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Abstract. The existence of magnetic fields is a mandatory requirement for
the onset of most nonthermal phenomena in cosmological sources especially
gamma-ray burst sources and relativistic jet sources. The processes leading to
the magnetization of the intergalactic medium are not yet known. Large-scale
structures in the universe, like filaments and sheets of galaxies, evolve by the
gravitational collapse of initially overdense regions giving rise to an intense relative
motion of fully ionized gaseous matters and strong gaseous shock structures.
We investigate analytically and numerically the generation of magnetic fields in
the intergalactic medium by Weibel-type instabilities involving interpenetrating
electron streams. Because of the hot temperatures of the intergalactic medium the
investigation of the Weibel instability is based on the now available covariantly
correct dispersion theory of linear waves, and thus improves on the existing
non-relativistic treatments in the literature. These primordial Weibel magnetic
fields may serve as cosmological seed fields for even stronger magnetic fields in
cosmological sources.

1. Introduction

Today, magnetic fields are present throughout the universe and play an important
role in many astrophysical situations. Our Galaxy, as many other spiral galaxies,
is endowed with coherent magnetic fields ordered on scales ≥ 10 kpc with typical
strength BG ≃ 3 · 10−6G [2,1,3,4], or energy density relative to the cosmic microwave
background radiation (CMBR) energy density wγ

ΩG = (B2
G/8π)/wγ ≃ (BG/3.2 · 10−6G)2 ≃ 1 Ωγ (1)

where Ωγ is the density parameter in photons [5, 6]. The galactic magnetic field
is crucial for confining cosmic rays and transferring angular momentum away from
protostellar clouds so that they can collapse and become stars. Magnetic fields also
play an important role in the dynamics of pulsars, white dwarfs, and even black holes.

Elsewhere in the Universe, magnetic fields are known to exist and be dynamically
important: in the intracluster gas of rich clusters of galaxies [7], in quasistellar
objects and in active galactic nuclei. The existence of magnetic fields is a mandatory
requirement for the onset of most nonthermal phenomena in cosmological sources
especially gamma-ray burst sources and relativistic jet sources, as e.g. jet formation
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Origin of cosmological magnetic fields 2

and collimation by MHD effects, acceleration of charged particles at magnetized shock
fronts, synchrotron radiation.

More exotic, primeval magnetic fields are necessary to initiate substantial currents
in superconducting cosmic strings [8], which if they exist may have important
consequences for the production of ultrahigh-energy cosmic rays [9] and possibly for
the initiation of structure formation [10].

The origin of cosmic magnetic fields is not yet known [11,3]. Many astrophysicists
believe that galactic magnetic fields are generated and maintained by dynamo action
[12] whereby the energy associated with the differential rotation of spiral galaxies
is converted into magnetic field energy [13, 14, 15]. The dynamo mechanism is only a
means of amplification and dynamos require seed magnetic fields. If a galactic dynamo
has operated over the entire age of the galaxy (≃ 10 Gyr), it could have amplified a
tiny seed field of ≃ 10−19 G although it is not yet clear [16] to what extent this process
can work inpractice. Alternatively, initial fields of strength Bc ≃ 10−9 G can give rise
to galactic fields of the observed values without a functioning dynamo mechanism:
simple adiabatic compression of magnetic field lines during galaxy formation would
amplify such initial fields to the present, observable values. Such fields have potentially
interesting observational signatures on the CMBR, and if present would provide
powerful constraints on models of the early universe. According to Eq. (1) a primeval
magnetic field of Bc ≃ 10−9 G provides an energy density

ΩB = 10−7Ωγ(Bc/10−9G)2 (2)

Since the universe through most of its history has been a good conductor [5] any
primeval cosmic magnetic field will evolve conserving magnetic flux Bca

2 ≃const.,
where a is the cosmic scale factor, implying that the dimensionless ratio ΩB =
(B2

c/8π)/wγ for homogeneous (uniform or stochastic) magnetic fields remains
approximately constant and provides a convenient invariant measure of magnetic field
strength. Naively, from Eq. (2) one would expect a magnetic field of this amplitude
to induce perturbations in the CMBR on the order of 10−7, which are about 1 percent
of the observed CMBR anisotropies. The absence of such signatures may also serve
as a consistency check on models of galaxy evolution that would be observationally
incompatible with such large initial fields.

