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Paperfolding and Catalan numbers

Roland Bacher

June 17, 2004

Abstract1: This paper reproves a few results concerning paperfolding
sequences using properties of Catalan numbers modulo 2. The guiding prin-
ciple can be described by: Paperfolding = Catalan modulo 2 + signs given
by 2−automatic sequences.

1 Main results

In this paper, a continued fraction is a formal expression

b0 +
a1

b1 + a2

b2+...

= b0 + a1

/(

b1 + a2

/(

b2 + . . .
))

with b0, b1, . . . , a1, a2, . . . ∈ C[x] two sequences of complex rational functions.
We denote such a continued fraction by

b0 +
a1|

|b1
+

a2|

|b2
+ . . . +

ak|

|bk
+ . . .

and call it convergent if the coefficients of the (formal) Laurent-series ex-
pansions of its partial convergents

P0

Q0
=

b0

1
,

P1

Q1
=

b0b1 + a1

b1
, . . . ,

Pk

Qk
= b0 +

a1|

|b1
+

a2|

|b2
+ . . . +

ak|

|bk
, . . .

are ultimately constant. The limit
∑

k≥n lkx
k ∈ C[[x]][x−1] is then the

obvious formal Laurent power series whose first coefficients agree with the
Laurent series expansion of Pn/Qn for n huge enough.

Let W1 be the word (−x1) x1 of length 2 in the alphabet {x1,−x1}. For
k ≥ 2, we define recursively a word Wk of length 2(2k −1) over the alphabet
{±x1,±x2, . . . ,±xk} by considering the word

Wk = Wk−1 xk (−xk) Wk−1

1Math. Class: 11B65, 11B85, 11C20, 15A23. Keywords: Catalan numbers, paperfold-

ing, automatic sequence, continued fraction, Jacobi fraction, binomial coefficient.
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constructed by concatenation where Wk−1 denotes the reverse of Wk−1 ob-
tained by reading Wk−1 backwards. The first instances of the words Wk

are

W1 = (−x1) x1

W2 = (−x1) x1 x2 (−x2) x1 (−x1)
W3 = (−x1) x1 x2 (−x2) x1 (−x1) x3 (−x3) (−x1) x1 (−x2) x2 x1 (−x1)

and these words are initial subwords of a unique, well-defined infinite word
W∞ = w1 w2 w3, . . . with letters wi ∈ {±x1,±x2, . . .}.

The following result has been known for some time, cf [6] or [13]. Similar
or equivalent equivalent statements are for instance given in [9], Theorem
6.5.6 in [2]. It is closely related to paperfolding, see [2], [11], [5]. Related
results are contained in [4], [12] and [13].

Theorem 1.1 Consider a sequence x1, x2, . . . with values in C. If the cor-
responding continued fraction

1|

|1
+

w1|

|1
+

w2|

|1
+ . . . +

wk|

|1
+ . . .

associated with the sequence W∞ = w1 w2 . . . defined by the letters of the
infinite word W∞ converges, then its limit is given by

1 + x1 + x2
1x2 + x4

1x
2
2x3 + x8

1x
4
2x

2
3x4 + . . . = 1 +

∞
∑

j=1

j
∏

i=1

x2j−i

i .

Remarks. (i) In fact, the proof will follow from the identity

P2(2k−1)

Q2(2k−1)

=
1|

|1
+

w1|

|1
+

w2|

|1
+ . . . +

w2(2k−1)|

|1
= 1 +

k
∑

j=1

j
∏

i=1

x2j−i

i

(cf. Lemma 6.5.5 in [2]) showing that the 2(2k − 1)−th partial convergent
of this continued fraction is a polynomial in x1, . . . , xk.

(ii) It is of course possible to replace the field C by any other reasonable
field or ring.

Examples. (1) Setting xi = x for all i and multiplying by x we get

x|

|1
−

x|

|1
+

x|

|1
+

x|

|1
−

x|

|1
+

x|

|1
+ . . .

= x + x2 + x4 + x8 + . . . =

∞
∑

k=0

x2k

.

The sequence of signs w1, w2, . . . ∈ {±1} given by

∞
∑

k=0

x2k

=
x|

|1
+ w1

x|

|1
+ w2

x|

|1
+ w3

x|

|1
+ . . .
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can be recursively defined by

w4i+1 = −w4i+2 = (−1)i+1 ,

w8i+3 = −w8i+4 = (−1)i ,
w8i+7 = −w8i+8 = w4i+3

and is 2−automatic (cf. [2]).
(2) Setting xi = x1+3i−1

and multiplying by x we get

x|

|1
−

x2|

|1
+

x2|

|1
+

x4|

|1
−

x4|

|1
+

x2|

|1
+ . . .

= x + x3 + x9 + x27 + . . . =
∞
∑

k=0

x3k

.

(3) Setting xi = x1+(i−1)i! and multiplying by x we get

x|

|1
−

x|

|1
+

x|

|1
+

x3|

|1
−

x3|

|1
+

x|

|1
+ . . .

= x + x2 + x6 + x24 + . . . =
∞
∑

k=1

xk! .

Consider the sequence µ = (µ0, µ1, . . .) = (1, 1, 0, 1, 0, 0, 0, 1, . . .) defined

by x
∑∞

i=0 µix
i =

∑∞
k=0 x2k

. We associate to µ = (µ0, µ1, . . .) its Hankel
matrix H whose (i, j)−th coefficient hi,j = µi+j , 0 ≤ i, j depends only on
the sum i+j of its indices and is given by (i+j)−th element of the sequence
µ.

Consider the (2−automatic) sequence s = (s0, s1, s2, . . .) = 1 1 (−1) 1 (−1) (−1) . . .
defined recursively by s0 = 1 and

s2i = (−1)i si ,
s2i+1 = si .

