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Abstract 

In thermonuclear fusion research using magnetic confinement, the tokamak is the leading 

candidate for achieving conditions required for a reactor. An international experiment, ITER 

is proposed as the next essential and critical step on the path to demonstrating the scientific 

and technological feasibility of fusion energy. ITER is to produce and study plasmas 

dominated by self heating. This would give unique opportunities to explore, in reactor 

relevant conditions, the physics of α-particle heating, plasma turbulence and turbulent 

transport, stability limits to the plasma pressure and exhaust of power and particles. Important 

new results obtained in experiments, theory and modelling, enable an improved understanding 

of the physical processes occurring in tokamak plasmas and give enhanced confidence in 

ITER achieving its goals. In particular, progress has been made in research to raise the 

performance of tokamaks, aimed to extend the discharge pulse length towards steady-state 

operation (advanced scenarios). Standard tokamak discharges have a current density 

increasing monotonically towards the centre of the plasma. Advanced scenarios on the other 

hand use a modified current density profile. Different advanced scenarios range from (i) 

plasmas that sustain a central region with a flat current density profile (zero magnetic shear), 

capable of operating stationary at high plasma pressure, to (ii) discharges with an off axis 

maximum of the current density profile (reversed magnetic shear in the core), able to form 

internal transport barriers, to increase the confinement of the plasma. The physics of advanced 

tokamak discharges is described, together with an overview of recent results from different 

tokamak experiments. International collaboration between experiments aims to provide a 
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better understanding, control and optimisation of these plasmas. The ability to explore 

advanced scenarios in ITER is very desirable, in order to verify the result obtained in 

experiments today and to demonstrate the potential to significantly increase the economic 

attractiveness of the tokamak. 

Introduction 

The ITER project [1] will provide a basis for the scientific and technological feasibility of a 

fusion power reactor. It aims to create for the first time, sustained deuterium/tritium plasma, 

predominantly heated by α-particles produced by the fusion reactions (“burning” plasmas). It 

is a major step in the world fusion program, and a culmination of almost fifty years of 

magnetic confinement fusion research. 

An essential feature of a tokamak plasma confinement scheme is the presence of a toroidal 

current in the plasma itself [2]. Normally, this current is established and maintained in the 

plasma by a transformer in the centre of the device (inductive drive). This implies that the 

configuration can be maintained only for a limited time, determined by the magnetic flux 

available for only cycle of the transformer coil. An increase in pulse length, or steady state 

operation, can be achieved if the toroidal plasma current is driven non-inductively. Heating 

and current-drive methods do exist to do this; the injection of energetic neutral atoms and 

powerful radio-frequency radiation. In addition, the plasma itself produces a non-inductive 

current associated with density and temperature gradients. This is the diffusion-driven, or 

bootstrap current [3]. 

ITER is a tokamak and represents an extrapolation of approximately a factor of 2 in linear 

dimension from the largest experiments today (see Table I). It will contain a plasma volume 

of more than 800 m
3
 using a magnetic field of 5.3 T. ITER is designed as an experimental 

device with extensive diagnostics and a considerable flexibility in shaping, heating/current 

drive and fuelling methods. These are essential for accommodating uncertainty in projection, 

for exploring new operation regimes attractive for a reactor and for investigating new aspects 

of plasma physics, which may arise from e.g. significant α-particle heating, large size and 

extended burn. 

The principal physics objectives of ITER [4] are:  

(i)  To achieve extended burn using inductively driven plasmas with the ratio of 
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fusion power to auxiliary heating power (Q) of at least 10 for a range of operation 

scenarios and with a duration sufficient to achieve stationary conditions on the 

timescales characteristic of plasma processes.  

(ii)  To aim at demonstrating steady-state operation using non-inductive current 

drive with a ratio of fusion power to input power for current drive of at least 5. 

In addition, the possibility of higher Q operation will be explored if favourable confinement 

conditions can be achieved. The rules and methodologies for the projection of plasma 

performance to the scale of ITER have been basically formulated in the ITER Physics Basis 

[1], which has been developed from broadly based experimental and modelling activities 

within the magnetic fusion programmes of the ITER parties. 

It is also important to carry out engineering tests of components for future reactors, to test 

tritium breeding module concepts with the 14MeV neutron power load on the first wall ≥ 

0.5MWm
−2

 and fluence ≥ 0.3MWam
2
. Operation of ITER is planned in two phases: An 

experimental physics-oriented program lasting 10 years and including, sequentially, operation 

in hydrogen, deuterium, and deuterium-tritium mixtures, followed by a 10 year long 

technology-oriented program. This second phase depends on reliable schemes for long pulse 

or steady state operation to be developed in the first 10 years of ITER operation. In this 

respect, ITER faces significant physics and technical challenges during its construction period 

and operation phases. 

The reference scenario for ITER inductive operation is the H-mode [5], which has been 

observed in many tokamaks reliably and reproducibly. The properties of the H-mode have 

been investigated over the last 23 years, providing the basis for the achieving ITER’s primary 

goal of operation at Q=10 based on scaling laws for projection. The energy confinement time 

is predicted using the IPB98(y,2) scaling law [1], while the average density in discharges 

should reach at least ~85% of the Greenwald density limit for H-mode operation nGW = 10
20
 

Ip[MA]/πa[m]2 [6], where Ip (MA) is the plasma current, a (m) is the plasma minor radius. 

The standard ITER scenario does not allow conditions to be reached where the plasmas 

current is completely non-inductively driven, utilising the self generated bootstrap effect in 

the plasma. So called advanced scenarios in fusion experiments seek to improve confinement 

and stability over standard H-modes in order to maximise the bootstrap current. Important in 

tokamaks is the inverse rotational transform of a magnetic flux surface, the safety factor q. 
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Typically, for standard H-modes, q in the centre (q0) is the minimum q-value (qmin) and is just 

below 1, while q at the plasma boundary (q95, the safety factor at 95% of the plasma minor 

radius) is 3 or above. This safety factor q and the magnetic shear s=(r/q)dq/dr (with r the is 

the minor radius of the flux surface) play an important role in plasma stability and 

confinement. Key to the development of these scenarios is a tailoring and control of the 

current density profile. Advanced scenarios use a range of (non-monotonic) q-profiles as 

shown in Figure 1. It is of course possible to imagine a continuum of regimes between the 

reference non-inductive and inductive scenarios in which the current profile is modified 

externally but not completely driven by non-inductive means. 

To date, two main types of advanced regimes are being developed. First, the “steady-state” 

advanced scenario, should provide the basis for satisfying ITER’s second major goal of 

reaching Q=5 under fully non-inductive conditions. Typically these discharges have central q 

above 1.5, with either weak |q0-qmin| ~0.5 or strong q0>>qmin reversed magnetic shear [7-12]. 

This kind of q-profile is used to obtain internal transport barriers (regions of reduced transport 

in the core), which could provide sufficient bootstrap current for steady state operation. A 

second advanced regime, the so-called “hybrid” scenario, has a stationary current density 

profile with weak or low magnetic shear, q0~1 and q95~4 [13-16]. This allows operation at 

high values for normalised beta, βΝ = <β>aBT/Ip (<β>, volume averaged normalised pressure 

(p) in the tokamak β = p /(BT

2
/2µ0), BT the toroidal field). Operating at lower plasma current 

compared to the ITER reference scenario, this regime could lengthen the discharge duration 

substantially (although not steady-state) and could play a key role in the second 

(technological) phase of ITER operation, in case the challenging requirements for full non 

inductive operation can not be met. 