2. Inhomogenous localized cosmological magnetic field from Weibel

instabilities

A localized process of cosmological magnetic field generation has recently been
proposed [17, 18, 19] which occurs only in regions of intense gaseous streaming (and
thus not homogeneously) at relatively late (redshift z ≤ 5) stages of cosmological
evolution. These localized intense gaseous streaming regions exhibit themselves
in hydrodynamical simulations of a cold dark matter universe with a cosmological
constant, which currently is considered to be the most successful theory for
cosmological structure formation (e.g. [20, 21]). Because large-scale structures in the
universe, like filaments and sheets of galaxies, evolve by the gravitational collapse
of initially overdense regions, they give rise to an intense relative motion of fully
ionized gaseous matters (streaming speed of order u ≃ 104 km s−1) and baryonic
density contrasts reaching α = nb/ne ≤ 10. Because the sound speed in a hot
(with the temperature T0 = 107T7 K) intergalactic medium is much smaller than
the electron thermal speed, gaseous shock structures result. Schlickeiser and Shukla
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[19] demonstrated that besides the shock formation, the colliding streams of ionized
matters efficiently generate long-lived quasi-static cosmological magnetic fields due to
the Weibel instability [22] which operates in initially unmagnetized plasmas.

2.1. The Weibel instability mechanism

Fried [23] has given a simple exposition of the Weibel instability from counterstreaming
electron distributions. Let us adopt the simple anisotropic distribution function

f0(~v) = δ(v2
x − a2)δ(vy)δ(vz) =

1

2
δ(vy)δ(vz)[δ(vx − a) + δ(vx + a)](3)

to calculate the electron motion in the z-component of the infinitesimal magnetic
fluctuation δBz = B1(t)e

ıky . From the equation of motion

dvy

dt
=

e

mec
vxδBz , (4)

we obtain for electrons with initially vx = a that

dvy

dt
=

ea

mec
δBz , (5)

while electrons with initially vx = −a yield

dvy

dt
= − ea

mec
δBz (6)

This gives rise to a change of thr flux of the x-component of momentum through a
surface normal to y-axis of

∂

∂t
< vyvx >=

∫

d3v f0vx
dvy

dt
=
eδBz

2mec

[

∫ ∞

−∞

dvxvxaδ(vx − a)

−
∫ ∞

−∞

dvxvxaδ(vx + a)
]

=
ea2δBz

mec
(7)

where <> denotesd an average over the initial distribution (3). The gradient of this
momentum flux causes a change in < vx > given by

∂

∂t
< vx >= −∂ < vyvx >

∂y
(8)

implying with Eq. (7)

∂2

∂t2
< vx >= − ∂

∂y

∂ < vyvx >

∂t
= − ea2

mec

∂δBz

∂y
= − ea2

mec
ıkδBz (9)

Using Ampere’s law for the current in x-direction

jx = −ene < vx >=
c

4π
(rot ~B)x =

c

4π

∂δBz

∂y
=

c

4π
ıkδBz (10)

yields

< vx >= − c

4πene
ıkδBz (11)



Origin of cosmological magnetic fields 4

Inserting Eq. (11) into Eq. (9) we then obtain

∂2δBz

∂t2
=

4πe2a2ne

mec2
δBz =

ω2
p.ea

2

c2
δBz(t) (12)

with the growing solution

δBz(t) ∝ exp[
ωp.eat

c
] (13)

For this reason the anisotropic distribution function (3) amplifies any fluctuating
magnetic field component Bz . Obviously, such a magnetic field perturbation deflects
the electron motion along the x-axis, resulting in current sheets (jx) which in turn
amplify the perturbation. The amplified field lies in the plane perpendicular to the
original electron motion.