It is easy to check that sn = (−1)B0(n) where B0(n) counts the number of
bounded blocks of consecutive 0′s of the binary integer n (or, equivalently,
B0(n) equals the number of blocks 10 appearing in the binary expansion
of the n). E.g, 720 = 29 + 27 + 26 + 24 corresponds to the binary integer
1011010000. Hence B0(720) = 3. This description shows that we have
s2n+1+n = −sn for n < 2n. Since we have B0(2

n+1 + n) = 1 + B0(n) for
n < 2n and B0(2

n+1 + n) = B0(n) for 2n ≤ n < 2n+1, the sequence s0, s1, . . .
can also be constructed by iterating the application

WαWω 7−→ WαWω(−Wα)Wω

where where Wα,Wω are the first and the second half of the finite word
s0 . . . s2n−1.
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Denote by Ds the infinite diagonal matrix with diagonal entries s0, s1, s2, . . .
and by Da the infinite diagonal matrix with diagonal entries given by the
alternating, 2−periodic sequence 1,−1, 1,−1, 1,−1.

We introduce the infinite unipotent lower triangular matrix L with co-
efficients li,j ∈ {0, 1} for 0 ≤ i, j given by

li,j ≡

(

2i

i − j

)

−

(

2i

i − j − 1

)

≡

(

2i

i − j

)

+

(

2i

i − j − 1

)

≡

(

2i + 1

i − j

)

(mod 2)

and denote by L(k) the k × k submatrix with coefficients li,j , 0 ≤ i, j < k
of L. The matrix L(8) for instance is given by

L(8) =

























1
1 1
0 1 1
1 1 1 1
0 0 0 1 1
0 0 1 1 1 1
0 1 1 0 0 1 1
1 1 1 1 1 1 1 1

























.

Theorem 1.2 (i) We have

H = Ds L Da Lt Ds .

(ii) (BA0BAB−construction for L) We have for n ≥ 0

L(2n+2) =









A
B A
0 B A
B A B A









where A and B are the obvious submatrices of size 2n × 2n in L(2n+1).

Remarks. (i) Assertion (ii) of Theorem 1.2 yields an iterative construc-

tion for L by starting with L(2) =

(

1
1 1

)

.

(ii) Conjugating H with an appropriate diagonal ±1−matrix, we can get
the the LU-decomposition of any Hankel matrix associated with a sequence

having ordinary generating function x−1
(

∑∞
k=0 ǫkx

2k
)

, ǫ0 = 1, ǫ1, ǫ2, . . . ∈

{±1}. More precisely, the appropriate conjugating diagonal matrix has co-
efficients dn,n = (−1)

∑

j=0
νjǫj+1 for 0 ≤ n =

∑

j=0 νj2
j a binary integer.

The case ǫ0 = −1 can be handled similarly by replacing the diagonal matrix
Da with its opposite −Da.

The matrix P = (Ds L Ds)
−1 = Ds L−1 Ds with coefficients pi,j, 0 ≤ i, j

encodes the formal orthogonal polynomials Q0, Q1, . . . , Qn =
∑n

k=0 pn,kx
k

with moments µ0, µ1, . . . given by
∑∞

i=0 µix
i+1 =

∑∞
k=0 x2k

.
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In order to describe the matrix P we introduce a unipotent lower trian-
gular matrix M with coefficients mi,j ∈ {0, 1}, 0 ≤ i, j by setting

mi,j =

(

i + j

2j

)

(mod 2) .

As above (with the matrix L) we denote by M(k) the k× k submatrix with
coefficients mi,j, 0 ≤ i, j < k of M .

Theorem 1.3 (i) We have

L Da M = Da

(where Da denotes the diagonal matrix with 2−periodic diagonal coefficients
1,−1, 1,−1, . . .).

(ii) (BA0BAB−construction for M) We have have for n ≥ 0

M(2n+2) =









A′

B′ A′

A′ B′ A′

B′ 0 B′ A′









where A′ and B′ are the obvious submatrices of size 2n × 2n in M(2n+1).

The matrix P = Ds Da M Da Ds = (Ds L Ds)
−1 encoding the coeffi-

cients of the orthogonal polynomials with moments µ0, µ1, . . . has thus all
its coefficients in {0,±1}, see also [1] and [8].

The (formal) orthogonal polynomials Q0, Q1, . . . satisfy a classical three-
term recursion relation with coefficients given by the continued Jacobi frac-

tion expansion of
∑

µi xi = 1
x

(

∑∞
k=0 x2k

)

. This expansion is described by

the following result.

Theorem 1.4 We have

∞
∑

k=0

x2k

= x|
|1−d1x + x2|

|1−d2x + x2|
|1−d3x + . . .

= x|
|1−x + x2|

|1+2x + x2|
|1 + x2|

|1 + x2|
|1−2x + . . .

where dn = sn−sn−2

sn−1
with s−1 = 0, s0 = 1 and s2i+1 = (−1)is2i = si is the

recursively defined sequence introduced previously (extended by s−1 = 0).

The formal orthogonal polynomials with moments µ0, µ1, . . . are thus
recursively defined by Q0 = 1, Q1 = x + 1 and

Qn+1 = (x − dn)Qn + Qn−1 for n ≥ 2 .

5



The rest of the paper is organised as follows.
Section 2 contains a proof of Theorem 1.1.
Section 3 recalls a few definitions and facts concerning Hankel matrices,

formal orthogonal polynomials etc.
Section 4 is a little digression about Catalan numbers. All objects ap-

pearing in this paper are essentially obtained by considering the correspond-
ing objects associated with Catalan numbers and by reducing them modulo
2 using sign conventions prescribed by recursively defined sequences (which
are 2−automatic).

Section 5 recalls two classical and useful results on the reduction modulo
2 (or modulo a prime number) of binomial coefficients.

Section 6 is devoted to the proof of Theorem 1.2.
Section 7 contains a proof of Theorem 1.3 and a related amusing result.
Section 8 contains formulae for the matrix products M L and L M .
Section 9 contains a proof of Theorem 1.4.
Section 10 displays the LU−decomposition of the Hankel matrix H̃ as-

sociated with the sequences 1, 0, 1, 0, 0, 0, 1, 0, . . . obtained by shifting the
sequence 1, 1, 0, 1, 0, 0, 0, 1, . . . associated with powers of 2 by one (or equiv-
alently, by removing the first term).

Section 11 contains a uniqueness result.

2 Proof of Theorem 1.1

More or less equivalent reformulations of Theorem 1.1 can be found in
several places. A few are [9], [11] and [2]. We give her a computational
proof: Symmetry-arguments of continued fractions are replaced by polyno-
mial identities.

