented a very minimalist agent-based market model : only one type of
agents interact indirectly via the market activity. The numerical simulation gen-
erates generic results that capture the essential statistical features of financial
markets. These stylized facts are the consequence of the presence of coordina-
tion and learning in the market. Indeed, we considered the market as a complex
adaptive system driven by a minority rule, where agents with inductive ratio-
nality adjust their behavior. A full exploration of the parameter phase space
and a full theoretical analysis of the complex dynamics of heterogeneity would
be worth other works. This study illustrates a link between bounded rationality
and heterogeneity with its dynamics in economic systems.
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