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Abstract. Informed by insights from quantum chaos theory, three approaches for
estimating finite-Larmor-radius (FLR) stabilization of ideal magnetohydrodynamic
(MHD) instabilities are discussed: phase space criteria based on the Weyl formula,
“pseudo-FLR” modifications of MHD to suppress large perpendicular wavenumbers,
and inclusion of drift corrections to the dispersion relation.

PACS numbers: 52.35.Bj,05.45.Mt

1. Introduction

It is well known [1] that quantum chaos theory has applications in classical wave physics,

such as in microwave cavities and in acoustics, but its potential for providing new insights

for characterizing plasma waves in complex geometries has been little explored.

One signature of quantum chaos is the failure of semiclassical quantization due

to the occurrence of chaotic ray paths in the Wentzel–Kramers–Brillouin (WKB)

approximation. Another is the appearance of level repulsion in the statistics of

the separation between nearest-neighbour eigenvalues. Preliminary results [2] on the

analysis of spectral datasets of ideal magnetohydrodynamic (MHD) interchange growth

rates for a Mercier-unstable stellarator case, studied using the CAS3D code, indicate

evidence of level repulsion. However a careful analysis of the spectrum of ideal

interchange modes in a cylindrical approximation [3] reveals non-generic behaviour of

the spectral statistics due to the peculiarities of ideal MHD, such as the importance

of number-theoretic effects on the distribution of rational surfaces in the rotational

transform profile. Thus caution must be applied in applying conventional quantum

chaos theory.

Another barrier to application of quantum chaos theory is that the addition of

more realistic physics than is included in ideal MHD, such as resistivity [4], makes the

eigenvalue problem non-Hermitian and the spectrum complex. This makes statistical

analysis of the spectrum difficult.
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In this paper we discuss three approaches to finding a compromise approach that

retains the simplicity of ideal MHD, yet allows an estimate of the effect of finite-Larmor-

radius (FLR) effects in a non-dissipative way

The crudest approach is based on phase-space volume (Weyl formula [5, 3])

considerations. A slightly more sophisticated approach [2] is to make a minimal

modification to ideal MHD in order to suppress short perpendicular wavelengths in

a natural way, which we call pseudo-FLR regularization. The third way [6] is to include

a drift correction in the dispersion relation.

Although our goal is the analysis of three-dimensional equilibria, much insight can

be found by a careful study of the cylindrical limit. We study a plasma in which the

Suydam criterion [7] for the stability of interchange modes is violated, so the number

of unstable modes tends to infinity as the short-wavelength cutoff tends to zero. The

eigenvalue equation for a reduced MHD model (effectively cylindrical) of a stellarator is

presented in Sec. 2.

In Sec. 3 we discuss pseudo-FLR regularization effected by solving the eigenvalue

problem in a restricted domain in radial Fourier space, such that k⊥ρ∗ < 1. In Sec. 4 we

discuss the Weyl formula when the poloidal mode number m is restricted to be less than

or equal to a cutoff, mmax. Choosing mmax on the basis of FLR considerations leads to

a stabilization criterion. In Sec. 5 we briefly discuss another form of FLR stabilization

obtained by adding a drift correction to the dispersion relation.

2. Cylindrical model eigenvalue equation

We use the model of [3], nondimensionalizing by measuring the radius r in units of

the minor radius of the plasma column, a, and the time t in units of the poloidal

Alfvén time τA = R0
√
µ0ρ/B0, where B0 is the toroidal magnetic field and µ0 is the

permeability of free space. Thus the frequency ω and growth-rate γ are in units of

τ−1
A . Defining λ ≡ ω2 ≡ −γ2 we seek the spectrum of λ-values satisfying the scalar

generalized eigenvalue equation

Lϕ = λMϕ (1)

under the boundary conditions ϕ(0) = 0 at the magnetic axis and ϕ(1) = 0, appropriate

to a perfectly conducting wall at the plasma edge. The operators L and M given below

are Hermitian under the inner product defined, for arbitrary functions f and g satisfying

the boundary conditions, by

〈f, g〉 ≡
∫ 1

0
f ∗(r)g(r) r dr . (2)

The weight factor r in the inner product is a Jacobian factor coming from d3x = rdrdθdz.