Given a continued fraction

b0 +
a1|

|b1
+

a2|

|b2
+ . . .

it is classical (and easy, cf. for instance pages 4,5 of [10]) to show that the
product

(

1 b0

0 1

)(

0 a1

1 b1

)(

0 a2

1 b2

)

· · ·

(

0 ak

1 bk

)

equals
(

Pk−1 Pk

Qk−1 Qk

)

where
Pk

Qk
= b0 +

a1|

|b1
+ . . . +

ak|

|bk

denotes the k−th partial convergent.
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Given a finite word U = u1 u2 . . . ul we consider the product

M(U) =

(

0 u1

1 1

)(

0 u2

1 1

)

· · ·

(

0 ul

1 1

)

.

Defining

Xk = 1 +
∑k

j=1

∏j
i=1 x2j−i

i

X̃k = 1 +
∑k−1

j=1

∏j
i=1 x2j−i

i −
∏k

i=1 x2k−i

i

(example: X3 = 1 + x1 + x2
1x2 + x4

1x
2
2x3 and X̃3 = 1 + x1 + x2

1x2 − x4
1x

2
2x3)

one checks easily the identities

Xn + xn+1(X
2
n−1 − XnX̃n) = Xn+1

and
Xn − xn+1(X

2
n−1 − XnX̃n) = X̃n+1 .

Lemma 2.1 We have for all n ≥ 1

M(Wn) =

(

X̃n − X2
n−1 1 − Xn

X2
n−1 Xn

)

and

M(Wn) =

(

Xn − X2
n−1 1 − X̃n

X2
n−1 X̃n

)

.

Proof. The computations

M(W1) = M((−x1) x1) =

(

0 −x1

1 1

)(

0 x1

1 1

)

=

(

−x1 −x1

1 1 + x1

)

=

(

(1 − x1) − 12 1 − (1 + x1)
12 1 + x1

)

and

M(W1) = M(x1 (−x1)) =

(

0 x1

1 1

) (

0 −x1

1 1

)

=

(

(1 + x1) − 12 1 − (1 − x1)
12 1 − x1

)

prove Lemma 2.1 for n = 1.
For n ≥ 1 we have

M(Wn+1) = M(Wn xn+1 (−xn+1) Wn)

=

(

X̃n − X2
n−1 1 − Xn

X2
n−1 Xn

)(

xn+1 xn+1

1 1 − xn+1

)(

Xn − X2
n−1 1 − X̃n

X2
n−1 X̃n

)

=

(

(Xn − xn+1(X
2
n−1 − XnX̃n)) − X2

n 1 − (Xn + xn+1(X
2
n−1 − XnX̃n))

X2
n Xn + xn+1(X

2
n−1 − XnX̃n)

)

=

(

X̃n+1 − X2
n 1 − Xn+1

X2
n Xn+1

)

7



and

M(Wn+1) = M(Wn (−xn+1) xn+1 Wn)

=

(

X̃n − X2
n−1 1 − Xn

X2
n−1 Xn

)(

−xn+1 −xn+1

1 1 + xn+1

)(

Xn − X2
n−1 1 − X̃n

X2
n−1 X̃n

)

=

(

(Xn + xn+1(X
2
n−1 − XnX̃n)) − X2

n 1 − (Xn − xn+1(X
2
n−1 − XnX̃n))

X2
n Xn − xn+1(X

2
n−1 − XnX̃n)

)

=

(

Xn+1 − X2
n 1 − X̃n+1

X2
n X̃n+1

)

which proves Lemma 2.1 by induction on n. 2

Proof of Theorem 1.1. Lemma 2.1 shows that

M(1 Wn) =

(

0 1
1 1

)(

X̃n − X2
n−1 1 − Xn

X2
n−1 Xn

)

=

(

X2
n−1 Xn

X̃n 1

) .

The 2(2n − 1)−th partial convergent of the continued fraction

1|

|1
+

w1|

|1
+

w2|

|1
+ . . .

defined by the word W∞ equals thus

Xn = 1 +

n
∑

j=1

j
∏

k=1

x2j−k

k

and the sequence of these partial convergents has limit

X∞ = 1 +

∞
∑

j=1

j
∏

k=1

x2j−k

k

which is the statement of Theorem 1.1. 2

3 Formal orthogonal polynomials

The content of this section is classical and can for instance be found in [3]
or [15].

We consider a formal power series

g(x) =
∞

∑

k=0

µkx
k ∈ C[[x]]

as a linear form on the complex vector space C[x]∗ of polynomials by setting

lg(

n
∑

i=0

αix
i) =

n
∑

i=0

αiµi .
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We suppose that the n−th Hankel matrix H(n) having coefficients hi,j =
µi+j, 0 ≤ i, j < n associated with µ = (µ0, . . .) is invertible for all n.
Replacing such a sequence µ = (µ0, µ1, . . .) by 1

µ0
µ = (1, µ1

µ0
, . . .) we may

also suppose that µ0 = 1. We get a non-degenerate scalar product on C[x]
by setting

〈P,Q〉 = lg(PQ) .

Applying the familiar Gram-Schmitt orthogonalisation we obtain a sequence
Q0 = 1, Q1 = x − a0,

Qn+1 = (x − an)Qn − bnQn−1, n ≥ 1

of mutually orthogonal monic polynomials, called formal orthogonal polyno-
mials with moments µ0, µ1, . . ..

We encode the above recursion relation for the polynomials Q0, Q1, . . .
by the Stieltjes matrix

S =















a0 1
b1 a1 1

b2 a2 1
b3 a3 1

. . .
. . .

. . .















.

The non-degeneracy condition on µ0, µ1, . . . shows that the (infinite)
Hankel matrix H with coefficients hi,j = µi+j, 0 ≤ i, j has an LU−decomposition
H = LU where L is lower triangular unipotent and U = DLt is upper tri-
angular with D diagonal and invertible.