2.2. PIC simulation of this situation

Lately, we [24] also simulated this instability with 2D3V-relativistic PIC simulations
using a proton-electron mass ratio of mp/me = 64. As initial (t = 0) configuration
we have chosen two counter-streaming electron-ion shifted Maxwellians with thermal
velocities vth,e = vth,i = 0.1c and with velocities vd1 = 0.2c and vd2 = −0.2c in
x-direction.

We investigated both a symmetric case with densities n1 = n2 = 50/cell and
an asymmetric case with n2 = 100/cell= 2n1. No initial electromagnetic fields were
allowed. Our electron Debye length is vth,e/ωpe = 1.0∆, and the collisional skin depth
c/ωpe = 10∆ (grid size ∆ = 1.0) More details of the simulations will be given in Sect.
4, but here we stress with Fig. 1 that indeed the z-component of the magnetic field
rises with time in agreement with the qualitative arguments given above.

When the spatial scale of the excited fields is of the order of the electron
gyroradius, the magnetic fields saturate due to the magnetic trapping of electrons
in the wave potential. The saturated magnetic field turns out to be a fraction of
microgauss at subequipartition level in cosmological environments.

3. Analytical instability study

The Weibel instability operates in initially unmagnetized plasmas. For a cold beam
of density nb and bulk velocity u propagating through hot electron-ion Maxwellian
distribution of density ne, the dispersion relation is ( [25], Eq. (6.1.5.15))

ω2 = −ω2
be

[

k2u2

k2c2 + ω2
be

−
k2v2

th,ev
2
th,p

ω2
pev

2
th,p + ω2

piv
2
th,e

]

(14)

which leads to purely growing (ω2 = −Γ2), i.e. aperiodic, transverse oscillations if

u2

k2c2 + ω2
be

>
v2

th,ev
2
th,p

ω2
pev

2
th,p + ω2

piv
2
th,e

(15)

For an equal temperature plasma Te = Tp = T0 this condition becomes

u2

k2c2 + ω2
be

>
v2

th

2ω2
pe

(16)
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Figure 1. The time evolution of the magnetic field energy
∫ ∫

B2
zdxdy during

early stage:(a) symmetric case, and (b) asymmetric case. From [24].

which is equivalent to the wavenumber restriction

k2 < k2
0 =

ω2
pe

c2
[
2u2

v2
th

− nb

ne
] (17)

In order to have real wavenumbers it is required that

u ≥ uc =

(

nb

2ne

)1/2

vth = 8.73 · 103α1/2T
1/2

7 km s−1 (18)

i.e. for any given density contrast α = nb/ne, this type of Weibel instability sets in,
provided (1) that the streaming velocity u is larger than uc, and (2) that the beam is
cold.

In the wavenumber regime | k |<| k0 |, the maximum growth rate is

Γmax =
αvthωpe

21/2c

[

u

uc
− 1

]3/4

(19)

However, this transverse Weibel instability will only be the primary relaxation
mechanism for initial beam-plasma configuration, if its maximum growth rate is
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much larger than the growth rate of all other plasma instabilities in particular the
longitudinal (Langmuir) two-stream instability with [26]

Γmax,Langmuir ≃
31/2

24/3
α1/3ωpe (20)

Comparing the last two equations we see that the maximum growth rate of the Weibel
instability is smaller than maximum growth rate of Langmuir instability if

α

[

u

uc
− 1

]9/8

< 115 T
−3/2
7 (21)

i.e. the Langmuir instability is the primary relaxation mechanism, and the Weibel
instability then sets in as a secular instability. If we identify the regions of large
streaming velocities with strong non-radiative shocks with density contrast α = 4 and
express the streaming velocity u = Mvth/43 in terms of the Mach number we obtain
for Eq. (21)

M < 1192 T
−4/3

7 (22)

Miniati ( [27]) has determined the distribution of shocks in baryonic flows resulting
from cold dark matter simulations. The maximum Mach number values are below
200 indicating that high Mach number shocks violating condition (22) do not occur.
Consequently, (i) the Weibel instability indeed occurs as a secular instability after
full development the Langmuir instability, and (ii) the simultanous presence of
electrostatic waves has to be expected.