The operator L is given by

L ≡ − 1

r

d

dr
(n−mι-)2r

d

dr

+
m2

r2

[
(n−mι-)2 −DS +

ϊ-

m
(n−mι-)

]
, (3)
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where the Suydam stability parameter DS is

DS ≡ −
β0

2ε2
p′(r)Ω′(r) , (4)

with ε ≡ a/R0 � 1 the inverse aspect ratio, p(r) the plasma pressure normalized to

unity at r = 0, β0 ≡ 2µ0p0/B
2
0 the ratio of plasma pressure to magnetic pressure at the

magnetic axis, and Ω′ the average field line curvature. Here

Ω ≡ ε2N
(
r2ι- + 2

∫
rι-dr

)
(5)

where the rotational transform is produced by helical current windings making N � 1

turns as ζ goes from 0 to 2π, Ω′(r) giving the averaged field-line curvature. (Note

that ε cancels out in DS.) We use the notation ḟ ≡ rf ′(r) for an arbitrary function

f , so ι̇- ≡ rdι/dr is a measure of the magnetic shear and ϊ- measures the variation of

the shear with radius. The term Ω is a measure of the “magnetic hill” [8] that allows

pressure energy to be released by interchanging field lines, thus driving the interchange

instability.

The criterion for interchange instability is G > 1/4, where

G ≡ DS

ι̇-2
. (6)

The operator arising from the inertial term in the equation of motion,

M ≡ −∇2
⊥ = −1

r

d

dr
r
d

dr
+
m2

r2
, (7)

is easily seen to be positive definite under the inner product Eq. (2).

3. Pseudo-FLR regularization

Here we seek only a minimal modification of Eq. (1) that has some physical basis but

makes as little change to ideal MHD as possible. To preserve the Hermitian nature

of ideal MHD we cannot use the drift correction used for estimating FLR stabilization

of interchange modes by Kulsrud [9]. However it is possible to effect a pseudo-FLR

regularization of ideal MHD by restricting k⊥ to a disk of radius less than or of the

order of the inverse ion Larmor radius. In our nondimensionalized, large-aspect ratio

model this implies

(k2
θ + k2

r)
1/2ρ∗ ≤ α∗ , (8)

where kr and kθ are the radial and poloidal components of the wavevector, respectively,

ρ∗ is the ion Larmor radius (at a typical energy) in units of the minor radius, and α∗ is

a constant of order unity, taken to be exactly 1 in this paper.

In drift-wave turbulence studies the ion energy used in defining ρ∗ is taken to be the

electron temperature, here assumed independent of r. It is consistent with gyrokinetic

calculations of electromagnetic drift instabilities to take α∗ ≈ 1, [10]. Henceforth we

take α∗ ≡ 1. Typical physical values for ρ∗ range between 10−1 for a small laboratory

experiment to 10−4 for a projected fusion reactor.
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Figure 1. Exact, unregularized eigenvalues (squares) and high-m, pseudo-FLR
regularized eigenvalues (triangles) in the case µ = 1/2, radial mode number l = 0
with the short-wavelength cutoff parameter ρ∗ = 0.01. The profiles are the same as
studied in [3].

To apply Eq. (8) precisely we need to relate kr and kθ to the eigenvalue problem. We

see that kθ = m/r. For defining kr our first approach is to use Fourier transformation in

the radial direction. This is only practical in the large-m limit, when modes are localized

near the resonant surfaces r = rµ where n−mι-(rµ) = 0, so we restrict discussion of the

Fourier method to leading order in the 1/m expansion.

We use the stretched radial coordinate x ≡ m(r−rµ)/rµ. Then we define kθ ≡ m/rµ

and kr ≡ mκ/rµ, where κ is the Fourier-space independent variable conjugate to x,

ϕ(x) =
∫ ∞

−∞

dκ

2π
ϕκe

iκx . (9)

With the substitutions d/dx 7→ iκ, x 7→ id/dκ, and using the fact that κd/dκ and

(d/dκ)κ ≡ 1 + κd/dκ commute, we have[
− d

dκ
(1 + κ2)

d

dκ
+ Γ2(1 + κ2)−G

]
ϕκ = 0 , (10)

where G is defined in Eq. (6) and Γ ≡ γ/ι̇-(rµ), both evaluated at r = rµ. The

transformation κ = sinh η then leads back to the Schrödinger-like eigenvalue equation

studied in [3],

d2ψ

dη2
+ [G− 1

4
− 1

4
sech2 η − Γ2 cosh2 η]ψ = 0 , (11)

with η now to be interpreted as a distorted Fourier-space independent variable, rather

than as a real-space coordinate!

Equation (8) implies that Eq. (10) is to be solved on the domain −κmax ≤ κ ≤ κmax

where

κmax(µ) ≡

( rµ

mρ∗

)2

− 1

1/2

. (12)
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Figure 2. Lattice of quantum numbers on which the part of the spectrum between the
“ground state” and the threshold for the entry of the l = 1 mode is defined, and the
contours of constant eigenvalue (λ or γ), which are seen to be unbounded, asymptoting
at large m to straight lines passing through the origin.

This exists provided |m| < mmax, where

mmax(µ) ≡ rµ/ρ∗ . (13)

Analogously to quantum mechanical box-quantization we use Dirichlet boundary

conditions at ±κmax.