The diagonal entries of D are given by

di,i =

i
∏

k=1

bk

and we have thus

det(H(n)) =
n−1
∏

k=1

(bk)
n−k

where H(n) is the n−th Hankel matrix with coefficients hi,j = µi+j, 0 ≤
i, j < n. The i−th row vector

(mi,0,mi,1, . . .)

of M = L−1 encodes the coefficients of the i−th orthogonal polynomial

Qi =

i
∑

k=0

mi,kx
k .

9



The Stieltjes matrix S satisfies

LS = L− =







l1,0 l1,1

l2,0 l2,1 l2,2
...

. . .
. . .







where L− is obtained by removing the first row of the unipotent lower trian-
gular matrix L with coefficients li,j, 0 ≤ i, j involved in the LU−decomposition
of H.

The generating function g =
∑∞

k=0 µkx
k can be expressed as a continued

fraction of Jacobi type

g(x) = 1/(1 − a0x − b1x
2/(1 − a1x − b2x

2/(1 − a2x − b3x
2/(1 − . . . ))))

where a0, a1, . . . and b1, b2, . . . are as above and are encoded in the Stieltjes
matrix.

4 The Catalan numbers

The Catalan numbers Cn =
(

2n
n

)

1
n+1 are the coefficients of the algebraic

generating function

c(x) =
∑∞

n=0 Cnxn = 1−
√

1−4x
2x = 1 + x + 2x2 + 5x3 + 14x4 + . . .

=
1|

|1
−

x|

|1
−

x|

|1
−

x|

|1
− . . .

=
1|

|1 − x
−

x2|

|1 − 2x
−

x2|

|1 − 2x
−

x2|

|1 − 2x
− . . .

and satisfies c = 1 + x c2.
We have g(x) ≡ c(s) (mod 2) where g(x) =

∑∞
j=0 x2j−1, cf. the last

lines of [14]. A different proof can be given by remarking that cn counts the
number of planar binary rooted trees with n + 1 leaves. Call two such trees
equivalent if they are equivalent as abstract (non-planar) rooted trees. The
cardinality of each equivalence class is then a power of two. An equivalence
classe containing only one element is given by a rooted 2−regular trees
having 2n leaves which are all at the same distance n from the root.

Many interesting mathematical objects associated with g(x) are in fact
obtained by reducing the corresponding objects of c(x) modulo 2. Mirac-
ulously, all this works over Z by choosing suitable signs given by a few
recursively-defined sequences (which are in fact always 2−automatic, see [2]
for a definition).
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Consider the unipotent lower triangular matrices

L =

















1
1 1
2 3 1
5 9 5 1

14 28 20 7 1
42 90 75 35 9 1

















and

L̃ =

















1
2 1
5 4 1

14 14 6 1
42 48 27 8 1

132 165 10 44 10 1

















with coefficients li,j =
( 2i
i−j

)

−
( 2i
i−j−1

)

, respectively l̃i,j =
(2i+1

i−j

)

−
( 2i+1
i−j−1

)

for
0 ≤ i, j obtained by taking all even (respectively odd) lines (starting with
line number zero) of the so-called Catalan-triangle

1
1

1 1
2 1

2 3 1
5 4 1

5 9 5 1
14 14 6 1

14 28 20 7 1

The matrix L is associated with the LU−decomposition of the Hankel matrix
H = L Lt having coefficients hi,j = Ci+j =

(2(i+j)
i+j

)

/(i + j + 1), 0 ≤ i, j

the Catalan numbers. The matrix L̃ yields the LU−decomposition of the
Hankel matrix H̃ = L̃ L̃t having coefficients h̃i,j = Ci+j+1 =

(2(i+j+1)
i+j+1

)

/(i +
j+2), 0 ≤ i, j associated with the shifted Catalan sequence 1, 2, 5, 14, 42, . . ..

The inverse matrices L−1 and L̃−1 are given by Da M Da and Da M̃ Da

where Da is the diagonal matrix with 2-periodic alternating diagonal coef-
ficients 1,−1, 1,−1, and where M and M̃ have coefficients mi,j =

(

i+j
2j

)

and

m̃i,j =
(

i+j+1
2j+1

)

for 0 ≤ i, j.

Let us mention that the products P = LM and P̃ = L̃ M̃ have non-zero
coefficients pi,j = (2i)! j!

i! (2j)! (i−j)! and p̃i,j = 4(i−j)
(

i
j

)

for 0 ≤ j < i. They can

11



also be given by

P = L M = exp(















0
2 0

6 0
10 0

. . .
. . .















)

and

P̃ = L̃ M̃ = exp(















0
4 0

8 0
12 0

. . .
. . .















) .

Computations suggest that the products M L and M̃ L̃ have also nice
logarithms:

M L = exp(



























0
2 0
0 6 0
2 0 10 0
0 6 0 14 0
2 0 10 0 18 0
0 6 0 14 0 22 0
...

...
. . .

. . .



























)

and

M̃ L̃ = exp(























0
4 0
0 8 0
4 0 12 0
0 8 0 16 0
4 0 12 0 20 0
...

...
. . .

. . .























) .

5 Binomial coefficients modulo 2

Chercher ref. (Concrete Maths? Graham, Knuth, Patashnik)
Using the Frobenius automorphism we have

(1 + x)
∑

i νi2
i

≡
∏

i

(1 + x2i

)νi (mod 2)

12



which shows the formula
(

n

k

)

≡
∏

i

(

νi

κi

)

(mod 2)

where n =
∑

i≥0 νi 2i, νi ∈ {0, 1} and k =
∑

i≥0 κi 2i, κi ∈ {0, 1} are two

natural binary integers. Kummer showed that the 2−valuation v2 of
(n
k

)

(defined by 2v2 |
(n
k

)

and 2v2+1 6 |
(n
k

)

) equals the number of carry-overs when
adding the two natural numbers k and n − k, written in base 2 (cf. [16]).

As an application, one (re)proves easily that Cn =
(2n

n

)

1
n+1 ≡ 1 (mod 2)

if and only if n+1 ∈ {2k}k∈N is a power of two. Indeed,
(2n

n

)

1
n+1 ≡ (2n+1)!

n! ′n+1)! =
(2n+1

n

)

(mod 2) and addition of the binary integers n and (n + 1) needs

always a carry except if n =
∑k−1

i=0 2k and n + 1 = 2k.