3.1. Secular Weibel instability

The outcome of the electrostatic Langmuir instability is well known [28]: the beam
distribution quickly relaxes to a plateaued distribution ( ∂fe

∂p‖
= 0) in the initial direction

of the beam. Non-resonant interactions then provide some energy exchange between
the background plasma and the plateaued distribution in the p‖-phase space direction.

Therefore we may characterize the plasma distribution after the Langmuir
relaxation as anisotropic bi-Maxwellian

f0 =
ne

(2π)3/2u2
0u3

exp[− v2
0

2u2
0

− v2
3

2u2
3

] (23)

where u3 = vth and u0 = u represents the plateaued distribution. This distribution
corresponds exactly to case studied originally by Weibel [22]: in the limit ω/(u3k) =
ω/(vthk) > 1, corresponding to u > vth, the dispersion relation reads

ω4 − (ω2
p,e + k2c2)ω2 − ω2

p,eu
2k2 = 0 (24)

and implies purely growing modes with the growth rate

Γ4 ≃ uωp,ek

(ω2
p,e + k2c2)1/2

(25)

The condition ω/(vthk) > 1 restricts the wavenumber to values smaller

|k| < ks,max = uωp,e/(vthc) (26)
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so that the maximum growth rate is

Γ4,max =
uωp,e

c
= 0.54n

1/2
−4 T

1/2
7 M s−1 (27)

The miminum growth time of the secular Weibel instability τs = Γ−1
4,max then is much

smaller than any cosmological time scale. In terms of the Mach number the instability
condition u > vth is equivalent to M > 43.

3.2. Estimate of saturated magnetic field value

The free streaming of particles across the magnetic field lines is suppressed once the
magnetic field amplitude has grown to a level that the particle’s gyroradii in the excited
magnetic fields, viz. ρ = u/Ωe, are comparable to the characteristic scale length of
unstable modes, k−1

s,max, yielding

B ≃ meucks,max

e
=

√
4πneme

u2

vth
(28)

This condition can be rewritten as

B2/8π

nemeu2
=

u2

2v2
th

(29)

Computer simulations of the instability [29,30,31,32,24] confirm that saturation occurs
at slightly subequipartition values of B,

B2
s/8π

nemeu2
= η

u2

2v2
th

(30)

with η ≃ 0.01 − 0.1. Using η = 0.01

Bs ≃ 0.1
√

4πneme
me

mp
vthM

2 = 1.3 × 10−7T
1/2
7 (

M

43
)2 G (31)

Consequently, the secular Weibel instability provides saturated magnetic field values
over a rather wide range being determined by the distribution of Mach numbers
of shock waves from cosmological structure formation with values larger than the
instability condition M > 43.

Taking M = 100 as upper limit, the maximum field strength is Bs,max ≃ 7.0·10−7

G. This upper limit is consistent with the upper limit ≤ 10−6 G in large-scale filaments
and sheets, derived from rotation measure observations [33].

3.3. Scales

The analytical studies of the Weibel instability are formulated as an initial temporal
instability analysis, assuming tacitly that the initial distribution functions (3) and (23)
hold at all spatial scales up to lmax = ∞. The Weibel analysis then yields aperiodic,
i.e. purely growing, fluctuations at all wavenumbers 0 ≤ k ≤ kmax where in the case
of nonrelativistic thermal plasma temperatures [34, 35]

kmax =
ωp,e

c

√

1 − γ2

γ
(32)

where the anisotropy factor γ = vth,‖/vth,⊥ is limited to values (vth,‖/c) << γ < 1.
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Figure 2. Time evolution of longitudinal electrostatic field energy
∫ ∫

E2
xdxdy

during early stage: (a) symmetric case, (b) asymmetric case. From [24]