In the next sections of this paper, transport in tokamaks is described (section 2) as a physics 

basis for projection of the performance of the ITER reference scenario (section 3). This is 

followed, in section 4, by a description and overview of experiments with internal transport 

barriers. The hybrid scenario is presented in section 5. The results of an international 

collaboration activity to study and compare advanced scenarios are given in section 6, 

followed by an outlook for ITER and concepts for a fusion reactor (section 7). The results 

presented in this paper are summarised in section 8. 
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2. Transport and confinement in tokamaks 

Understanding transport in magnetised plasmas is important for the design of future fusion 

reactors. A theory of the classical collisional transport losses has been developed. However, it 

does not completely explain the transport across magnetic surfaces. Hence, additional 

processes driven by plasma turbulence are required to understand the cross-field transport in 

tokamaks. This turbulence is mainly driven by two main micro-instabilities: Ion Temperature 

Gradient (ITG) driven modes and Trapped Electron Modes (TEM) [17,18]. In the non-linear 

regime these produce particle, momentum, electron and ion heat transport. The main 

characteristic of these micro-instabilities is the existence of an instability threshold (critical 

gradient); with a strong increase in turbulent transport above the threshold, although a finite 

diffusivity persists even when the gradient is below this critical gradient. 

Over a significant part of the plasma cross-section, the logarithmic gradient of the temperature 

is close to the threshold; hence in this region the profiles are stiff. An exception to this is the 

edge of the plasma. Here energy transport across the plasma edge region is observed to 

decrease significantly when the input power is increased above a threshold value [2]. With 

this edge transport barrier (see Figure 2a), the total energy confinement of the plasma doubles 

(H-mode) over plasma without this edge transport barrier (L-mode). Access to the H-mode 

requires a configuration with a magnetic X-point so that the core plasma is separated from the 

plasma-wall interaction region, called divertor configuration. ITER is a divertor tokamak (see 

Figure 2b). 

The energy confinement in a magnetic confinement device is characterized by a global energy 

confinement time τE = W/P where W is the thermal energy stored in the plasma and P is the 

input power to the plasma. Integrating a critical gradient model over the plasma volume could 

give a prediction for the core energy content. However, a correct prediction of the total energy 

content of the plasma will still depend, strongly, on the edge pedestal, and the degree of 

stiffness of the transport model. Despite results from experiments today, the interplay between 

electron and ion heat channels is unclear so no firm conclusion can yet be drawn regarding 

profile stiffness in ITER. Hence, the applicability of a critical gradient model for predictions 

to ITER has to be further investigated. 

On the other hand, tokamaks with a range of sizes, operating parameters and heating powers 

have been constructed. Empirical scaling laws derived from confinement measurements of 
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these experiments are useful for predicting plasma performance in any new device. A global 

scaling has been derived for the thermal energy confinement time of H-mode plasmas using 

the IPB98(y,2) scaling law [1]. 

τIPB98(y,2) = 0.0562 HH98(y,2) Ip
0.93

 BT
0.15

 Pn
–0.69

 <ne,19>
0.41

 R0
1.97

 M
0.19

 κa
0.78

 ε0.58  
    (1) 

where <ne,19> (10
19

 m
-3
) is the line average electron density, Pn (MW) the net heating power, 

calculated from the total input power, subtracting radiation losses [1], R0 (m) denotes the 

major plasma radius, M (amu) the average hydrogenic ion mass, κa the plasma elongation 

defined as κa = V/(2π2
R0a

2
) with V being the plasma volume, and ε = a/R0 is the plasma 

inverse aspect ratio. 

The confinement of any H-mode plasma is then referred to this scaling using the confinement 

enhancement factor or H-factor (HH98(y,2)), which is the ratio of the observed confinement to 

the scaling. Scaling laws are widely used to predict the energy confinement time in next step 

devices, and are a basis for comparing results from various different experiments today. Since 

no knowledge of the heating, temperature or density profiles, or atomic physics for that 

matter, is built into the analysis, a degree of uncertainty still exists in predicting the 

confinement properties and plasma performance (see next section). The energy confinement 

time predicted for ITER by the IPB98(y,2) scaling is 3.7s (for 40 MW additional heating, see 

Table I) with one technical standard deviation of ±14% and 95% log non-linear interval 

estimate of ±28%. The uncertainty for ITER predictions is not only statistical. When written 

in dimensionless form, the global scaling laws can still yield information on the mechanisms 

that underlie turbulent transport. For example, the log-linear form of the scaling law is 

equivalent to assuming that a single turbulence mechanism with one scale size is responsible 

for the transport. This seems unlikely to be the case for H-modes, where the core region may 

be dominated by short wavelength turbulence of the gyroBohm type, and the behaviour in the 

edge region is possibly determined by magneto hydrodynamic instabilities determining the 

height and width of the edge transport barrier These two processes will scale differently with 

the main scaling parameter ρ∗, the normalized Larmor radius (ρ∗ = ρs/a, ρs =(miTs)
1/2
/eBT is 

the ion Larmor radius, mi is the ion mass and Ts the temperature). Hence rewriting the 

IPB(y,2) scaling using dimensionless variables suggests that electromagnetic effects are 

important, either in turbulence itself or via plasma instabilities: 

BT τIPB98(y,2) = (ρ*)−2.7 β−0.9 (ν*) −0.01 q−3,            (2) 
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where, ν* is the normalized collisionality defined as ν*= νeiqR/ε3/2vTe (νei the electron-ion 

collision frequency, vTe is the thermal electron velocity). However, observation that H-mode 

confinement scaling is closer to the gyroBohm expectation, is confirmed by recent dedicated 

experiments in the JET and DIII-D devices [19,20]. 

In addition, improved confinement discharges described in this paper reveal that transport 

results from a balance between driving terms (gradients) and stabilising effects such as 

magnetic shear and velocity shear. A particular example are so called reversed magnetic shear 

discharges, discussed in section 4. Here a reversal of the magnetic shear in the core of the 

plasma allows formation of internal transport barriers. Not only useful for optimising 

performance of plasmas with the aim of obtaining fully non-inductive operation of a tokamak, 

but also important for understanding transport. Models for transport, not only need to be able 

to predict confinement in standard discharges, but also the existence of zones of reduced 

transport in the core of advanced scenario discharges, a hard challenge for any model for the 

turbulent transport in fusion plasmas. On the other hand, scenarios with improved 

confinement will increase the confidence that the ITER targets can be met, despite uncertainty 

in predicting the confinement of a device that is an significant extrapolation of results 

obtained today. 