6 Proof of Theorem 1.2

The aim of this section is to prove Theorem 1.2 which describes the LU−de-
composition of the Hankel matrix H with coefficients hi,j = µi+j, 0 ≤ i, j
where ∞

∑

k=0

µix
i =

∞
∑

j=0

x2j−1 = 1 + x + x3 + x7 + x15 + . . . .

We give in fact 3/2 proofs: We first prove assertion (i) by using the
definition li,j ≡

(

2i+1
i−j

)

(mod 2) of L.
We prove then assertion (ii) showing that the matrix L satisfies the

BA0BAB−construction.
Finally, we reprove assertion (i) using the recursive BA0BAB−structure

of L.
Proof of assertion (i) in Theorem 1.2. We denote by

(n
k

)

∈ {0, 1}
the reduction (mod 2) with value in {0, 1} of the binomial coefficient

(n
k

)

.
The main ingredient of the proof is the fact that

(

2n + 1

k

)

=

(

n

⌊k/2⌋

)

where ⌊k/2⌋ = k/2 if k is even and ⌊k/2⌋ = (k − 1)/2 if k is odd.
We compute first the coefficient r2i,2j of the product R = DsLDaL

tDs

(recall that L has coefficients li,j =
(

2i+1
i−j

)

):

r2i,2j = s2is2j
∑

k(−1)k
(4i+1
2i−k

)(4j+1
2j−k

)

= s2is2j

(

∑

k=0

( 4i+1
2i−2k

)( 4j+1
2j−2k

)

−
∑

k=1

( 4i+1
2i−2k+1

)( 4j+1
2j−2k+1

)

)

= s2is2j

(

∑

k=0

( 2i
i−k

)( 2j
j−k

)

−
∑

k=1

( 2i
i−k

)( 2j
j−k

)

)

= s2is2j

(2i
i

)(2j
j

)

=

{

1 if i = j = 0
0 otherwise.

13



Similarly, we get

r2i+1,2j+1 = s2i+1s2j+1
∑

k(−1)k
( 4i+3
2i+1−k

)( 4j+3
2j+1−k

)

= s2i+1s2j+1

(

∑

k=0

( 4i+3
2i+1−2k

)( 4j+3
2j+1−2k

)

−
∑

k=0

( 4i+3
2i−2k

)( 4j+3
2j−2k

)

)

= s2i+1s2j+1

(

∑

k=0

(

2i+1
i−k

)(

2j+1
j−k

)

−
∑

k=0

(

2i+1
i−k

)(

2j+1
j−k

)

)

= 0

For r2i,2j+1 = r2j+1,2i we have

r2i,2j+1 = s2is2j+1

(

∑

k

( 4i+1
2i−2k

)( 4j+3
2j+1−2k

)

−
∑

k

( 4i+1
2i−2k−1

)( 4j+3
2j−2k

)

)

= s2is2j+1

(

∑

k

( 2i
i−k

)(2j+1
j−k

)

−
∑

k

( 2i
i−k−1

)(2j+1
j−k

)

)

= s2is2j+1

(

∑

k

(

(

2i
i−k

)

+
(

2i
i−k−1

)

)

(

2j+1
j−k

)

− 2
∑

k

(

2i
i−k−1

)(

2j+1
j−k

)

)

= s2is2j+1

(

∑

k

(2i+1
i−k

)(2j+1
j−k

)

− 2
∑

k

( 2i
i−k−1

)(2j+1
j−k

)

)

.

Using parity arguments and the recursion s2i = (−1)isi, s2j+1 = sj we get
for i even

r2i,2j+1 = s2is2j+1

(

∑

k(−1)k
(2i+1

i−k

)(2j+1
j−k

)

+

+2
∑

k

(

(

2i+1
i−2k−1

)

−
(

2i
i−2k−2

)

)

(

2j+1
j−2k−1

)

)

= sisj

(

∑

k(−1)k
(2i+1

i−k

)(2j+1
j−k

)

+ 0
)

= ri,j .

Similarly, for i odd we have

r2i,2j+1 = −s2is2j+1

(

∑

k(−1)k
(2i+1

i−k

)(2j+1
j−k

)

+

−2
∑

k

(

(

2i+1
i−2k

)

−
(

2i
i−2k−1

)

)

(

2j+1
j−2k

)

)

= sisj

(

∑

k(−1)k
(2i+1

i−k

)(2j+1
j−k

)

+ 0
)

= ri,j .

Finally, the above computations together with induction on i + j show that
ri,j = 0 except if i + j = 2k − 1 for some k ∈ N. In this case we get ri,j = 1
which proves the result. 2

Proof of assertion (ii) in Theorem 1.2. Assume that L(2n+1) is

given by

(

A
B A

)

. (This holds clearly for n = 0.)

We have for 0 ≤ i, j < 2n+1

(

2(i + 2n+1) + 1

(i + 2n+1) − (j + 2n+1)

)

=

(

2i + 2n+2 + 1

i − j

)

≡

(

2i + 1

i − j

)

(mod 2)

since 2i + 1 < 2n+2. This shows already that L(2n+2) is of the form
(

Ã

B̃ Ã

)

with Ã = L(2n+1).
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Consider now a binomial coefficient of the form
(

2(2n+1 + i) + 1

(2n+1 + i) − j

)

=

(

2n+2 + 2i + 1

2n+1 + i − j

)

with 0 ≤ i, j < 2n+1 which is odd. This implies i + j + 1 ≥ 2n+1 since
otherwise (2n+1 + i)−j < (2n+1 + i)+j +1 < 2n+2 < 2n+2 +2i+1 and there
must therefore be a carry when adding the binary integers ((2n+1 + i) − j)
and ((2n+1 + i) + j + 1).

Two such binary integers ((2n+1 + i) − j) and ((2n+1 + i) + j + 1) add
thus without carry if and only if the binary integers (2n+2 + 2n+1 + i − j)
and (2n+1 + i + j + 1 − 2n+2) add without carry. This shows the equality

(

2(2n+1 + i) + 1

(2n+1 + i) − j

)

≡

(

2(2n+1 + i) + 1

(2n+1 + i) − (2n+2 − 1 − j)

)

for 0 ≤ i, j < 2n+1. Geometrically, this amounts to the fact that the block
B̃ is the vertical mirror of the block Ã and this symmetry is preserved by
the BA0BAB−construction. 2

BA0BAB−proof of assertion (i). We have









1
1 1
0 1 1
1 1 1 1

















1
−1

1
−1

















1 1 0 1
1 1 1

1 1
1









=









1 1 0 1
1 0 −1 0
0 −1 0 0
1 0 0 0









and conjugation by









1
1

−1
1









yields









1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0









.