In reality, however, the maximum spatial scale lmax will be finite, being set by the
size of the localized intense gaseous streaming regions generated in the hydrodynamical
simulations of the cold dark matter universe. These are of megaparsec order lmax ≃ 1
Mpc (1 Mpc=106 pc= 3.086 · 1024 cm) [36, 37]. We therefore expect spatial scales of
the aperiodic Weibel fluctuations occurring over the large range of

lmin ≤ l ≤ lmax ≃ 1 Mpc (33)

with

lmin =
2π

kmax

=
3.63 · 108

n
1/2
−4

γ
√

1 − γ2
cm (34)

where we adopt an intergalactic electron density of ne = 10−4n−4 cm −3. With the
minimum value γ = vth,‖/c the smallest scale

lmin = 2πλDe,‖ = 1.37 · 107 (T7/n−4)
1/2 cm (35)

is given by the parallel Debye length λDe,‖ = vth,‖/ωpe. Obviously, the Weibel
mechanism is capable to generate micro Gauss magnetic fields from the plasma Debye
scale up to cosmological scales set by the large-scale structures formed in the cold
dark matter universe.

4. Simulation studies

The particle-in-cell simulation results of Sakai et al. [24] quantitatively confirm the
analytical results of Sect. 3, and provide corroborative evidence that the Weibel
instability is a viable mechanism for the magnetization of the cosmological plasma.

We now provide more details of our computer simulation results. We used 2D3V,
fully relativistic electromagnetic PIC code, modified from 3D3V TRISTAN code [38].
The system size was Lx = 16000∆ and Ly = 64∆, where ∆(= 1.0) is the grid size.
Periodic boundary conditions for both x- and y-directions are imposed on particles
and fields. The initial states of the plasma in the left-side region (x ≤ 8000∆) and in
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Figure 3. Phase-space plots of the protons Vix/c, (a) ωpet = 0, (c) ωpet = 600,
and the electrons Vex/c, (a) ωpet = 0, (c) ωpet = 600. From [24].

the right-side region (x > 8000∆) have the shifted Maxwellian with vd = +0.2c and
vd = −0.2c, respectively, where c is the speed of light in vacuum. We performed two
cases with equal density of 50/cell for symmetric asymmetric cases where the right-
side density (100/cell) is twice larger than the left-side plasma density. The electron
and ion temperatures are the same, so that the electron thermal speed is 0.1c. The
chosen values especially of the streaming velocities ±0.2c should be regarded as typical
values at rather early phases of the evolution of the universe.

Our simulation results are summarized as follows. Figure 1(a) displays the
time evolution of the magnetic field energy

∫ ∫

Bz
2dxdy during the early stage of

symmetric density. Figure 1(b) exhibits the time evolution of the magnetic field
energy

∫ ∫

Bz
2dxdy during the early stage of asymmetric density. The solid lines

in Figs. 2(a) and 2(b) show the linear growth rate. We can estimate the linear growth
rate γ/ωpe = 0.1 for the symmetric case, and γ/ωpe = 0.195 for the asymmetric case.

Figure 2(a) shows the time evolution of the electrostatic electric field energy
∫ ∫

Ex
2dxdy during the early stage of symmetric density. Figure 2(b) shows the time

evolution of the electric field energy
∫ ∫

Ex
2dxdy during the early stage of asymmetric

density. The solid lines show the linear growth rate. We can estimate the linear growth
rate γ/ωpe = 1.03 for symmetric case, and γ/ωpe = 1.49 for the asymmetric case. This
figure confirms the simultanous generation of electrostatic waves in the instability.

Figures 3(a) and 3(c) exhibit the phase-space plots of protons (Vix is normalized
by c) at ωpet = 0, and at ωpet = 600, respectively. Figures 3(b) and 3(d) depicts
the phase-space plots of the electrons (Vex is normalized by c) at ωpet = 0, and at
ωpet = 600, respectively. Figure 4 displays the time history of the magnetic field
energy

∫ ∫

Bz
2dxdy normalized by the initial electron flow energy.
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Figure 4. The time history of the magnetic field energy
∫ ∫

Bz
2dxdy normalized

by the initial electron flow energy. From [24].