 

3. The ITER reference scenario 

The H-mode is a reproducible and robust mode of tokamak operation with a long-pulse 

capability, and has been recommended as a reference scenario for inductive Q~10 operation 

in ITER. Consolidation of this mode of operation is progressing well in experiments, with the 

aim of refining the fusion performance prediction and possibly finding ways to reach 

increased fusion power in ITER. Three main areas of research can be identified, and are 

summarised below: (i) operation at high plasma density, (ii) study and mitigation of Edge 

Localized Modes and (iii) the stability of the plasma. 

Operation at high plasmas density  

At plasma temperatures sufficient to sustain fusion reactions, it is advantageous to operate at 

high plasma density to ensure plasma purity together with good power and particle exhaust at 

the plasma periphery or divertor. However, density limits are observed in tokamak operation, 
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mainly determined by the physics of the edge plasma. For H-modes, a maximum density for 

the sustainment of the edge barrier is observed, the Greenwald density limit. Typically, H-

mode operation at densities approaching nGW is accompanied by a deterioration of the energy 

confinement. One of the major achievements in recent tokamak experiments [21] is the 

demonstration of H-modes with good energy confinement (HH98(y,2) ≈ 1) in plasmas with 

densities close to this Greenwald density. 

Study and mitigation of Edge Localized Modes  

In H-mode plasmas, so-called Edge Localised Modes (ELMs) periodically relax the edge 

pressure gradient (hence they are called ELMy H-modes). Moreover, stationary conditions 

can usually only be achieved with regular ELMs to control the particle behaviour. Most 

experiments observe so-called type I ELMs [22] with up to 10% of rapid (< 1ms) loss of 

stored energy in the plasma. As the ELM generates an energy pulse outward, this gives 

considerable concern for the lifetime of the plasma phasing components (the divertor) in a 

reactor scale device [23]. Extrapolating current ELM data to ITER, expected divertor target 

erosion rates are too excessive, although in recent estimates the expected ELM size is only a 

factor of 2 above the limit for target ablation (for carbon or tungsten targets) [24]. Hence, the 

mitigation of ELMs remains one of the priority research items for ITER. 

Stability of the plasma  

The safety factor q plays a key role in plasma stability [1]. Conventional H-modes, have 

monotonically decreasing q-profiles with q0 < 1. As a result, in the core of the plasma, 

periodic reconnections inside the q=1 surface, called sawtooth oscillations, flatten the 

pressure profile. Other magnetic (MHD) instabilities are observed at or near rational values of 

q. Neoclassical tearing modes (NTM’s), occur at low-order rational surfaces (e.g. q=3/2), 

driven unstable by the local gradient of the equilibrium current density, and give a loss (10%-

30%) of plasma stored energy. NTMs are often seeded by magnetic islands, resulting from a 

sawtooth collapse [25]. For the ITER reference scenario active means exist to stabilise, or 

reduce the impact of such modes; using electron cyclotron current-drive (ECCD). 

Prediction of ITER performance  

Sophisticated transport simulations codes are used for the calculation of the time evolution of 

plasma profiles (assumed toroidally axisymmetric) in a tokamak. Such plasma simulation 

codes are termed ´1.5D´ codes as the geometry of the magnetic surfaces is recomputed to be 

consistent with the detailed two-dimensional pressure balance of the plasma and magnetic 
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field. The performance of ITER is predicted by means of a 1.5D transport code ASTRA [26], 

using transport coefficients based either on theoretical models or a prescribed radial 

dependence normalized to fit the scaling law for the thermal energy [27]. 

Certain reference scenarios [28] have been defined for design purposes, and assessed with 

these 1.5D transport codes in order to determine the ‘envelope’ of performance within 

ITER’s capabilities. The ‘operation’ domain of one ITER scenario at 15 MA plasma 

current is given in Figure 3 where the fusion power is predicted for a range of the 

confinement enhancement HH98(y,2) in line with uncertainties in the energy confinement 

scaling. Curves for different values of βN are given, important for MHD stability and for the 

amount of fusion power (Pfusion) produced, as Pfusion increases with β
2
. A lower bound 

indicates a minimum amount of power required to sustain H-mode operation [29], together 

with an upper bound for the density (<ne>/nGW = 1.0) in H-modes. This gives maximum and 

minimum fusion power predictions of 560MW and 260MW, respectively for HH98(y,2)=1.0. 

The reference point for ITER is chosen at HH98(y,2) = 1 and <ne>/nGW = 0.85, expecting 400 

MW of fusion power at Q = 10 (see also Table I). This is at βN=1.8, deemed save for avoiding 

excessive NTMs, that would otherwise significantly reduce (up to 30%) the energy 

confinement. As seen from Figure 3, about 7% of confinement margin is required to achieve 

operation with Q = 10 for <ne>/nGW ≤ 0.85 (a save distance away from the density limit for 

H-modes). In this reference scenario, argon impurity dosing is used to keep the power flux to 

divertor region below 30 MW, which approximately corresponds to 5 MWm
-2
 of target heat 

load, acceptable for current divertor target designs. 

Although the realisation of the ITER working point has been demonstrated in experiments, 

optimisation continues, in particular in the three areas described at the beginning of this 

section. Part of this optimisation is also performed in research on the advanced scenarios 

presented in the remainder of this paper. 

 

4. Scenarios with internal transport barriers 

Obtaining stationary or steady state operation is key for advanced scenarios, but challenging 

as a tokamak maximises its fusion performance with inductive operation at high plasma 

current. Maintaining desired fusion performance (Pfusion ~ 400 MW for ITER) at lower plasma 
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current implies foremost operation at higher βN compared to the ITER reference scenario (βN 

= 1.8). In addition, operation at sufficient confinement ensures operation at Q ≥ 5, allowing 

the use of input powers >40 MW to control the profiles in the plasma. In order to satisfy these 

objectives for the ITER non-inductive regime, several conditions have to be satisfied 

simultaneously. In particular, significant external current drive is foreseen together with the 

bootstrap current. lower hybrid current drive, with the highest current drive efficiency, 

energetic neutral beam injection and electron cyclotron current drive are used in today 

experiments. Since the bootstrap current is the consequence of local pressure gradients and 

proportional to βp (βp=2µ0<p>a/<Bp>
2
 with <p>a the poloidal cross-section averaged plasma 

pressure and <Bp> the average poloidal magnetic field on the plasma boundary), most 

experiments tend to operate at low current and with internal transport barriers (ITBs). The 

physics of ITBs is a broad subject that is already covered by several overview papers [30,12]. 

Important is that ITB formation has a power threshold; which is the amount of power that is 

necessary to produce a barrier. This is similar to the observation of a power threshold to 

produce an edge transport barrier for H-mode plasmas, but not necessarily governed by the 

same physics processes. Turbulent transport reduction due to E×B shear (E is the local electric 

field in the plasma) flow is well documented [31,32]. Stabilisation results essentially from the 

shearing of turbulent convective cells, with two key ingredients playing a central role in the 

physics of the ITB formation: shear plasma flow and magnetic topology. Here, negative 

magnetic shear is known to decrease the drive for the turbulence, this effect is enhanced by 

the Shafranov shift of magnetic surfaces (also called α effect, α=-q2R(dβ/dr) is a measure of 

the Shafranov shift). Note that the velocity shear rate will be small in a reactor at the onset of 

an ITB, so that magnetic shear and Shafranov shift will have to be optimised to trigger the 

internal transport barrier. 