The proof is now by induction using the BA0BAB−construction of L.
Writing Ã = Da At and B̃ = Da Bt (with Da denoting the obvious subma-
trix of finite size of the previously infinite matrix Da) we have









A
B A
0 B A
B A B A

















Ã B̃ 0 B̃

Ã B̃ Ã

Ã B̃

Ã








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=









AÃ AB̃ 0 AB̃

BÃ BB̃ + AÃ AB̃ BB̃ + AÃ

0 BÃ BB̃ + AÃ BÃ + AB̃

BÃ BB̃ + AÃ AB̃ + BÃ 2BB̃ + 2AÃ









.

We have BB̃ + AÃ = 0 by induction. The result is now correct up to signs
if AB̃ = −BÃ.

We conjugate now this last matrix by the diagonal matrix with diagonal
entries s0, . . . , s2n+2−1 which we can write using blocks of size 2n in the form:









Dα

Dω

−Dα

Dω









.

We get (after simplification using induction and the assumption AB̃ =
−BÃ)









DαAÃDα DαAB̃Dω 0 DαAB̃Dω

DωBÃDα 0 −DωAB̃Dα

0 −DαBÃDω

DωBÃDα









.

Supposing the identity AB̃ = −BÃ we get

−DαBÃDω = DαAB̃Dω and − DωAB̃Dα = DωBÃDα

which have the correct form (one’s on the antidiagonal and zeros everywhere
else) by induction.

We have yet to prove that AB̃ = −BÃ. Writing A =

(

a
b a

)

, B =
(

b
b a

)

and Ã = Da At, B̃ = Da Bt we have

AB̃ =

(

a
b a

)(

b̃

b̃ ã

)

=

(

0 ab̃

ab̃ 0

)

and

BÃ =

(

0 b
b a

)(

ã b̃
0 ã

)

=

(

0 bã
bã 0

)

which proves AB̃ = −BÃ since ab̃ = −bã by induction. 2
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7 Proof of Theorem 1.3

Denote by De the diagonal matrix with diagonal coefficients 1, 0, 1, 0, 1, 0, . . . , 1, 0,
and by Do = 1−De the diagonal matrix with coefficients 0, 1, 0, 1, 0, 1, . . . , 0, 1,.
We have thus 1 = De+Do and Da = De−Do. The main ingredient for prov-
ing Theorem 1.3 is the following proposition which is also of independent
interest.

Proposition 7.1 We have

M De L = A + De, M Do L = A + Do

where A is the strictly lower triangular matrix with coefficients ai,j = 1 if
i > j and ai,j = 0 otherwise.

Proof. We denote by αi,j = (M De L)i,j respectively βi,j = (M Do L)i,j
the corresponding coefficients of both products. The proof is by induction
on i + j. Obviously, αi,j = βi,j = 0 for i < j. The proof for i = j is obvious
since M and L are lower triangular unipotent matrices. Consider now for
i > j

αi,j =
∑

k

(

i + 2k

4k

)(

4k + 1

2k − j

)

.

(recall that mi,k =
(

i+k
2k

)

≡
(

i+k
2k

)

(mod 2) and lk,j =
(

2k+1
k−j

)

≡
(

2k+1
k−j

)

(mod 2)).
Since

(

2i + 2k

4k

)

=

(

2i + 1 + 2k

4k

)

and

(

4k

2k − 2j

)

=

(

4k + 1

2k − 2j

)

=

(

4k + 1

2k − (2j − 1)

)

we have

αi,j =
∑

k

(

⌊i/2⌋ + k

2k

)(

2k

k − ⌊(j + 1)/2⌋

)

=
∑

k, k≡⌊(j+1)/2⌋ (mod 2)

(

⌊i/2⌋ + k

2k

)(

2k + 1

k − ⌊(j + 1)/2⌋

)

=

{

α⌊i/2⌋,⌊(j+1)/2⌋ if ⌊(j + 1)/2⌋ ≡ 0 (mod 2) ,

β⌊i/2⌋,⌊(j+1)/2⌋ if ⌊(j + 1)/2⌋ ≡ 1 (mod 2) .

We have similarly

βi,j =
∑

k

(

i + 2k + 1

4k + 2

)(

4k + 3

2k + 1 − j

)

=
∑

(

2⌊(i − 1)/2⌋ + 1 + 2k + 1

4k + 2

)(

4k + 3

2k + 1 − 2⌊j/2⌋

)
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=
∑

k, k≡⌊(i−1)/2⌋ (mod 2)

(

⌊(i − 1)/2⌋ + k + 1

2k + 1

)(

2k + 1

k − ⌊j/2⌋

)

=
∑

k, k≡⌊(i−1)/2⌋ (mod 2)

(

⌊(i + 1)/2⌋ + k

2k

)(

2k + 1

k − ⌊j/2⌋

)

=

{

α⌊(i+1)/2⌋,⌊j/2⌋ if ⌊(i − 1)/2⌋ ≡ 0 (mod 2) ,

β⌊(i+1)/2⌋,⌊j/2⌋ if ⌊(i − 1)/2⌋ ≡ 1 (mod 2) .

except if ⌊(i − 1)/2⌋ = ⌊j/2⌋ = s where

∑

k, k≡s (mod 2)

(

s + k + 1

2k + 1

)(

2k + 1

k − s

)

= 1

since only k = s yields a non-zero contribution. This ends the proof. 2

Proof of assertion (i) in Theorem 1.3 Using the notations of Propo-
sition 7.1 we have

M Da L = (M De L) − (M Do L) = (A + De) − (A + Do) = Da

which shows that Da M Da = L−1 and ends the proof. 2

Proof of assertion (ii) in Theorem 1.3 We have

mi,j =

(

i + j

2j

)

=

(

i + j + 2n+2

2j + 2n+2

)

= mi+2n+1,j+2n+1

for i, j < 2n+1. This shows (together with induction) that the lower right

corner of M(2n+2) is given by

(

A′

B′ A′

)

and has thus the correct form.