The estimates of the linear growth rates of the instabilities are in good agreement
with the theoretical estimates of Sect. 3. Figure (6) shows energization of the
electrons by Langmuir waves that are excited by counter-streaming electron clouds.
The increased electron kinetic energy is associated with the electron heating. The
conversion rate (the ratio between the magnetic field energy and the electron kinetic
energy), as evident from Fig. (7), is about 5% for vd = 0.2c. The magnetic field
energy for vd = 0.5c is about ten times larger than that for the case vd = 0.2c.

These PIC simulation prove the generation of magnetic fields in plasmas
containing counter-streaming electron beams. The simulations used a proton-electron
mass ratio of 64. Since the mechanism involves both electrostatic and electromagnetic
modes, it has to be checked in future work how this proton-electron mass ratio affects
the saturation level of the transverse magnetic fields. With the present simulations we
find that purely growing magnetic fields and oscillatory Langmuir oscillations develop
in two different regimes. The growth rate of the purely growing magnetic fields in our
simulations is in good agreement with the theoretical prediction. Linearly unstable
magnetic fields saturate by trapping electrons in the vector potential. Counter
propagating electron beam driven Langmuir waves are found to energize electrons.
The ratio between the magnetic field energy and the electron kinetic energy is found
to be five percent for v0/c = 0.2. This ensures that the generation of magnetic fields
by colliding electron clouds is a fundamental process in cosmological plasmas.

5. Covariant dispersion theory of the Weibel instability

The good agreement of the linear growth rate of the Weibel instability obtained from
the relativistic PIC simulations (Sect. 4) and from the analytical estimates of Sect. 3
deserves further attention. The analytical treatments of the linear Weibel instability
used in Sect. 3 have been based on the linearized nonrelativistic Vlasov equation
for the particle’s phase space density, where the nonrelativistic particle momentum
p = mv is simply the product of the constant particle mass m and particle velocity v,
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which neglects the additional Lorentz factor dependence p = γmv where

γ =

√

1 +
p2

m2c2
(36)

Omitting the Lorentz factor dependence corresponds to the formal limit of an infinitely
high speed of light c → ∞ in Eq. (36). Obviously, at least for nonrelativistic plasma
temperatures this omission has no profound effects on the growth rates. If we would,
however, investigate the role of the Weibel instability at very early cosmological
epochs, a relativistically correct dispersion theory is needed. The covariantly
correct dispersion theory for unmagnetized anisotropic Maxwellian distributions of
arbitrary composition has recently been developed [39]. The anisotropic bi-Maxwellian
equilibrium plasma distribution functions are characterized by the two parameters
µa = mac

2/kBT⊥ and ψa which in the nonrelativistic limit µa >> 1 correspond to
the perpendicular thermal velocity vth,a,⊥ = c

√

2/µa and the temperature anisotropy

ψa = 1
2
[
Ta,⊥

Ta,‖
− 1], respectively. We derived the dispersion relations of longitudinal

and transverse oscillations in an unmagnetized anisotropic bi-Maxwellian plasma of
arbitrary composition. They hold for any values of the plasma temperatures and the
temperature anisotropy, and are the starting dispersion relations for investigating both
nonrelativistic and relativistic temperature plasmas.