Reversed shear configurations are typically obtained by heating the plasma just after 

initiation, during the current ramp up phase with the current still diffusing in from the edge of 

the plasma. An increase in central temperature, using additional heating, slows down the 

current diffusion in the core, while the total current in the plasma is increasing towards the 

preset flat top value. This creates (transiently) an off-axis maximum for the current 

distribution in a tokamak. Additional current drive, a variation of the amount of central 

heating and changing the rate of rise of the plasma current allows different reversed shear 

configurations to be created. Once in these conditions enough additional heating is applied to 
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allow the an internal transport barrier to form, a positive loop takes place where density and 

ion temperature gradients increase, thus boosting the velocity shear rate and allowing the 

confinement barrier to be sustained. Achieving stationary plasmas with internal transport 

barriers and βN ~ 3 is a challenge. In particular as the non-linear interaction between the 

pressure profile and evolution of the current density profile determine the evolution of the 

ITB in time. In this section, experiments with a deep reversal of the magnetic shear are 

described which have so called “strong” internal transport barriers. This is followed by a 

presentation of results from experiments that optimise the stability of the plasma using 

“weak” transport barriers, including a demonstration for active control to maintain plasma 

profiles in ITB discharges close to their optimum shapes. 

Strong internal transport barriers  

Strongly reversed shear configurations have been studied in view of ITER steady state 

operation. Typical ITBs in reversed shear configurations are found to be located at the 

vicinity of the location of qmin. Once such strong ITBs are formed, the bootstrap current is 

driven locally at the transport barrier location, and the shear reversal becomes larger. In an 

extreme case, central toroidal current can be almost or absolutely zero, hence the name of 

current hole given to these particular scenarios [33] Within the operation boundaries for stable 

operation, these discharges  achieve bootstrap fractions of ~50%. In order for the shear 

reversal to be maintained, a certain amount of off-axis current drive is required, driving ~ 

50% of the plasma current in these strongly reversed shear plasmas. However, the steep 

pressure gradients in these plasmas tends to create MHD instabilities, such that the required 

beta for operation with dominant bootstrap fraction can not be achieved. An example of a 

reversed shear discharge, with a current hole in the centre, is given in Figure 4. High transient 

performance is obtained; using electron cyclotron current drive and preheating with neutral 

beam under feedback control to obtain a stable current rise phase [33]. This heating scheme 

gives reproducibility for these types of discharges with enhanced confinement and 

performance of the plasma. The performance phase ends with a global instability terminating 

the discharge (called disruption). This is an ideal kink instability (n=1, with n the toroidal 

mode number of the instability) of the plasma column, driven by the steep local pressure 

gradients associated with the strong internal transport barrier (Figure 4c) [34]. Typically, 

stationary operation with strong reversed shear is at low beta (see as well Figure 10a in 

section 6, which using an international data base gives a comparison of all experiments). This 

is also the case for stationary reversed shear discharges in JET using lower hybrid current 
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drive, even with control of the ITB strength to maintain appropriate current density and 

pressure profiles [35] in these experiments, βN is limited to values below 2. 

In addition, discharges with strong ITBs do observe an accumulation of plasma impurities in 

the core, diluting the fusion fuel mix [36]. Moreover, the fast-ion confinement in current-hole 

plasmas was studied JET using tritium neutral beam injection in deuterium plasmas [37]. The 

confinement of alpha particles was determined from the decay time of γ-ray emission after 

tritium beam switch-off, with the γ-ray emission coming from the reaction of the fusion 

alphas and beryllium impurities (In JET beryllium is used to getter oxygen in the vacuum 

chamber). Results, indicate a α-confinement degradation of a factor ~5 in strongly reversed 

shear discharges, compared to conventional H-modes, as predicted from orbit losses by 3-D 

Fokker Planck codes. Both the observation of impurity accumulation and prompt alpha losses 

would be unacceptable for obtaining a stable burning plasma in ITER. 

Weak internal transport barriers  

Discharges with reversed magnetic shear can gain in stability against ideal kink modes using 

weaker ITBs with broader pressure profiles [34]. One route is to produce ITBs at larger radii 

(away from the plasma centre). This can be done by operating at plasma currents such that 

q95~3, creating a wide region with reversed magnetic shear by heating during the current rise 

phase, or at much lower plasma current using off-axis current drive. It is observed that these 

transport barriers are often positioned close to a low order rational surface in the vicinity of 

the plasma boundary [38] (near q=2 for the high current discharges, near q=3 or 4 for the low 

current cases). These transport barriers have weaker density and temperature gradients 

improving stability and show no signs of accumulation of impurities in the core. So far 

however, these plasmas have not achieved performance levels required for ITER advanced 

scenarios, the main difficulty being the simultaneous optimisation of the edge conditions 

(avoiding type I ELMs, which can erode the internal transport barriers) and q-profile to 

maintain the barrier. 

Maintaining, even these weakened ITBs for durations longer compared to typical energy and 

current diffusion time scales is a challenge. Multi-variable, model-based, techniques have 

been developed [39] for the real-time control of the current profile and/or the pressure profile, 

to ensure stationary conditions and MHD stability of the discharge. In experiments in JET, a 

first successful demonstration of combined electron temperature and current density profile 

control in advanced tokamak regimes has been obtained. Closed feedback loops using three 



A.C.C. Sips, Advanced scenarios for ITER operation                ICPP 2004 

 13

actuators, the input power from lower hybrid current drive, ion cyclotron resonance heating 

and neutral beam injection systems, were used in conditions reaching up to 100% non-

inductive current drive [40]. However, these results are still in ITBs plasma with a rather 

modest plasma performance (βN < 2) using discharges at low plasma current (q95 ≥ 7), to 

maximise the bootstrap faction and externally driven non-inductive fractions. This is similar 

to results obtained in JT-60U, where in discharges with a weak ITB and broad pressure profile 

produce up to 80% bootstrap fraction even though, βN < 2.2 in such discharges. Due to lower 

βN limit, these experiments have been performed at q95 ~9 in JT-60U, in order to attain high 

enough βp [41]. 

On the other hand, discharges with weak magnetic shear (|q0-qmin| ~ 0.5) also produce less 

strong barriers. In this cases the moderately peaked pressure profile, prevents the bootstrap 

current from peaking off-axis, and the shear from reversing too strongly; sustaining a rather 

flat q profile with q0 > 1.5 in the core. An example of such regime is given in Figure 5 [42] 

showing a typical time evolution of a weak reversed shear discharges in the DIII-D tokamak. 

Here, central neutral beam current drive together with off-axis electron cyclotron current drive 

is used together with the bootstrap current to create the desired weak transport barriers. These 

discharges start with an H–mode induced early in the current ramp. During the high 

performance phase, βN = 3.1 is maintained by feedback control of the neutral beam power. 

Approximately 2.5 MW of co-directed ECCD resonant off-axis at 40% of the minor plasma 

radius is applied starting at 3.0 s. Between 3.0 and 4.0 s, the current density profile is 

observed to be nearly constant with q0 ~ 2.1 and qmin ~ 1.7. The total non-inductive current 

drive in this case approaches 95%, with 65% of the plasma current provided by bootstrap 

current, 20% by neutral beam current drive. These discharges typically achieve βN up to 3.5, 

for several energy confinement times. The termination of these conditions is due to the 

resistive evolution of the current profile, leading to the onset of NTMs as qmin crosses 1.5. 