In order to prove the recurrence formula for the lower left corner, we
remark that B′ is by induction the horizontal mirror of A′. We have thus to
show that mi+2n+1,j = m2n+1−1−i,j or equivalently that

(

2n+1 + i + j

2j

)

≡

(

2n+1 − 1 − i + j

2j

)

(mod 2)

for 0 ≤ i, j < 2n+1.
Consider

(2n+1 + i + j)(2n+1 + i + j − 1) · · · (2n+1 + i − j + 1)

(2j)!

for 0 ≤ i, j < 2n+1. Since all terms of the numerator are < 2n+2 we have
(

2n+1 + i + j

2j

)

≡ (2n+1+i+j−2n+2)···(2n+1+i−j+1−2n+2)
(2j)! (mod 2)

≡ (2n+1−i−j)(2n+1−i−j+1)···(2n+1−i+j−1)
(2j)! (mod 2)

≡
(2n+1−1−i+j

2j

)

(mod 2)
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which ends the proof. 2

BA0BAB−proof of assertion (i) in Theorem 1.3 Computing L(4) Da M(4)
(with Da denoting a diagonal matrix with alternating entries 1,−1, 1,−1, . . .
of the correct size) we have









1
1 1
0 1 1
1 1 1 1

















1
−1

1
−1

















1
1 1
1 1 1
1 0 1 1









= Da .

Writing









Ã′

B̃′ Ã′

Ã′ B̃′ Ã′

B̃′ 0 B̃′ Ã′









= Da









A′

B′ A′

A′ B′ A′

B′ 0 B′ A′









we have








A
B A
0 B A
B A B A

















Ã′

B̃′ Ã′

Ã′ B̃′ Ã′

B̃′ 0 B̃′ Ã′









=









AÃ′

BÃ′ + AB̃′ AÃ′

BB̃′ + AÃ′ BÃ′ + AB̃′ AÃ′

2BÃ′ + 2AB̃′ AÃ′ + BB̃′ BÃ′ + AB̃′ AÃ′









=









Da

0 Da

BB̃′ + AÃ′ 0 Da

0 AÃ′ + BB̃′ 0 Da









by induction.
Since we have by induction AÃ′ = Da, it will be enough to show that

BB̃′ = −Da. Writing

B =

(

0 b
b a

)

and B̃′ =

(

ã′ b̃′

b̃′ 0

)

we get

BB̃′ =

(

0 b
b a

)(

ã′ b̃′

b̃′ 0

)

=

(

bb̃′ 0

bã′ + ab̃′ bb̃′

)

.

Since bã′ + ab̃′ = 0 by the computation above and bb̃′ = −aã′ by induction,
we get the result. 2
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8 ML and LM

As before, we denote by L and M the lower triangular unipotent matrices
with coefficients li,j,mi,j ∈ {0, 1} defined by

li,j ≡

(

2i + 1

i − j

)

(mod 2), mi,j ≡

(

i + j

2j

)

(mod 2)

for 0 ≤ i, j.

Proposition 8.1 The matrix R = M L has coefficients

ri,j =







0 if i < j
1 if i = j
2 if i > j

Proposition 8.2 The product LM yields a matrix which can recursively be
constructed by iterating

(

A
B A

)

7−→









A
B A
2A B A
2B 2A B A









starting with A = 1 and B = 2.

Assertion (i) of Theorem 1.3 implies of course easily the identities

(M L)−1 = Da M L Da and (L M)−1 = Da L M Da .

Proof of Proposition 8.1. This follows immediately from Proposition
7.1 since ML = (M De L) + (M Do L). 2

Proof of Proposition 8.2. Using the BA0BAB−construction of L
and M we have









A
B A
0 B A
B A B A

















A′

B′ A′

A′ B′ A′

B′ 0 B′ A′









=









AA′

BA′ + AB′ AA′

BB′ + AA′ BA′ + AB′ AA′

2BA′ + 2AB′ AA′ + BB′ BA′ + AB′ AA′









Computing

AA′ =

(

a
b a

)(

a′

b′ a′

)

=

(

aa′

ba′ + ab′ aa′

)

and

BB′ =

(

0 b
b a

)(

a′ b′

b′ 0

)

=

(

bb′

ba′ + ab′ bb′

)

shows AA′ = BB′ by induction. This finishes the proof by induction. 2
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9 Proof of Theorem 1.4

We prove Theorem 1.4 by showing that the n× n submatrix formed by the
first n rows and columns of the Stieltjes matrix associated with

∑∞
k=0 x2k

has determinant sn for all n.
Proof of Theorem 1.4 Let H and L be as in Theorem 1.2. We denote

by L− the infinite matrix obtained by deleting the first row of L. Denote
by C the matrix with coefficients ci,j = 1 if (i − j) ∈ {−1, 0} and ci,j = 0
otherwise (for 0 ≤ i, j).

Elementary properties of the Catalan triangle show now that L = L− C.
This implies that the finite matrix L−(n) formed by the first n rows and
columns of L− has determinant 1. Denoting by Ds+1(n) the n × n dia-
gonal matrix with entries s1, . . . , sn we see that the finite Stieltjes matrix
S(n) = Ds(n) (L(n))−1Ds(n) Ds+1(n) L−(n) Ds(n) associated with H has
determinant sn ∈ ±1.

Easy computations show that det(H(2)) = −1 and det(H(2k)) = 1 for
0 ≤ k 6= 1. We have also det(H(2k + a)) = (−1)a det(H(2k − a)) for

0 ≤ a < 2k. This shows that det(H(n)) = (−1)(
n

2) and implies that the
Stieltjes matrix associated with H is of the form

S(n) =















1 1
−1 d2 1

−1 d3 1
−1 d4 1

. . .
. . .

. . .















.