As illustrated in Fig. 1 this procedure removes the accumulation point at m = ∞,

completely stabilizing the interchange modes before m reaches mmax = 50 in the case

shown. With this modification to the interchange dispersion relation the eigenvalue

isocurves in the m,n plane no longer radiate out to infinity as in Fig. 2, but instead

form closed curves just as for generic wave systems [11]. Thus we would expect that the

spectral statistics would also be generic (i.e. Poisson in this separable case), and this

explains the approximately exponential behaviour of the distribution of nearest neighour

eigenvalue separations observed in [2].

4. The Weyl formula and FLR stabilization

For fixed radial mode number l and large mmax the number of eigenvalues Nl(µ) in an

interval of the ratio n/m between µ and the value of n/m, µl, giving the maximum

asymptotic growth rate is asymptotically equal to the area in the m,n plane of the

triangle bounded by the lines n = µm, n = µlm and m = mmax (see Fig. 2). That is,

Nl(µ) ∼ 1
2
|µ− µl|m2

max.
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Since contours of constant λ (and γ) asymptote to lines of constant µ as m→∞ we

can estimate the number of eigenvalues between two values of λ (or γ) by inverting the

function λµ,l for µ and substituting this into the above expression for Nl(µ). The inverse

is double-valued: µ = µ+
l (λ) > µl and µ−l (λ) < µl. Then the number of eigenvalues ≤ λ

is approximately

N l(λ) ≡ 1
2
[µ+(λ)− µ−(λ)]m2

max . (14)

This is the analog of the Weyl formula [12, p. 258] for the integral of the smoothed

spectral density (“density of states”). The general argument is based on the idea that,

when the number of eigenvalues is large, the number of eigenvalues below a given value

λ depends asymptotically only on the phase-space volume enclosed by the isosurface

λ = const in the semiclassical x,k phase space, irrespective of whether the rays are

chaotic or regular. The corresponding formula for ballooning modes in general three-

dimensional geometry was given in [5].

As shown in [2] the formula Eq. (14) gives good agreement with the coarse-grained

distribution of a large dataset of eigenvalues, but of course does not capture the fine

detail. Nevertheless we can use it to make a rough estimate of FLR stabilization by

using the criterion that the system is stable to the mode in question if not even one

mode with eigenvalue less than the marginal stability value λ = 0 can be supported,

N l(0) < 1 , (15)

where N l(λ) is computed from Eq. (14) with mmax taken to be mmax = 1/ρ∗ [cf.

Eq. (13)].

For determining the stability threshold we can restrict attention to the most

unstable radial eigenmode, l = 0. Approximating λµ,0 = λ0 + 1
2
(∂2λµ0,0/∂µ

2
0)(µ − µ0)

2

we get µ±0 (λ) = µ0±
√

2(λ−λ0)
1/2/(∂2λµ0,0/∂µ

2
0)

1/2. Substituting in Eqs. (14) and (15)

leads to the FLR stabilization criterion

γmax < ρ4
∗
∂2γ

∂µ2
, (16)

where the partial derivatives are evaluated at the position of the maximum growth rate,

γmax ≡ (−λ0)
1/2.

5. Drift-corrected dispersion relation

Finite Larmor radius also affects stability through the introduction of drift corrections,

which can be roughly estimated [13, 6] by changing the ideal-MHD dispersion relation

ω2 = λl,m,n to

ω(ω − ω∗) = λl,m,n , (17)

where ω∗ is an appropriate drift frequency. Strictly (for high-m) this should be evaluated

at the rational surface where n = ι-m, where the mode is localized, but as a global

estimate for ω∗ let us take |∇p| ∼ p/a. Then our nondimensionalized drift frequency
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may be estimated as ω∗ ∼ mρ2
∗ωciτA. The new factor ωciτA shows this is an inherently

different FLR effect from that discussed in the previous sections.

The dispersion relation Eq. (17) is a quadratic equation and can have complex roots,

making semiclassical ray tracing difficult. However, if the drift effect is sufficiently strong

it can stabilize the instabilities, making ω real. It is found [14] that this makes the three-

dimensional ray dynamics much closer to integrable than found when regularizing using

a sharp cutoff, as in [5].

6. Conclusion

The simple phase space criterion is the most practical way to estimate FLR stabilization

from ideal-MHD calculations, either global eigenmode computations or localized

ballooning equation estimates.

The pseudo-FLR method may lead to improvements in the design of global ideal-

MHD eigenvalue codes that make the spectra more physical, and also makes MHD more

generic in the quantum chaos sense, thus allowing the application of standard quantum

chaos methods.

Finally, the drift-corrected dispersion relation method gives insight into the relation

of the MHD spectrum to spectra calculated with kinetic codes.
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