This results support the observation that the loop voltage profile is not fully relaxed, i.e. the 

net Ohmic current is almost zero, but the local Ohmic current is not zero everywhere. Hence, 

this regime requires further optimisation to obtain stationary conditions. 

Along the lines of reducing the negative shear in the centre, it has been observed that ITBs 

can also been formed in plasmas with low magnetic shear. The so-called high βp plasmas in 

JT-60U belong to this category [43]. A series of full non-inductive current drive experiments 

at high performance have been achieved in this way. In these high βp plasmas, magnetic shear 
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is low or even positive and q profiles can vary from those with q0 slightly in excess of 1 to 

those with q0 around 2. Steady state demonstration discharges have been obtained with q0 is 

below 1.5 [44]. As for the DIIII-D discharges described above, on-axis neutral beam heating 

is a key feature to achieve full current drive conditions. In JT-60U neutral beam injection at 

an energy of ~350 keV is used, (compared to typically 80-120 keV in other experiments), 

from negative ion based sources, to increase the current drive efficiency. 

The next section goes even a step further were an intermediate, or Hybrid, between the 

conventional scenario and the weak reversed shear scenarios is given with 1.0 ≤ q0 ≤ 1.5. 

Consequently, the JT-60U results with q0 < 1.5 (described above) are now assigned to this 

regime. 

 

5. Hybrid scenarios 

Scenarios with internal transport barriers, presented in the previous section, rely on a careful 

tailoring of the current density profile by external heating and current drive methods, to 

optimise performance. This way, sufficient bootstrap current may be provided to satisfy 

ITER’s second major goal of reaching Q≥5 under fully non-inductive conditions. However, 

the stringent control requirements for scenarios with internal transport barriers have prompted 

research into advanced regimes, which are inherently stationary with respect to the current 

relaxation time scale, requiring only minimum control by external actuators. 

It was originally envisioned [1] that discharges with extended duration at lower plasma 

current would be intermediate between an inductive (baseline) scenario and a fully non-

inductive (advanced steady state) scenario. Therefore, this type of discharge is known as a 

“hybrid” scenario. This will allow ITER to operate in a mode maximising the neutron fluence 

for the purpose of testing the design of various components (second operation phase of the 

project). It has been found that scenarios with a stationary current density profile, maintaining 

zero magnetic shear in the centre permit to achieve such a target. The different q-profile of the 

hybrid scenario, compared to the standard inductive H-mode scenario, prevents sawtoothing 

activity in the core and the triggering of large neo-classically tearing modes at the q=3/2 

rational surface. These MHD events generally lead to significant reduction in confinement 

and limit plasma performance for βN > 2 as observed in the standard H-mode regime with 
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q95~3. The properties of the current density profile allow the hybrid scenario to operate at 

βN~3, suggesting that it could even provide an alternative route to establishing Q=10 in ITER 

[2]. Rapid progress has been made recently in developing this regime, and is described below.  

In 1998, the ASDEX Upgrade tokamak found a stationary regime with improved core 

confinement for both electrons and ions in combination with an H-mode edge [13]. Initially, 

the pressure increase in the core was attributed to the formation of an internal transport 

barrier. However, quickly after, detailed transport analyses showed that in such a regime the 

temperature profiles remain in the so-called stiff regime. The gradients do not exceed a 

critical temperature gradient length set by the turbulence in the plasmas, and hence, no ITB is 

produced [45]. This new regime was called “Improved H-Mode”. Further development of 

these type of discharges in ASDEX Upgrade [46,47] and DIII-D [48,49] are now known 

under the common name “ITER Hybrid Scenario”. The desired q-profile is obtained by 

heating during the current rise phase of the discharge, at moderate neutral beam power (2.5 to 

5 MW). In the subsequent main heating phase, beta can be increased, with either small MHD 

m=1/n=1 activity in the core (called fishbone activity, with m the poloidal mode number of 

the instability) or a small m=3/n=2 neoclassical tearing modes creating a central q-profile 

with very low magnetic shear and q0 near 1. These discharges have no sawteeth and peaked 

density profiles with HH98(y,2) up to 1.4 for the duration of the heating phase. An example of an 

ASDEX Upgrade discharge is given in Figure 6. Note that increasing the neutral beam power 

after 3 seconds in the discharge leads to a strong rise in beta to βN~3, together with a 

improvement in confinement. Typically, these discharges obtain non-inductive current 

fractions of ~50%, in combination with benign MHD modes in the core, maintaining a 

stationary q-profile without active control. 

Recently, experiments in JET establish the hybrid scenario in similar non-dimensional 

parameters (for example: ρ* and q-profile, q95~4) compared to ASDEX Upgrade [50,51]. 

These discharges are stationary for the duration of the heating phase with small NTM and 

fishbone activity in the core at similar βN, HH98(y,2)-factor, density and temperature profiles 

compared to ASDEX Upgrade or DIII-D. 

Further evidence that the hybrid scenario may be a natural operating point for a tokamak 

comes from experiments in JT-60U. As described in the previous section, stationary high 

performance is obtained in the so-called “high βp ELMy H mode regime” [43], closely 
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resembling the conditions obtained in other experiments. Discharges without sawteeth have 

been sustained at βN = 2.6 for 2.6 s with q95~3.4 [44]. More recently, discharges have been 

obtained with longer duration (see next section) at somewhat lower beta, βN=3 was sustained 

for a shorter time (6s). These recent experiments confirm the potential of the hybrid scenario 

to reproducibly obtain improved confinement and stability over standard H-modes in 

stationary conditions. 

For extrapolation to ITER, a mapping of the operational domain of the hybrid scenario at 

various plasma densities has started, in a collaboration between various experiments. ASDEX 

Upgrade demonstrated operation of this regime at 80% to 90% of the Greenwald density 

limit. Discharges with a high triangularity configuration of the plasma cross-section, δ=0.43, 

showed only a small reduction in confinement (H98(y,2)=1.1-1.2) compared to hybrid 

discharges at lower density, while sustaining βN=3.5 and peaked density profiles. Moreover, 

the type I ELM activity in these discharges is moderated and small amplitude (called type II) 

ELMs are observed when the discharge configuration is changed to have a double null 

divertor configuration (both an upper and lower divertor are active, termed “double null” 

configuration) [52]. This is shown in Figure 7, where the heat load to the lower divertor is 

measured with infrared camera diagnostics. Initially, large transient heat loads (> 18MW/m
2
) 

are observed, during the type I ELMing phase (as described before, a concern for ITER). As 

the plasma shifted to a double null configuration at 3.5 seconds, smaller type II ELMs appear. 

During this phase the outer divertor shows a near continuous power load of < 6 MW/m
2
, the 

inner divertor has no power load as part of the power now goes to the top of the device. These 

type II ELMs, when extrapolated to ITER would have acceptable power loading of the ITER 

divertor target. These small ELMs can also be obtained in conventional H-modes, although 

with HH98(y,2) < 1 [52]. The hybrid scenario compensates for the confinement loss with 

improved core confinement, achieving HH98(y,2) ~ 1.1. However, the precise nature of the 

improved confinement in Hybrid scenarios is under investigation. 