In the limit of nonrelativistic (µa >> 1) anisotropic plasmas we expressed the
transverse dispersion relation in terms of the plasma dispersion function [40]

Z(f) =
1

π1/2

∫ ∞

−∞

dx
e−x2

x− f
(37)

as

0 = ΛT ≃ 1 −
c2k2 +

∑

a ω
2
p,a

ω2
− 1

2

∑

a

ω2
p,a

ω2
[1 +

2ψa

1 − z2
]Z

′

(f) (38)

where z = ω/kc, Z
′

(f) = dZ/df and

f =
ω

vth,a,‖k

1
√

1 − ω2

k2c2

, (39)

In the formal limit of an infinitely high speed of light c → ∞ this dispersion relation
reduces to the standard noncovariant nonrelativistic form

0 = ΛT,∞ ≃ 1 −
c2k2 +

∑

a ω
2
p,a

ω2
− 1

2

∑

a

ω2
p,a

ω2
[1 + 2ψa]Z

′

(f∞) (40)

where

f∞ =
ω

vth,a,‖k
(41)



Origin of cosmological magnetic fields 12

0

2e-10

0.5
0

Figure 5. Growth rate of Weibel instability. From [34].

5.1. Aperiodic solutions

Schaefer-Rolffs & Schlickeiser [34] have discussed purely growing (ω = ıΩ) solutions of
the transverse dispersion relation in case of the same anisotropy factor for all species.
With ω2

0 =
∑

a ω
2
p,a, γ = vth,‖/vth,⊥ the covariant dispersion relation (38) reads

G





Ω

vth,‖k

1
√

1 + Ω2

k2c2



 =
k2c2 + Ω2

k2c2

γ2 + Ω2

[

1 +
k2c2

ω2
0

+
Ω2

ω2
0

]

(42)

with

G(y) = 1 − π1/2yey2

erfc (y), 0 ≤ G(y) ≤ 1, ∀y ≥ 0 (43)

The limit c→ ∞ of Eq. (42) yields the noncovariant dispersion relation

G

(

Ω

vth,‖k

)

= γ2

[

1 +
k2c2

ω2
0

+
Ω2

ω2
0

]

(44)

in the form discussed first by Kalman et al. [35]. As we show now, these two dispersion
relations provide basically identical solutions Ω(k) explaining why the covariant
modifications play no significant role for nonrelativistic plasma temperatures.

With α = vth,‖/c, dimensionless wavenumber κ2 = k2c2

ω2

0

and

x =
Ω2

k2c2
=

Ω2

ω2
0κ

2
∈ [0,∞] (45)

the noncovariant dispersion relation (44) reads

G

(√
x

α

)

= R(x) = γ2[1 + κ2(1 + x)], (46)

while the covariant dispersion relation (42) becomes

G(
1

α

√

x

1 + x
) = S(x) =

γ2[1 + κ2(1 + x)](1 + x)

1 + γ2x]
= R(x)

1 + x

1 + γ2x
(47)

The allowed range of anisotropies is α << γ < 1 (i.e. c >> vth,⊥ > vth,‖) so
that the functions S ≥ R ≥ α for all wave numbers are larger than α implying that
aperiodic solutions are only possible in the range x ≤ 1. However, in this relevant
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solution range x ≤ 1 the covariant function S(x) and the noncovariant function R(x)
approach the same limit

S(x ≤ 1) ≃ R(x ≤ 1) ≃ γ2(1 + κ2) =
1 + κ2

1 + κ2
max

, (48)

where κ2
max = (1−γ2)/γ2. This explains that there is practically no difference between

the covariant and noncovariant solutions for nonrelativistic plasma temperatures. The
solution is shown in Fig. 5.

6. Summary and conclusions

We have demonstrated by analytical linear instability calculations and PIC simulations
that counterstreaming electron-ion plasmas induced by cosmological structure
formation magnetize the early universe by Weibel-type instabilities. The threshold
condition for these instabilities requires intense streaming velocities u > vth

corresponding to large Mach numbers M > 43 of the fully-ionized baryonic flows.
There is good agreement between PIC simulations (mp/me = 64) and analytical
noncovariant instability estimates. The saturated magnetic fields reach 5 percent of
the initial flow energy and can explain the existence of localized intergalactic magnetic
fields of microGauss strength. For nonrelativistic thermal velocities there exists
practically no difference between covariant and noncovariant plasma dispersion theory
which can be verified by the now available covariant dispersion theory of unmagnetized
anisotropic plasmas.
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