We have thus

sn = det(S(n)) = dn det(S(n − 1)) + det(S(n − 2)) = dnsn−1 + sn−2

for n > 1 which shows

dn =
sn − sn−2

sn−1
∈ {0,±2}, n > 1

and proves the result. 2

10 The shifted Hankel matrix

We consider the shifted Hankel matrix H̃ with coefficients h̃i,j ∈ {0, 1}, 0 ≤
i, j given by h̃i,j = 1 if i + j + 2 = 2k for some natural integer k ≥ 1
and h̃i,j = 0 otherwise. We describe the LU−decomposition of H̃. The
associated Stieltjes matrix can be recovered from Theorem 1.1 by setting
x1 = x2 = x3 = . . . = x2.
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Define lower triangular matrices L̃ and M̃ with coefficients l̃i,j , m̃i,j ∈
{0, 1} given by l̃i,j ≡

(

2i+1
i−j

)

−
(

2i+1
i−j−1

)

≡
(

2i+2
i−j

)

(mod 2) and m̃i,j ≡
(

i+j+1
2j+1

)

(mod 2).
It easy to see that one has recursive formulae

l̃2i,2j = li,j ≡

(

2i + 1

i − j

)

(mod 2), l̃2i+1,2j+1 = l̃i,j

and

m̃2i,2j = mi,j ≡

(

i + j

2j

)

(mod 2), m̃2i+1,2j+1 = m̃i,j .

The products L̃ M̃ and M̃ L̃ satisfy analogous recursive formulae.
In order to state the main result of this section we need also two sign-

sequences s̃0, s̃1, . . . and t̃0, t̃1 with s̃i, t̃i ∈ {±1}. The sequence s̃i is recur-
sively defined by

s̃2i = (−1)i and s̃2i+1 = s̃i

and is obtained by removing the initial term of the famous paperfolding
sequence

1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1,−1, 1,−1,−1, . . .

describing the peaks and valleys in a strip of paper which has iteratedly
been folded (with all foldings executed in a similar way), see e.g. [1], [2] or
[8].

The sequence t̃i is defined by t̃0 = 1 and

t̃2i+1 = t̃i, t̃4i = (−1)i t̃2i, t̃4i+2 = t̃2i .

As always, we denote by Ds̃, respectively Dt̃ the diagonal matrices with
diagonal entries s̃0, s̃1, . . . respectively t̃0, t̃1, . . ..

Theorem 10.1 (i) We have

Dt̃ L̃ Ds̃ L̃t Dt̃ = H̃ .

(ii) We have
L̃ Ds̃ M̃ = M̃ Ds̃ L̃ = Ds̃ .

Proof. Let ri,j be the coefficient (i, j) of the matrix product Dt̃ L̃ Ds̃ L̃t Dt̃.
Since l̃i,j = 0 if i 6≡ j (mod 2) we have easily that ri,j = 0 if i 6≡ j
(mod 2). For r2i,2j the computation reduces to assertion (i) of Theorem 1.2

since l̃2i,2j =
( 4i+2
2i−2j

)

=
(2i+1

i−j

)

and t̃2i = si.
For r2i+1,2j+1 we get

s̃2i+1s̃2j+1
∑

k

( 4i+4
2i+1−2k−1

)

t̃2k+1

( 4j+4
2j+1−2k−1

)

= s̃is̃j
∑

k

(2i+2
i−k

)

t̃k
(2j+2

j−k

)

= ri,j
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which proves assertion (i) by induction on i + j.
In order to prove assertion (ii), we denote by ri,j the coefficient (i, j) of

the product L̃ Ds̃ M̃ . For i 6≡ j (mod 2) we have l̃i,j =
(

2i+2
i−j

)

= m̃i,j =
(

i+j+1
2j+1

)

= 0. This shows that ri,j = 0 if i 6≡ j (mod 2). For r2i,2j we have

∑

k

(

4i + 2

2i − 2k

)

s̃2k

(

2k + 2j + 1

4j + 1

)

=
∑

k

(

2i + 1

i − k

)

(−1)k
(

k + j

2j

)

=

{

0 if i 6= j
(−1)i if i = j

by Theorem 1.3 which proves assertion (ii) in this case.
For r2i+1,2j+1 we get

∑

k

(

4i + 4

2i + 1 − 2k − 1

)

s̃2k+1

(

2k + 2j + 3

4j + 3

)

=
∑

k

(

2i + 2

i − k

)

s̃k

(

k + j + 1

2j + 1

)

= ri,j =

{

0 if i 6= j
s̃i = s̃2i+1 if i = j

which proves the result by induction on i + j. 2

10.1 BA0BAB−constructions for L̃ and M̃

Denote by L̃0 the infinite strictly lower triangular matrix obtained by adding
a first row of zeros to L̃. We define also M̃0 by adding a first row of zeros
to M̃ .

It can be shown that the matrix L̃0 is obtained by iterating

(

A
B A

)

7−→









A
B A
0 B A
B A B A









where one starts with with

(

A
B A

)

=

(

0 0
1 0

)

.

Similarly, M̃0 is obtained by iterating

(

A
B A

)

7−→









A
B A
A B A
B 0 B A









starting with

(

A
B A

)

=

(

0 0
1 0

)

.
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11 Uniqueness

Sequences with generating function

∞
∑

k=0

ǫk x2k

, ǫi ∈ {±1}

are bijectively related to the set of all paperfolding sequences and can be
characerized in terms of Hankel matrices as follows:

Proposition 11.1 Let s0, s1, . . . be a sequence with si ∈ {±1, 0} such that
det(H(n)),det(H̃(n)) = ±1 for all n where H(n) and H̃(n) have coefficients
hi,j = si+j and h̃i,j = si+j+1 for 0 ≤ i, j < n. Then

∑∞
k=0 sk xk+1 =

∑∞
k=0 ǫk x2k

for a suitable choice ǫ0, ǫ1, . . . ∈ {±1}.

Proof. Computing det(H(n)) (mod 2) determines s2n−2 (mod 2) and
computing det(H̃(n)) (mod 2) determines s2n−1 (mod 2). This shows

that
∑∞

k=0 sk xk+1 ≡
∑∞

k=0 x2k

(mod 2) and the signs can of course be
chosen arbitrarily. 2

I thank J.P. Allouche, M. Mendès France and J. Shallit for helpful re-
marks and comments.
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