 

6. The international tokamak physics activity for advanced scenarios 

While the inductive H-mode is relatively well explored, an open issue is how the presently 

developed advanced scenarios will extrapolate to next-step experiments. The scientific 

progress in preparation of ITER now benefits from a coordinated experimentation between 
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tokamaks worldwide, in particular between large and middle-size D-shape tokamaks such as 

JET, JT60-U, DIII-D or ASDEX-Upgrade. The past two years have seen an unprecedented 

number of similarity and identity experiments involving two or more tokamaks, as well as 

coordinated parametric scans. These experiments are initiated by the International Tokamak 

Physics Activity (ITPA). 

Construction of an international database for advanced tokamak discharges is also an activity 

coordinated under the ITPA [53]. Data from ASDEX Upgrade, DIII-D, FT-U, JET, JT-60U, 

RTP, T-10, TCV, TFTR and Tore Supra experiments have been collected, creating a set of 

scalar data covering a wide range of plasma parameters. Extensive analyses of this database 

has been presented before, using values at the time of maximum performance during the 

discharges [54]. This has recently been extended to document the differences in operational 

domain of reversed shear and hybrid scenarios, taking data as an average over the 

performance phase, as this is more appropriate for scenarios developed for stationary or non-

inductive operation. 

In the analysis of the data a figure of merit defied as H89βN/q95
2
 is used for performance: 

H89βN/q95
2
 ~ 0.40 for the ITER reference scenario, and H89βN/q95

2
 ~ 0.3 for the ITER non-

inductive scenario. The confinement enhancement factor, H89, relative to ITER89P scaling [1] 

is used, as this is more suited for a dataset containing discharges with a variety of edge 

conditions (L-mode, ELM free and H-modes with various types of ELM behaviour). The 

operation space and the performance of the advanced scenarios described in the previous two 

sections are compared with data from the different experiments. 

Reversed shear scenarios  

The results for reversed shear scenarios with internal transport are presented in Figure 8, 

showing the performance from several machines plotted as function of the duration of the 

discharges, normalised to the energy confinement time. Transient discharges (duration < 

10τE) can obtain performance exceeding ITER requirements, but this cannot be maintained at 

these levels in more stationary conditions (duration ≥ 10τE). The reversed shear discharges 

separate into two distinct groups, dominated by data from DIII-D on the one hand, and data 

from JET and JT-60U both at lower performance. ITER, with a inductive discharge duration 

of 400 seconds and a energy confinement time predicted to be 3.7 seconds, would have a 

normalised duration of 110 is outside the range used for plotting the results from reversed 
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shear scenarios. The duration of the experiments is mainly determined by machine limits, i.e. 

duration of the heating systems. This implies that reversed shear discharges that are 

stationary, with respect to the current diffusion time, typically (30-50)τE, and have a duration 

longer compared to the ITER conventional scenario (~110 τE) still need to be demonstrated. 

More results are given in Figure 8b where H89βN/q95
2
 is plotted versus ε0.5βp. The latter is a 

measure for the fraction of the bootstrap current for similar q-profiles; such as the reversed 

shear discharges plotted in this figure. For reference, detailed transport analyses, including an 

assessment of the non-inductive current distribution of a few discharges in this database, 

indicate that for ε0.5βp = 1, a bootstrap fraction in the range 55%-65% is achieved. Internal 

transport barrier discharges with q95<5 are only transient. Stationary operation has been 

obtained at q95≥ 5, with the maximum performance (discharges from DIII-D) obtaining ε0.5βp 

~ 1 for q95 near 5. With H89βN/q95
2
 ~ 0.3 and sufficient bootstrap current, combined with 

external current drive sources, these discharges fulfil the ITER requirements for non-inductive 

current operation at Q~5. The results at q95 ≥ 6 are from discharges with large, weaker ITBs 

predominantly operating in stationary conditions at low plasma current. Despite producing 

bootstrap current fractions in the range 40%-80% or using real time control techniques to 

optimise the profiles, they fail to meet the ITER performance targets, as either the energy 

confinement time or the achieved beta values are too low to ensure sufficient fusion power. 

Hybrid discharges  

The duration of hybrid discharges is typically longer compared to reversed shear plasmas. 

This is shown in Figure 9a (note that the time axis in Figure 9a is different from the axis used 

in Figure 8a). There is no clear difference between the various experiments in the dataset 

(only the Tore Supra data, have lower performance), and typical performance of hybrid 

scenarios achieves ITER reference values for Q~10 operation or higher. The duration 

approaches ITER target values for the conventional scenario, limited again by machine 

hardware. For high fluence operation in ITER a demonstration of longer duration pulses is 

required, although difficult to obtain: For example, discharges in JT-60U have obtained βN ~ 

1.9 for 24 seconds for q95=3.3, with the q-profile matching hybrid conditions, obtaining 

H89βN/q95
2
=0.40 for about 120τE (not shown in Figure 9a). Here the long duration is achieved 

by applying the different beam sources in subsequent phases (hence not at maximum input 

power or beta) to compensate for the limited duration of the neutral beam heating systems 

(typically 10 seconds) in these experiments. Most of the highest performance pulses shown, 
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are a direct result of collaboration between experiments, benefiting from an exchange of 

expertise to optimise the hybrid regime. Such a cross fertilisation between experiments has 

not yet taken place for reversed shear scenarios with internal transport barrier as seen from the 

separation of the results from various devices in figure 8a. 

The fraction of the bootstrap current in hybrid discharges is lower, compared to reversed 

shear discharges, and increases at lower current (higher q95) as shown in Figure 9b. For this 

type of q-profile with q0 near 1, a value of ε0.5βp.=1, achieved for discharges at q95 = 4-4.5, 

represents a bootstrap fraction of 30%-40%. This implies that this regime can only be used for 

long pulse operation with a substantial increase in discharge duration (see next session). On 

the other hand, at lower values of q95 ~ 3, the results of hybrid discharges far exceed ITER 

performance targets for operation at Q=10. Operating with HH98(y,2) in the range 1.0-1.3 and 

βN values between 2.5-3, these discharges would allow a significant increase in fusion power 

for ITER, as can be seen from Figure 3. In the conventional scenario, operation at q95 below 3 

significantly increases this risk of sawteeth instabilities and NTM modes. Now hybrid 

scenarios are being develop with q95<3, without sawteeth and low magnetic shear in the core, 

as this mode of operation may achieve stationary conditions at βN > 2 to allow for controlled 

ignition (Q > 20) experiments in ITER at 17 MA. 

Beta limits  

Advanced scenarios maximising the fraction of self-generated bootstrap current, are likely to 

operate near one or more stability limits. In general, discharges can gain in stability against 

ideal n = 1 kink modes by optimising the pressure profile and plasma shape [34]. Kink modes 

can manifest themselves as resistive wall modes [55], which set in when the plasma pressure 

typically exceeds βN~4li (with li, the inductance of the plasma). Reversed shear discharges, 

have low plasma inductance (li < 0.8), as the current density peaks off axis, and have 

predominantly peaked pressure profile due to the presence of (weak) internal transport 

barriers. Hence, they are at a particular disadvantage with regard to kink stability. Figure 10 

plots the βN values achieved in the advanced discharges of the ITPA database as function of 

the pressure peaking (p0/<p>, calculated using central density, central temperatures and 

plasma stored energy). The data support previous studies that the maximum βN drops sharply 

for high pressure peaking [56], in fact 80 % of the reversed shear discharges in the database 

achieve the high performance only transiently, limited to βN < 2. Discharges with strong 

reversed shear, achieve a pressure peaking, p0/<p> >4, and have with very good transient 
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confinement (HH98(y,2) ~1.5) compared to conventional H-modes. In reactor plasmas with Pα > 

Pinput and sufficient confinement, the fusion performance is set by the ability of the plasma to 

operate at the maximum plasma pressure possible (Pfusion ∝ β2
). Hence, reversed shear 

discharges with a low beta limit are not useful for fusion reactors. On the other hand a 

promising scenario uses weak negative magnetic shear, with broad pressure profiles produced 

by weak transport barriers. Here results from DIII-D and JT-60U show that βN ~ 3 can be 

obtained with nearly 100% non-inductive current. This suggests an optimum in the range of 

q-profiles suitable for advanced operation, with only weak negative shear and q0 =1.5-2, not 

far away from q-profiles used in the hybrid scenario. Figure 10b indicates that these hybrid 

scenarios operating with q95 in the range 3 to 4.5, routinely obtain beta values close to the no 

wall limit (βN/4li~1). 

Building on the success of the experiments coordinated under the ITPA, further study and 

collaboration between experiments are being defined. These include (i) a continuation of the 

documentation of the operational space for hybrid discharges, planning experiments to 

optimise the regime at lower ρ* in JET and JT-60U and further documentation of the regime 

at ASDEX Upgrade and DIII-D, (ii) an effort to define a common reversed shear scenario for 

various devices to, in particular concentrating on operation near q95=5, (iii) perform transport 

studies in a range of scenarios as, for example, the improvement in confinement for the hybrid 

scenario is not fully understood, and (iv) operation in a parameter range closer to ITER values 

to facilitate a more robust extrapolation of the results obtained; for instance new experiments 

to confirm, that injected momentum from the neutral beams is not essential, as found in 

preliminary experiments in ASDEX Upgrade [57] and JET [58] using ICRH heating, to 

simulate the heating conditions in ITER or a reactor. 

 

7. Predictions for ITER and outlook 

ITER has a flexible design, capable of exploring the advanced scenarios presented in this 

paper. It could incorporate the use of current drive methods, such as neutral beams, ion 

cyclotron, electron cyclotron, and lower hybrid waves are important for reversed shear 

scenarios. In the ITER plans, operation will start with a total additional power of 73 MW: A 

neutral beam system will provide 33 MW in atomic deuterium beams at 1 MeV from two 

injectors, with the capability of providing on-axis and near off-axis current drive. An 
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additional 40 MW will be available from radio frequency heating and current drive systems. 

In using this as boundary conditions, performance predictions for the various scenarios for 

ITER have been made using 1.5D transport simulation codes [59]. The conventional scenario 

given in section 3 is summarised in Table I, together with predictions for two advanced 

scenarios. 

As a candidate scenarios for steady-state operation a ‘weak’ negative shear configuration is 

chosen, requiring off axis current drive using the neutral beam system. Absence of q = 2, 1.5 

and 1 surfaces inside the plasma eliminates the growth of tearing modes. Although the 

normalised beta and HH98(y,2) are relatively high, the ITER PF-coil system is designed to cover 

this operation scenario. In the simulations, realistic neutral beam heating and current drive 

modelling in ITER geometry has been used. For the radio frequency heating and current drive 

systems, the absorption and current drive efficiency (γ20 = 0.3 AW-1
m

-2
) are predicted for 

ITER plasma conditions. The weak negative shear scenario still uses substantial external 

current drive (50% of the total current). In this context, one needs to bear in mind that in a 

steady state tokamak reactor, a fraction of the bootstrap current of ≥70% is required for 

economical operation. 

1.5D transport simulations are performed for the hybrid scenario. The results show that this 

scenario already satisfies operation at Q ~ 5 for HH98(y,2) = 1.0. with a burn time ≥ 1000 s 

assuming a start of the additional heating during current ramp up phase [55]. The improved 

energy confinement found in recent experiments, if realized in ITER, could significantly 

improve the plasma performance in the hybrid scenario allowing Q ≥ 10 at reduced plasma 

current (Table I). This simulation only uses 30 MW neutral beam power for the hybrid 

scenario. However, this scenario is capable of operation at βN ~3, which would allow the full 

73 MW of input power to be used, providing a substantial increase in fusion power and an 

increase in discharge length. Future developments of hybrid scenarios might even lead to the 

concept of “quasi steady state” reactor. A system with minimal time between two subsequent 

very long duration discharges, aiming at a duty cycle of > 90%. This would reduce the 

corresponding thermal stresses, which are seen as the main limitation of such a pulsed 

tokamak reactor proposal. 

One step to a demonstration fusion reactor ?  

ITER is expected to play an important role in the fusion development strategy: one step to a 
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reactor producing electricity. A number of design studies have been carried out on fusion 

power reactors. In a recent European Power Plant Conceptual Study, four conceptual designs 

for commercial fusion power plants were presented each with a net electrical output chosen to 

be around 1500 MW electric power [60]. The model designs (A,B,C and D) differ in their 

dimensions, gross power, and power density. Models A an d B have the largest plasma 

dimensions (model A: R0=9.55m, a=3.2m) and are based on about thirty percent 

improvements (HH98(y,2)=1.2, βN=3.5, 45% bootstrap fraction) on the design basis of ITER. 

This is in line with the performance assumed for the Hybrid scenario. Even with these 

assumptions, the devices have a large system size and high plasma current (model A: 30.5 

MA). Figure 11 shows the plasma cross sections of models compared to ITER. The 

technology employed in models A and B stems from the use of near-term choices. The other 

designs (C and D) are based on progressive improvements in the level of assumed 

development in plasma physics, especially in relation to plasma shaping and stability, limiting 

density, and in minimisation of the divertor loads without penalising the core plasma 

conditions. Hence, they represent possible future improvements of the tokamak concept 

leading to more efficient and economical reactors. Clear is that in near term the results of 

ITER advanced scenarios are important, to make it a one step to a demonstration reactor. For 

example, as these four conceptual designs are steady state reactors, the efficiency assumed for 

the current drive system (250 MW for model A), need to be verified by operating ITER at the 

highest, reactor relevant, temperatures. 

 

8. Conclusions 

ITER, is an essential step to develop the scientific and technical feasibility of fusion energy. It 

is based on a magnetic confinement concept called the tokamak; an inherently pulsed system 

where a current in the plasma plays an important role in the confinement and stability if the 

system. Magnetically confined plasmas at finite pressure have turbulent transport across the 

magnetic field lines, driven by temperature gradients. Hence, predominantly empirical scaling 

and system modelling is used to predict the energy confinement and system size of ITER so 

its primary goal for obtaining conditions with significant fusion power and gain Q≥10 can be 

met. Stabilisation, or reduction of the turbulence allows transport barriers to be formed, 

improving overall confinement. Important for creating and sustaining transport barriers is the 
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local magnetic shear in the plasma. Discharges with improved confinement, employing 

internal transport barriers are called advanced scenarios. These are being developed to meet 

ITER’s second goal of steady state (non-inductive) operation with Q≥5, allowing for a 

reduced gain to operate at lower plasma current, and to use additional heating to control the 

current density profile. To achieve this, the performance of tokamaks needs to be improved. 

Standard tokamak discharges have a current density increasing monotonically towards the 

centre of the plasma. Reversed shear discharges have an off axis maximum of the current 

density, creating negative magnetic shear in the core. Results show that the confinement is 

indeed improved in plasmas with internal transport barriers. However, the plasma pressure 

required to obtain sufficient self generated, bootstrap current and fusion power, can not be 

sustained due to MHD stability limits. Only discharges with weak reversed shear maintaining 

a reduced internal barrier strength approach the required performance. This has prompted 

research into so called hybrid regimes that have a central region with a flat current density 

profile (zero magnetic shear), capable of operating stationary at high plasma pressure. 

Recently, international collaboration between experiments has enabled better documentation 

of the various types of advanced scenarios used and an exchange of expertise to optimise 

these regimes. The optimum advanced scenario operates with a current density profile which 

is close to the non-inductive scenario, but significantly different to allow an increase in 

stability and (some) reduction of the turbulent transport. As a result, recent tokamak fusion 

reactor concept studies using conservative extrapolations, require a large system size (1.5 

times ITER), and a substantial additional heating to drive ~50% of the plasma current non-

inductively. In summary, it is critical to study advanced scenarios in ITER to increase physics 

understanding of transport and stability of fusion plasmas, and secondly to validate and 

improve these regimes in preparation for a fusion power plant demonstration. 
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Table I: Predicted performance for three ITER scenarios 

 

Parameters Reference Reversed 

shear
1
 

Hybrid  

Major radius, R0 (m) 6.2 6.35 6.2 

Minor radius, a (m) 2.0 1.85 2.0 

Toroidal field at R0, BT (T) 5.3 5.2 5.3 

Plasma current, Ip (MA) 15 9 12 

Edge safety factor, q95 3.0 5.3 4.1 

Confinement enhancement, HH98(y,2) 1.0 1.57 1.2 

Normalised beta, βN 1.8 2.95 2.1* 

Average electron density, <ne> (1019m-3) 10.1 6.7 8 

Fraction of Greenwald limit, <ne>/nGW 0.85 0.82 0.85 

Average ion temperature, <Ti> (keV) 8.0 12.5 8.8 

Average electron temperature, <Te> (keV) 8.8 12.3 9.9 

Neutral beam power, PNB (MW) 33 33 30 

RF power, PRF (MW) 7 29 0 

Fusion power, Pfusion (MW) 400 356 367 

Fusion gain, Q=Pfusion/(PNB+PRF) 10 6 11 

Non inductive current fraction, INI/Ip (%) 28 100 44 

Burn time (s) 400 3000§ 1550 
1 This scenario has q0=3.5 and qmin= 2.2, and uses a plasma configuration that is shifted outwards. 

* Could go to higher normalised beta with increased input power. 
§ Limited by ITER plant restrictions. 
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Figure Captions 

Figure 1: The range of q-profiles for the ITER conventional scenario (blue), the Hybrid 

scenario (green) and the reversed shear scenario (orange), showing weak and strongly 

reversed scenarios. 

Figure 2: A schematic representation of a H-mode plasma with and an edge pedestal (a). 

The core and pedestal regions are also indicated on an ITER plasma cross section (b). Also 

shown is the divertor region, used for power exhaust. 

Figure 3: A simulation of the operation domain in the HH98(y,2)-factor and fusion power 

space when Ip = 15MA and Q = 10 [59]. 

Figure 4: a) Waveforms of a high-performance reversed shear (current hole) discharge in 

JT-60U [33], showing the increase in plasma current and applied neutral beam power (top 

traces), the electron temperature (Te0) and ion temperatures in the center (Ti0), together with 

the electron cyclotron heating power(PEC) (middle traces) and the rise of plasma stored energy 

(W) and the D-D neutron yield (bottom traces) (b) q-profile at 7.2 s and (c) the evolution of Ti 

during the high performance phase and Te profile at 7.2 s. 

Figure 5: Plasma parameters versus time for a discharge in DIII-D at high beta, in which 

off axis co-ECCD is used to maintain the current profile: (a) plasma current (MA), neutral 

beam injected power (10 MW), line-averaged density (10
20

 m
−3

), (b) βN (black trace), 4li 

(green trace) and ECCD power (a.u.), (c) q0 (upper trace), qmin (lower trace), (d) central ion 

and electron temperature [42].Figure 6: Waveforms of a hybrid discharge at ASDEX 

Upgrade. Shown are (a) the plasma current (MA) and Dα measurements in the divertor 

(showing the ELM behaviour), (b) the neutral beam power (MW) applied, (c) the plasma 

inductance and the normalised beta (βN), and (d) the confinement enhancement factor HH98(y,2) 

and averaged electron density (<ne>) normalised to the Greenwald density limit (nGW). 

Figure 7: Example of a hybrid discharge at high density (<ne>/nGW ~0.85) from ASDEX 

Upgrade. (a) Plasma current and the and Dα measurements in the divertor (showing small 

ELMs). (b) The infrared measurements of the power loads on the inner lower divertor. (c) The 

infrared measurements of the power loads on the outer lower divertor. 
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Figure 8: Data from the ITPA database for reversed shear discharges from various 

devices (colour coded). (a) The performance (H89βN/q95
2
) as function of discharge duration, 

closed symbols are transient discharges, closed symbols are stationary, the duration (W>0.85 

maximum W) is normalised to the energy confinement time (τE) averaged during this time 

window. (b) H89βN/q95
2
 versus ε0.5βp. The lines indicates the different values for q95, transient 

(open symbols) and stationary results (closed symbols) are given. 

Figure 9: Data from the ITPA database for hybrid shear discharges from various devices 

(colour coded). (a) The performance (H89βN/q95
2
) as function of discharge duration, closed 

symbols are transient discharges, closed symbols are stationary, the duration (W>0.85 

maximum W) is normalised to the energy confinement time (τE) averaged during this time 

window. (b) H89βN/q95
2
 versus ε0.5βp. The lines indicates the different values for q95, transient 

(open symbols) and stationary results (closed symbols) are given. 

Figure 10: Normalised beta, βN, as function of the pressure peaking, p0/<p>, for different 

advanced regimes: (a) reversed shear discharges and (b) hybrid discharges. Transient (open 

symbols) and stationary results (closed symbols) are given. Discharges from various devices 

are colour coded (see legend). 

Figure 11: Plasma cross sections for four conceptual models (A,B,C and D) from the 

European Power Plant Conceptual Study [60], compared to ITER. 
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